One or more bound planets per Milky Way star from mi

Nature 481, 167-169 DOI: 10.1038/nature10684

Citation Report

#	Article	IF	CITATIONS
2	Brown dwarfs and free-floating planets. , 0, , 209-216.		0
3	Formation and evolution. , 0, , 217-254.		3
4	Current and Future of Microlensing Exoplanet Search. Proceedings of the International Astronomical Union, 2012, 8, 10-19.	0.0	1
5	Habitable Worlds Around M Dwarf Stars: The CAPSCam Astrometric Planet Search. Proceedings of the International Astronomical Union, 2012, 8, 183-188.	0.0	1
6	Exploring the Cosmic Context of Earth. Proceedings of the International Astronomical Union, 2012, 8, 77-83.	0.0	0
7	Evolutionary-algorithm-based analysis of gravitational microlensing light curves. Monthly Notices of the Royal Astronomical Society, 2012, 427, 1755-1768.	1.6	1
8	Microlensing Constraints on the Abundance of Extrasolar Planets. Proceedings of the International Astronomical Union, 2012, 8, 27-32.	0.0	0
9	AN EFFICIENT AUTOMATED VALIDATION PROCEDURE FOR EXOPLANET TRANSIT CANDIDATES. Astrophysical Journal, 2012, 761, 6.	1.6	220
10	From cosmos to intelligent life: the four ages of astrobiology. International Journal of Astrobiology, 2012, 11, 345-350.	0.9	5
11	Astrophysical applications of gravitational microlensing. Research in Astronomy and Astrophysics, 2012, 12, 947-972.	0.7	74
12	Adaptive optics for high contrast imaging. Proceedings of SPIE, 2012, , .	0.8	13
13	SPICES: a 1.5-m space coronagraph for spectro-polarimetric characterization of cold exoplanets. , 2012, , .		0
14	A brown dwarf orbiting an M-dwarf: MOAÂ2009–BLG–411L. Astronomy and Astrophysics, 2012, 547, A55.	2.1	16
15	PLANETARY AND OTHER SHORT BINARY MICROLENSING EVENTS FROM THE MOA SHORT-EVENT ANALYSIS. Astrophysical Journal, 2012, 757, 119.	1.6	83
16	MAPPING EARTH ANALOGS FROM PHOTOMETRIC VARIABILITY: SPIN-ORBIT TOMOGRAPHY FOR PLANETS IN INCLINED ORBITS. Astrophysical Journal, 2012, 755, 101.	1.6	86
17	MOA 2010-BLG-477Lb: CONSTRAINING THE MASS OF A MICROLENSING PLANET FROM MICROLENSING PARALLAX, ORBITAL MOTION, AND DETECTION OF BLENDED LIGHT. Astrophysical Journal, 2012, 754, 73.	1.6	64
18	THE FIRST PLANETS: THE CRITICAL METALLICITY FOR PLANET FORMATION. Astrophysical Journal, 2012, 751, 81.	1.6	75
19	An Earth-mass planet orbiting α Centauri B. Nature, 2012, 491, 207-211.	13.7	361

ITATION REDO

#	Article	IF	CITATIONS
20	Observing the Earth as an exoplanet with LOUPE, the lunar observatory for unresolved polarimetry of Earth. Planetary and Space Science, 2012, 74, 202-207.	0.9	27
21	The Habitability of Our Earth and Other Earths: Astrophysical, Geochemical, Geophysical, and Biological Limits on Planet Habitability. Annual Review of Earth and Planetary Sciences, 2012, 40, 597-623.	4.6	47
22	Microlensing suggests that our galaxy has more planets than stars. Physics Today, 2012, 65, 19-21.	0.3	0
23	A Bayesian algorithm for model selection applied to caustic-crossing binary-lens microlensing events. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2228-2238.	1.6	8
24	Microlensing Surveys for Exoplanets. Annual Review of Astronomy and Astrophysics, 2012, 50, 411-453.	8.1	237
25	Life's chirality from prebiotic environments. International Journal of Astrobiology, 2012, 11, 287-296.	0.9	13
26	The role of protostellar jets in star formation and the evolution of the early solar system: Astrophysical and meteoritical perspectives. Meteoritics and Planetary Science, 2012, 47, 1922-1940.	0.7	6
27	PLANETS AROUND LOW-MASS STARS (PALMS). I. A SUBSTELLAR COMPANION TO THE YOUNG M DWARF 1RXS J235133.3+312720. Astrophysical Journal, 2012, 753, 142.	1.6	74
28	The History of Exoplanet Detection. Astrobiology, 2012, 12, 928-939.	1.5	4
29	A PLANETARY SYSTEM AROUND THE NEARBY M DWARF GJ 667C WITH AT LEAST ONE SUPER-EARTH IN ITS HABITABLE ZONE. Astrophysical Journal Letters, 2012, 751, L16.	3.0	139
30	Characterizing Exoplanet Atmospheres. , 0, , 266-285.		0
32	FORMATION OF MILLISECOND PULSARS FROM INTERMEDIATE- AND LOW-MASS X-RAY BINARIES. Astrophysical Journal, 2012, 756, 85.	1.6	38
33	HOT METHANE LINE LISTS FOR EXOPLANET AND BROWN DWARF ATMOSPHERES. Astrophysical Journal, 2012, 757, 46.	1.6	58
34	SEARCHING FOR YOUNG JUPITER ANALOGS AROUND AP COL: <i>L</i> BAND HIGH-CONTRAST IMAGING OF THE CLOSEST PRE-MAIN-SEQUENCE STAR. Astrophysical Journal, 2012, 754, 127.	1.6	35
35	A frozen super-Earth orbiting a star at the bottom of the main sequence. Astronomy and Astrophysics, 2012, 540, A78.	2.1	56
36	Direct imaging constraints on planet populations detected by microlensing. Astronomy and Astrophysics, 2012, 541, A133.	2.1	26
37	Life-bearing primordial planets in the solar vicinity. Astrophysics and Space Science, 2012, 341, 295-299.	0.5	12
38	OGLE-2008-BLG-510: first automated real-time detection of a weak microlensing anomaly - brown dwarf or stellar binary?a~ Monthly Notices of the Royal Astronomical Society, 2012, 424, 902-918.	1.6	21

#	Article	IF	CITATIONS
39	Disrupting primordial planet signatures: the close encounter of two single-planet exosystems in the Galactic disc. Monthly Notices of the Royal Astronomical Society, 2012, 425, 680-700.	1.6	39
40	Astrobiology, History, and Society. Advances in Astrobiology and Biogeophysics, 2013, , .	0.6	22
41	Habitability of Other Planets and Satellites. Cellular Origin and Life in Extreme Habitats, 2013, , .	0.3	1
42	Exoplanet Habitability. Science, 2013, 340, 577-581.	6.0	196
43	Spectroscopy of planetary atmospheres in our Galaxy. Astronomy and Astrophysics Review, 2013, 21, 1.	9.1	102
44	M dwarf stars in the light of (future) exoplanet searches. Astronomische Nachrichten, 2013, 334, 155-158.	0.6	5
45	ExELS: an exoplanet legacy science proposal for the ESA Euclid mission– I. Cold exoplanets. Monthly Notices of the Royal Astronomical Society, 2013, 434, 2-22.	1.6	107
47	The Origins of Life: Old Problems, New Chemistries. Angewandte Chemie - International Edition, 2013, 52, 155-162.	7.2	151
48	Statistical and regression analyses of detected extrasolar systems. Planetary and Space Science, 2013, 75, 37-45.	0.9	3
49	Observational signatures of the giant planets collisions. Planetary and Space Science, 2013, 78, 64-68.	0.9	1
50	A SUPER-EARTH-SIZED PLANET ORBITING IN OR NEAR THE HABITABLE ZONE AROUND A SUN-LIKE STAR. Astrophysical Journal, 2013, 768, 101.	1.6	70
51	On the probability of habitable planets. International Journal of Astrobiology, 2013, 12, 177-185.	0.9	35
52	Extending the planetary mass function to Earth mass by microlensing at moderately high magnification. Monthly Notices of the Royal Astronomical Society, 2013, 431, 2975-2985.	1.6	34
53	The short-lived production of exozodiacal dust in the aftermath of a dynamical instability in planetary systems. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2938-2945.	1.6	56
54	The most common habitable planets – atmospheric characterization of the subgroup of fast rotators. Monthly Notices of the Royal Astronomical Society, 2013, 429, 3619-3626.	1.6	24
55	Exoplanets beyond the Solar neighbourhood: Galactic tidal perturbations. Monthly Notices of the Royal Astronomical Society, 2013, 430, 403-415.	1.6	66
56	AN UNDERSTANDING OF THE SHOULDER OF GIANTS: JOVIAN PLANETS AROUND LATE K DWARF STARS AND THE TREND WITH STELLAR MASS. Astrophysical Journal, 2013, 771, 18.	1.6	36
57	ON THE EFFECTS OF THE EVOLUTION OF MICROBIAL MATS AND LAND PLANTS ON THE EARTH AS A PLANET. PHOTOMETRIC AND SPECTROSCOPIC LIGHT CURVES OF PALEO-EARTHS. Astrophysical Journal, 2013, 766, 133.	1.6	40

