Biocomposites reinforced with natural fibers: 2000â \in "2

Progress in Polymer Science 37, 1552-1596 DOI: 10.1016/j.progpolymsci.2012.04.003

Citation Report

#	Article	IF	CITATIONS
1	Effect of Fiber Surface Treatments on Thermo-Mechanical Behavior of Poly(Lactic Acid)/Phormium Tenax Composites. Journal of Polymers and the Environment, 2013, 21, 881-891.	5.0	22
2	Novel cork–polymer composites reinforced with short natural coconut fibres: Effect of fibre loading and coupling agent addition. Composites Science and Technology, 2013, 78, 56-62.	7.8	86
3	Influence of cellulose polymorphs on the polypropylene crystallization. Journal of Thermal Analysis and Calorimetry, 2013, 113, 281-289.	3.6	28
4	Mechanical performance and moisture absorption of various natural fiber reinforced thermoplastic composites. Journal of Applied Polymer Science, 2013, 130, 969-980.	2.6	43
5	Green Nondegrading Approach to Alkyne-Functionalized Cellulose Fibers and Biohybrids Thereof: Synthesis and Mapping of the Derivatization. Biomacromolecules, 2013, 14, 254-263.	5.4	36
6	Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene) Tj ETQq1 1 0.7843	l4rgBT /O	verloçk 10 103
7	Recycling of bioplastics, their blends and biocomposites: A review. European Polymer Journal, 2013, 49, 2839-2858.	5.4	332
8	Thermal and fire behavior of natural fibers/PBS biocomposites. Polymer Degradation and Stability, 2013, 98, 87-95.	5.8	153
9	Effect of basalt fiber hybridization on the impact behavior under low impact velocity of glass/basalt woven fabric/epoxy resin composites. Composites Part A: Applied Science and Manufacturing, 2013, 47, 109-123.	7.6	158
10	Initial experimental investigations on natural fibre reinforced honeycomb core panels. Composites Part B: Engineering, 2013, 55, 400-406.	12.0	53
11	Natural fiber blend—nylon 6 composites. Polymer Composites, 2013, 34, 544-553.	4.6	76
12	Preparation and characterization of micro and nanocomposites based on poly(vinyl alcohol) for packaging applications. Journal of Materials Science, 2013, 48, 7088-7096.	3.7	14
13	Improving the interfacial adhesion in a new renewable resource-based biocomposites from biofuel coproduct and biodegradable plastic. Journal of Materials Science, 2013, 48, 6025-6038.	3.7	26
14	All-cellulose and all-wood composites by partial dissolution of cotton fabric and wood in ionic liquid. Carbohydrate Polymers, 2013, 98, 1532-1539.	10.2	69
15	Toughening of poly(l-lactide) with poly(Îμ-caprolactone): Combined effects of matrix crystallization and impact modifier particle size. Polymer, 2013, 54, 5257-5266.	3.8	129
16	Effect of flax fibres individualisation on tensile failure of flax/epoxy unidirectional composite. Composites Part A: Applied Science and Manufacturing, 2013, 51, 62-70.	7.6	167
17	Influence of the degree of retting of flax fibers on the tensile properties of single fibers and short fiber/polypropylene composites. Industrial Crops and Products, 2013, 49, 755-767.	5.2	124
18	Some physico-mechanical properties of medium density fiberboards (MDF) based on mixed hardwood particles and chopped sycamore leaves bonded with MDI resin. Journal of the Indian Academy of Wood Science, 2013, 10, 155-159.	0.9	0

#	Article	IF	CITATIONS
19	Charging process of polyurethane based composites under electronic irradiation: Effects of cellulose fiber content. Applied Physics Letters, 2013, 103, 132906.	3.3	3
20	Effects of heat treatment on the properties of bamboo fiber/polypropylene composites. Fibers and Polymers, 2013, 14, 1894-1898.	2.1	17
22	Interfacial strength and mechanical properties of biocomposites based on ramie fibers and poly(butylene succinate). RSC Advances, 2013, 3, 26418.	3.6	44
23	Biocomposites from hydrolyzed waste proteinaceous biomass: mechanical, thermal and moisture absorption performances. Journal of Materials Chemistry A, 2013, 1, 13186.	10.3	36
24	Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. Journal of Materials Science, 2013, 48, 6083-6107.	3.7	391
25	Effect of Fiber Treatment on Dimensional Stability and Chemical Resistance Properties of Hybrid Composites. International Journal of Polymer Analysis and Characterization, 2013, 18, 608-616.	1.9	10
26	Potential of chicken by-products as sources of useful biological resources. Waste Management, 2013, 33, 552-565.	7.4	227
27	On the static and dynamic properties of flax and Cordenka epoxy composites. Composites Science and Technology, 2013, 80, 31-38.	7.8	73
28	Structure and properties of poly (lactic acid)/Sterculia urens uniaxial fabric biocomposites. Carbohydrate Polymers, 2013, 94, 822-828.	10.2	31
29	The effect of interfacial adhesion on the creep behaviour of LDPE–Al–Fique composite materials. Composites Part B: Engineering, 2013, 55, 345-351.	12.0	41
30	Automated clustering of lignocellulosic fibres based on morphometric features and using clustering of variables. Industrial Crops and Products, 2013, 45, 253-261.	5.2	39
31	Mechanical behaviour of jute cloth/wool felts hybrid laminates. Materials & Design, 2013, 50, 309-321.	5.1	62
32	Integrated utilization of grape skins from white grape pomaces. Industrial Crops and Products, 2013, 49, 286-291.	5.2	58
33	CTMP-based cellulose fibers modified with core–shell latex for reinforcing biocomposites. Carbohydrate Polymers, 2013, 95, 428-433.	10.2	10
34	Sustainable Green Composites: Value Addition to Agricultural Residues and Perennial Grasses. ACS Sustainable Chemistry and Engineering, 2013, 1, 325-333.	6.7	141
35	Development of flax/carbon fibre hybrid composites for enhanced properties. Carbohydrate Polymers, 2013, 96, 1-8.	10.2	245
36	Cellulose reinforced high density polyethylene composites — Morphology, mechanical and thermal expansion properties. Composites Science and Technology, 2013, 76, 21-28.	7.8	78
37	Newspaper fiber-reinforced thermoplastic starch biocomposites obtained by melt processing: Evaluation of the mechanical, thermal and water sorption properties. Industrial Crops and Products, 2013, 44, 300-305.	5.2	42

#	Article	IF	CITATIONS
38	Can flax replace E-glass in structural composites? A small wind turbine blade case study. Composites Part B: Engineering, 2013, 52, 172-181.	12.0	209
39	Multifunctional films composed of carbon nanotubes and cellulose regenerated from alkaline–urea solution. Journal of Materials Chemistry A, 2013, 1, 2161-2168.	10.3	108
41	Hybrid cork–polymer composites containing sisal fibre: Morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction. Composite Structures, 2013, 105, 153-162.	5.8	104
42	Twin-screw extrusion impact on natural fibre morphology and material properties in poly(lactic acid) based biocomposites. Industrial Crops and Products, 2013, 46, 173-185.	5.2	112
43	Preparation, characterization and biodegradability of crosslinked tea plant-fibre-reinforced polyhydroxyalkanoate composites. Polymer Degradation and Stability, 2013, 98, 1473-1480.	5.8	29
44	Nanostructured biolayers in food packaging. Trends in Food Science and Technology, 2013, 31, 79-87.	15.1	73
45	Electrically conductive aerogels composed of cellulose and carbon nanotubes. Journal of Materials Chemistry A, 2013, 1, 9714.	10.3	72
46	Unique water sensors based on carbon nanotube–cellulose composites. Sensors and Actuators B: Chemical, 2013, 185, 225-230.	7.8	74
47	Properties of an Amazonian vegetable fiber as a potential reinforcing material. Industrial Crops and Products, 2013, 47, 43-50.	5.2	20
48	Mechanical and morphological properties of wood plastic composites based on municipal plastic waste. Polymer Composites, 2013, 34, 487-493.	4.6	35
49	Biodegradability and Compostability of Lignocellulosic Based Composite Materials. Journal of Renewable Materials, 2013, 1, 253-272.	2.2	39
50	Cellulose Nanofibrils. Journal of Renewable Materials, 2013, 1, 195-211.	2.2	152
51	Effect of Empty Fruit Bunch (EFB) Fiber on Mechanical Properties of HDPE/EVA/MMT/EFB Nanohybrid Biocomposite. Key Engineering Materials, 0, 594-595, 618-623.	0.4	0
52	The Influence of Processing and the Polymorphism of Lignocellulosic Fillers on the Structure and Properties of Composite Materials—A Review. Materials, 2013, 6, 2747-2767.	2.9	47
53	Technical Properties of Some Plant Fibres Compared with Glass Fibre. International Journal of Engineering Research in Africa, 2013, 11, 11-26.	0.7	2
54	Wood versus Plant Fibers: Similarities and Differences in Composite Applications. Advances in Materials Science and Engineering, 2013, 2013, 1-14.	1.8	99
55	Effects on Tensile and Morphology Properties of <i>Casuarina equisetifolia</i> Reinforced Unsaturated Polyester Composites. Advanced Materials Research, 2013, 748, 211-215.	0.3	0
56	Composites of sisal fiber/polypropylene based on novel vane extruder: Effect of interface and damage on mechanical properties. Journal of Reinforced Plastics and Composites, 2013, 32, 1907-1915.	3.1	11

#	Article	IF	CITATIONS
57	Impact and flexural properties of stoneâ€ground wood pulpâ€reinforced polypropylene composites. Polymer Composites, 2013, 34, 842-848.	4.6	33
58	Bio-Based Epoxies and Composites for Technical Applications. Key Engineering Materials, 0, 559, 1-6.	0.4	8
59	Effect of aluminum trihydroxide on flame retardancy and dynamic mechanical and tensile properties of kenaf/poly(lactic acid) green composites. Advanced Composite Materials, 2013, 22, 451-464.	1.9	27
60	Biobased composites: materials, properties and potential applications as wind turbine blade materials. , 2013, , 363-386.		5
61	Biocomposites: Influence of Matrix Nature and Additives on the Properties and Biodegradation Behaviour. , 0, , .		9
62	Looking for Links between Natural Fibres' Structures and Their Physical Properties. Conference Papers in Materials Science, 2013, 2013, 1-10.	0.1	14
63	Effect of Temperature on the Thermal Conductivity of Wood-Plastic Composites. Polymers and Polymer Composites, 2013, 21, 413-422.	1.9	6
64	Agro-Residues: Surface Treatment and Characterization of Date Palm Tree Fiber as Composite Reinforcement. Journal of Composites, 2014, 2014, 1-8.	0.8	17
65	Hybrid Fibre Polylactide Acid Composite with Empty Fruit Bunch: Chopped Glass Strands. Journal of Composites, 2014, 2014, 1-7.	0.8	18
66	Antibacterial Properties of Hemp and Other Natural Fibre Plants: A Review. BioResources, 2014, 9, .	1.0	50
67	The hygroscopic behavior of plant fibers: a review. Frontiers in Chemistry, 2013, 1, 43.	3.6	233
70	Development of Biocomposites Containing Erianthus Arudinaceus as Cellulose Resource Crops. Kobunshi Ronbunshu, 2014, 71, 31-37.	0.2	3
74	Mechanical and interfacial properties of poly(vinyl chloride) based composites reinforced by cassava stillage residue with different surface treatments. Applied Surface Science, 2014, 314, 603-609.	6.1	8
75	Tensile and Thermal Degradation Properties of Vetiver Fiber Composites. , 2014, 5, 605-611.		13
76	Applications of Lightweight Composites in Automotive Industries. ACS Symposium Series, 2014, , 143-158.	0.5	15
77	Tensile and Flexural Behavior of Hemp Fiber Reinforced Virgin-recycled HDPE Matrix Composites. , 2014, 6, 1696-1702.		59
78	Asymmetric microcellular composites: Morphological properties. Journal of Cellular Plastics, 2014, 50, 449-473.	2.4	22
79	Polypropylene/Rattan Powder/Kaolin Hybrid Composites: Processing, Mechanical and Thermal Properties. Polymer-Plastics Technology and Engineering, 2014, 53, 451-458.	1.9	9

#	Article	IF	CITATIONS
80	Recycling of lignocellulosics filled polypropylene composites. I. Analysis of thermal properties, morphology, and amount of free radicals. Journal of Applied Polymer Science, 2015, 132, .	2.6	2
81	Comparative Study of Dielectric Properties of Hybrid Natural Fiber Composites. Procedia Engineering, 2014, 97, 536-544.	1.2	105
82	All Green Composites from Fully Renewable Biopolymers: Chitosan-Starch Reinforced with Keratin from Feathers. Polymers, 2014, 6, 686-705.	4.5	87
83	A new approach for the development of textile waste cotton reinforced composites (T-FRP): laminated hybridization vs. coupling agents. Journal of Polymer Engineering, 2014, 34, 639-648.	1.4	10
84	Mechanical, Thermal, and Morphological Properties of Nanocomposites Based on Polyvinyl Alcohol and Cellulose Nanofiber from <i>Aloe vera</i> Rind. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	70
85	The utilization of biochemically modified microfibers from grain by-products as reinforcement for polypropylene biocomposite. EXPRESS Polymer Letters, 2014, 8, 767-778.	2.1	20
86	Native Cellulose: Structure, Characterization and Thermal Properties. Materials, 2014, 7, 6105-6119.	2.9	691
87	Rigidity Analysis of Kenaf Thermoplastic Composites Using Halpin-Tsai Equation. Applied Mechanics and Materials, 0, 548-549, 29-33.	0.2	5
88	Thermal Degradation of Flax Fibres as Potential Reinforcement in Thermoplastic Composites. Advanced Materials Research, 0, 894, 32-36.	0.3	10
89	The Influences of Compression Temperature on the Fiber Structure and Tensile Properties of Hemp Reinforced Polypropylene Composites. Advanced Materials Research, 0, 1073-1076, 62-65.	0.3	0
90	Deformability of a Flax Reinforcement for Composite Materials. Key Engineering Materials, 0, 611-612, 257-264.	0.4	6
91	Microstructure and Properties of SCE-Al ₂ O ₃ /PES-MBAE Composite. Journal of Nanomaterials, 2014, 2014, 1-8.	2.7	6
92	Injection Molding of Beverage Container Caps Made of a Composite Consisting of Wood Cellulose Fiber and an Ethylene-Acrylic Acid Copolymer. International Polymer Processing, 2014, 29, 507-514.	0.5	1
93	Effect of Vetiver Grass Fiber on Soil Burial Degradation of Natural Rubber and Polylactic Acid Composites. International Polymer Processing, 2014, 29, 379-388.	0.5	8
94	Development of Composites of Highly Filled Phenol Formaldehyde Resin – Coconut (<i>Cocos) Tj ETQq0 0 0 rg</i>	gBT_/Overl	ock 10 Tf 50
95	Coâ€ <scp>I</scp> njection Molded New Green Composites from Biodegradable Polyesters and Miscanthus Fibers. Macromolecular Materials and Engineering, 2014, 299, 436-446.	3.6	14
96	Evaluation of reaction factors for deposition of silica (SiO2) nanoparticles on cellulose fibers. Carbohydrate Polymers, 2014, 114, 424-431.	10.2	70
97	A specific finite element procedure for the analysis of elastic behaviour of short fibre reinforced composites. The Projected Fibre approach. Composite <u>Structures, 2014, 118, 580-588</u> .	5.8	19