#	Article	IF	CITATIONS
58	Direct Imaging Search for Extrasolar Planets in the Pleiades. Publication of the Astronomical Society of Japan, 2013, 65, .	1.0	47
59	INTERPRETATION OF A SHORT-TERM ANOMALY IN THE GRAVITATIONAL MICROLENSING EVENT MOA-2012-BLG-486. Astrophysical Journal, 2013, 778, 55.	1.6	36
60	MOA-2010-BLG-328Lb: A SUB-NEPTUNE ORBITING VERY LATE M DWARF?. Astrophysical Journal, 2013, 779, 91.	1.6	45
61	CARBON AND OXYGEN ABUNDANCES IN THE HOT JUPITER EXOPLANET HOST STAR XO-2B AND ITS BINARY COMPANION. Astrophysical Journal Letters, 2013, 768, L12.	3.0	39
63	Microlensing detection of extrasolar planets. Reports on Progress in Physics, 2013, 76, 056901.	8.1	26
64	Astrometric detection of exoplanets from the ground. Proceedings of SPIE, 2013, , .	0.8	3
65	Exploring exoplanetary systems beyond 1AU with WFIRST. Proceedings of the International Astronomical Union, 2013, 8, 62-63.	0.0	0
66	CHARACTERIZING THE COOL KOIs. IV. KEPLER-32 AS A PROTOTYPE FOR THE FORMATION OF COMPACT PLANETARY SYSTEMS THROUGHOUT THE GALAXY. Astrophysical Journal, 2013, 764, 105.	1.6	132
67	FROM DUST TO PLANETESIMALS: AN IMPROVED MODEL FOR COLLISIONAL GROWTH IN PROTOPLANETARY DISKS. Astrophysical Journal, 2013, 764, 146.	1.6	122
68	HATS-2b: A transiting extrasolar planet orbiting a <i>K</i> -type star showing starspot activity. Astronomy and Astrophysics, 2013, 558, A55.	2.1	40
69	Applications of the linear approximation. , 0, , 127-181.		0
70	A giant planet beyond the snow line in microlensing event OGLE-2011-BLG-0251. Astronomy and Astrophysics, 2013, 552, A70.	2.1	30
71	Space based microlensing planet searches. EPJ Web of Conferences, 2013, 47, 15001.	0.1	3
72	Simultaneous follow-up of planetary transits: revised physical properties for the planetary systems HAT-P-16 and WASP-21. Astronomy and Astrophysics, 2013, 557, A30.	2.1	29
73	Atmospheric constraints for the CO ₂ partial pressure on terrestrial planets near the outer edge of the habitable zone. Astronomy and Astrophysics, 2013, 549, A94.	2.1	15
74	Prized results from HARPS. EPJ Web of Conferences, 2013, 47, 05004.	0.1	2
75	Simultaneous optical and near-infrared linear spectropolarimetry of the earthshine. Astronomy and Astrophysics, 2014, 562, L5.	2.1	29
76	The frequency of planetary debris around young white dwarfs. Astronomy and Astrophysics, 2014, 566, A34.	2.1	297

#	Article	IF	CITATIONS
77	MOA-2011-BLG-262Lb: A SUB-EARTH-MASS MOON ORBITING A GAS GIANT PRIMARY OR A HIGH VELOCITY PLANETARY SYSTEM IN THE GALACTIC BULGE. Astrophysical Journal, 2014, 785, 155.	1.6	146
78	THE TRENDS HIGH-CONTRAST IMAGING SURVEY. IV. THE OCCURRENCE RATE OF GIANT PLANETS AROUND M DWARFS. Astrophysical Journal, 2014, 781, 28.	1.6	125
79	The PLATO 2.0 mission. Experimental Astronomy, 2014, 38, 249-330.	1.6	912
80	OPTIMAL SURVEY STRATEGIES AND PREDICTED PLANET YIELDS FOR THE KOREAN MICROLENSING TELESCOPE NETWORK. Astrophysical Journal, 2014, 794, 52.	1.6	78
81	MOA-2011-BLG-322Lb: a â€~second generation survey' microlensing planet. Monthly Notices of the Royal Astronomical Society, 2014, 439, 604-610.	1.6	55
82	The future of spectroscopic life detection on exoplanets. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12634-12640.	3.3	72
83	OGLE-2008-BLG-355Lb: A MASSIVE PLANET AROUND A LATE-TYPE STAR. Astrophysical Journal, 2014, 788, 128.	1.6	23
84	SYNTHESIZING EXOPLANET DEMOGRAPHICS FROM RADIAL VELOCITY AND MICROLENSING SURVEYS. I. METHODOLOGY. Astrophysical Journal, 2014, 791, 90.	1.6	45
85	Correlations between the stellar, planetary, and debris components of exoplanet systems observed by <i>Herschel</i> . Astronomy and Astrophysics, 2014, 565, A15.	2.1	50
86	Prospect for UV observations from the Moon. Astrophysics and Space Science, 2014, 353, 329-346.	0.5	5
87	COAGULATION CALCULATIONS OF ICY PLANET FORMATION AROUND 0.1-0.5 <i>M</i> _{â~‰} STARS: SUPER-EARTHS FROM LARGE PLANETESTIMALS. Astrophysical Journal, 2014, 780, 4.	1.6	10
88	EMPIRICAL STUDY OF SIMULATED TWO-PLANET MICROLENSING EVENTS. Astrophysical Journal, 2014, 794, 53.	1.6	33
89	PREDICTIONS FOR MICROLENSING PLANETARY EVENTS FROM CORE ACCRETION THEORY. Astrophysical Journal, 2014, 788, 73.	1.6	61
90	LIMITS ON STELLAR COMPANIONS TO EXOPLANET HOST STARS WITH ECCENTRIC PLANETS. Astrophysical Journal, 2014, 785, 93.	1.6	26
91	A SUPER-JUPITER ORBITING A LATE-TYPE STAR: A REFINED ANALYSIS OF MICROLENSING EVENT OGLE-2012-BLG-0406. Astrophysical Journal, 2014, 782, 48.	1.6	42
92	The mass budget of planet-forming discs: isolating the epoch of planetesimal formation. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3315-3329.	1.6	100
93	MOA-2008-BLG-379Lb: A MASSIVE PLANET FROM A HIGH MAGNIFICATION EVENT WITH A FAINT SOURCE. Astrophysical Journal, 2014, 780, 123.	1.6	38
94	SUPER-MASSIVE PLANETS AROUND LATE-TYPE STARS—THE CASE OF OGLE-2012-BLG-0406Lb. Astrophysical Journal, 2014, 782, 47.	1.6	48

#	Article	IF	Citations
" 95	SPEEDING UP LOW-MASS PLANETARY MICROLENSING SIMULATIONS AND MODELING: THE CAUSTIC REGION OF INFLUENCE. Astrophysical Journal, 2014, 790, 142.	1.6	34
96	Exoplanetary searches with gravitational microlensing: Polarization issues. Advances in Space Research, 2014, 54, 1319-1325.	1.2	23
97	Possible climates on terrestrial exoplanets. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130084.	1.6	53
98	CHARACTERIZING THE PURPLE EARTH: MODELING THE GLOBALLY INTEGRATED SPECTRAL VARIABILITY OF THE ARCHEAN EARTH. Astrophysical Journal, 2014, 780, 52.	1.6	43
99	Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b. Nature, 2014, 505, 69-72.	13.7	688
100	Cloudy with a chance of dustballs. Nature, 2014, 505, 31-32.	13.7	2
101	ExELS: an exoplanet legacy science proposal for the ESA Euclid mission - II. Hot exoplanets and sub-stellar systems. Monthly Notices of the Royal Astronomical Society, 2014, 445, 4137-4154.	1.6	32
102	C/O RATIOS OF STARS WITH TRANSITING HOT JUPITER EXOPLANETS,. Astrophysical Journal, 2014, 788, 39.	1.6	75
103	Astrometric detection of giant planets around nearby M dwarfs: the Gaia potential. Monthly Notices of the Royal Astronomical Society, 2014, 437, 497-509.	1.6	100
104	Theorizing sustainability in a post-Concorde world. Technology in Society, 2014, 39, 1-9.	4.8	5
105	SHORT DISSIPATION TIMES OF PROTO-PLANETARY DISKS: AN ARTIFACT OF SELECTION EFFECTS?. Astrophysical Journal Letters, 2014, 793, L34.	3.0	97
106	A terrestrial planet in a ~1-AU orbit around one member of a â^¼15-AU binary. Science, 2014, 345, 46-49.	6.0	103
107	SYNTHESIZING EXOPLANET DEMOGRAPHICS FROM RADIAL VELOCITY AND MICROLENSING SURVEYS. II. THE FREQUENCY OF PLANETS ORBITING M DWARFS. Astrophysical Journal, 2014, 791, 91.	1.6	92
108	A novel SETI strategy targeting the solar focal regions of the most nearby stars. Acta Astronautica, 2014, 94, 629-633.	1.7	12
109	Magnetic resonance tractography: a neurosurgical perspective. Future Neurology, 2014, 9, 279-283.	0.9	1
110	Can dust coagulation trigger streaming instability?. Astronomy and Astrophysics, 2014, 572, A78.	2.1	99
111	Galactic planetary science. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130077.	1.6	4
112	AN INCREASE IN THE MASS OF PLANETARY SYSTEMS AROUND LOWER-MASS STARS. Astrophysical Journal, 2015, 814, 130.	1.6	191