#	Article	IF	CITATIONS
98	Preparation of Rice Husk-Based Medium Density Fiberboards: Effects of pH Modification on Mechanical and Tribological Performance. Macromolecular Materials and Engineering, 2014, 299, 807-813.	3.6	5
99	A Facile and Green Method to Hydrophobize Films of Cellulose Nanofibrils and Silica by Laccaseâ€Mediated Coupling of Nonpolar Colloidal Particles. ChemSusChem, 2014, 7, 2868-2878.	6.8	13
100	Biocomposites. , 2014, , 1-8.		4
101	Polylactide composites with waste cotton fibers: Thermal and mechanical properties. Polymer Composites, 2014, 35, 747-751.	4.6	19
102	Simultaneous optimization of the mechanical properties of postconsumer natural fiber/plastic composites: Phase compatibilization and quality/cost ratio. Polymer Composites, 2014, 35, 730-746.	4.6	21
103	Material and Technological Development of Natural Fiber Reinforced Cellulose Acetate Butyrate. Advanced Engineering Materials, 2014, 16, 1202-1207.	3.5	3
104	Stress relaxation behavior of starch powderâ€epoxy resin composites. Journal of Applied Polymer Science, 2015, 132, .	2.6	6
111	Fabrication of the selfâ€reinforced composites using coâ€extrusion technique. Journal of Applied Polymer Science, 2014, 131, .	2.6	13
112	Hybrid Bioâ€Based Composites from UPE/EML Blends, Natural Fibers, and Nanoclay. Macromolecular Materials and Engineering, 2014, 299, 1306-1315.	3.6	8
113	Analysis of curaua/glass hybrid interlayer laminates. Journal of Reinforced Plastics and Composites, 2014, 33, 472-478.	3.1	25
114	Processing and Properties of Date Palm Fibers and Its Composites. , 2014, , 1-25.		57
115	Weibull Analysis to Characterize the Diameter Dependence of Tensile Strength in Sugarcane Bagasse Fibers. Materials Science Forum, 2014, 775-776, 80-85.	0.3	5
116	Effect of peroxide and softness modification on properties of ramie fiber. Fibers and Polymers, 2014, 15, 2105-2111.	2.1	40
117	Chacterization of Tensile Strength Dependence with Diameter of Sponge Gourd Fibers by Weibull Statistical Analysis. Materials Science Forum, 0, 775-776, 86-91.	0.3	3
118	Characterization of Epoxy Matrix Composites Incorporated with Sugarcane Bagasse Fibers. Materials Science Forum, 0, 775-776, 102-106.	0.3	6
119	Formulation and Characterization of Polypropylene Composites Alkali Treated Bagasse Fiber. Materials Science Forum, 2014, 775-776, 319-324.	0.3	7
120	Manufacturing of Epoxy Composites Incorporated with Buriti Fibers and Evaluation of Thermogravimetric Behavior. Materials Science Forum, 2014, 805, 460-465.	0.3	3
121	A study into the characteristics of gomuti (<i>Arenga pinnata</i>) fibre for usage as natural fibre composites. Journal of Reinforced Plastics and Composites, 2014, 33, 179-192.	3.1	22

#	Article	IF	CITATIONS
122	The Effect of Alkali Treatment of OPKS Filler on Mechanical Property of Polyester-Composite. Advanced Materials Research, 0, 980, 86-90.	0.3	9
123	Preparation of Polypropylene/Sisal Fiber Composites and Study on the Fiber Orientation. Advanced Materials Research, 2014, 989-994, 581-586.	0.3	2
124	Bio-Based Polymers for Technical Applications: A Review — Part 2. Open Journal of Polymer Chemistry, 2014, 04, 95-101.	3.3	6
125	A Review on Potentiality of Nano Filler/Natural Fiber Filled Polymer Hybrid Composites. Polymers, 2014, 6, 2247-2273.	4.5	550
126	Variation of mechanical properties of single bamboo fibers (<i>Dendrocalamus latiflorus</i> Munro) with respect to age and location in culms. Holzforschung, 2014, 68, 291-297.	1.9	25
127	Opportunities for silk textiles in reinforced biocomposites: Studying through-thickness compaction behaviour. Composites Part A: Applied Science and Manufacturing, 2014, 62, 1-10.	7.6	43
128	MDF dust/PP composites reinforced with nanoclay: Morphology, long-term physical properties and withdrawal strength of fasteners in dry and saturated conditions. Construction and Building Materials, 2014, 52, 324-330.	7.2	16
129	Natural fibre composites: Comprehensive Ashby-type materials selection charts. Materials & Design, 2014, 62, 21-31.	5.1	182
130	Development of durable cementitious composites using sisal and flax fabrics for reinforcement of masonry structures. Materials & Design, 2014, 57, 258-268.	5.1	89
131	Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydrate Polymers, 2014, 110, 480-488.	10.2	267
132	Numerical modeling of the flax fiber morphology variability. Composites Part A: Applied Science and Manufacturing, 2014, 63, 10-20.	7.6	25
133	Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. Journal of Analytical and Applied Pyrolysis, 2014, 107, 323-331.	5.5	273
134	Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydrate Polymers, 2014, 110, 423-429.	10.2	258
135	The potential for using the sycamore (Platus orientalis) leaves in manufacturing particleboard. International Journal of Environmental Science and Technology, 2014, 11, 417-422.	3.5	16
136	Using synchroton radiation-based micro-computer tomography (SR μ-CT) for the measurement of fibre orientations in cellulose fibre-reinforced polylactide (PLA) composites. Journal of Materials Science, 2014, 49, 450-460.	3.7	20
137	Fatigue of natural fiber thermoplastic composites. Composites Part B: Engineering, 2014, 62, 175-182.	12.0	57
138	Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers, 2014, 109, 102-117.	10.2	784
139	How does epoxidized soybean oil improve the toughness of microcrystalline cellulose filled polylactide acid composites?. Composites Science and Technology, 2014, 90, 9-15.	7.8	73

#	Article	IF	CITATIONS
140	Environmental effects on the mechanical behaviour of pultruded jute/glass fibre-reinforced polyester hybrid composites. Composites Science and Technology, 2014, 94, 62-70.	7.8	186
141	Characterization of rheological and thermophysical properties of HDPE–wood composite. Journal of Applied Polymer Science, 2014, 131, .	2.6	38
142	Bioinspired Green Composite Lotus Fibers. Angewandte Chemie - International Edition, 2014, 53, 3358-3361.	13.8	65
143	Evaluation of thermal treatments to improve physical and mechanical properties of bio-composites made from cotton byproducts and other agricultural fibers. Industrial Crops and Products, 2014, 52, 627-632.	5.2	43
144	Mechanical behavior of piassava fiber reinforced castor oil polymer mortars. Composite Structures, 2014, 111, 468-472.	5.8	28
145	Preparation and mechanical properties of pithecellobium clypearia benth fibre/polypropylene composites processed by vane extruder. Journal of Reinforced Plastics and Composites, 2014, 33, 150-165.	3.1	2
146	Impact modification of polypropyleneâ€based composites using surfaceâ€coated waste rubber crumbs. Polymer Composites, 2014, 35, 2280-2289.	4.6	21
147	Review on flammability of biofibres and biocomposites. Carbohydrate Polymers, 2014, 111, 149-182.	10.2	161
148	Mechanical properties, biocompatibility, and biodegradation of cross-linked cellulose acetate-reinforced polyester composites. Carbohydrate Polymers, 2014, 105, 41-48.	10.2	28
149	Biodegradability of all-cellulose composite laminates. Composites Part A: Applied Science and Manufacturing, 2014, 59, 37-44.	7.6	64
150	Wood fibres as reinforcements in natural fibre composites: structure, properties, processing and applications. , 2014, , 3-65.		58
151	Influence of low velocity impact on fatigue behaviour of woven hemp fibre reinforced epoxy composites. Composites Part B: Engineering, 2014, 66, 46-57.	12.0	51
152	Mechanical analysis of elementary flax fibre tensile properties after different thermal cycles. Composites Part A: Applied Science and Manufacturing, 2014, 64, 159-166.	7.6	60
153	Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review. ACS Sustainable Chemistry and Engineering, 2014, 2, 1072-1092.	6.7	1,073
154	Tension–tension fatigue behaviour of woven hemp fibre reinforced epoxy composite: A multi-instrumented damage analysis. International Journal of Fatigue, 2014, 59, 159-169.	5.7	101
155	Interfacial crystallization enhanced interfacial interaction of Poly (butylene succinate)/ramie fiber biocomposites using dopamine as a modifier. Composites Science and Technology, 2014, 91, 22-29.	7.8	89
156	Study of the interface in natural fibres reinforced poly(lactic acid) biocomposites modified by optimized organosilane treatments. Industrial Crops and Products, 2014, 52, 481-494.	5.2	112
157	Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Production, 2014, 66, 347-354.	9.3	589

ARTICLE IF CITATIONS # Flax fibre reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system. 158 5.8 90 Polymer Degradation and Stability, 2014, 106, 63-73. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. 159 10.2 Carbohydrate Polymers, 2014, 102, 136-143. Mechanical and thermal performance of distillers grains filled poly(butylene succinate) composites. 160 5.1 30 Materials & Design, 2014, 57, 195-200. Matrices from vegetable oils, cashew nut shell liquid, and other relevant systems for biocomposite applications. Green Chemistry, 2014, 16, 1700-1715. Toughened wheat gluten and treated coconut fiber composite. Composites Part A: Applied Science and 162 7.6 20 Manufacturing, 2014, 58, 90-97. Progress Report on Natural Fiber Reinforced Composites. Macromolecular Materials and Engineering, 2014, 299, 9-26. 3.6 696 Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) 164 12.0 148 composites. Composites Part B: Engineering, 2014, 56, 717-723. Influence of fibre architecture on the biodegradability of FLAX/PLA composites. International 3.9 Biodeterioration and Biodegradation, 2014, 96, 18-25. Lightweight Materials from Biofibers and Biopolymers. ACS Symposium Series, 2014, , 1-20. 0.5 3 166 Biopolymer-Based Lightweight Materials for Packaging Applications. ACS Symposium Series, 2014, 29 239-255. Allâ€strawâ€fiber composites: Benzylated straw as matrix and additional straw fiber reinforced 168 4.6 23 composites. Polymer Composites, 2014, 35, 419-426. Enhanced mechanical properties and water resistance of bamboo fiber–unsaturated polyester composites coupled by isocyanatoethyl methacrylate. Wood Science and Technology, 2014, 48, 3.2 1241-1255. Bio-based polyamides reinforced with cellulosic fibres â€" Processing and properties. Composites 170 7.8 103 Science and Technology, 2014, 100, 113-120. Synthesis and Modifications of Epoxy Resins and Their Composites: A Review. Polymer-Plastics Technology and Engineering, 2014, 53, 1723-1758. 171 PLA based biocomposites reinforced with Arundo donax fillers. Composites Science and Technology, 172 7.8 107 2014, 105, 110-117. Processing and thermal properties of composites based on recycled PET, sisal fibers, and renewable 28 plasticizers. Journal of Applied Polymer Science, 2014, 131, . The effect of ages on the tensile mechanical properties of elementary fibers extracted from two 174 5.236 sympodial bamboo species. Industrial Crops and Products, 2014, 62, 94-99. Cellulose fibres with carbon nanotube networks for water sensing. Journal of Materials Chemistry A, 2014, 2, 5541-5547.

ARTICLE IF CITATIONS # Selected biotrends in development of epoxy resins and their composites. Polymer Bulletin, 2014, 71, 176 3.3 33 3035-3049. Microfibrillated cellulose (MFC): pullulan bionanocomposite films. Cellulose, 2014, 21, 4323-4335. Jojoba oil olefin metathesis: a valuable source for bio-renewable materials. Green Chemistry, 2014, 16, 178 9.0 26 4728-4733. Vinyl silane-functionalized rice husk ash-reinforced unsaturated polyester nanocomposites. RSC 179 Advances, 2014, 4, 18157-18163. Tensile strength of pine needles and their feasibility as reinforcement in composite materials. Journal 180 3.7 11 of Materials Science, 2014, 49, 8057-8062. Investigation of the internal structure of hemp fibres using optical coherence tomography and Focused Ion Beam transverse cutting. Journal of Materials Science, 2014, 49, 8317-8327. 3.7 Effects of water immersion ageing on the mechanical properties of flax and jute fibre biocomposites 182 2.4 58 evaluated by nanoindentation and flexural testing. Journal of Composite Materials, 2014, 48, 1399-1406. Hybrid green nanocomposites of poly(lactic acid) reinforced with banana fibre and nanoclay. Journal 3.1 of Reinforced Plastics and Composites, 2014, 33, 1717-1732. Biocomposite boards from wheat straw without addition of bonding agent. Materials Science and 184 8 1.6 Technology, 2014, 30, 603-610. Effect of kenaf fibre loading and thymol concentration on the mechanical and thermal properties of 5.2 PLA/kenaf/thymol composites. Industrial Crops and Products, 2014, 61, 74-83. Functionalized cork-polymer composites (CPC) by reactive extrusion using suberin and lignin from 186 12.0 53 cork as coupling agents. Composites Part B: Engineering, 2014, 67, 371-380. Viscoelastic properties of surface modified jute fiber/polypropylene nonwoven composites. 12.0 Composites Part B: Engineering, 2014, 67, 111-118. Mechanical and thermo-mechanical behaviors of sizing-treated corn fiber/polylactide composites. 188 4.8 65 Polymer Testing, 2014, 39, 45-52. Can silk become an effective reinforcing fibre? A property comparison with flax and glass reinforced composites. Composites Science and Technology, 2014, 101, 173-183. 144 Coupled micromechanical analysis and life cycle assessment as an integrated tool for natural fibre 190 9.3 58 composites development. Journal of Cleaner Production, 2014, 83, 61-69. Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave 5.2 tequilana and barley. Industrial Crops and Products, 2014, 62, 552-559. Influence of coupling agent content on the properties of high density polyethylene composites 192 5.169 reinforced with oil palm fibers. Materials & Design, 2014, 63, 641-649. Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. 99 Cellulose, 2014, 21, 177-188.

#	Article	IF	CITATIONS
194	Radial crystalline texture in a lyocell fibre revealed by synchrotron nanofocus wide-angle X-ray scattering. Cellulose, 2014, 21, 845-851.	4.9	7
195	The importance of the mesostructure in toughening cellulosic short fibre composites. Composites Science and Technology, 2014, 93, 97-105.	7.8	9
196	Plasticizers, antioxidants and reinforcement fillers from hazelnut skin and cocoa by-products: Extraction and use in PLA and PP. Polymer Degradation and Stability, 2014, 108, 297-306.	5.8	52
197	Potentiality of utilising natural textile materials for engineering composites applications. Materials & Design, 2014, 59, 359-368.	5.1	107
198	Sustainable waterborne polyurethane ionomer reinforced poly(vinyl alcohol) composite films. Composites Science and Technology, 2014, 96, 109-115.	7.8	17
199	Mechanical, thermal and water absorption properties of plasticised sago pith waste. Fibers and Polymers, 2014, 15, 971-978.	2.1	3
200	Influence of walnut shell as filler on mechanical and physical properties of MDF improved by nano-SiO2. Journal of the Indian Academy of Wood Science, 2014, 11, 15-20.	0.9	9
201	Toughened Sustainable Green Composites from Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate) Based Ternary Blends and Miscanthus Biofiber. ACS Sustainable Chemistry and Engineering, 2014, 2, 2345-2354.	6.7	66
202	Kenaf bast cellulosic fibers hierarchy: A comprehensive approach from micro to nano. Carbohydrate Polymers, 2014, 101, 878-885.	10.2	175
203	Adhesion and Surface Issues in Biocomposites and Bionanocomposites. Reviews of Adhesion and Adhesives, 2014, 2, 173-225.	3.4	9
204	Complex shape forming of flax woven fabrics: Design of specific blank-holder shapes to prevent defects. Composites Part B: Engineering, 2014, 62, 29-36.	12.0	52
205	Anti-fungal performance and mechanical–morphological properties of PVC and wood/PVC composites under UV-weathering aging and soil-burial exposure. International Biodeterioration and Biodegradation, 2014, 91, 128-137.	3.9	38
206	Falling weight impact response of jute/methacrylated soybean oil bio-composites under low velocity impact loading. Composites Science and Technology, 2014, 92, 134-141.	7.8	48
207	Influence of temperature and impact velocity on the impact response of jute/UP composites. Polymer Testing, 2014, 35, 10-19.	4.8	45
208	Characterization and degradation characteristics of poly(ε-caprolactone)-based composites reinforced with almond skin residues. Polymer Degradation and Stability, 2014, 108, 269-279.	5.8	59
209	A multiscale approach and microstructure design of the elastic composite behavior reinforced with natural particles. Composites Part B: Engineering, 2014, 66, 247-254.	12.0	32
210	Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems. Carbohydrate Polymers, 2014, 112, 165-172.	10.2	136
211	Natural additives and agricultural wastes in biopolymer formulations for food packaging. Frontiers in Chemistry, 2014, 2, 6.	3.6	128