#	ARTICLE	IF	CITATIONS
113	On the abundance of extraterrestrial life after the Kepler mission. International Journal of Astrobiology, 2015, 14, 511-516.	0.9	35
114	Toward Direct Imaging of Low-mass Gas-Giant Planets with the <i>James Webb Space Telescope</i> . Proceedings of the International Astronomical Union, 2015, 10, 288-289.	0.0	4
115	Dark compact planets. Physical Review D, 2015, 92, .	1.6	47
116	Stochastic gravitational wave background from exoplanets. Physical Review D, 2015, 91, .	1.6	26
117	THE SOLAR SYSTEM AS AN EXOPLANETARY SYSTEM. Astrophysical Journal, 2015, 810, 105.	1.6	44
118	OGLE-2012-BLG-0563Lb: A SATURN-MASS PLANET AROUND AN M DWARF WITH THE MASS CONSTRAINED BY <i>SUBARU</i> AO IMAGING. Astrophysical Journal, 2015, 809, 74.	1.6	66
119	Direct exoplanet detection and characterization using the ANDROMEDA method: Performance on VLT/NaCo data. Astronomy and Astrophysics, 2015, 582, A89.	2.1	90
120	MOA-2007-BLG-197: Exploring the brown dwarf desert. Astronomy and Astrophysics, 2015, 580, A125.	2.1	20
121	CRITERIA FOR SAMPLE SELECTION TO MAXIMIZE PLANET SENSITIVITY AND YIELD FROM SPACE-BASED MICROLENS PARALLAX SURVEYS. Astrophysical Journal, 2015, 810, 155.	1.6	94
122	The EChO science case. Experimental Astronomy, 2015, 40, 329-391.	1.6	31
123	Thirty Meter Telescope Detailed Science Case: 2015. Research in Astronomy and Astrophysics, 2015, 15, 1945-2140.	0.7	118
124	The first radial velocity measurements of a microlensing event: no evidence for the predicted binary. Astronomy and Astrophysics, 2015, 582, L11.	2.1	11
125	Searching for signatures of planet formation in stars with circumstellar debris discs. Astronomy and Astrophysics, 2015, 579, A20.	2.1	58
126	Planet Frequency beyond the Snow Line from MOA-II Microlensing Survey. Proceedings of the International Astronomical Union, 2015, 11, 220-220.	0.0	0
127	Fraction of stars with planetary systems, fp, 1961 to the present. , 0, , 71-89.		0
128	The search for signs of life on exoplanets at the interface of chemistry and planetary science. Science Advances, 2015, 1, e1500047.	4.7	65
129	Miniature Exoplanet Radial Velocity Array I: design, commissioning, and early photometric results. Journal of Astronomical Telescopes, Instruments, and Systems, 2015, 1, 027002.	1.0	72
130	ExTrA: Exoplanets in transit and their atmospheres. Proceedings of SPIE, 2015, , .	0.8	14

#	Article	IF	CITATIONS
131	PLANET HUNTERS. VIII. CHARACTERIZATION OF 41 LONG-PERIOD EXOPLANET CANDIDATES FROM <i>KEPLER</i> ARCHIVAL DATA. Astrophysical Journal, 2015, 815, 127.	1.6	77
132	PROSPECTS FOR CHARACTERIZING HOST STARS OF THE PLANETARY SYSTEM DETECTIONS PREDICTED FOR THE KOREAN MICROLENSING TELESCOPE NETWORK. Astrophysical Journal, 2015, 800, 58.	1.6	29
133	Can Kozai–Lidov cycles explain Kepler-78b?. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1729-1737.	1.6	32
134	CAN THE MASSES OF ISOLATED PLANETARY-MASS GRAVITATIONAL LENSES BE MEASURED BY TERRESTRIAL PARALLAX?. Astrophysical Journal, 2015, 799, 181.	1.6	32
135	Evaporation and accretion of extrasolar comets following white dwarf kicks. Monthly Notices of the Royal Astronomical Society, 2015, 448, 188-206.	1.6	53
136	NEWLY DISCOVERED PLANETS ORBITING HD 5319, HD 11506, HD 75784 AND HD 10442 FROM THE N2K CONSORTIUM. Astrophysical Journal, 2015, 799, 89.	1.6	48
137	PLANETS AROUND LOW-MASS STARS (PALMS). IV. THE OUTER ARCHITECTURE OF M DWARF PLANETARY SYSTEMS. Astrophysical Journal, Supplement Series, 2015, 216, 7.	3.0	157
138	Clobal models of planet formation and evolution. International Journal of Astrobiology, 2015, 14, 201-232.	0.9	135
139	THE DIRECT DETECTABILITY OF GIANT EXOPLANETS IN THE OPTICAL. Astrophysical Journal, 2015, 808, 172.	1.6	34
140	The JCMT Gould Belt Survey: low-mass protoplanetary discs from a SCUBA-2 census of NGC 1333. Monthly Notices of the Royal Astronomical Society, 2015, 447, 722-727.	1.6	10
141	The Occurrence and Architecture of Exoplanetary Systems. Annual Review of Astronomy and Astrophysics, 2015, 53, 409-447.	8.1	636
142	Kepler and the seven dwarfs: detection of low-level day-time-scale periodic photometric variations in white dwarfs. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1749-1760.	1.6	49
143	CONSTRAINT ON ADDITIONAL PLANETS IN PLANETARY SYSTEMS DISCOVERED THROUGH THE CHANNEL OF HIGH-MAGNIFICATION GRAVITATIONAL MICROLENSING EVENTS. Astrophysical Journal, 2015, 802, 108.	1.6	25
144	Direct detection of exoplanets in the 3–10Âμm range with E-ELT/METIS. International Journal of Astrobiology, 2015, 14, 279-289.	0.9	102
145	OGLE-2011-BLG-0265Lb: A JOVIAN MICROLENSING PLANET ORBITING AN M DWARF. Astrophysical Journal, 2015, 804, 33.	1.6	45
146	PLANET FORMATION AROUND BINARY STARS: TATOOINE MADE EASY. Astrophysical Journal, 2015, 806, 98.	1.6	79
147	A wide binary trigger for white dwarf pollution. Monthly Notices of the Royal Astronomical Society, 2015, 454, 53-63.	1.6	62
148	HOW TO CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, AND RADIUS. Astrophysical Journal, 2015, 804, 64.	1.6	491

#	Article	IF	Citations
149	No circumbinary planets transiting the tightest <i>Kepler</i> binaries – a possible fingerprint of a third star. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3555-3568.	1.6	78
150	PLANET SENSITIVITY FROM COMBINED GROUND- AND SPACE-BASED MICROLENSING OBSERVATIONS. Astrophysical Journal, 2015, 814, 129.	1.6	31
151	Detectable close-in planets around white dwarfs through late unpacking. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1049-1058.	1.6	92
152	OGLE-2012-BLG-0724LB: A SATURN-MASS PLANET AROUND AN M DWARF. Astrophysical Journal, 2016, 824, 139.	1.6	30
153	Evolved stars and the origin of abundance trends in planet hosts. Astronomy and Astrophysics, 2016, 588, A98.	2.1	44
154	MASSIVE: A Bayesian analysis of giant planet populations around low-mass stars. Astronomy and Astrophysics, 2016, 596, A83.	2.1	36
155	SEARCHING FOR ANOTHER EARTH: THE RECENT HISTORY OF THE DISCOVERY OF EXOPLANETS. Zygon, 2016, 51, 414-430.	0.2	2
156	THE FIRST NEPTUNE ANALOG OR SUPER-EARTH WITH A NEPTUNE-LIKE ORBIT: MOA-2013-BLG-605LB. Astrophysical Journal, 2016, 825, 112.	1.6	70
157	Gravitational lensing and polarization in astrophysics. Journal of Physics: Conference Series, 2016, 678, 012010.	0.3	0
158	The habitability of planets orbiting M-dwarf stars. Physics Reports, 2016, 663, 1-38.	10.3	216
159	THE POPULATION OF LONG-PERIOD TRANSITING EXOPLANETS. Astronomical Journal, 2016, 152, 206.	1.9	96
160	DISCOVERY OF A GAS GIANT PLANET IN MICROLENSING EVENT OGLE-2014-BLG-1760. Astronomical Journal, 2016, 152, 140.	1.9	30
161	Exoplanet microlensing. , 0, , 31-50.		0
162	THE EXOPLANET MASS-RATIO FUNCTION FROM THE MOA-II SURVEY: DISCOVERY OF A BREAK AND LIKELY PEAK AT A NEPTUNEÂMASS. Astrophysical Journal, 2016, 833, 145.	1.6	202
163	Close-in planetesimal formation by pile-up of drifting pebbles. Astronomy and Astrophysics, 2016, 594, A105.	2.1	168
164	Imaging transient events at high angular resolution. , 2016, , .		0
165	The advantages of using a Lucky Imaging camera for observations of microlensing events. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3248-3259.	1.6	27
166	The frequency of snowline-region planets from four years of OGLE–MOA–Wise second-generation microlensing. Monthly Notices of the Royal Astronomical Society, 2016, 457, 4089-4113.	1.6	108

#	Article	IF	CITATIONS
167	SPITZER PARALLAX OF OGLE-2015-BLG-0966: A COLD NEPTUNE IN THE GALACTIC DISK. Astrophysical Journal, 2016, 819, 93.	1.6	95
168	A New Empirical Constraint on the Prevalence of Technological Species in the Universe. Astrobiology, 2016, 16, 359-362.	1.5	39
169	GRAVITATIONAL MICROLENSING EVENTS AS A TARGET FOR THE SETI PROJECT. Astrophysical Journal, 2016, 828, 19.	1.6	26
170	CD-HPF: New habitability score via data analytic modeling. Astronomy and Computing, 2016, 17, 129-143.	0.8	48
171	Global energy budgets and â€~Trenberth diagrams' for the climates of terrestrial and gas giant planets. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 703-720.	1.0	28
172	Keck Planet Imager and Characterizer: concept and phased implementation. Proceedings of SPIE, 2016, , .	0.8	31
173	MISALIGNED DISKS IN THE BINARY PROTOSTAR IRS 43. Astrophysical Journal Letters, 2016, 830, L16.	3.0	90
174	IS THE GALACTIC BULGE DEVOID OF PLANETS?. Astrophysical Journal, 2016, 830, 150.	1.6	59
175	HIGH-SPEED PHOTOMETRY OF THE DISINTEGRATING PLANETESIMALS AT WD1145+017: EVIDENCE FOR RAPID DYNAMICAL EVOLUTION. Astrophysical Journal Letters, 2016, 818, L7.	3.0	107
176	Post-main-sequence planetary system evolution. Royal Society Open Science, 2016, 3, 150571.	1.1	172
177	High-Resolution Altitude Profiles of the Atmospheric Turbulence with PML at the Sutherland Observatory. Monthly Notices of the Royal Astronomical Society, 2016, , stw2994.	1.6	4
178	RADIO EMISSION FROM RED-GIANT HOT JUPITERS. Astrophysical Journal, 2016, 820, 122.	1.6	37
179	Atmospheric Parameters and Luminosities of Nearby M Dwarfs – Estimating Habitable Exoplanet Detectability with the E-ELT. Proceedings of the International Astronomical Union, 2016, 12, 371-373.	0.0	1
180	Liberating exomoons in white dwarf planetary systems. Monthly Notices of the Royal Astronomical Society, 2016, 457, 217-231.	1.6	80
181	REVISITING THE MICROLENSING EVENT OGLE 2012-BLG-0026: A SOLAR MASS STAR WITH TWO COLD GIANT PLANETS. Astrophysical Journal, 2016, 824, 83.	1.6	73
182	Giant planet formation in radially structured protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2779-2795.	1.6	78
183	Current best estimates of planet populations. , 2016, , .		0
184	DETECTING PLANET PAIRS IN MEAN MOTION RESONANCES VIA THE ASTROMETRY METHOD. Astrophysical Journal, 2016, 825, 76.	1.6	22

CITATION REPO	RL.

#	Article	IF	CITATIONS
185	BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS. Astrophysical Journal, 2016, 817, 90.	1.6	219
186	Full-lifetime simulations of multiple unequal-mass planets across all phases of stellar evolution. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3942-3967.	1.6	95
187	Interferometric observation of microlensing events. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2074-2079.	1.6	38
188	SEARCH FOR LOW-MASS OBJECTS IN THE GLOBULAR CLUSTER M4. I. DETECTION OF VARIABLE STARS. Astronomical Journal, 2016, 151, 27.	1.9	4
189	<i>KEPLER</i> Mission: development and overview. Reports on Progress in Physics, 2016, 79, 036901.	8.1	160
190	The OGLE-III planet detection efficiency from six years of microlensing observations (2003–2008). Monthly Notices of the Royal Astronomical Society, 2016, 457, 1320-1331.	1.6	35
191	MOA-2011-BLG-028Lb: A NEPTUNE-MASS MICROLENSING PLANET IN THE GALACTIC BULGE*. Astrophysical Journal, 2016, 820, 4.	1.6	35
192	Big Historical Foundations for Deep Future Speculations: Cosmic Evolution, Atechnogenesis, and Technocultural Civilization. Foundations of Science, 2017, 22, 39-124.	0.4	20
193	Bernoulli, Darwin, and Sagan: the probability of life on other planets. International Journal of Astrobiology, 2017, 16, 185-189.	0.9	25
194	Fermi's paradox, extraterrestrial life and the future of humanity: a Bayesian analysis. International Journal of Astrobiology, 2017, 16, 14-18.	0.9	8
195	Cavity and other radial substructures in the disk around HD 97048. Astronomy and Astrophysics, 2017, 597, A32.	2.1	79
196	Detections of Planets in Binaries Through the Channel of Chang–Refsdal Gravitational Lensing Events. Astrophysical Journal, 2017, 835, 115.	1.6	23
197	CONSTRAINING THE FREQUENCY OF FREE-FLOATING PLANETS FROM A SYNTHESIS OF MICROLENSING, RADIAL VELOCITY, AND DIRECT IMAGING SURVEY RESULTS. Astrophysical Journal, 2017, 834, 46.	1.6	52
198	The Effect of Protoplanetary Disk Cooling Times on the Formation of Gas Giant Planets by Gravitational Instability. Astrophysical Journal, 2017, 836, 53.	1.6	19
199	High-contrast imaging at small separations: impact of the optical configuration of two deformable mirrors on dark holes. Monthly Notices of the Royal Astronomical Society, 2017, 469, 218-230.	1.6	15
200	Searching for chemical signatures of brown dwarf formation. Astronomy and Astrophysics, 2017, 602, A38.	2.1	21
201	The Demographics of Rocky Free-floating Planets and their Detectability by WFIRST. Astrophysical Journal, 2017, 841, 86.	1.6	59
202	Modified Complex Robert-Bonamy (MCRB) calculations of H2O transitions broadened by H2for applications to planetary and exoplanet atmospheres. Journal of Physics: Conference Series, 2017, 810,	0.3	0