#	Article	IF	CITATIONS
219	Compression Behavior of Concrete Cylinders Externally Confined by Flax Fiber Reinforced Polymer Sheets. Advances in Structural Engineering, 2014, 17, 1825-1833.	2.4	27
222	Role of Key Factors of Particulate Components in Biocomposites. Solid State Phenomena, 0, 244, 153-160.	0.3	0
223	Testing and Characterization of Natural Fiber-Reinforced Composites. , 2015, , 175-198.		1
224	Biocomposites Composed of Bio-Based Epoxy Resins, Bio-Based Polyphenols and Lignocellulosic Fibers. , 2015, , 111-160.		0
225	The mechanical properties of density graded hemp/polyethylene composites. AIP Conference Proceedings, 2015, , .	0.4	1
228	Oblique Perforated Impact Strength of Woven Kenaf Fiber Reinforced Composites. Applied Mechanics and Materials, 2015, 773-774, 48-52.	0.2	Ο
229	Effect of natural fiber types and sodium silicate coated on natural fiber mat/PLA composites: Tensile properties and rate of fire propagation. IOP Conference Series: Materials Science and Engineering, 2015, 87, 012078.	0.6	6
231	An in-depth analysis of the physico-mechanical properties imparted by agricultural fibers and food processing residues in polypropylene biocomposites. AIP Conference Proceedings, 2015, , .	0.4	1
232	Studies on permeability of sisal fibre mat during thermoset resin filling in vacuum infusion process. Canadian Journal of Chemical Engineering, 2015, 93, 1364-1370.	1.7	6
233	Green composites based on highâ€density polyethylene andSaccharum spontaneum: Effect of filler content on morphology, thermal, and mechanical properties. Polymer Composites, 2015, 36, 2157-2166.	4.6	13
234	Experimental investigation of the influence of the compounding process and the composite composition on the mechanical properties of a short flax fiber–reinforced polypropylene composite. Polymer Composites, 2015, 36, 2282-2290.	4.6	10
235	Hybrid biocomposites with enhanced thermal and mechanical properties for structural applications. Journal of Applied Polymer Science, 2015, 132, .	2.6	28
237	A Bio-based fibre-reinforced plastic pedestrian bridge for Schiphol. IABSE Symposium Report, 2015, , .	0.0	2
238	Effect of lignocellulosic fibers on mechanical, thermomechanical and hydrophilic studies of epoxy modified with novel bioresin epoxy methyl ester derived from soybean oil. Polymers for Advanced Technologies, 2015, 26, 1619-1626.	3.2	9
239	On the Tensile Properties of Polylactide (PLA)/Arenga Pinnata "ljuk―Fibre Composite. Macromolecular Symposia, 2015, 353, 108-114.	0.7	9
240	Preparation and morphological, thermal, and physicomechanical properties of polypropyleneâ€potato peel biocomposites. Journal of Applied Polymer Science, 2015, 132, .	2.6	12
241	Woodâ€derived phenol novolaks and their wood/epoxy biocomposites. Journal of Applied Polymer Science, 2015, 132, .	2.6	12
242	Biopolymer Films Based on Chitosan and Polyethylene Glycol with Pineapple Leaf Fiber for Food Packaging Applications. Macromolecular Symposia, 2015, 354, 294-298.	0.7	6

#	Article	IF	CITATIONS
243	Fracture toughness of walnut particles (<i>Juglans regia</i> L.) and coconut fiberâ€reinforced hybrid biocomposite. Polymer Composites, 2015, 36, 167-173.	4.6	6
244	Effect of stacking sequence on mechanical properties of hybrid flax/jute fibers reinforced thermoplastic composites. Polymer Composites, 2015, 36, 2167-2173.	4.6	41
245	Preparation and properties of wood plastic composites based on tea residue. Polymer Composites, 2015, 36, 2265-2274.	4.6	18
246	Investigation on Mechanical Properties of Occ Fiber-Hdpe Composite Containing Different Types of Coupling Agents. Polymers and Polymer Composites, 2015, 23, 29-36.	1.9	1
247	Flexural Behavior of Epoxy Matrix Composites Reinforced with Malva Fiber. Materials Research, 2015, 18, 114-120.	1.3	16
248	Fique Fiber Tensile Elastic Modulus Dependence with Diameter Using the Weibull Statistical Analysis. Materials Research, 2015, 18, 193-199.	1.3	27
249	IMPACT ENERGY AND DUCTILITY INDEX OF KEVLAR REINFORCEMENT WITH KENAF POLYESTER COMPOSITE. Jurnal Teknologi (Sciences and Engineering), 2015, 76, .	0.4	1
250	Photoacoustic Thermal Characterization of Banana Fibers. Materials Research, 2015, 18, 240-245.	1.3	5
251	Ballistic Efficiency of an Individual Epoxy Composite Reinforced with Sisal Fibers in Multilayered Armor. Materials Research, 2015, 18, 55-62.	1.3	61
252	Ballistic Test of Multilayered Armor with Intermediate Epoxy Composite Reinforced with Jute Fabric. Materials Research, 2015, 18, 170-177.	1.3	102
253	Compósitos poliméricos reforçados com fibras naturais da Amazônia fabricados por infusão. Revista Materia, 2015, 20, 946-960.	0.2	12
254	Perforated Impact Strength of Woven Kenaf Fiber Reinforced Composites. Applied Mechanics and Materials, 2015, 773-774, 43-47.	0.2	2
255	Preliminary characterization of residual biomass from Hibiscus sabdariffa Calyces. African Journal of Biotechnology, 2015, 14, 2683-2692.	0.6	0
256	Charpy Impact Tests of Epoxy Composites Reinforced with Giant Bamboo Fibers. Materials Research, 2015, 18, 178-184.	1.3	26
257	Evaluation of the Diameter Influence on the Tensile Strength of Pineapple Leaf Fibers (PALF) by Weibull Method. Materials Research, 2015, 18, 185-192.	1.3	22
258	Giant Bamboo Fiber Reinforced Epoxy Composite in Multilayered Ballistic Armor. Materials Research, 2015, 18, 70-75.	1.3	65
259	A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. International Journal of Polymer Science, 2015, 2015, 1-15.	2.7	1,058
260	Biocomposite of Cassava Starch Reinforced with Cellulose Pulp Fibers Modified with Deposition of Silica (SiO ₂) Nanoparticles. Journal of Nanomaterials, 2015, 2015, 1-9.	2.7	30

#	Article	IF	CITATIONS
261	Improving Mechanical Properties of Thermoset Biocomposites by Fiber Coating or Organic Oil Addition. International Journal of Polymer Science, 2015, 2015, 1-7.	2.7	12
262	A Review on Pineapple Leaves Fibre and Its Composites. International Journal of Polymer Science, 2015, 2015, 1-16.	2.7	359
263	Full-Field Measurement at the Weave Scale in Hemp/Epoxy Composite Using Digital Image Correlation. Polymers and Polymer Composites, 2015, 23, 589-600.	1.9	6
266	From Cellulose Dissolution and Regeneration to Added Value Applications — Synergism Between Molecular Understanding and Material Development. , 0, , .		7
267	Structural Applications and Emerging Trends of Nano- and Biocomposites: A Review. Advanced Materials Research, 2015, 1115, 345-348.	0.3	4
268	Optimizing the Performance of Natural Fiber Reinforced Plastics Composites: Influence of Combined Optimization Paths on Microstructure and Mechanical Properties. Polymers and Polymer Composites, 2015, 23, 535-544.	1.9	4
269	The Thermal Stability Property of Bio-composites: A Review. , 2015, , 667-680.		0
270	Hemp Made Bio-Composites. Materials Science Textile and Clothing Technology, 2015, 9, 22.	0.1	1
271	Mechanical properties and crystallization behavior of poly(butylene succinate) composites reinforced with basalt fiber. Journal of Thermal Analysis and Calorimetry, 2015, 122, 261-270.	3.6	10
272	Natural fiber reinforced conductive polymer composites as functional materials: A review. Synthetic Metals, 2015, 206, 42-54.	3.9	177
273	Soy-based polyurethane spray foam insulations for light weight wall panels and their performances under monotonic and static cyclic shear forces. Industrial Crops and Products, 2015, 74, 1-8.	5.2	14
274	Cork–polymer biocomposites: Mechanical, structural and thermal properties. Materials and Design, 2015, 82, 282-289.	7.0	50
275	Performance of biocomposites from surface modified regenerated cellulose fibers and lactic acid thermoset bioresin. Cellulose, 2015, 22, 2507-2528.	4.9	31
276	Mode I fracture toughness of bio-fiber and bio-shell particle reinforced epoxy bio-composites. Journal of Reinforced Plastics and Composites, 2015, 34, 1075-1089.	3.1	24
277	Natural fibers. , 2015, , 102-143.		41
278	Simultaneous optimization of the mechanical properties of postconsumer natural fiber/plastic composites: Processing analysis. Journal of Composite Materials, 2015, 49, 1355-1367.	2.4	8
279	Carbon Fibers and Their Composites. Springer Series in Materials Science, 2015, , 275-317.	0.6	14
280	Improving the flame retardancy of flax fabrics by radiation grafting of phosphorus compounds. European Polymer Journal, 2015, 68, 313-325.	5.4	54

ARTICLE IF CITATIONS # An overview of feasibilities and challenge of conductive cellulose for rechargeable lithium based 281 16.4 40 battery. Renewable and Sustainable Energy Reviews, 2015, 50, 204-213. Extrusion blow molding of a starchâ \in gelatin polymer matrix reinforced with cellulose. European 5.4 Polymer Journal, 2015, 73, 335-343. Mechanical and Thermal Properties of Silane Treated Pineapple Leaf Fiber Reinforced Polylactic Acid 283 0.4 3 Composites. Key Engineering Materials, 0, 659, 446-452. New type of thermoplastic bio composite: nature of the interface on the ultimate properties and 284 water absorption. RSC Advances, 2015, 5, 97536-97546. Effect of Chitosan Particle Addition on the Tensile and Flexural Strength of Coir Fiber Reinforced 285 0.2 8 Polyester Composites. Applied Mechanics and Materials, 0, 813-814, 30-33. A Review on the Recent Research of Polycaprolactone (PCL). Advanced Materials Research, 0, 1134, 0.3 130 249-255. Mechanical Properties of Structural Paper-Polypropylene Composite Laminates. Materials Science 287 0.3 2 Forum, 2015, 825-826, 11-18. Processing and Characterization of Wood Plastic Composites from Bio-Based Polyamide 11 and 288 0.3 Chemically Modified Beech Fibers. Materials Science Forum, 0, 825-826, 1039-1046. 289 Microspectroscopic soft X-ray analysis of keratin based biofibers. Micron, 2015, 70, 34-40. 2.2 4 Amorphized cellulose as filler in biocomposites based on poly(É-caprolactone). Carbohydrate Polymers, 10.2 48 2015, 118, 170-182. Quasi-unidirectional flax composite reinforcement: Deformability and complex shape forming. 291 29 7.8 Composites Science and Technology, 2015, 110, 76-86. A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers. Polymer Reviews, 2015, 55, 107-162. Development and characterization of flax fiber reinforced biocomposite using flaxseed oilâ€based 293 2.6 12 bioâ€resin. Journal of Applied Polymer Science, 2015, 132, . Effect of kenaf particulate fillers in polymeric composite for tribological applications. Textile Reseach Journal, 2015, 85, 1602-1619. 294 2.2 Characterization of a novel natural cellulose fabric from Manicaria saccifera palm as possible 295 12.0 103 reinforcement of composite materials. Composites Part B: Engineering, 2015, 74, 66-73. Exploring the potentialities of using lignocellulosic fibres derived from three food by-products as constituents of biocomposites for food packaging. Industrial Crops and Products, 2015, 69, 110-122. Environmental aspects of fiber crops cultivation and use. Industrial Crops and Products, 2015, 68, 297 5.242 105-115. Cellulosic fiber reinforced cement-based composites: A review of recent research. Construction and 298 476 Building Materials, 2015, 79, 115-128.

#	Article	IF	CITATIONS
299	Fiber type effect on tribological behavior when cutting natural fiber reinforced plastics. Wear, 2015, 332-333, 772-779.	3.1	61
300	Pithecellobium Clypearia Benth Fiber/Recycled Acrylonitrile-Butadiene-Styrene (ABS) Composites Prepared in a Vane Extruder: Analysis of Mechanical Properties and Morphology. Journal of Macromolecular Science - Physics, 2015, 54, 1-16.	1.0	4
301	Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Engineering, 2015, 75, 176-200.	12.0	369
302	Effect of different lignocellulosic fibres on poly(Îμ-caprolactone)-based composites for potential applications in orthotics. RSC Advances, 2015, 5, 23798-23809.	3.6	31
303	Mechanical Properties of Hybrid Lignocellulosic Fiber-Filled Acrylonitrile Butadiene Styrene (ABS) Biocomposites. Polymer-Plastics Technology and Engineering, 2015, 54, 375-382.	1.9	13
304	Hydrophobic surface modification of ramie fibers by plasma-induced addition polymerization of propylene. Journal of Adhesion Science and Technology, 2015, 29, 691-704.	2.6	9
305	Mechanical properties of virgin and recycled polyolefin-based composite laminates reinforced with jute fabric. Polymer Composites, 2015, 36, 2022-2029.	4.6	11
306	A chemical, morphological and mineralogical study on the interaction between hemp hurds and aerial and natural hydraulic lime particles: Implications for mortar manufacturing. Construction and Building Materials, 2015, 75, 375-384.	7.2	37
307	Sensitivity of bamboo fiber longitudinal tensile properties to moisture content variation under the fiber saturation point. Journal of Wood Science, 2015, 61, 262-269.	1.9	20
308	Investigation on the reactive processing of textile-ramie fiber reinforced anionic polyamide-6 composites. Composites Science and Technology, 2015, 110, 188-195.	7.8	14
309	Development of diamond-like-carbon coated abaca-reinforced polyester composites for hydrophobic and outdoor structural applications. Polymer Bulletin, 2015, 72, 2797-2808.	3.3	8
310	Water absorption and thickness swelling behavior of almond (Prunus amygdalus L.) shell particles and coconut (Cocos nucifera) fiber hybrid epoxy-based biocomposite. Science and Engineering of Composite Materials, 2015, 22, .	1.4	8
311	Water Absorption Behavior of Hemp Hurds Composites. Materials, 2015, 8, 2243-2257.	2.9	48
312	Warpage of injection-molded automotive B pillar trim fabricated with ramie fiber-reinforced polypropylene composites. Journal of Reinforced Plastics and Composites, 2015, 34, 1144-1152.	3.1	14
313	Flax/polypropylene composites for lightened structures: Multiscale analysis of process and fibre parameters. Materials and Design, 2015, 87, 331-341.	7.0	47
314	Characterization of radio frequency assisted water retting and flax fibers obtained. Industrial Crops and Products, 2015, 69, 228-237.	5.2	15
315	Experimental study of coated tools effects in dry cutting of natural fiber reinforced plastics. Surface and Coatings Technology, 2015, 284, 264-272.	4.8	38
316	Lignin particle- and wood flour-reinforced phenolic foams: Friability, thermal stability and effect of hygrothermal aging on mechanical properties and morphology. Composites Part B: Engineering, 2015, 80, 154-161	12.0	44

#	Article	IF	CITATIONS
317	Fabrication of hydrogel of hydroxypropyl cellulose (HPC) composited with graphene oxide and its application for methylene blue removal. Journal of Materials Science, 2015, 50, 6113-6123.	3.7	65
318	High-capacity adsorption of aniline using surface modification of lignocellulose-biomass jute fibers. Bioresource Technology, 2015, 193, 507-512.	9.6	56
319	Establishing a new Forming Limit Curve for a flax fibre reinforced polypropylene composite through stretch forming experiments. Composites Part A: Applied Science and Manufacturing, 2015, 77, 114-123.	7.6	24
320	Wetting behavior of soy-based resin and unsaturated polyester on surface-modified sisal fiber mat. Journal of Reinforced Plastics and Composites, 2015, 34, 807-818.	3.1	10
321	Natural Polymer/Inorganic Material Based Hybrid Scaffolds for Skin Wound Healing. Polymer Reviews, 2015, 55, 453-490.	10.9	65
322	Manufacture of compression moulded PLA based biocomposites: A parametric study. Composite Structures, 2015, 131, 995-1000.	5.8	44
323	Effect of cellulose structure and morphology on the properties of poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10	rf 50 502 ⁻ 10 . 2	Td (succinat
324	Oxygen plasma treatment of bamboo fibers (BF) and its effects on the static and dynamic mechanical properties of BF-unsaturated polyester composites. Holzforschung, 2015, 69, 449-455.	1.9	24
325	Sustainable eco-composites obtained from agricultural and urban waste plastic blends and residual cellulose fibers. Journal of Cleaner Production, 2015, 108, 377-384.	9.3	44
326	Properties and Processing Relationship of Polyhydroxybutyrate and Cellulose Biocomposites. , 2015, 8, 807-813.		29
327	Characterization of high glass transition temperature sugar-based epoxy resin composites with jute and carbon fibre reinforcement. Composites Science and Technology, 2015, 117, 62-68.	7.8	49
328	Structure, morphology and mechanical behaviour of novel bio-based polyurethane composites with microcrystalline cellulose. Cellulose, 2015, 22, 2471-2481.	4.9	35
329	A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 2015, 77, 1-25.	7.6	950
330	Grafting of nano-TiO2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite. Composites Part A: Applied Science and Manufacturing, 2015, 76, 172-180.	7.6	86
331	Multicomponent Polymer Composite/Nanocomposite Systems Using Polymer Matrices from Sustainable Renewable Sources. Advanced Structured Materials, 2015, , 469-494.	0.5	2
332	Fabricating Highly Reactive Bio-based Compatibilizers of Epoxidized Citric Acid To Improve the Flexural Properties of Polylactide/Microcrystalline Cellulose Blends. Industrial & Engineering Chemistry Research, 2015, 54, 3806-3812.	3.7	27
333	Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl) Tj ETQq0 0 0 rgBT Engineering C, 2015, 51, 233-241.	/Overlock 7.3	10 Tf 50 10 23
334	High performance hybrid PP and PLA biocomposites reinforced with short man-made cellulose fibres and softwood flour. Composites Part A: Applied Science and Manufacturing, 2015, 74, 132-139.	7.6	52

#	Article	IF	CITATIONS
335	Use of epoxidized natural rubber as a toughening agent in plastics. Journal of Applied Polymer Science, 2015, 132, .	2.6	30
336	An efficient enzymatic-based process for the extraction of high-mechanical properties alfa fibres. Industrial Crops and Products, 2015, 70, 190-200.	5.2	54
337	Towards the development of laser shock test for mechanical characterisation of fibre/matrix interface in eco-composites. Polymer Testing, 2015, 44, 125-134.	4.8	10
338	The influence of paper type on the properties of structural paper – Polypropylene composites. Composites Part A: Applied Science and Manufacturing, 2015, 74, 107-113.	7.6	24
339	Predicting the potential of agro waste fibers for sustainable automotive industry using a decision making model. Computers and Electronics in Agriculture, 2015, 113, 116-127.	7.7	93
340	Self-hybridization and Coupling Agent Effect on the Properties of Natural Fiber/HDPE Composites. Journal of Polymers and the Environment, 2015, 23, 126-136.	5.0	19
341	Accelerated Fatigue Testing of Biodegradable Composites with Flax Fibers. Journal of Polymers and the Environment, 2015, 23, 400-406.	5.0	30
342	Production of bamboo fiber reinforced fibrillated poly(lactic acid) (PLA) material obtained by a papermaking process. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 429-432.	1.0	7
343	Decision making model for optimal reinforcement condition of natural fiber composites. Fibers and Polymers, 2015, 16, 153-163.	2.1	75
344	Residual Strength and Damage Characterization of Unidirectional Glass–Basalt Hybrid/Epoxy CAI Laminates. Arabian Journal for Science and Engineering, 2015, 40, 1695-1705.	1.1	27
345	High toughness hybrid biocomposite process optimization. Composites Science and Technology, 2015, 111, 44-49.	7.8	16
346	Vegetal fibers in polymeric composites: a review. Polimeros, 2015, 25, 9-22.	0.7	163
348	Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers. Industrial Crops and Products, 2015, 70, 91-99.	5.2	130
349	Wear resistance and friction behavior of thermoset matrix reinforced with Musaceae fiber bundles. Tribology International, 2015, 87, 57-64.	5.9	51
350	The use of hemp fibres as reinforcements in composites. , 2015, , 86-103.		43
351	The thermo-oxidative stability and flammability of wood/polypropylene composites. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1955-1962.	3.6	34
352	Effect of basalt fibre hybridisation on post-impact mechanical behaviour of hemp fibre reinforced composites. Composites Part A: Applied Science and Manufacturing, 2015, 75, 54-67.	7.6	74
355	Effects of amino silicone oil modification on properties of ramie fiber and ramie fiber/polypropylene composites. Materials & Design, 2015, 77, 142-148.	5.1	50

ARTICLE IF CITATIONS Modeling of resin flow in natural fiber reinforcement for liquid composite molding processes. 356 7.8 24 Composites Science and Technology, 2015, 113, 38-45. Mechanical performance of natural fiber-reinforced composites for the strengthening of masonry. 141 Composites Part B: Engineering, 2015, 77, 74-83. Controlled synthesis of ZnO particles on the surface of natural cellulosic fibers: effect of 358 4.9 26 concentration, heating and sonication. Cellulose, 2015, 22, 1841-1852. Moisture-induced self-shaping flax-reinforced polypropylene biocomposite actuator. Industrial Crops and Products, 2015, 71, 1-6. Mechanical performance of polyethylene (PE)-based biocomposites., 2015,, 237-256. 360 5 Naturally Occurring Acids as Cross-Linkers To Yield VOC-Free, High-Performance, Fully Bio-Based, 4.8 160 Degradable Thermosets. Macromolecules, 2015, 48, 7127-7137 Flexural analysis of palm fiber reinforced hybrid polymer matrix composite. IOP Conference Series: 362 0.6 1 Materials Science and Engineering, 2015, 87, 012036. Mechanical imaging of bamboo fiber cell walls and their composites by means of peakforce 1.9 30 quantitative nanomechanics (PQNM) technique. Holzforschung, 2015, 69, 975-984. Comparison of polyolefin biocomposites prepared with waste cardboard, microcrystalline cellulose, 364 3.8 45 and cellulose nanocrystals via solid-state shear pulverization. Polymer, 2015, 75, 78-87. Analysis of oxidized cellulose introduced into ramie fiber by oxidation degumming. Textile Reseach 2.2 34 Journal, 2015, 85, 2125-2135. Utilization of algae blooms as a source of natural fibers for biocomposite materials: Study of 366 21 4.6 morphology and mechanical performance of Lyngbya fibers. Algal Research, 2015, 12, 412-420. Physical, mechanical and biodegradable properties of kenaf/coir hybrid fiber reinforced polymer nanocomposites. Materials Today Communications, 2015, 4, 69-76. Sustainable wood-plastic composites from bio-based polyamide 11 and chemically modified beech fibers. 368 3.3 73 Sustainable Materials and Technologies, 2015, 6, 6-14. Structural behaviour of masonry panels strengthened with an innovative hemp fibre composite grid. 7.2 76 Construction and Building Materials, 2015, 100, 111-121. Chitin-Based Nanocomposites: Biomedical Applications. Advanced Structured Materials, 2015, , 439-457. 370 0.5 6 Photocatalytic Properties of Sisal Fiber Coated with Nano Titanium Dioxide. Materials Today: 1.8 Proceedings, 2015, 2, 41-48. Processing, mechanical and thermal behavior assessments of polycaprolactone/agricultural wastes 372 5.276 biocomposites. Industrial Crops and Products, 2015, 76, 725-733. Utilization of eggshell waste as raw material for synthesis of hydroxyapatite. Colloid and Polymer 373 2.1 Science, 2015, 293, 2477-2483.

ARTICLE IF CITATIONS # Hygromorphic materials for sustainable responsive architecture. Construction and Building 374 7.2 108 Materials, 2015, 98, 570-582. Natural Curaua Fiber-Reinforced Composites in Multilayered Ballistic Armor. Metallurgical and 2.2 Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4567-4577. Interfacial improvements in biocomposites based on poly(3-hydroxybutyrate) and 376 poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastics reinforced and grafted with 1±-cellulose 9.0 101 fibers. Green Chemistry, 2015, 17, 4800-4814. The Compressive Properties of Kevlar/Kenaf Hybrid Composites. Applied Mechanics and Materials, 2015, 0.2 763, 19-24. Kevlar Reinforcement in Treated Kenaf Composites: Tensile and Impact Properties. Advanced Materials 378 0.3 1 Research, 0, 1113, 68-73. Impact of fibre moisture content on the structure/mechanical properties relationships of PHBV/wheat 379 7.8 49 straw fibres biocomposites. Composites Science and Technology, 2015, 117, 386-391. Mechanical performance of ÂPC-based Âbiocomposites., 2015, , 303-317. 380 1 Mechanical and thermal properties of sisal fiber reinforced acrylated epoxidized castor oil toughened diglycidyl ether of bisphenol A epoxy nanocomposites. Journal of Reinforced Plastics and 3.1 Composites, 2015, 34, 1476-1490. 382 Commercial potential and competitiveness of natural fiber composites., 2015, , 1-15. 16 Effect of Sisal Fibre Loading on Dynamic Mechanical Analysis and Water Absorption Behaviour of Jute 1.8 44 Fibre Epoxy Composite. Materials Today: Proceedings, 2015, 2, 2909-2917. Manufacturing of Natural Fibre Reinforced Polymer Composites., 2015,,. 384 44 Manufacturing of Coir Fibre-Reinforced Polymer Composites by Hot Compression Technique. , 2015, , 309-330. Manufacturing of Natural Fibre-Reinforced Polymer Composites by Solvent Casting Method., 2015, 386 22 331-349. Green Composite Manufacturing via Compression Molding and Thermoforming., 2015, 45-63. Compaction, Permeability and Flow Simulation for Liquid Composite Moulding of Natural Fibre 388 6 Composites., 2015, , 65-99. Manufacturing and Processing of Kenaf Fibre-Reinforced Epoxy Composites via Different Methods., 2015, , 101-124. The Effects of the Alkaline Treatment's Soaking Exposure on the Tensile Strength of Napier Fibre. 390 1.9 34 Procedia Manufacturing, 2015, 2, 353-358. Recent Developments in Biocomposites Reinforced with Natural Biofillers from Food Waste. 391 28 Polymer-Plastics Technology and Engineering, 2015, 54, 87-99.

#	Article	IF	CITATIONS
392	The effect of oxidation–reduction potential on the degumming of ramie fibers with hydrogen peroxide. Journal of the Textile Institute, 2015, 106, 1251-1261.	1.9	14
393	Evaluation of corn husk fibers reinforced recycled low density polyethylene composites. Materials Chemistry and Physics, 2015, 152, 26-33.	4.0	106
394	Impact of lignin on water sorption properties of bioinspired self-assemblies of lignocellulosic polymers. European Polymer Journal, 2015, 64, 21-35.	5.4	20
395	Effects of Coir Fiber and Maleic Anhydride Modification on the Properties of Thermoplastic Starch/PLA Composite Laminates. Journal of Natural Fibers, 2015, 12, 108-120.	3.1	19
396	Value-added industrial products from bast fiber crops. Industrial Crops and Products, 2015, 68, 116-125.	5.2	38
397	Modelling impact behaviour of all-cellulose composite plates. Composite Structures, 2015, 122, 139-143.	5.8	25
398	Preparation and characterization of flax biocomposites made of seed mucilage reinforced by fibers. Composites Part A: Applied Science and Manufacturing, 2015, 69, 299-305.	7.6	3
399	Mechanical properties of kenaf fibre reinforced polymer composite: A review. Construction and Building Materials, 2015, 76, 87-96.	7.2	446
400	Analyses of woven hemp fabric characteristics for composite reinforcement. Materials & Design, 2015, 66, 82-92.	5.1	33
401	Influence of interphase properties on the effective behaviour of a starch-hemp composite. Materials & Design, 2015, 65, 1053-1063.	5.1	24
402	The use of biobased nanofibres in composites. , 2015, , 571-647.		21
403	Green composites prepared from aliphatic polyesters and bast fibers. Industrial Crops and Products, 2015, 68, 60-79.	5.2	92
404	Synergistic effect of coupling agents and fiber treatments on mechanical properties and moisture absorption of polypropylene–rice husk composites and their foam. Composites Part A: Applied Science and Manufacturing, 2015, 68, 313-322.	7.6	60
405	Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective. Renewable and Sustainable Energy Reviews, 2015, 42, 446-459.	16.4	125
406	The use of kenaf fibers as reinforcements in composites. , 2015, , 138-161.		13
407	A review on tribological performance of natural fibre polymeric composites. Tribology International, 2015, 83, 77-104.	5.9	227
408	The use of sisal and henequen fibres as reinforcements in composites. , 2015, , 165-210.		13
409	Mechanical properties for bio-based thermoset composites made from lactic acid, glycerol and viscose fibers. Cellulose, 2015, 22, 603-613	4.9	19

#	ARTICLE	IF	CITATIONS
410	Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation. Materials & Design, 2015, 66, 246-257.	5.1	352
411	Design of natural fiber composites utilizing interfacial crystallinity and affinity. Composites Part A: Applied Science and Manufacturing, 2015, 69, 21-29.	7.6	17
412	Particleboard from wood particles and sycamore leaves: Physico-mechanical properties. Engineering in Agriculture, Environment and Food, 2015, 8, 38-43.	0.5	15
413	Creep behavior of starch-based nanocomposite films with cellulose nanofibrils. Carbohydrate Polymers, 2015, 117, 957-963.	10.2	57
414	Effects of fabric parameters on the tensile behaviour of sustainable cementitious composites. Composites Part B: Engineering, 2015, 69, 256-266.	12.0	79
415	Dynamic mechanical and thermo-gravimetric analysis of Sansevieria cylindrica/polyester composite: Effect of fiber length, fiber loading and chemical treatment. Composites Part B: Engineering, 2015, 69, 76-86.	12.0	121
416	Damping evaluation on eco-friendly sandwich panels through reverberation time (RT60) measurements. JVC/Journal of Vibration and Control, 2015, 21, 3328-3338.	2.6	6
417	Wastewater reuse for fiber crops cultivation as a strategy to mitigate desertification. Industrial Crops and Products, 2015, 68, 17-23.	5.2	40
418	Influence of compatibilizing system on morphology, thermal and mechanical properties of high flow polypropylene reinforced with short hemp fibers. Composites Part B: Engineering, 2015, 69, 286-295.	12.0	59
419	Degradation of a Polycaprolactone/Eggshell Biocomposite in a Bioreactor. Journal of Polymers and the Environment, 2015, 23, 11-20.	5.0	18
420	Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohydrate Polymers, 2015, 117, 392-399.	10.2	244
421	Characterization of composite materials based on LDPE loaded with agricultural tunisian waste. Polymer Composites, 2015, 36, 817-824.	4.6	10
422	A critical review on cellulose: From fundamental to an approach on sensor technology. Renewable and Sustainable Energy Reviews, 2015, 41, 402-412.	16.4	240
423	Fracture behaviour of epoxy biocomposite reinforced with short coconut fibres (<i>Cocos) Tj ETQq1 1 0.784314 Materials, 2016, 29, 1098-1117.</i>	rgBT /Ove 4.2	erlock 10 Tf 5 18
424	The Need for Technical Improvement in the Plastics Recycling Industry in Middle-income Countries: The Peruvian Case. Progress in Rubber, Plastics and Recycling Technology, 2016, 32, 201-212.	1.8	3
425	Mechanical Properties of Bio-Composite Natural Rubber/High Density Polyethylene/Mengkuang Fiber (NRHDE/MK). Polymers and Polymer Composites, 2016, 24, 767-774.	1.9	16
426	CRUSHING MECHANISMS OF CYLINDRICAL WINDING KENAF FIBER REINFORCED COMPOSITES. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	3
427	Effects of Wet/Dry-Cycling and Plasma Treatments on the Properties of Flax Nonwovens Intended for Composite Reinforcing. Materials, 2016, 9, 93.	2.9	19

ARTICLE IF CITATIONS Production and Characterization of Hybrid Polymer Composites Based on Natural Fibers., 0, , . 8 428 Polyolefine Composites Reinforced by Rice Husk and Saw Dust., 0, , . 429 430 Renewable Biocomposite Properties and their Applications., 0, , . 8 A Review - Future Aspect of Natural Fiber Reinforced Composite. Polymers From Renewable Resources, 109 2016, 7, 43-59. Mechanical, Thermal and Instrumented Impact Properties of Bamboo Fabric-Reinforced Polypropylene 432 1.9 8 Composites. Polymers and Polymer Composites, 2016, 24, 755-766. Resposta à flexão e análise de tenacidade de argamassas reforçadas com fibra de Curauá. Revista 0.2 Materia, 2016, 21, 18-26. Extraction and Hydrophobic Modification of Cotton Stalk Bark Fiber. International Journal of 434 2.7 3 Polymer Science, 2016, 2016, 1-6. Effect of Reinforcement of Hydrophobic Grade Banana (<i>Musa ornata</i>) Bark Fiber on the Physicomechanical Properties of Isotactic Polypropylene. International Journal of Polymer Science, 9 2016, 2016, 1-8. Eggshell and Bacterial Cellulose Composite Membrane as Absorbent Material in Active Packaging. 436 2.7 8 International Journal of Polymer Science, 2016, 2016, 1-8. Effect of Wood Fillers on the Viscoelastic and Thermophysical Properties of HDPE-Wood Composite. 2.7 International Journal of Polymer Science, 2016, 2016, 1-6. Production of Banana Fiber Yarns for Technical Textile Reinforced Composites. Materials, 2016, 9, 370. 438 2.9 56 Influence of different factors on the destruction of films based on polylactic acid and oxidized 0.4 polyethylene. AIP Conference Proceedings, 2016, , . Use of micro-tomography for validation of method to identify interfacial shear strength from tensile tests of short regenerated cellulose fibre composites. IOP Conference Series: Materials Science and 440 0.6 0 Engineering, 2016, 139, 012021. Experimental Strength of Single-Lap Hybrid Joints on Woven Fabric Kenaf Fiber Composites Under 441 0.2 Quasi Static Condition. MATEC Web of Conferences, 2016, 47, 02003. A Review on Grafting of Biofibers for Biocomposites. Materials, 2016, 9, 303. 442 2.9 119 Caracterização morfolÃ3gica de nanocristais de celulose por microscopia de força atômica. Revista 443 Materia, 2016, 21, 532-540. The Effect of Customized Woven and Stacked Layer Orientation on Tensile and Flexural Properties of 444 Woven Kenaf Fibre Reinforced Epoxy Composites. International Journal of Polymer Science, 2016, 2016, 2.7 19 1-11. Thermal Properties of Hemp Fiber Reinforced Plant-Derived Polyamide Biomass Composites and their 445 Dynamic Viscoelastic Properties in Molten State., 2016, , .