#	Article	IF	CITATIONS
203	Detection of the Atmosphere of the 1.6ÂM _⊕ Exoplanet GJ 1132 b. Astronomical Journal, 2017, 153, 191.	1.9	65
204	How far are extraterrestrial life and intelligence after Kepler?. Acta Astronautica, 2017, 137, 498-503.	1.7	7
205	OGLE-2012-BLG-0950Lb: THE FIRST PLANET MASS MEASUREMENT FROM ONLY MICROLENS PARALLAX AND LENS FLUX. Astronomical Journal, 2017, 153, 1.	1.9	37
206	KEPLER TRANSIT DEPTHS CONTAMINATED BY A PHANTOM STAR. Astronomical Journal, 2017, 153, 59.	1.9	31
207	Radial Surface Density Profiles of Gas and Dust in the Debris Disk around 49 Ceti. Astrophysical Journal, 2017, 839, 86.	1.6	70
208	HADES RV Programme with HARPS-N at TNG. Astronomy and Astrophysics, 2017, 598, A26.	2.1	34
209	Kinetic modeling of x-ray laser-driven solid Al plasmas via particle-in-cell simulation. Physical Review E, 2017, 95, 063203.	0.8	17
210	The Search for Another Earth-Like Planet and Life Elsewhere. , 0, , 30-56.		0
211	Implications for Planetary System Formation from Interstellar Object 1I/2017 U1 (â€~Oumuamua). Astrophysical Journal Letters, 2017, 850, L38.	3.0	73
212	Where is everybody?. Significance, 2017, 14, 24-27.	0.3	0
213	pyLIMA: An Open-source Package for Microlensing Modeling. I. Presentation of the Software and Analysis of Single-lens Models. Astronomical Journal, 2017, 154, 203.	1.9	48
214	OGLE-2013-BLG-1761Lb: A Massive Planet around an M/K Dwarf. Astronomical Journal, 2017, 154, 1.	1.9	34
215	The discovery of a planetary candidate around the evolved low-mass <i>Kepler</i> giant star HD 175370. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1018-1028.	1.6	27
216	Explaining the variability of WD 1145+017 with simulations of asteroid tidal disruption. Monthly Notices of the Royal Astronomical Society, 2017, 465, 1008-1022.	1.6	77
217	On the formation and chemical composition of super Earths. Monthly Notices of the Royal Astronomical Society, 2017, 464, 428-452.	1.6	52
218	Faint-source-star planetary microlensing: the discovery of the cold gas-giant planet OGLE-2014-BLG-0676Lb. Monthly Notices of the Royal Astronomical Society, 2017, 466, 2710-2717.	1.6	24
219	Fast computation of quadrupole and hexadecapole approximations in microlensing with a single point-source evaluation. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3993-3999.	1.6	23
220	OGLE-2016-BLG-0693LB: Probing the Brown Dwarf Desert with Microlensing. Astronomical Journal, 2017, 154, 247.	1.9	7

#	Article	IF	CITATIONS
221	MOA Data Reveal a New Mass, Distance, and Relative Proper Motion for Planetary System OGLE-2015-BLG-0954L. Astronomical Journal, 2017, 154, 68.	1.9	30
222	Can planet formation resolve the dust budget crisis in high-redshift galaxies?. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2289-2296.	1.6	24
223	Microlensing Surveys for Exoplanet Research (MOA). , 2017, , 1-20.		0
224	A Statistical Approach to Illustrate the Challenge of Astrobiology for Public Outreach. Life, 2017, 7, 40.	1.1	1
225	Directed Panspermia: A 21st Century Perspective. Science Progress, 2017, 100, 187-193.	1.0	12
226	Life in the Universe, Incarnation and Salvation: A Conversation between Christianity and the Scientific Possibilities of Extra Terrestrial Life. , 0, , 260-286.		0
227	Capture of free-floating planets by planetary systems. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	10
228	The lowest mass ratio planetary microlens: OGLE 2016–BLG–1195Lb. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2434-2440.	1.6	74
229	UKIRT-2017-BLG-001Lb: A Giant Planet Detected through the Dust. Astrophysical Journal Letters, 2018, 857, L8.	3.0	33
230	The Detectability of Earth's Biosignatures Across Time. , 2018, , 1-17.		0
231	Exoplanet Classification and Yield Estimates for Direct Imaging Missions. Astrophysical Journal, 2018, 856, 122.	1.6	60
232	New Self-lensing Models of the Small Magellanic Cloud: Can Gravitational Microlensing Detect Extragalactic Exoplanets?. Astronomical Journal, 2018, 155, 154.	1.9	5
233	The search for habitable planets with biosignature gases framed by a â€~Biosignature Drake Equation'. International Journal of Astrobiology, 2018, 17, 294-302.	0.9	16
234	The Drake Equation as a Function of Spectral Type and Time. , 2018, , 307-319.		5
235	Compositional Imprints in Density–Distance–Time: A Rocky Composition for Close-in Low-mass Exoplanets from the Location of the Valley of Evaporation. Astrophysical Journal, 2018, 853, 163.	1.6	187
236	Time resolved spectroscopy of dust and gas from extrasolar planetesimals orbiting WDÂ1145+017 â~ Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	5
237	Pebble dynamics and accretion on to rocky planets – I. Adiabatic and convective models. Monthly Notices of the Royal Astronomical Society, 2018, 479, 5136-5156.	1.6	33
238	Investigating the possibility of reversing giant planet migration via gap edge illumination. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1667-1678.	1.6	5

#	Article	IF	CITATIONS
239	An Ice Giant Exoplanet Interpretation of the Anomaly in Microlensing Event OGLE-2011-BLG-0173. Astronomical Journal, 2018, 156, 104.	1.9	11
240	Signs of rotating equatorial density enhancements around SRb pulsators. Proceedings of the International Astronomical Union, 2018, 14, 421-422.	0.0	0
241	Microlensing Searches for Exoplanets. Geosciences (Switzerland), 2018, 8, 365.	1.0	29
242	Microlensing Surveys for ExoplanetResearch (MOA). , 2018, , 1045-1064.		0
243	Microlensing Surveys for Exoplanet Research (OGLE Survey Perspective). , 2018, , 1025-1044.		0
244	The Combined System of Microlensing Exoplanets and Their Host Stars. , 2018, , 1641-1653.		0
245	Planetary Population Synthesis. , 2018, , 2425-2474.		46
246	The Habitable Zone: The Climatic Limits of Habitability. , 2018, , 2981-2993.		4
247	The Detectability of Earth's Biosignatures Across Time. , 2018, , 3225-3241.		1
248	Remote Sensing of Homochirality: A Proxy for the Detection of Extraterrestrial Life. , 2018, , 29-69.		8
249	MOA-2015-BLG-337: A Planetary System with a Low-mass Brown Dwarf/Planetary Boundary Host, or a Brown Dwarf Binary. Astronomical Journal, 2018, 156, 136.	1.9	15
250	GravityCam: Wide-field high-resolution high-cadence imaging surveys in the visible from the ground. Publications of the Astronomical Society of Australia, 2018, 35, .	1.3	22
251	Microlensing Results Challenge the Core Accretion Runaway Growth Scenario for Gas Giants. Astrophysical Journal Letters, 2018, 869, L34.	3.0	66
252	Microlensing Path Parameterization for Earth-like Exoplanet Detection around Solar-mass Stars. Astronomical Journal, 2018, 156, 172.	1.9	0
253	M-dwarf exoplanet surface density distribution. Astronomy and Astrophysics, 2018, 612, L3.	2.1	22
254	An unusual face-on spiral in the wind of the M-type AGB star EP Aquarii. Astronomy and Astrophysics, 2018, 616, A34.	2.1	29
255	A chemical survey of exoplanets with ARIEL. Experimental Astronomy, 2018, 46, 135-209.	1.6	249
256	Reconciling the Predictions of Microlensing Analysis with Radial Velocity Measurements for OGLE-2011-BLG-0417. Astrophysical Journal, 2018, 865, 162.	1.6	4

ARTICLE IF CITATIONS # Formation of planetary populations – I. Metallicity and envelope opacity effects. Monthly Notices of 257 1.6 17 the Royal Astronomical Society, 2018, 478, 2599-2617. On the Rate of Abiogenesis from a Bayesian Informatics Perspective. Astrobiology, 2018, 18, 1574-1584. 1.5 259 Finding Planets via Gravitational Microlensing., 2018, , 659-687. 2 Radial velocities., 0,, 17-80. Astrometry., 0,, 81-102. 262 0 Timing., 0, , 103-118. Microlensing., 0, , 119-152. 264 0 Host stars., 0,, 373-428. 266 267 Brown dwarfs and free-floating planets., 0,, 429-448. 0 Formation and evolution., 0,, 449-558. Interiors and atmospheres., 0,, 559-648. 269 0 270 The solar system., 0,, 649-700. Dynamical and Biological Panspermia Constraints Within Multiplanet Exosystems. Astrobiology, 2018, 278 1.5 8 18, 1106-1122. A Likely Detection of a Two-planet System in a Low-magnification Microlensing Event. Astronomical 279 Journaĺ, 2018, 155, 263. Multiwavelength Ground and Space Observations of the Variable White Dwarf BOKS 53856: 280 1.9 5 Nonuniform Metal Absorption in Dark Spots. Astronomical Journal, 2018, 156, 119. RoboTAP: Target priorities for robotic microlensing observations. Astronomy and Astrophysics, 2018, 609, A55. The critical binary star separation for a planetary system origin of white dwarf pollution. Monthly 282 1.6 35 Notices of the Royal Astronomical Society, 2018, 473, 2871-2880. The occurrence of planets and other substellar bodies around white dwarfs using K2. Monthly 44 Notices of the Royal Astronomical Society, 2018, 474, 4603-4611.