#	Article	IF	CITATIONS
446	Effects of alkali and alkali/silane treatments of corn fibers on mechanical and thermal properties of its composites with polylactic acid. Polymer Composites, 2016, 37, 3499-3507.	4.6	35
447	High volume-fraction silk fabric reinforcements can improve the key mechanical properties of epoxy resin composites. Materials and Design, 2016, 108, 470-478.	7.0	48
448	Water vapor sorption and diffusion in wheat straw particles and their impact on the mass transfer properties of biocomposites. Journal of Applied Polymer Science, 2016, 133, .	2.6	15
449	Preparation and characterization of multilayer foamed composite by rotational molding. Polymer Engineering and Science, 2016, 56, 278-286.	3.1	15
450	Static and Cyclic Compressive Properties of Self-Compacting Concrete-Filled Flax Fiber–Reinforced Polymer Tubes. Journal of Composites for Construction, 2016, 20, .	3.2	22
451	Chemical surface modification of wheat straw fibers for polypropylene reinforcement. Polymer Composites, 2016, 37, 2133-2141.	4.6	23
452	Mechanical and Thermal Properties of PALF Reinforced Epoxy Composites. Macromolecular Symposia, 2016, 361, 57-63.	0.7	12
453	Biopolyamide hybrid composites for high performance applications. Journal of Applied Polymer Science, 2016, 133, .	2.6	26
454	Investigating morphological and performance deterioration of injection-molded rice husk–polypropylene composites due to various liquid uptakes. International Journal of Polymer Analysis and Characterization, 2016, 21, 675-685.	1.9	42
455	Biodegradation Properties of Bioplastic-Based Planting Pots. , 2016, , 199-210.		Ο
456	Effect of liquid epoxidized natural rubber (LENR) on mechanical properties and morphology of natural rubber/high density polyethylene/mengkuang fiber (NR/HDPE/MK) bio-composite. AIP Conference Proceedings, 2016, , .	0.4	3
458	Fiber-Reinforced Polymer Bridge Design in the Netherlands: Architectural Challenges toward Innovative, Sustainable, and Durable Bridges. Engineering, 2016, 2, 518-527.	6.7	35
459	Impact and dynamic mechanical thermal properties of textile silk reinforced epoxy resin composites. IOP Conference Series: Materials Science and Engineering, 2016, 137, 012062.	0.6	1
460	Flammability of self-extinguishing kenaf/ABS nanoclays composite for aircraft secondary structure. IOP Conference Series: Materials Science and Engineering, 2016, 152, 012068.	0.6	6
462	Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Progress in Natural Science: Materials International, 2016, 26, 657-664.	4.4	140
463	Influence of additional coupling agent on the mechanical properties of polyester–agave cantala roxb based composites. AIP Conference Proceedings, 2016, , .	0.4	1
464	Kenaf-glass fiber reinforced unsaturated polyester hybrid composites: Tensile properties. AIP Conference Proceedings, 2016, , .	0.4	4
465	Investigation of Thermal Behavior for Natural Fibres Reinforced Epoxy using Thermogravimetric and Differential Scanning Calorimetric Analysis. MATEC Web of Conferences, 2016, 78, 01042.	0.2	6

#	Article	IF	CITATIONS
466	Stress-strain properties of composites based on bio-based polyamide 1010 filled with cut fibers. AIP Conference Proceedings, 2016, , .	0.4	10
468	Long-term tensile properties of natural fibre-reinforced polymer composites: Comparison of flax and glass fibres. Composites Part B: Engineering, 2016, 95, 82-95.	12.0	76
469	Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Management, 2016, 54, 62-73.	7.4	360
470	Strategies for development and implementation of bio-based materials as effective renewable resources of energy: A comprehensive review on adsorbent technology. Renewable and Sustainable Energy Reviews, 2016, 62, 654-664.	16.4	60
471	Nanoclay Based Natural Fibre Reinforced Polymer Composites: Mechanical and Thermal Properties. Engineering Materials, 2016, , 81-101.	0.6	1
472	Enhancing mechanical properties of clay aerogel composites: An overview. Composites Part B: Engineering, 2016, 98, 314-329.	12.0	61
473	Environmental resistance of flax/bio-based epoxy and flax/polyurethane composites manufactured by resin transfer moulding. Composites Part A: Applied Science and Manufacturing, 2016, 88, 140-147.	7.6	51
474	Facile extraction, processing and characterization of biorenewable sisal fibers for multifunctional applications. Journal of Macromolecular Science - Pure and Applied Chemistry, 2016, 53, 424-432.	2.2	37
475	Mechanical and morphological properties of injection-molded rice husk polypropylene composites. International Journal of Polymer Analysis and Characterization, 2016, 21, 305-313.	1.9	73
476	A review of natural fibres, their sustainability and automotive applications. Journal of Reinforced Plastics and Composites, 2016, 35, 1041-1050.	3.1	161
477	Hybridized carbon and flax fiber composites for tailored performance. Materials and Design, 2016, 102, 21-29.	7.0	150
478	PLA composites: From production to properties. Advanced Drug Delivery Reviews, 2016, 107, 17-46.	13.7	651
479	Composite materials with bast fibres: Structural, technical, and environmental properties. Progress in Materials Science, 2016, 83, 1-23.	32.8	102
480	Experimental and theoretical investigation of prestressed natural fiber-reinforced polylactic acid (PLA) composite materials. Composites Part B: Engineering, 2016, 95, 346-354.	12.0	95
481	Formulations of polymeric biodegradable low-cost foam by melt extrusion to deliver plant growth-promoting bacteria in agricultural systems. Applied Microbiology and Biotechnology, 2016, 100, 7323-7338.	3.6	20
482	Dynamic Mechanical Thermal Analysis of Polymer Composites Reinforced with Natural Fibers. Polymer Reviews, 2016, 56, 362-383.	10.9	70
483	Positive size and scale effects of all-cellulose composite laminates. Composites Part A: Applied Science and Manufacturing, 2016, 85, 65-75.	7.6	12
484	Tribological characteristics comparison for oil palm fibre/epoxy and kenaf fibre/epoxy composites under dry sliding conditions. Tribology International, 2016, 101, 247-254.	5.9	67

#	Article	IF	CITATIONS
485	Characterization of hybrid epoxy composites reinforced by murta and jute fibers. International Journal of Polymer Analysis and Characterization, 2016, 21, 563-570.	1.9	6
486	The effects of PHBV- <i>g</i> -MA compatibilizer on morphology and properties of poly(3-hydroxybutyrate-Co-3-hydroxyvalerate)/olive husk flour composites. Journal of Adhesion Science and Technology, 2016, 30, 2061-2080.	2.6	22
487	The effects of the injection moulding temperature on the mechanical properties and morphology of polypropylene man-made cellulose fibre composites. Composites Part A: Applied Science and Manufacturing, 2016, 87, 146-152.	7.6	41
488	Effect of Length of False Banana Fibre (<i>Ensete ventricosum</i>) on Mechanical Behaviour under Tensile Loading. Scientia Agriculturae Bohemica, 2016, 47, 90-96.	0.3	11
489	Using Forest Resources to Develop High Performance Plastic Compounds for the Automotive Industry. International Polymer Processing, 2016, 31, 423-432.	0.5	6
490	The effect of surface treatment on the performance of flax/biodegradable composites. Composites Part B: Engineering, 2016, 106, 88-98.	12.0	58
491	Miscanthus stem fragment – Reinforced polypropylene composites: Development of an optimized preparation procedure at small scale and its validation for differentiating genotypes. Polymer Testing, 2016, 55, 166-172.	4.8	17
492	Preparation and characterization of wood plastic composite reinforced by organoclay. Journal of the Indian Academy of Wood Science, 2016, 13, 118-131.	0.9	5
494	Structure–property relationships of elementary bamboo fibers. Cellulose, 2016, 23, 3521-3534.	4.9	12
495	A novel hybrid self-assembly process for synthesising stratified polyethylene–organoclay films. RSC Advances, 2016, 6, 75640-75650.	3.6	2
496	Characteristics of murta bast fiber reinforced epoxy composites. Journal of Applied Polymer Science, 2016, 133, .	2.6	0
497	Improving thermoâ€oxidative degradation resistance of bamboo fiber reinforced polypropylene composite with antioxidants. Part I: Screening of antioxidants. Journal of Applied Polymer Science, 2016, 133, .	2.6	4
498	Effect of crystalline forms (α′ and α) of poly(lactic acid) on its mechanical, thermo-mechanical, heat deflection temperature and creep properties. European Polymer Journal, 2016, 82, 232-243.	5.4	93
499	Development and Properties of Sugar Palm Fiber Reinforced Polymer Composites. , 2016, , 309-342.		2
500	Surface free energy and dielectric properties of vinyltriethoxysilane functionalized SBA-15-reinforced unsaturated polyester nanocomposites. Polymer Composites, 2016, 37, 3433-3441.	4.6	11
501	Effect of surface treatments of jute fibers on the microstructural and mechanical responses of poly(lactic acid)/jute fiber biocomposites. RSC Advances, 2016, 6, 73373-73382.	3.6	51
502	Sustainable and lightweight biopolyamide hybrid composites for greener auto parts. Canadian Journal of Chemical Engineering, 2016, 94, 2052-2060.	1.7	12
503	Mechanical properties of boards made in biocomposites reinforced with wood and Posidonia oceanica fibers. Composites Part B: Engineering, 2016, 104, 1-8.	12.0	21

#	Article	IF	CITATIONS
504	Mechanical and damping properties of resin transfer moulded jute-carbon hybrid composites. Composites Part B: Engineering, 2016, 105, 60-66.	12.0	92
505	The effects of through-the-thickness stitching on the Mode I interlaminar fracture toughness of flax/epoxy composite laminates. Materials and Design, 2016, 109, 659-669.	7.0	86
506	Functionalization of Miscanthus by Photoactivated Thiol–Ene Addition to Improve Interfacial Adhesion with Polycaprolactone. ACS Sustainable Chemistry and Engineering, 2016, 4, 5475-5482.	6.7	6
507	The effect of treatment on kenaf fiber using green approach and their reinforced epoxy composites. Composites Part B: Engineering, 2016, 104, 111-117.	12.0	93
509	Utilization of zinc chloride for surface modification of activated carbon derived from Jatropha curcas L. for absorbent material. Data in Brief, 2016, 9, 970-975.	1.0	6
510	Bamboo fiber at macro-, micro- and nanoscale for application as reinforcement. Green Materials, 2016, 4, 41-52.	2.1	12
511	RF atmospheric plasma jet surface treatment of paper. Journal Physics D: Applied Physics, 2016, 49, 374001.	2.8	31
512	Evaluation of mold growth on sugarcane bagasse particleboards in natural exposure and in accelerated test. International Biodeterioration and Biodegradation, 2016, 115, 266-276.	3.9	18
513	Numerical and Experimental Characterization of the Dynamic Properties of Flax Fiber Reinforced Composites. International Journal of Applied Mechanics, 2016, 08, 1650068.	2.2	29
514	Physico-mechanical and thermal properties of epoxidized natural rubber/polylactide (ENR/PLA) composites reinforced with lignocellulose. Journal of Thermal Analysis and Calorimetry, 2016, 125, 1467-1476.	3.6	17
515	Mechanical behaviour and damage mechanisms analysis of a flax-fibre reinforced composite by acoustic emission. Composites Part A: Applied Science and Manufacturing, 2016, 90, 100-110.	7.6	116
516	Weibull distribution analysis of the tensile strength of the kenaf bast fiber. Fibers and Polymers, 2016, 17, 1696-1701.	2.1	26
517	Biopolymers Directly Developed from Biomasses from Agrowaste Sources. , 2016, , 485-514.		0
518	Biocomposites Composed of Bio-Based Epoxy Resins, Bio-Based Polyphenols and Lignocellulosic Fibers. , 2016, , 131-180.		1
519	Modelling of volumetric composition and mechanical properties of unidirectional hemp/epoxy composites - Effect of enzymatic fibre treatment. IOP Conference Series: Materials Science and Engineering, 2016, 139, 012031.	0.6	0
520	Mechanical properties of ethylene-octene copolymer (EOC) - lignocellulosic fillers biocomposites in dependence to filler content. AIP Conference Proceedings, 2016, , .	0.4	5
521	Effect of processing sequence on the dynamic viscoelastic properties of ternary biomass composites (Hemp fiber/PA1010/PA11E) in the molten state. AIP Conference Proceedings, 2016, , .	0.4	7
522	Thermal Stress Effect on Density Changes of Hemp Hurds Composites. Selected Scientific Papers: Journal of Civil Engineering, 2016, 11, 67-76.	0.1	0

#	Article	IF	CITATIONS
523	Chemical interaction of polyethylene matrix with vegetable fillers in biocomposites. AIP Conference Proceedings, 2016, , .	0.4	1
524	Grafting of wheat straw fibers with poly (ε-caprolactone) via ring-opening polymerization for poly(lactic acid) reinforcement. Polymers for Advanced Technologies, 2016, 27, 657-664.	3.2	15
525	Cure kinetics characterization of soyâ€based epoxy resins for infusion moulding process. Canadian Journal of Chemical Engineering, 2016, 94, 1375-1380.	1.7	4
526	Influence of Surface Modifications of Flax Fiber on Mechanical and Flow Properties of Thermoplastic Polyurethane Based Eco-Composites. Journal of Natural Fibers, 2016, 13, 309-320.	3.1	26
527	Novel Aloe Vera fiber reinforced biodegradable composites—Development and characterization. Journal of Reinforced Plastics and Composites, 2016, 35, 1411-1423.	3.1	43
528	Processing and properties of antibacterial silver nanoparticle-loaded hemp hurd/poly(lactic acid) biocomposites. Composites Part B: Engineering, 2016, 100, 10-18.	12.0	43
529	Re-Emerging Field of Lignocellulosic Fiber – Polymer Composites and Ionizing Radiation Technology in their Formulation. Polymer Reviews, 2016, 56, 702-736.	10.9	113
530	Experimental Investigation on the Mechanical Properties of Green Hybrid Sisal and Glass Fiber Reinforced Polymer Composites. Journal of Natural Fibers, 2016, 13, 321-331.	3.1	88
531	Modification of isotactic polypropylene by additives of low-density polyethylene and powdered cellulose. Inorganic Materials: Applied Research, 2016, 7, 58-65.	0.5	15
532	Guadua angustifolia bamboo fibers as reinforcement of polymeric matrices: An exploratory study. Construction and Building Materials, 2016, 116, 93-97.	7.2	17
533	Why do we observe significant differences between measured and †back-calculated' properties of natural fibres?. Cellulose, 2016, 23, 1481-1490.	4.9	66
534	Evaluation of the interfacial properties of polypropylene composite laminates, reinforced with paper sheets. Composites Part A: Applied Science and Manufacturing, 2016, 88, 59-66.	7.6	15
535	Influence of density and environmental factors on decomposition kinetics of amorphous polylactide – Reactive molecular dynamics studies. Journal of Molecular Graphics and Modelling, 2016, 67, 54-61.	2.4	13
536	Hybrid Composite Foams Based on Nanoclays and Natural Fibres. Engineering Materials, 2016, , 51-79.	0.6	3
537	On recycled carbon fibre composites manufactured through a liquid composite moulding process. Journal of Reinforced Plastics and Composites, 2016, 35, 533-540.	3.1	12
538	Recycling of L-Poly-(lactide)-Poly-(butylene-succinate)-flax biocomposite. Polymer Degradation and Stability, 2016, 128, 77-88.	5.8	42
539	Upgrading poly(butylene succinate)/wood fiber composites by esterified lignin. Composite Interfaces, 2016, 23, 873-885.	2.3	10
540	Synthesis and Characterization of Photoprocessable Lignin-Based Azo Polymer. ACS Sustainable Chemistry and Engineering, 2016, 4, 4036-4042.	6.7	47

#	Article	IF	CITATIONS
541	Evaluating the heat resistance of thermal insulated sandwich composites subjected to a turbulent fire. Fire and Materials, 2016, 40, 586-598.	2.0	10
542	Rotomolded polyethylene-agave fiber composites: Effect of fiber surface treatment on the mechanical properties. Polymer Engineering and Science, 2016, 56, 856-865.	3.1	36
543	Effect of thermal annealing on the mechanical and thermal properties of polylactic acid–cellulosic fiber biocomposites. Journal of Applied Polymer Science, 2016, 133, .	2.6	45
544	Optimal tensile properties of a Manicaria-based biocomposite by the Taguchi method. Composite Structures, 2016, 140, 692-701.	5.8	21
545	Lignin-Reinforced Rubber Composites. , 2016, , 195-206.		5
546	A Method to Measure Moisture Induced Swelling Properties of a Single Wood Cell. Experimental Mechanics, 2016, 56, 723-733.	2.0	32
547	Evaluating mold growth in tannin-resin and flax fiber biocomposites. Industrial Crops and Products, 2016, 83, 438-443.	5.2	17
548	Microcrystalline-cellulose and polypropylene based composite: A simple, selective and effective material for microwavable packaging. Carbohydrate Polymers, 2016, 142, 133-140.	10.2	56
549	State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Engineering Science and Technology, an International Journal, 2016, 19, 717-736.	3.2	207
550	Evaluation of the retting process as a pre-treatment of vegetable fibers for the preparation of high-performance polymer biocomposites. Industrial Crops and Products, 2016, 81, 56-65.	5.2	55
551	Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: A literature review. Composite Structures, 2016, 148, 59-73.	5.8	194
552	Multi-scale shear properties of flax fibre reinforced polyamide 11 biocomposites. Composites Part A: Applied Science and Manufacturing, 2016, 85, 123-129.	7.6	35
553	Polypropylene/hemp woody core fiber composites: Morphology, mechanical, thermal properties, and water absorption behaviors. Advances in Mechanical Engineering, 2016, 8, 168781401663831.	1.6	17
554	Predicting the long-term durability of hemp–lime renders in inland and coastal areas using Mediterranean, Tropical and Semi-arid climatic simulations. Science of the Total Environment, 2016, 542, 757-770.	8.0	19
556	Copolymer of natural fibre reinforced polyester urethane: effect on physico-chemical properties through modification to interfacial adhesion. Journal of Polymer Engineering, 2016, 36, 189-197.	1.4	0
557	3D printing of wood fibre biocomposites: From mechanical to actuation functionality. Materials and Design, 2016, 96, 106-114.	7.0	368
558	Influence of the non-linearity of fabric tensile behavior for preforming modeling of a woven flax fabric. Textile Reseach Journal, 2016, 86, 604-617.	2.2	14
559	Microfibrillated cellulose and borax as mechanical, O 2 -barrier, and surface-modulating agents of pullulan biocomposite coatings on BOPP. Carbohydrate Polymers, 2016, 143, 179-187.	10.2	34

#	Article	IF	CITATIONS
560	Novel ballistic ramie fabric composite competing with Kevlarâ,"¢ fabric in multilayered armor. Materials and Design, 2016, 96, 263-269.	7.0	90
561	Plant-based natural fibre reinforced cement composites: A review. Cement and Concrete Composites, 2016, 68, 96-108.	10.7	400
562	Effects of Atmospheric-Pressure Plasma Treatment on the Processes Involved in Fabrics Dyeing. Plasma Chemistry and Plasma Processing, 2016, 36, 341-354.	2.4	5
563	Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: A review on processing and properties. Progress in Materials Science, 2016, 78-79, 1-92.	32.8	238
564	Solvent infusion processing of all-cellulose composite laminates using an aqueous NaOH/urea solvent system. Composites Part A: Applied Science and Manufacturing, 2016, 82, 130-140.	7.6	36
565	Torrefaction treatment of lignocellulosic fibres for improving fibre/matrix adhesion in a biocomposite. Materials and Design, 2016, 92, 223-232.	7.0	41
566	Non-isothermal crystallization kinetics of wood-flour/polypropylene composites in the presence of β-nucleating agent. Journal of Forestry Research, 2016, 27, 949-958.	3.6	6
567	Eco-friendly polysorbate aqueous solvents for efficient dissolution of lignin. RSC Advances, 2016, 6, 8377-8379.	3.6	15
568	Effect of surface treatment of jute fibers on the interfacial adhesion in poly(lactic acid)/jute fiber biocomposites. Fibers and Polymers, 2016, 17, 266-274.	2.1	61
569	Determination of dynamic elastic modulus of polymeric materials using vertical split Hopkinson pressure bar. International Journal of Mechanical Sciences, 2016, 108-109, 188-196.	6.7	56
570	Natural Fibres: Advances in Science and Technology Towards Industrial Applications. RILEM Bookseries, 2016, , .	0.4	26
571	Effect of water ageing on nanoindentation response of single hemp yarn/epoxy composites. Composites Part A: Applied Science and Manufacturing, 2016, 84, 216-223.	7.6	20
572	Flexural behavior of commingled jute/polypropylene nonwoven fabric reinforced sandwich composites. Composites Part B: Engineering, 2016, 93, 12-25.	12.0	38
573	Role of flax cell wall components on the microstructure and transverse mechanical behaviour of flax fabrics reinforced epoxy biocomposites. Industrial Crops and Products, 2016, 85, 93-108.	5.2	53
574	Characterization and enzymatic degradation study of poly(ε-caprolactone)-based biocomposites from almond agricultural by-products. Polymer Degradation and Stability, 2016, 132, 181-190.	5.8	26
575	High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator. Nano Energy, 2016, 22, 548-557.	16.0	132
576	Studies on the formation of intermolecular interactions and structural characterization of polyvinyl alcohol/lignin film. International Journal of Environmental Studies, 2016, 73, 226-235.	1.6	85
577	Morphological, physical, mechanical, chemical and thermal characterization of sustainable Indian Areca fruit husk fibers (Areca Catechu L.) as potential alternate for hazardous synthetic fibers. Journal of Bionic Engineering, 2016, 13, 156-165.	5.0	136

#	Article	IF	CITATIONS
578	A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Research, 2016, 91, 156-173.	11.3	795
579	A review on the sustainability of natural fiber in matrix reinforcement – A practical perspective. Journal of Reinforced Plastics and Composites, 2016, 35, 3-7.	3.1	74
580	On the multiscale tribological signatures of the tool helix angle in profile milling of woven flax fiber composites. Tribology International, 2016, 100, 132-140.	5.9	30
581	Enhancement of mechanical properties of waste-sourced biocomposites through peroxide induced crosslinking. Composites Part A: Applied Science and Manufacturing, 2016, 80, 285-291.	7.6	10
582	Flame-retarded biocomposites of poly(lactic acid), distiller's dried grains with solubles and resorcinol di(phenyl phosphate). Composites Part A: Applied Science and Manufacturing, 2016, 81, 52-60.	7.6	18
583	Numerical study of mechanical behaviour of a polypropylene reinforced with Alfa fibres. Journal of Composite Materials, 2016, 50, 2883-2893.	2.4	10
584	Thermo-mechanical characterization of Manicaria Saccifera natural fabric reinforced poly-lactic acid composite lamina. Composites Part A: Applied Science and Manufacturing, 2016, 81, 105-110.	7.6	43
585	Apparent interfacial shear strength of short-flax-fiber/starch acetate composites. International Journal of Adhesion and Adhesives, 2016, 64, 78-85.	2.9	19
586	Tailoring of dual-interface in high tenacity PP composites – Toughening with positive hybrid effect. Composites Part A: Applied Science and Manufacturing, 2016, 83, 185-192.	7.6	24
587	Machinablity of Hybrid Natural Fiber Composite with and without Filler as Reinforcement. Materials and Manufacturing Processes, 2016, 31, 1393-1399.	4.7	101
588	Effect of the type of fiber (coconut, eucalyptus, or pine) and compatibilizer on the properties of extruded composites of recycled high density polyethylene. Journal of Composite Materials, 2016, 50, 45-56.	2.4	15
589	UV resistance of polystyrene co-butyl acrylate (PSBA) encapsulated lignin–saponite nanohybrid composite film. Materials and Design, 2016, 90, 151-156.	7.0	12
590	Optimization of short Indian <i>Areca</i> fruit husk fiber (<i>Areca catechu</i> L.)–reinforced polymer composites for maximizing mechanical properties. International Journal of Polymer Analysis and Characterization, 2016, 21, 112-122.	1.9	56
591	Green polypropylene/waste paper composites with superior modulus and crystallization behavior: Optimizing specific energy in solid-state shear pulverization for filler size reduction and dispersion. Composites Part A: Applied Science and Manufacturing, 2016, 83, 47-55.	7.6	30
592	Studies on Mechanical Properties and Morphology of Sisal Pulp Reinforced Phenolic Composites. Advances in Polymer Technology, 2016, 35, 353-360.	1.7	3
593	Characterisation of natural cellulosic fibre from Pennisetum purpureum stem as potential reinforcement of polymer composites. Materials and Design, 2016, 89, 839-847.	7.0	146
594	Phytoremediation of Inorganic Compounds. , 2016, , 373-399.		9
505	Electrobinatics Across Disciplines and Continents 2016		10 -

#	Article	IF	CITATIONS
596	Vegetal fiberâ€based biocomposites: Which stakes for food packaging applications?. Journal of Applied Polymer Science, 2016, 133, .	2.6	54
597	Effects of accelerating agent and SiO2 nano-powder on the mechanical and physical characteristics of nut shell–cement based composites. Materials and Structures/Materiaux Et Constructions, 2016, 49, 3435-3443.	3.1	3
599	Asymmetric microcellular composites: Mechanical properties and modulus prediction. Journal of Cellular Plastics, 2016, 52, 365-398.	2.4	8
600	Analysis of the preforming behaviour of the braided and woven flax/polyamide fabrics. Journal of Industrial Textiles, 2016, 46, 698-718.	2.4	31
601	Influence of the process parameters on the mechanical properties of engineering biocomposites using a twin-screw extruder. Composites Part A: Applied Science and Manufacturing, 2016, 83, 113-119.	7.6	64
602	Mechanical, thermal, and morphological properties of (eggshell powder)-filled natural rubber latex foam. Journal of Vinyl and Additive Technology, 2017, 23, 3-12.	3.4	48
603	Torque rheological properties of polypropylene/cocoa pod husk composites. Journal of Thermoplastic Composite Materials, 2017, 30, 1217-1227.	4.2	17
604	Composite materials based on low-density polyethylene loaded with date pits. Journal of Thermoplastic Composite Materials, 2017, 30, 1200-1216.	4.2	11
605	Moisture absorption behavior of hybrid bionanocomposites of polylactic acid and evaluation of physicochemical properties. Journal of Thermoplastic Composite Materials, 2017, 30, 521-544.	4.2	5
606	Impact resistance of short bamboo fibre reinforced polyester concretes. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2017, 231, 683-692.	1.1	3
607	Evaluation of mechanical, morphological, and biodegradable properties of hybrid natural fiber polymer nanocomposites. Polymer Composites, 2017, 38, 583-587.	4.6	21
608	Comparison of the clay minerals type on the properties of reinforced-PVA nanocomposites. Polymer Composites, 2017, 38, 1698-1704.	4.6	7
609	Effect of hybridization on the mode II fracture toughness properties of flax/vinyl ester composites. Polymer Composites, 2017, 38, 1732-1740.	4.6	9
610	Investigations of the flax fiber/thermoplastic polyurethane ecoâ€composites: Influence of isocyanate modification of flax fiber surface. Polymer Composites, 2017, 38, 2874-2880.	4.6	29
611	Processing of PLA/sisal fiber biocomposites using direct- and extrusion-injection molding. Materials and Manufacturing Processes, 2017, 32, 468-474.	4.7	83
612	Experimental and numerical studies of sustainable sandwich bio-composites derived from plant-based resources. Journal of Sandwich Structures and Materials, 2017, 19, 192-215.	3.5	10
613	Synthesis of Graft Copolymers for Green Composite Films and Optimization of Reaction Parameters using Taguchi (L ₁₆) Orthogonal Array. Indian Chemical Engineer, 2017, 59, 136-158.	1.5	13
614	Mechanical properties of Macadamia nutshell powder and PLA bio-composites. Australian Journal of Mechanical Engineering, 2017, 15, 150-156.	2.1	15

#	Article	IF	CITATIONS
615	Effect of agave fiber surface treatment on the properties of polyethylene composites produced by dryâ€blending and compression molding. Polymer Composites, 2017, 38, 96-104.	4.6	26
616	Permeability and mechanical property correlation of bio based epoxy reinforced with unidirectional sisal fiber mat through vacuum infusion molding technique. Polymer Composites, 2017, 38, 2192-2200.	4.6	6
617	Hybrid composites from coir fibers reinforced with woven glass fabrics: Physical and mechanical evaluation. Polymer Composites, 2017, 38, 2212-2220.	4.6	20
618	Preparation, morphology and properties of natural rubber composites filled with untreated short jute fibres. Polymer Bulletin, 2017, 74, 763-782.	3.3	40
619	Fabrication of acrylic modified coconut fiber reinforced polypropylene biocomposites: Study of mechanical, thermal, and erosion properties. Polymer Composites, 2017, 38, 2852-2862.	4.6	14
620	Effect of epoxidized soybean oil on mechanical properties of woven jute fabric reinforced aromatic and aliphatic epoxy resin composites. Polymer Composites, 2017, 38, 884-892.	4.6	12
621	Mixed morphology nanocrystalline cellulose from sugarcane bagasse fibers/poly(lactic acid) nanocomposite films: synthesis, fabrication and characterization. Iranian Polymer Journal (English) Tj ETQq0 0 0	gBI4Over	loals 10 Tf 50
622	Thermal properties and crystallization behaviors of polylactide/redwood flour or bamboo fiber composites. Iranian Polymer Journal (English Edition), 2017, 26, 161-168.	2.4	28
623	Effect of Thermal & Alkali Treatment on Pterocarpus Angolensis (Mukwa) Wood Flour. Procedia Manufacturing, 2017, 7, 205-210.	1.9	6
624	Improving the performance of hemp hurd/polypropylene composites using pectinase pre-treatments. Industrial Crops and Products, 2017, 97, 465-468.	5.2	27
625	Synthesis of 5â€sulfosalicylic acidâ€intercalated layered double hydroxide and its effects on wood flour/polypropylene composites during accelerated UV weathering. Journal of Applied Polymer Science, 2017, 134, .	2.6	8
626	Rheological and Thermo-Mechanical Properties of Poly(lactic acid)/Lignin-Coated Cellulose Nanocrystal Composites. ACS Sustainable Chemistry and Engineering, 2017, 5, 1711-1720.	6.7	142
627	The effect of lignin on the reactivity of natural fibres towards molecular fluorine. Materials and Design, 2017, 120, 66-74.	7.0	13
628	Sorting natural fibres: A way to better understand the role of fibre size polydispersity on the mechanical properties of biocomposites. Composites Part A: Applied Science and Manufacturing, 2017, 95, 12-21.	7.6	26
629	Compression after impact of flax/PLA biodegradable composites. Polymer Testing, 2017, 59, 127-135.	4.8	49
630	The Mechanical Properties of Alkaline Treated Pineapple Leaf Fibre to Reinforce Tapioca Based Bioplastic Resin Composite. Materials Science Forum, 2017, 882, 66-70.	0.3	3
631	Property correlations for composites based on ethylene propylene diene rubber reinforced with flax fibers. Polymer Testing, 2017, 59, 75-83.	4.8	28
632	Evaluation of wood-polyethylene composites biodegradability caused by filamentous fungi. International Biodeterioration and Biodegradation, 2017, 118, 10-18.	3.9	37

#	Article	IF	CITATIONS
633	Additive Manufacturing of Cellulosic Materials with Robust Mechanics and Antimicrobial Functionality. Advanced Materials Technologies, 2017, 2, 1600084.	5.8	100
634	In-depth study of agave fiber structure using Fourier transform infrared spectroscopy. Carbohydrate Polymers, 2017, 164, 242-248.	10.2	59
635	Effect of water absorption on Mode I interlaminar fracture toughness of flax/basalt reinforced vinyl ester hybrid composites. Composite Structures, 2017, 168, 813-825.	5.8	105
636	Green Composites: Versatile Material for Future. Green Energy and Technology, 2017, , 29-44.	0.6	23
637	A review on new bio-based constituents for natural fiber-polymer composites. Journal of Cleaner Production, 2017, 149, 582-596.	9.3	394
638	Studies on flax-polypropylene based low-twist hybrid yarns for thermoplastic composite reinforcement. Journal of Reinforced Plastics and Composites, 2017, 36, 818-831.	3.1	21
639	Mechanical and Thermal Properties of Nanoclay-Treated Banana Fibers. Journal of Natural Fibers, 2017, 14, 718-726.	3.1	14
640	Sustainable fragrance cum antimicrobial finishing on cotton: Indigenous essential oil. Sustainable Chemistry and Pharmacy, 2017, 5, 22-29.	3.3	35
641	Interface Interaction of Jute Fiber Reinforced PLA Biocomposites for Potential Applications. Green Energy and Technology, 2017, , 285-307.	0.6	13
642	Nonlinear tensile behaviour of elementary hemp fibres: a numerical investigation of the relationships between 3D geometry and tensile behaviour. Journal of Materials Science, 2017, 52, 6591-6610.	3.7	28
643	Comparison of traditional field retting and Phlebia radiata Cel 26 retting of hemp fibres for fibre-reinforced composites. AMB Express, 2017, 7, 58.	3.0	38
646	Mechanical properties of adhesive bonds reinforced with biological fabric. Journal of Adhesion Science and Technology, 2017, 31, 1859-1871.	2.6	27
647	Biodegradable glycerol-based polymeric composites filled with industrial waste materials. Journal of Composite Materials, 2017, 51, 4029-4039.	2.4	8
648	Surface lignin removal on coir fibers by plasma treatment for improved adhesion in thermoplastic starch composites. Carbohydrate Polymers, 2017, 165, 429-436.	10.2	97
649	Reinforced cementitous composite with <i>In situ</i> shrinking microfibers. Smart Materials and Structures, 2017, 26, 03LT01.	3.5	2
650	Cellulosic Biocomposites: Potential Materials for Future. Green Energy and Technology, 2017, , 69-100.	0.6	16
651	A Study on the Mechanical Behaviors of Jute-polyester Composites. Procedia Engineering, 2017, 173, 631-638.	1.2	30
652	Dye adsorption and photo-induced recycling of hydroxypropyl cellulose/molybdenum disulfide composite hydrogels. Carbohydrate Polymers, 2017, 167, 36-43.	10.2	59