#	Article	IF	CITATIONS
284	Basic Theory Exoplanet Detection. Springer Theses, 2018, , 5-22.	0.0	0
285	Resonant drag instabilities in protoplanetary discs: the streaming instability and new, faster growing instabilities. Monthly Notices of the Royal Astronomical Society, 2018, 477, 5011-5040.	1.6	93
286	The First Planetary Microlensing Event with Two Microlensed Source Stars. Astronomical Journal, 2018, 155, 141.	1.9	41
287	Exoplanet Biosignatures: Observational Prospects. Astrobiology, 2018, 18, 739-778.	1.5	130
288	Planetary Population Synthesis. , 2018, , 1-50.		7
289	The Combined System of Microlensing Exoplanets and Their Host Stars. , 2018, , 1-13.		0
290	ALMA Resolves C i Emission from the \hat{I}^2 Pictoris Debris Disk. Astrophysical Journal, 2018, 861, 72.	1.6	36
291	Accurate Mass Measurements for Planetary Microlensing Events Using High Angular Resolution Observations. Universe, 2018, 4, 61.	0.9	7
292	The Exoplanet Population Observation Simulator. I. The Inner Edges of Planetary Systems. Astronomical Journal, 2018, 156, 24.	1.9	161
293	Interferometry in the era of time-domain astronomy. Experimental Astronomy, 2018, 46, 421-431.	1.6	2
294	Chemical fingerprints of hot Jupiter planet formation. Astronomy and Astrophysics, 2018, 612, A93.	2.1	21
295	Transits. , 0, , 153-328.		0
296	ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii. Astrophysical Journal, 2018, 859, 21.	1.6	268
297	Gravitational waves from ultra-short period exoplanets. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 480, L28-L32.	1.2	7
298	Population growth, energy use, and the implications for the search for extraterrestrial intelligence. Futures, 2019, 106, 4-17.	1.4	32
299	A Fast Approximate Approach to Microlensing Survey Analysis. Astronomical Journal, 2019, 158, 9.	1.9	6
300	Circular Spectropolarimetric Sensing of Vegetation in the Field: Possibilities for the Remote Detection of Extraterrestrial Life. Astrobiology, 2019, 19, 1221-1229.	1.5	22
301	Fly-by encounters between two planetary systems I: Solar system analogues. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1366-1376.	1.6	27

		CITATION REI	PORT	
#	Article		IF	CITATIONS
302	An Updated Study of Potential Targets for Ariel. Astronomical Journal, 2019, 157, 242.		1.9	75
303	Deep Biosphere: Microbiome of the Deep Terrestrial Subsurface. , 2019, , 225-265.			3
304	Survivability of radio-loud planetary cores orbiting white dwarfs. Monthly Notices of the Astronomical Society, 2019, 488, 153-163.	Royal	1.6	16
305	An analysis of binary microlensing event OGLE-2015-BLG-0060. Monthly Notices of the R Astronomical Society, 2019, 487, 4603-4614.	oyal	1.6	3
306	The natural history of â \in Oumuamua. Nature Astronomy, 2019, 3, 594-602.		4.2	79
307	ROME/REA: A Gravitational Microlensing Search for Exoplanets Beyond the Snow Line on Network of Robotic Telescopes. Publications of the Astronomical Society of the Pacific, 2 124401.		1.0	9
308	Detection of Planetary and Stellar Companions to Neighboring Stars via a Combination of Velocity and Direct Imaging Techniques. Astronomical Journal, 2019, 157, 252.	f Radial	1.9	29
309	WFIRST and EUCLID: Enabling the Microlensing Parallax Measurement from Space. Astro Journal Letters, 2019, 880, L32.	physical	3.0	12
310	Thermodynamic Impact of Mineral Surfaces on Amino Acid Polymerization: Aspartate Dir Goethite. Astrobiology, 2019, 19, 1363-1376.	nerization on	1.5	11
311	Probing Dark Matter Using Precision Measurements of Stellar Accelerations. Physical Rev 2019, 123, 091101.	iew Letters,	2.9	16
312	Are the observed gaps in protoplanetary discs caused by growing planets?. Monthly Noti Royal Astronomical Society, 2019, 488, 3625-3633.	ces of the	1.6	22
313	A giant exoplanet orbiting a very-low-mass star challenges planet formation models. Scie 1441-1445.	nce, 2019, 365,	6.0	78
314	First Assessment of the Binary Lens OGLE-2015-BLG-0232. Astrophysical Journal, 2019, 8	570, 11.	1.6	7
315	â€~Where is everybody?' An empirical appraisal of occurrence, prevalence and sustai technological species in the Universe. International Journal of Astrobiology, 2019, 18, 49	hability of 5-501.	0.9	4
316	Revisiting the Long-period Transiting Planets from Kepler. Astronomical Journal, 2019, 15	7, 248.	1.9	30
317	Exoplanet spectroscopy and photometry with the Twinkle space telescope. Experimental 2019, 47, 29-63.	Astronomy,	1.6	47
318	Transiting Planets Near the Snow Line from Kepler. I. Catalog ^{â^—} . Astronom 157, 218.	ical Journal, 2019,	1.9	25
319	OGLE-2015-BLG-1670Lb: A Cold Neptune beyond the Snow Line in the Provisional WFIRS Survey Field. Astronomical Journal, 2019, 157, 232.	TÂMicrolensing	1.9	10

	CHAHON K		
#	Article	IF	CITATIONS
320	Two Jupiter-mass Planets Discovered by the KMTNet Survey in 2017. Astronomical Journal, 2019, 157, 146.	1.9	6
321	Search for Gravitational Lensing Signatures in LIGO-Virgo Binary Black Hole Events. Astrophysical Journal Letters, 2019, 874, L2.	3.0	107
322	Predictions of the <i>WFIRST</i> Microlensing Survey. I. Bound Planet Detection Rates. Astrophysical Journal, Supplement Series, 2019, 241, 3.	3.0	135
323	Extrasolar Planetary Systems. , 2019, , 429-440.		0
324	KMT-2017-BLG-0165Lb: A Super-Neptune-mass Planet Orbiting a Sun-like Host Star. Astronomical Journal, 2019, 157, 72.	1.9	27
325	Terraforming: synthetic biology's final frontier. Archives of Microbiology, 2019, 201, 855-862.	1.0	9
326	Survivability of planetary systems in young and dense star clusters. Astronomy and Astrophysics, 2019, 624, A120.	2.1	47
327	Constraints on the Occurrence and Distribution of 1–20 M _{Jup} Companions to Stars at Separations of 5–5000 au from a Compilation of Direct Imaging Surveys. Astronomical Journal, 2019, 158, 187.	1.9	27
328	Cold Giant Planets Evaporated by Hot White Dwarfs. Astrophysical Journal Letters, 2019, 887, L4.	3.0	27
329	Biotechnology and the lifetime of technical civilizations. International Journal of Astrobiology, 2019, 18, 445-454.	0.9	9
330	On the possibility of detecting ultrashort period exoplanets with LISA. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 483, L33-L36.	1.2	9
331	The Ophiuchus DIsc Survey Employing ALMA (ODISEA) – I: project description and continuum images at 28 au resolution. Monthly Notices of the Royal Astronomical Society, 2019, 482, 698-714.	1.6	138
332	Darwin's aliens. International Journal of Astrobiology, 2019, 18, 1-9.	0.9	19
333	Life under another Sun: From Science Fiction to Science. European Review, 2020, 28, 18-39.	0.4	0
334	Observability of ultraviolet Ni lines in the atmosphere of transiting Earthâ€like planets. Astronomische Nachrichten, 2020, 341, 879-886.	0.6	2
335	Evolution of novel activation functions in neural network training for astronomy data: habitability classification of exoplanets. European Physical Journal: Special Topics, 2020, 229, 2629-2738.	1.2	17
336	Mars 2020 Mission Overview. Space Science Reviews, 2020, 216, 1.	3.7	239
337	Volatile depletion in planet-forming disks. Chinese Journal of Chemical Physics, 2020, 33, 85-90.	0.6	0