#	Article	IF	CITATIONS
653	Bamboo Fiber-Polymer Composites: Overview of Fabrications, Mechanical Characterizations and Applications. Green Energy and Technology, 2017, , 209-246.	0.6	7
654	Reactive compatibilization and performance evaluation of miscanthus biofiber reinforced poly(hydroxybutyrateâ€coâ€hydroxyvalerate) biocomposites. Journal of Applied Polymer Science, 2017, 134,	2.6	18
655	Low velocity impact performance of stitched flax/epoxy composite laminates. Composites Part B: Engineering, 2017, 117, 89-100.	12.0	126
656	Tensile and Impact Properties of Two Fiber Configurations for Curaua Reinforced Composites. Minerals, Metals and Materials Series, 2017, , 429-436.	0.4	2
657	Mechanical, thermal and morphological characterisation of 3D porous Pennisetum purpureum/PLA biocomposites scaffold. Materials Science and Engineering C, 2017, 75, 752-759.	7.3	54
658	Fabrication of hydrophobic biocomposite by combining cellulosic fibers with polyhydroxyalkanoate. Cellulose, 2017, 24, 2265-2274.	4.9	34
659	Green Biocomposites: A Prospective Utilization in Automobile Industry. Green Energy and Technology, 2017, , 167-191.	0.6	20
660	Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fibre reinforced epoxy composites. Composite Structures, 2017, 167, 227-237.	5.8	159
661	Application of poly(diphenolic acidâ€phenyl phosphate)â€based layer by layer nanocoating in flame retardant ramie fabrics. Journal of Applied Polymer Science, 2017, 134, .	2.6	16
662	Microfibrillated nanocellulose from balsa tree as potential reinforcement in the preparation of â€~green' composites with castor seed cake. Journal of Cleaner Production, 2017, 149, 1157-1163.	9.3	28
663	Assessment of damage in 'green' composites. , 2017, , .		1
664	Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohydrate Polymers, 2017, 169, 176-188.	10.2	130
665	Experimental description of strength and tribological characteristic of EFB oil palm fibres/epoxy composites with technologically undemanding preparation. Composites Part B: Engineering, 2017, 122, 79-88.	12.0	45
666	Wave velocity characteristic for Kenaf natural fibre under impact damage. IOP Conference Series: Materials Science and Engineering, 2017, 165, 012018.	0.6	4
667	Natural Fibers from Plantain Pseudostem (<i>Musa Paradisiaca</i>) for Use in Fiber-Reinforced Composites. Journal of Natural Fibers, 2017, 14, 678-690.	3.1	33
668	Keratin fibres derived from tannery industry wastes for flame retarded PLA composites. Polymer Degradation and Stability, 2017, 140, 42-54.	5.8	37
669	Bearing Stress at Failure of Double-Lap Hybrid Joints in Woven Fabric Kenaf Fiber Composite Plates under Quasi-static Loading. MATEC Web of Conferences, 2017, 103, 02008.	0.2	2
670	Fracture Energy of Woven Fabric Kenaf Composite Plates with Different Fiber Orientations. Materials Science Forum, 2017, 882, 56-60.	0.3	0
#	ARTICLE	IF	CITATIONS
-----	---	------	-----------
671	Mechanical behavior of natural fiber-based isogrid lattice cylinder. Composite Structures, 2017, 176, 117-123.	5.8	50
672	Mechanical and laser impact effects on woven composites with hemp or glass fibres. International Journal of Structural Integrity, 2017, 8, 286-307.	3.3	8
673	Effect of acetylation on the properties of microfibrillated cellulose‣DPE composites. Journal of Applied Polymer Science, 2017, 134, 44933.	2.6	16
674	Notched Strength of Woven Fabric Kenaf Composites with Different Fiber Orientations. MATEC Web of Conferences, 2017, 97, 01088.	0.2	3
675	Properties of poly(butylene adipateâ€ <i>co</i> â€ŧerephthalate) and sunflower head residue biocomposites. Journal of Applied Polymer Science, 2017, 134, .	2.6	26
676	Office waste paper as cellulose nanocrystal source. Journal of Applied Polymer Science, 2017, 134, 45257.	2.6	49
677	Ethylene–octene copolymer–wood flour/oil flax straw biocomposites: Effect of filler type and content on mechanical properties. Polymer Engineering and Science, 2017, 57, 756-763.	3.1	28
678	Characterization of the tensile strength of chemically treated Pandanus utilis (screwpine) fibres for potential application as reinforcement in epoxy composite. International Journal of Plastics Technology, 2017, 21, 144-170.	3.1	2
679	Processing and properties of sorghum stem fragment-polyethylene composites. Industrial Crops and Products, 2017, 107, 386-398.	5.2	13
680	Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms. Journal of Manufacturing Processes, 2017, 28, 50-59.	5.9	57
681	Compression strength of natural fibre composite plates and sections of flax, jute and hemp. Thin-Walled Structures, 2017, 119, 103-113.	5.3	51
682	Effects of alkali and steaming on mechanical properties of snake fruit (Salacca) fiber. AIP Conference Proceedings, 2017, , .	0.4	11
683	Impact of Bis-(3-triethoxysilylpropyl)tetrasulphide on the properties of PMMA/Cellulose composite. Polymer, 2017, 119, 224-237.	3.8	29
684	Plant fibre based bio-composites: Sustainable and renewable green materials. Renewable and Sustainable Energy Reviews, 2017, 79, 558-584.	16.4	468
685	Recycled PP/EPDM/talc reinforced with bamboo fiber: Assessment of fiber and compatibilizer content on properties using factorial design. Polymer Testing, 2017, 61, 214-222.	4.8	27
686	Towards sustainable micro and nano composites from fly ash and natural fibers for multifunctional applications. Vacuum, 2017, 146, 375-385.	3.5	44
687	Effects of hydrothermal aging on the water uptake and tensile properties of PHB/flax fabric biocomposites. Polymer Degradation and Stability, 2017, 142, 129-138.	5.8	38
688	Woven Kenaf/Kevlar Hybrid Yarn as potential fiber reinforced for anti-ballistic composite material. Fibers and Polymers, 2017, 18, 563-568.	2.1	47

#	Article	IF	CITATIONS
689	The Low Velocity Impact Properties of Pandanus Fiber Composites. Materials Science Forum, 2017, 895, 56-60.	0.3	5
690	Tensile Properties of Unidirectional Kenaf Polypropylene Composite at Various Temperatures and Orientations. Materials Science Forum, 2017, 890, 16-19.	0.3	1
691	Physical structure and mechanical properties of polyamide/bamboo composites. Journal of Thermal Analysis and Calorimetry, 2017, 129, 1463-1469.	3.6	14
692	Insights into the effect of moisture absorption and fiber content on the mechanical behavior of starch–dateâ€palm fiber composites. Starch/Staerke, 2017, 69, 1600254.	2.1	14
693	Materials Selection for Composites: Concurrent Engineering Perspective. , 2017, , 209-271.		5
694	Unidirectional Kenaf Polypropylene Composites: Optimization Process by Two Level Full Factorial. Materials Science Forum, 2017, 894, 42-45.	0.3	0
695	Mechanical properties of natural fibre polymer composites. Journal of Polymer Engineering, 2017, 37, 879-895.	1.4	77
696	Potential of the hornification treatment on eucalyptus and pine fibers for fiber-cement applications. Cellulose, 2017, 24, 2275-2286.	4.9	62
697	The mechanical properties of natural fibre composite laminates: A statistical study. Composites Part A: Applied Science and Manufacturing, 2017, 98, 99-104.	7.6	66
698	Silk for sustainable composites. , 2017, , 91-109.		2
698 699	Silk for sustainable composites. , 2017, , 91-109. Processing of lignocellulosic fiber-reinforced biodegradable composites. , 2017, , 163-181.		2 8
698 699 700	Silk for sustainable composites. , 2017, , 91-109. Processing of lignocellulosic fiber-reinforced biodegradable composites. , 2017, , 163-181. Experimental study on the glass fiber/waste cotton fabric-reinforced hybrid composites: Mechanical and rheological investigations. Journal of Composite Materials, 2017, 51, 3257-3268.	2.4	2 8 11
698699700701	Silk for sustainable composites. , 2017, , 91-109. Processing of lignocellulosic fiber-reinforced biodegradable composites. , 2017, , 163-181. Experimental study on the glass fiber/waste cotton fabric-reinforced hybrid composites: Mechanical and rheological investigations. Journal of Composite Materials, 2017, 51, 3257-3268. Coconut shell powder reinforced thermoplastic polyurethane/natural rubber blend-composites: effect of silane coupling agents on the mechanical and thermal properties of the composites. Journal of Materials Science, 2017, 52, 6712-6725.	2.4 3.7	2 8 11 50
698699700701702	Silk for sustainable composites. , 2017, , 91-109. Processing of lignocellulosic fiber-reinforced biodegradable composites. , 2017, , 163-181. Experimental study on the glass fiber/waste cotton fabric-reinforced hybrid composites: Mechanical and rheological investigations. Journal of Composite Materials, 2017, 51, 3257-3268. Coconut shell powder reinforced thermoplastic polyurethane/natural rubber blend-composites: effect of silane coupling agents on the mechanical and thermal properties of the composites. Journal of Materials Science, 2017, 52, 6712-6725. Mesoscale modelling of tensile response and damage evolution in natural fibre reinforced laminates. Composites Part B: Engineering, 2017, 119, 168-183.	2.4 3.7 12.0	2 8 11 50 30
 698 699 700 701 702 703 	Silk for sustainable composites. , 2017, , 91-109. Processing of lignocellulosic fiber-reinforced biodegradable composites. , 2017, , 163-181. Experimental study on the glass fiber/waste cotton fabric-reinforced hybrid composites: Mechanical and rheological investigations. Journal of Composite Materials, 2017, 51, 3257-3268. Coconut shell powder reinforced thermoplastic polyurethane/natural rubber blend-composites: effect of silane coupling agents on the mechanical and thermal properties of the composites. Journal of Materials Science, 2017, 52, 6712-6725. Mesoscale modelling of tensile response and damage evolution in natural fibre reinforced laminates. Composites Part B: Engineering, 2017, 119, 168-183. Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production. Langmuir, 2017, 33, 1583-1598.	2.4 3.7 12.0 3.5	2 8 11 50 30 382
 698 699 700 701 702 703 704 	Silk for sustainable composites. , 2017, , 91-109. Processing of lignocellulosic fiber-reinforced biodegradable composites. , 2017, , 163-181. Experimental study on the glass fiber/waste cotton fabric-reinforced hybrid composites: Mechanical and rheological investigations. Journal of Composite Materials, 2017, 51, 3257-3268. Coconut shell powder reinforced thermoplastic polyurethane/natural rubber blend-composites: effect of silane coupling agents on the mechanical and thermal properties of the composites. Journal of Materials Science, 2017, 52, 6712-6725. Mesoscale modelling of tensile response and damage evolution in natural fibre reinforced laminates. Composites Part B: Engineering, 2017, 119, 168-183. Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production. Langmuir, 2017, 33, 1583-1598. A review on physico-mechanical properties of bast fibre reinforced polymer composites. Journal of Building Engineering, 2017, 9, 91-99.	2.4 3.7 12.0 3.5 3.4	2 8 11 50 30 382
 698 699 700 701 702 703 704 705 	Silk for sustainable composites., 2017,, 91-109. Processing of lignocellulosic fiber-reinforced biodegradable composites., 2017,, 163-181. Experimental study on the glass fiber/waste cotton fabric-reinforced hybrid composites: Mechanical and rheological investigations. Journal of Composite Materials, 2017, 51, 3257-3268. Coconut shell powder reinforced thermoplastic polyurethane/natural rubber blend-composites: effect of silane coupling agents on the mechanical and thermal properties of the composites. Journal of Materials Science, 2017, 52, 6712-6725. Mesoscale modelling of tensile response and damage evolution in natural fibre reinforced laminates. Composites Part B: Engineering, 2017, 119, 168-183. Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production. Langmuir, 2017, 33, 1583-1598. A review on physico-mechanical properties of bast fibre reinforced polymer composites. Journal of Building Engineering, 2017, 59, 91-99. Review of Nanocellulose Polymer Composite Characteristics and Challenges. Polymer-Plastics Technology and Engineering, 2017, 56, 687-731.	2.4 3.7 12.0 3.5 3.4 1.9	2 8 11 50 30 382 110 79

#	Article	IF	CITATIONS
707	Biopolymer-based functional composites for medical applications. Progress in Polymer Science, 2017, 68, 77-105.	24.7	292
708	Negative impact from the application of natural fibers. Journal of Cleaner Production, 2017, 143, 843-846.	9.3	41
709	Influence of moisture absorption on the impact properties of flax, basalt and hybrid flax/basalt fiber reinforced green composites. Composites Part B: Engineering, 2017, 111, 148-164.	12.0	149
710	Radiation-induced modifications in natural fibres and their biocomposites: Opportunities for controlled physico-chemical modification pathways?. Industrial Crops and Products, 2017, 109, 199-213.	5.2	38
711	Charpy impact tenacity of epoxy matrix composites reinforced with aligned jute fibers. Journal of Materials Research and Technology, 2017, 6, 312-316.	5.8	43
712	Ionic liquid pretreatment of bagasse improves mechanical property of bagasse/polypropylene composites. Industrial Crops and Products, 2017, 109, 158-162.	5.2	23
713	Tensile strength of polyester composites reinforced with PALF. Journal of Materials Research and Technology, 2017, 6, 401-405.	5.8	40
714	Study of the weathering effect in a natural environment on the hybrid kenaf bast/glass fibre-filled unsaturated polyester composite. AIP Conference Proceedings, 2017, , .	0.4	8
715	Bending test in epoxy composites reinforced with continuous and aligned PALF fibers. Journal of Materials Research and Technology, 2017, 6, 411-416.	5.8	32
716	A review of sugar palm (<i>Arenga pinnata</i>): application, fibre characterisation and composites. Multidiscipline Modeling in Materials and Structures, 2017, 13, 678-698.	1.3	23
717	Tensile Mechanical Property of Oil Palm Empty Fruit Bunch Fiber Reinforced Epoxy Composites. IOP Conference Series: Materials Science and Engineering, 2017, 184, 012046.	0.6	5
718	Mechanical properties of the compositions based on biopolyamide-1010 modified by carbon, glass, and cellulose chopped fibers. Russian Metallurgy (Metally), 2017, 2017, 279-282.	0.5	9
719	ZnO characterization, UV and photocatalysis mechanism for water repellent phenomena in polymer poly composite. AIP Conference Proceedings, 2017, , .	0.4	3
720	Natural fibres actuators for smart bio-inspired hygromorph biocomposites. Smart Materials and Structures, 2017, 26, 125009.	3.5	58
721	Effect of frequencies on dynamic mechanical properties of hybrid jute/sisal fibre reinforced epoxy composite. Advances in Materials and Processing Technologies, 2017, 3, 651-664.	1.4	31
722	Analysis of the effects of fabrication parameters on the mechanical properties of Areca fine fiber-reinforced phenol formaldehyde composite using Taguchi technique. Journal of Applied Research and Technology, 2017, 15, 365-370.	0.9	13
723	Towards green carbon fibre manufacturing from waste cotton: a microstructural and physical property investigation. Manufacturing Review, 2017, 4, 10.	1.5	12
724	Glass Fiber/Waste Cotton Fabric Reinforced Hybrid Composites: Mechanical Investigations. Solid State Phenomena, 0, 263, 179-183.	0.3	2