ATION R

#	ARTICLE	IF	CITATIONS
339	Dynamical effects of the ambipolar diffusion in a protoplanetary disc. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1634-1653.	1.6	1
340	ArielRad: the Ariel radiometric model. Experimental Astronomy, 2020, 50, 303-328.	1.6	33
341	Asteroid belt survival through stellar evolution: dependence on the stellar mass. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 494, L17-L21.	1.2	8
342	The solar abundance problem and eMSTOs in clusters. Astronomy and Astrophysics, 2020, 641, A73.	2.1	8
343	The Habitability of the Galactic Bulge. Life, 2020, 10, 132.	1.1	8
344	Quantifying the information impact of future searches for exoplanetary biosignatures. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21031-21036.	3.3	9
345	The Ophiuchus DIsc Survey Employing ALMA (ODISEA) – II. The effect of stellar multiplicity on disc properties. Monthly Notices of the Royal Astronomical Society, 2020, 496, 5089-5100.	1.6	30
346	A Wide-orbit Exoplanet OGLE-2012-BLG-0838Lb. Astronomical Journal, 2020, 159, 261.	1.9	4
347	Tides on Other Earths: Implications for Exoplanet and Palaeoâ€īidal Simulations. Geophysical Research Letters, 2020, 47, e2019GL085746.	1.5	14
348	Self-induced dust traps around snow lines in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2020, 492, 210-222.	1.6	14
349	The Planetary Luminosity Problem: "Missing Planets―and the Observational Consequences of Episodic Accretion. Astrophysical Journal, 2020, 895, 48.	1.6	29
350	Does gravitational radiation impact the stellar habitable zone?. International Journal of Modern Physics D, 2020, 29, 2041017.	0.9	0
351	Detailed chemical compositions of planet-hosting stars – I. Exploration of possible planet signatures. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3961-3973.	1.6	23
352	Constraining the masses of planets in protoplanetary discs from the presence or absence of vortices – comparison with ALMA observations. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5759-5770.	1.6	10
353	Tidal fragmentation as the origin of 1I/2017 U1 (â€~Oumuamua). Nature Astronomy, 2020, 4, 852-860.	4.2	42
354	Towards a BRICS Optical Transient Network (BRICS-OTN). Anais Da Academia Brasileira De Ciencias, 2021, 93, e20200917.	0.3	1
355	Microlensing predictions: impact of Galactic disc dynamical models. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5631-5642.	1.6	8
356	Relative occurrence rates of terrestrial planets orbiting FGK stars. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5302-5312.	1.6	3

#	Article	IF	CITATIONS
357	Characterization of 92 southern <i>TESS</i> candidate planet hosts and a new photometric [Fe/H] relation for cool dwarfs. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5788-5805.	1.6	11
358	On the role of resonances in polluting white dwarfs by asteroids. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3375-3386.	1.6	12
359	Exoplanets as Sub-GeV Dark Matter Detectors. Physical Review Letters, 2021, 126, 161101.	2.9	48
360	Three-body capture, ejection, and the demographics of bound objects in binary systems. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1017-1028.	1.6	5
361	Identifying molecules as biosignatures with assembly theory and mass spectrometry. Nature Communications, 2021, 12, 3033.	5.8	66
362	Joint Analysis of Multicolor Photometry: A New Approach to Constrain the Nature of Multiple-star Systems Hosting Exoplanet Candidates. Astronomical Journal, 2021, 161, 276.	1.9	2
363	LIVING GOD PANDEISM: EVIDENTIAL SUPPORT. Zygon, 2021, 56, 566-590.	0.2	0
364	New giant planet beyond the snow line for an extended MOA exoplanet microlens sample. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1498-1506.	1.6	1
365	Drake-like Calculations for the Frequency of Life in the Universe. Philosophies, 2021, 6, 49.	0.4	1
366	The SPHERE infrared survey for exoplanets (SHINE). Astronomy and Astrophysics, 2021, 651, A70.	2.1	39
367	Identification of Lensed Gravitational Waves with Deep Learning. Astrophysical Journal, 2021, 915, 119.	1.6	5
368	OGLE-2018-BLG-1185b: A Low-mass Microlensing Planet Orbiting a Low-mass Dwarf. Astronomical Journal, 2021, 162, 77.	1.9	10
369	California Legacy Survey. II. Occurrence of Giant Planets beyond the Ice Line. Astrophysical Journal, Supplement Series, 2021, 255, 14.	3.0	102
370	Habitability classification of exoplanets: a machine learning insight. European Physical Journal: Special Topics, 2021, 230, 2221-2251.	1.2	3
371	No Large Dependence of Planet Frequency on Galactocentric Distance. Astrophysical Journal Letters, 2021, 918, L8.	3.0	10
372	Introduction—First Billion Years: Habitability. Astrobiology, 2021, 21, 893-905.	1.5	2
373	Exoplanet Statistics and Theoretical Implications. Annual Review of Astronomy and Astrophysics, 2021, 59, 291-336.	8.1	89
374	Systematic KMTNet Planetary Anomaly Search. I. OGLE-2019-BLG-1053Lb, a Buried Terrestrial Planet. Astronomical Journal, 2021, 162, 163.	1.9	30

#	ARTICLE	IF	CITATIONS
375	Atmospheric characterization of terrestrial exoplanets in the mid-infrared: biosignatures, habitability, and diversity. Experimental Astronomy, 2022, 54, 1197-1221.	1.6	21
376	The First Thousand Exoplanets: Twenty Years of Excitement and Discovery. Advances in Astrobiology and Biogeophysics, 2013, , 201-212.	0.6	5
380	Characterization of potentially habitable planets: Retrieval of atmospheric and planetary properties from emission spectra. Astronomy and Astrophysics, 2013, 551, A120.	2.1	35
381	Dust masses of young disks: constraining the initial solid reservoir for planet formation. Astronomy and Astrophysics, 2020, 640, A19.	2.1	114
382	The quest for planets around subdwarfs and white dwarfs from <i>Kepler</i> space telescope fields. Astronomy and Astrophysics, 2020, 642, A105.	2.1	4
383	Migration of gap-opening planets in 3D stellar-irradiated accretion disks. Astronomy and Astrophysics, 2020, 642, A219.	2.1	7
384	Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS). Astronomy and Astrophysics, 2020, 643, A45.	2.1	17
385	Determining the true mass of radial-velocity exoplanets with <i>Gaia</i> . Astronomy and Astrophysics, 2021, 645, A7.	2.1	21
386	ATOMIUM: A high-resolution view on the highly asymmetric wind of the AGB star <i>Ï€</i> ¹ Gruis. Astronomy and Astrophysics, 2020, 644, A61.	2.1	17
387	Probing the impact of varied migration and gas accretion rates for the formation of giant planets in the pebble accretion scenario. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2017-2028.	1.6	18
388	Early evolutionary tracks of low-mass stellar objects in modified gravity. Physical Review D, 2020, 102,	1.6	24
389	Keck Planet Imager and Characterizer (KPIC): status update. , 2018, , .		8
390	The Feasibility of Directly Imaging Nearby Cold Jovian Planets with MIRI/JWST. Astronomical Journal, 2020, 159, 18.	1.9	9
391	OGLE-2015-BLG-1771Lb: A Microlens Planet Orbiting an Ultracool Dwarf?. Astronomical Journal, 2020, 159, 116.	1.9	15
392	Bayesian Approach for Determining Microlens System Properties with High-angular-resolution Follow-up Imaging. Astronomical Journal, 2020, 159, 268.	1.9	15
393	ARES. II. Characterizing the Hot Jupiters WASP-127 b, WASP-79 b, and WASP-62b with the Hubble Space Telescope*. Astronomical Journal, 2020, 160, 109.	1.9	52
394	OGLE-2017-BLG-0406: Spitzer Microlens Parallax Reveals Saturn-mass Planet Orbiting M-dwarf Host in the Inner Galactic Disk. Astronomical Journal, 2020, 160, 74.	1.9	14
395	Predictions of the Nancy Grace Roman Space Telescope Galactic Exoplanet Survey. II. Free-floating Planet Detection Rates*. Astronomical Journal, 2020, 160, 123.	1.9	64

	Article	IF	CITATIONS
396	Necroplanetology: Simulating the Tidal Disruption of Differentiated Planetary Material Orbiting WD 1145+017. Astrophysical Journal, 2020, 893, 166.	1.6	5
397	A Machine Learning Model to Infer Planet Masses from Gaps Observed in Protoplanetary Disks. Astrophysical Journal, 2020, 900, 62.	1.6	8
398	DPNNet-2.0. I. Finding Hidden Planets from Simulated Images of Protoplanetary Disk Gaps. Astrophysical Journal, 2021, 920, 3.	1.6	6
399	The Mass Budgets and Spatial Scales of Exoplanet Systems and Protoplanetary Disks. Astrophysical Journal, 2021, 920, 66.	1.6	30
400	Sensitivity to habitable planets in the <i>Roman</i> Âmicrolensing survey. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5991-6000.	1.6	6
401	OGLE-2019-BLG-0960 Lb: the Smallest Microlensing Planet. Astronomical Journal, 2021, 162, 180.	1.9	27
403	Earth as an Exoplanet. , 2005, , 1-1.		2
404	Detection of Habitable Planets and the Search for Life. Cellular Origin and Life in Extreme Habitats, 2013, , 287-310.	0.3	0
405	Theoretical estimations of future polarization observations for exoplanery searches with gravitational microlensing. , 2015, , .		0
406	Chapter 6 Solar-Like Planetary Systems. , 2016, , 83-122.		0
407	Chapter 7 Detecting Exoplanets and Searching for Habitable Zones in Solar and Extrasolar Planetary Systems. , 2016, , 123-154.		0
408	Finding Planets via Gravitational Microlensing. , 2018, , 1-29.		0
409	Microlensing Surveys for Exoplanet Research (OGLE Survey Perspective). , 2018, , 1-20.		0
410	The Habitable Zone: The Climatic Limits of Habitability. , 2018, , 1-13.		0
411	Finding Planets via Gravitational Microlensing. , 2018, , 1-29.		0
412	Die Erde im Weltraum. , 2019, , 43-72.		0
413	A Theoretical Astro-biological Solution for Femi's Paradox. DEStech Transactions on Economics Business and Management, 2019, , .	0.0	0
414	Learning what counting tells us. , 2020, , 1-65.		0

ARTICLE IF CITATIONS # Historical Foundations for Future Speculations. World-systems Evolution and Global Futures, 2020, 415 0.1 0 7-37. Pushing the Limits of Exoplanet Discovery via Direct Imaging with Deep Learning. Lecture Notes in 1.0 Computer Science, 2020, , 322-338. Gravitational Microlensing Event Statistics for the Zwicky Transient Facility. Astrophysical Journal, 417 1.6 4 2020, 897, 144. The influence of planetary engulfment on stellar rotation in metal-poor main-sequence stars. Astronomy and Astrophysics, 2020, 643, A34. Nii: a Bayesian orbit retrieval code applied to differential astrometry. Monthly Notices of the Royal 419 1.6 2 Astronomical Society, 2021, 509, 4608-4619. No Sub-Saturn-mass Planet Desert in the CORALIE/HARPS Radial-velocity Sample. Astronomical Journal, 2021, 162, 243. The Statistical Investigation of Exoplanets around M Dwarfs. Chinese Astronomy and Astrophysics, 421 0.1 1 2021, 45, 507-530. The Demographics of Wide-Separation Planets. Astrophysics and Space Science Library, 2022, , 237-291. 1.0 The DRAKE mission: finding the frequency of life in the Cosmos. Monthly Notices of the Royal 423 2 1.6 Astronomical Society, 2022, 512, 5228-5246. Planet Formation: Key Mechanisms and Global Models. Astrophysics and Space Science Library, 2022, , 424 1.0 3-82 The Periodic Table., 2022, , 343-369. 425 0 An Energy Balance Model for Rapidly and Synchronously Rotating Terrestrial Planets. Planetary 1.5 Science Journal, 2022, 3, 32. Stability of planetary systems within the S-star cluster: the Solar system analogues. Monthly Notices 427 1.6 1 of the Royal Astronómical Society, 2022, 513, 90-101. A Model Earth-sized Planet in the Habitable Zone of α Centauri A/B. Astrophysical Journal, 2022, 927, 134. 1.6 New simulations of accreting DA white dwarfs: Inferring accretion rates from the surface 429 2.1 1 contamination. Astronomy and Astrophysics, 2022, 660, A30. Microlensing mass measurement from images of rotating gravitational arcs. Nature Astronomy, 2022, 6, 121-128. Periodic Repeating Fast Radio Bursts: Interaction between a Magnetized Neutron Star and Its Planet in 431 1.6 5 an Eccentric Orbit. Astrophysical Journal, 2022, 928, 94. Systematic KMTNet planetary anomaly search. Astronomy and Astrophysics, 2022, 664, A13. 2.1

#	Article	IF	CITATIONS
433	On survival of dust grains in the sublimation zone of cold white dwarfs. Monthly Notices of the Royal Astronomical Society, 2022, 514, 997-1005.	1.6	1
434	Searching for technosignatures in exoplanetary systems with current and future missions. Acta Astronautica, 2022, 198, 194-207.	1.7	5
435	Urability: A Property of Planetary Bodies That Can Support an Origin of Life. Astrobiology, 2022, 22, 889-900.	1.5	7
436	Systematic KMTNet planetary anomaly search. IV. Complete sample of 2019 prime-field. Monthly Notices of the Royal Astronomical Society, 2022, 515, 928-939.	1.6	22
437	A detailed analysis of the Gl 486 planetary system. Astronomy and Astrophysics, 2022, 665, A120.	2.1	15
438	An optimized survey strategy for the ERIS/NIX imager: searching for young giant exoplanets and very low mass brown dwarfs using the <i>K</i> -peak custom photometric filter. Monthly Notices of the Royal Astronomical Society, 2022, 515, 5629-5645.	1.6	1
439	OGLE-2019-BLG-1470LABc: Another microlensing giant planet in a binary system?. Monthly Notices of the Royal Astronomical Society, 2022, 516, 1704-1720.	1.6	5
440	MOA-2019-BLC-008Lb: A New Microlensing Detection of an Object at the Planet/Brown Dwarf Boundary. Astronomical Journal, 2022, 164, 75.	1.9	0
441	Mass–Velocity Dispersion Relation by Using the Gaia Data and Its Effect on Interpreting Short-duration and Degenerate Microlensing Events. Astronomical Journal, 2022, 164, 112.	1.9	1
442	MOA-2020-BLG-135Lb: A New Neptune-class Planet for the Extended MOA-II Exoplanet Microlens Statistical Analysis. Astronomical Journal, 2022, 164, 118.	1.9	3
443	Capture of primordial black holes in extrasolar systems. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 079.	1.9	2
444	Primordial dusty rings and episodic outbursts in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2022, 516, 4448-4468.	1.6	2
445	The JWST Early Release Science Program for the Direct Imaging and Spectroscopy of Exoplanetary Systems. Publications of the Astronomical Society of the Pacific, 2022, 134, 095003.	1.0	24
446	<i>Gaia</i> Data Release 3. Astronomy and Astrophysics, 2023, 674, A23.	2.1	7
447	Rogue Planets and Brown Dwarfs: Predicting the Populations Free-floating Planetary Mass Objects Observable with JWST. Publications of the Astronomical Society of the Pacific, 2022, 134, 104401.	1.0	4
448	Population Study of Astrophysical False Positive Detections in the Southern PLATO field. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	0
449	Occurrence Rate of Hot Jupiters Around Early-type M Dwarfs Based on Transiting Exoplanet Survey Satellite Data. Astronomical Journal, 2023, 165, 17.	1.9	19
450	The smallest planetary drivers of white dwarf pollution. Monthly Notices of the Royal Astronomical Society, 2023, 519, 6257-6266.	1.6	3

IF ARTICLE CITATIONS # ESA-Ariel Data Challenge NeurIPS 2022: introduction to exo-atmospheric studies and presentation of 451 3 the Atmospheric Big Challenge (ABC) Database. , 2023, 2, 45-61. A dynamical mass for GJ 463 b: A massive super-Jupiter companion beyond the snow line of a nearby M dwarf. Astronomy and Astrophysics, 2023, 670, L17. 2.1 Simulations of triple microlensing events I: detectability of a scaled Sun–Jupiter–Saturn system. 453 1.6 0 Monthly Notices of the Royal Astronomical Society, 2023, 520, 4540-4553. Scientific Animism. Palgrave Frontiers in Philosophy of Religion, 2023, , 227-255. 454 Exoplanet science with SPIRou: near-infrared precision velocimetry and spectropolarimetry. Comptes 455 0.3 2 Rendus Physique, 2023, 24, 1-8. MOA-2020-BLG-208Lb: Cool Sub-Saturn-mass Planet within Predicted Desert. Astronomical Journal, 2023, 165, 175. Habitability and sub glacial liquid water on planets of M-dwarf stars. Nature Communications, 2023, 457 5.8 1 14,. Beyond mediocrity: how common is life?. Monthly Notices of the Royal Astronomical Society, 2023, 522, 3117-3123.

459 The Earth in Space. , 2023, , 37-63.