	CITATION	Report	
#	Article	IF	CITATIONS
725	Effect of maleated natural rubber on tensile strength and compatibility of natural rubber/coconut coir composite. IOP Conference Series: Materials Science and Engineering, 2017, 223, 012014.	0.6	4
726	Fibers, Surgical Dressings, and Bandages of Natural Origin. Progress in Drug Research Fortschritte Der Arzneimittelforschung Progres Des Recherches Pharmaceutiques, 2017, , 355-378.	0.6	1
727	Surface grafting of bamboo fibers with 1,2-epoxy-4-vinylcyclohexane for reinforcing unsaturated polyester. Cellulose, 2017, 24, 5505-5514.	4.9	22
728	Enhanced Interfacial Strength of Natural Fiber/Polypropylene Composite with Mechanical-Interlocking Interface. ACS Sustainable Chemistry and Engineering, 2017, 5, 10413-10420.	6.7	45
729	8 Injection moulding of plant fibre composites. , 2017, , 420-439.		3
730	Comparison between tensile behavior of epoxy and polyester matrix composites reinforced with eucalyptus fibers. Journal of Materials Research and Technology, 2017, 6, 406-410.	5.8	15
731	Effect of Weight Fractions of Jute Fiber on Tensile Strength and Deflection Temperature of Jute Fiber/Polypropylene Composites. IOP Conference Series: Materials Science and Engineering, 2017, 196, 012029.	0.6	11
732	The effects of alkali treatment on the mechanical and morphological properties of <i>Pennisetum purpureum</i> /glass-reinforced epoxy hybrid composites. Plastics, Rubber and Composites, 2017, 46, 421-430.	2.0	18
733	Synthesis of cellulose-L-tyrosine-SiO2/ZrO2 hybrid nanocomposites by sol-gel process and its potential. International Journal of Precision Engineering and Manufacturing, 2017, 18, 1297-1306.	2.2	11
735	Natural Plant Fiber Composites-Constituent Properties and Challenges in Numerical Modeling and Simulations. International Journal of Applied Mechanics, 2017, 09, 1750045.	2.2	11
737	Quantitative analysis by micro-CT of damage during tensile test in a woven hemp/epoxy composite after water ageing. Composites Part A: Applied Science and Manufacturing, 2017, 102, 18-27.	7.6	25
740	Scale effect on tribo-mechanical behavior of vegetal fibers in reinforced bio-composite materials. Composites Science and Technology, 2017, 150, 87-94.	7.8	29
742	In situ reactive interfacial compatibilization of polylactide/sisal fiber biocomposites via melt-blending with an epoxy-functionalized terpolymer elastomer. RSC Advances, 2017, 7, 32399-32412.	3.6	25
743	Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposite materials: A review. Industrial Crops and Products, 2017, 108, 660-683.	5.2	126
744	Efficient and sustainable solvents for lignin dissolution: aqueous choline carboxylate solutions. Green Chemistry, 2017, 19, 4067-4073.	9.0	59
745	Natural Mallow Fiber-Reinforced Epoxy Composite for Ballistic Armor Against Class III-A Ammunition. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 4425-4431.	2.2	21
746	Mallow Fiber-Reinforced Epoxy Composites in Multilayered Armor for Personal Ballistic Protection. Jom, 2017, 69, 2052-2056.	1.9	32
747	Characterization of the surface properties of cellulosic fibers in fibrous and ground forms by IGC and contact angle measurements. Fibers and Polymers, 2017, 18, 1255-1262.	2.1	5

#	Article	IF	CITATIONS
748	Weibull analysis of the tensile strength dependence with fiber diameter of giant bamboo. Journal of Materials Research and Technology, 2017, 6, 317-322.	5.8	26
749	Alkylation of microfibrillated cellulose – A green and efficient method for use in fiber-reinforced composites. Polymer, 2017, 126, 48-55.	3.8	19
750	Sisal (Agave sisalana) fibre and its polymer-based composites: A review on current developments. Journal of Reinforced Plastics and Composites, 2017, 36, 1759-1780.	3.1	88
751	Microfibrillated cellulose with sizing for reinforcing composites with LDPE. Cellulose, 2017, 24, 4303-4312.	4.9	13
752	Woven hybrid Biocomposite: Mechanical properties of woven kenaf bast fibre/oil palm empty fruit bunches hybrid reinforced poly hydroxybutyrate biocomposite as non-structural building materials. Construction and Building Materials, 2017, 154, 155-166.	7.2	51
757	Biopolyamides and High-Performance Natural Fiber-Reinforced Biocomposites. , 2017, , 253-270.		3
759	Ductility of steel fibre/epoxy composites in function of their microstructure. Composite Structures, 2017, 180, 448-456.	5.8	6
760	Construction of multilayer coatings for flame retardancy of ramie fabric using layerâ€byâ€layer assembly. Journal of Applied Polymer Science, 2017, 134, 45556.	2.6	23
761	Influence of initial fiber length on the mechanical and tribological properties of hemp fiber reinforced plants-derived polyamide 1010 biomass composites. AIP Conference Proceedings, 2017, , .	0.4	5
762	Materials science and architecture. Nature Reviews Materials, 2017, 2, .	48.7	71
762 764	Materials science and architecture. Nature Reviews Materials, 2017, 2, . The potential of natural fibres for automotive sector - <i>review</i> . IOP Conference Series: Materials Science and Engineering, 2017, 252, 012044.	48.7 0.6	71 46
762 764 765	Materials science and architecture. Nature Reviews Materials, 2017, 2, . The potential of natural fibres for automotive sector - <i>review</i> . IOP Conference Series: Materials Science and Engineering, 2017, 252, 012044. Predicting the flexural performance of woven flax reinforced epoxy composites using design of experiments. Materials Today Communications, 2017, 13, 317-324.	48.7 0.6 1.9	71 46 19
762 764 765 766	Materials science and architecture. Nature Reviews Materials, 2017, 2, . The potential of natural fibres for automotive sector - <i>review</i> . IOP Conference Series: Materials Science and Engineering, 2017, 252, 012044. Predicting the flexural performance of woven flax reinforced epoxy composites using design of experiments. Materials Today Communications, 2017, 13, 317-324. Influence of weathering effect in natural environment on thermal properties hybrid kenaf blast/glass fibre and unsaturated polyester composite. Journal of Physics: Conference Series, 2017, 908, 012004.	48.7 0.6 1.9 0.4	71 46 19 2
762 764 765 766	Materials science and architecture. Nature Reviews Materials, 2017, 2, . The potential of natural fibres for automotive sector - <i>review</i> . IOP Conference Series: Materials Science and Engineering, 2017, 252, 012044. Predicting the flexural performance of woven flax reinforced epoxy composites using design of experiments. Materials Today Communications, 2017, 13, 317-324. Influence of weathering effect in natural environment on thermal properties hybrid kenaf blast/glass fibre and unsaturated polyester composite. Journal of Physics: Conference Series, 2017, 908, 012004. Preliminary Structural and Thermal Characterization of Conteira's (Hedychium gardnerianum) Fibers for Further Functionalization with Silica Colloidal Nanoparticles. Procedia Engineering, 2017, 200, 162-169.	48.7 0.6 1.9 0.4 1.2	71 46 19 2 7
762 764 765 766 767	Materials science and architecture. Nature Reviews Materials, 2017, 2, . The potential of natural fibres for automotive sector - <i>review</i> . IOP Conference Series: Materials Science and Engineering, 2017, 252, 012044. Predicting the flexural performance of woven flax reinforced epoxy composites using design of experiments. Materials Today Communications, 2017, 13, 317-324. Influence of weathering effect in natural environment on thermal properties hybrid kenaf blast/glass fibre and unsaturated polyester composite. Journal of Physics: Conference Series, 2017, 908, 012004. Preliminary Structural and Thermal Characterization of Conteira's (Hedychium gardnerianum) Fibers for Further Functionalization with Silica Colloidal Nanoparticles. Procedia Engineering, 2017, 200, 162-169. Thermogravimetric characterization of polyester matrix composites reinforced with eucalyptus fibers. Journal of Materials Research and Technology, 2017, 6, 396-400.	48.7 0.6 1.9 0.4 1.2 5.8	 71 46 19 2 7 25
 762 764 765 766 767 768 769 	Materials science and architecture. Nature Reviews Materials, 2017, 2, . The potential of natural fibres for automotive sector - <i>review</i> . IOP Conference Series: Materials Science and Engineering, 2017, 252, 012044. Predicting the flexural performance of woven flax reinforced epoxy composites using design of experiments. Materials Today Communications, 2017, 13, 317-324. Influence of weathering effect in natural environment on thermal properties hybrid kenaf blast/glass fibre and unsaturated polyester composite. Journal of Physics: Conference Series, 2017, 908, 012004. Preliminary Structural and Thermal Characterization of Conteira's (Hedychium gardnerianum) Fibers for Further Functionalization with Silica Colloidal Nanoparticles. Procedia Engineering, 2017, 200, 162-169. Thermogravimetric characterization of polyester matrix composites reinforced with eucalyptus fibers. Journal of Materials Research and Technology, 2017, 6, 396-400. Lignocellulosic fibers: a critical review of the extrusion process for enhancement of the properties of natural fiber composites. RSC Advances, 2017, 7, 34638-34654.	48.7 0.6 1.9 0.4 1.2 5.8 3.6	 71 46 19 2 7 25 86
 762 764 765 766 767 768 769 770 	Materials science and architecture. Nature Reviews Materials, 2017, 2, . The potential of natural fibres for automotive sector - <i>review</i> , IOP Conference Series: Materials Science and Engineering, 2017, 252, 012044. Predicting the flexural performance of woven flax reinforced epoxy composites using design of experiments. Materials Today Communications, 2017, 13, 317-324. Influence of weathering effect in natural environment on thermal properties hybrid kenaf blast/glass fibre and unsaturated polyester composite. Journal of Physics: Conference Series, 2017, 908, 012004. Preliminary Structural and Thermal Characterization of Conteiraâc TM s (Hedychium gardnerianum) Fibers for Further Functionalization with Silica Colloidal Nanoparticles. Procedia Engineering, 2017, 200, 162-169. Thermogravimetric characterization of polyester matrix composites reinforced with eucalyptus fibers. Journal of Materials Research and Technology, 2017, 6, 396-400. Lignocellulosic fibers: a critical review of the extrusion process for enhancement of the properties of natural fiber composites. RSC Advances, 2017, 7, 34638-34654. Hybrid thermoplastic composites using nonwood plant fibers., 2017, 39-56.	 48.7 0.6 1.9 0.4 1.2 5.8 3.6 	 71 46 19 2 7 25 86 7

#	Article	IF	CITATIONS
772	High-Performance Green Composites of Poly(lactic acid) and Waste Cellulose Fibers Prepared by High-Shear Thermokinetic Mixing. Industrial & Engineering Chemistry Research, 2017, 56, 8568-8579.	3.7	19
773	Mechanical behavior of short bagasse fiber reinforced cardanol-formaldehyde composites. Fibers and Polymers, 2017, 18, 1193-1199.	2.1	41
774	Effect of pineapple leaf fibre and kenaf fibre treatment on mechanical performance of phenolic hybrid composites. Fibers and Polymers, 2017, 18, 940-947.	2.1	52
775	Improvement of shape stability and thermal properties of PCM using polyethylene glycol (PEG)/sisal fiber cellulose (SFC)/graphene oxide (GO). Fibers and Polymers, 2017, 18, 1171-1179.	2.1	12
776	Green synthesis of novel biocomposites from treated cellulosic fibers and recycled bio-plastic polylactic acid. Journal of Cleaner Production, 2017, 164, 575-586.	9.3	61
777	Root-like natural fibers in polypropylene prepared via directed diffusion and self-assembly driven by hydrogen bonding. RSC Advances, 2017, 7, 32193-32197.	3.6	5
778	Mechanical, Thermal, and Interfacial Characterization of Randomly Oriented Short Sisal Fibers Reinforced Epoxy Composite Modified with Epoxidized Soybean Oil. Journal of Natural Fibers, 2017, 14, 357-367.	3.1	27
779	Correlation between mechanical scales and analysis scales of topographic signals under milling process of natural fibre composites. Journal of Composite Materials, 2017, 51, 2743-2756.	2.4	15
780	High throughput electro-hydrodynamic processing in food encapsulation and food packaging applications: Viewpoint. Trends in Food Science and Technology, 2017, 60, 71-79.	15.1	76
781	Green Biocomposites. Green Energy and Technology, 2017, , .	0.6	22
781 782	Green Biocomposites. Green Energy and Technology, 2017, , . Tensile and compressive damaged response in Flax fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 2017, 92, 118-133.	0.6 7.6	22 98
781 782 783	Green Biocomposites. Green Energy and Technology, 2017, , . Tensile and compressive damaged response in Flax fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 2017, 92, 118-133. Yes, we can make money out of lignin and other bio-based resources. Industrial Crops and Products, 2017, 106, 74-85.	0.6 7.6 5.2	22 98 109
781 782 783 784	Green Biocomposites. Green Energy and Technology, 2017, , . Tensile and compressive damaged response in Flax fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 2017, 92, 118-133. Yes, we can make money out of lignin and other bio-based resources. Industrial Crops and Products, 2017, 106, 74-85. Sustainable Biocomposites: Challenges, Potential and Barriers for Development. Green Energy and Technology, 2017, , 13-29.	0.6 7.6 5.2 0.6	22 98 109 34
781 782 783 784 785	Green Biocomposites. Green Energy and Technology, 2017, , . Tensile and compressive damaged response in Flax fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 2017, 92, 118-133. Yes, we can make money out of lignin and other bio-based resources. Industrial Crops and Products, 2017, 106, 74-85. Sustainable Biocomposites: Challenges, Potential and Barriers for Development. Green Energy and Technology, 2017, 13-29. Short term and long-term properties of natural fibre composites. , 2017, , 447-458.	0.6 7.6 5.2 0.6	22 98 109 34
781 782 783 784 785 785	Green Biocomposites. Green Energy and Technology, 2017, , . Tensile and compressive damaged response in Flax fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 2017, 92, 118-133. Yes, we can make money out of lignin and other bio-based resources. Industrial Crops and Products, 2017, 106, 74-85. Sustainable Biocomposites: Challenges, Potential and Barriers for Development. Green Energy and Technology, 2017, , 13-29. Short term and long-term properties of natural fibre composites. , 2017, , 447-458. Biopolymers for Biocomposites and Chemical Sensor Applications. , 2017, , 405-435.	0.6 7.6 5.2 0.6	22 98 109 34 4
781 782 783 784 785 786	Green Biocomposites. Green Energy and Technology, 2017, , . Tensile and compressive damaged response in Flax fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 2017, 92, 118-133. Yes, we can make money out of lignin and other bio-based resources. Industrial Crops and Products, 2017, 106, 74-85. Sustainable Biocomposites: Challenges, Potential and Barriers for Development. Green Energy and Technology, 2017, , 13-29. Short term and long-term properties of natural fibre composites. , 2017, , 447-458. Biopolymers for Biocomposites and Chemical Sensor Applications. , 2017, , 405-435. Kenaf-Biocomposites: Manufacturing, Characterization, and Applications. Green Energy and Technology, 2017, , 225-254.	0.6 7.6 5.2 0.6	22 98 109 34 4 44
 781 782 783 784 785 786 787 788 	Green Biocomposites. Green Energy and Technology, 2017, , . Tensile and compressive damaged response in Flax fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 2017, 92, 118-133. Yes, we can make money out of lignin and other bio-based resources. Industrial Crops and Products, 2017, 106, 74-85. Sustainable Biocomposites: Challenges, Potential and Barriers for Development. Green Energy and Technology, 2017, , 13-29. Short term and long-term properties of natural fibre composites. , 2017, , 447-458. Biopolymers for Biocomposites and Chemical Sensor Applications. , 2017, , 405-435. Kenaf-Biocomposites: Manufacturing, Characterization, and Applications. Green Energy and Technology, 2017, , 225-254. Manufacturing of Natural Fiber/Agrowaste Based Polymer Composites. Green Energy and Technology, 2017, , 125-147.	0.6 7.6 5.2 0.6 0.6	22 98 109 34 4 4 4 4 5

#	Article	IF	CITATIONS
790	Improving the mechanical properties of short pineapple leaf fiber reinforced natural rubber by blending with acrylonitrile butadiene rubber. Polymer Testing, 2017, 57, 94-100.	4.8	50
791	Tensiometric method to reliably assess wetting properties of single fibers with resins: Validation on cellulosic reinforcements for composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 512, 26-33.	4.7	20
792	Natural Fiber-Based Biocomposites. Green Energy and Technology, 2017, , 31-70.	0.6	12
793	Influence of water on damage and mechanical behaviour of single hemp yarn composites. Polymer Testing, 2017, 57, 17-25.	4.8	15
794	Mechanical properties of a polyurethane hybrid composite with natural lignocellulosic fibers. Composites Part B: Engineering, 2017, 110, 459-465.	12.0	86
795	Promising curaua fiber-reinforced polyester composite for high-impact ballistic multilayered armor. Polymer Engineering and Science, 2017, 57, 947-954.	3.1	50
796	Morphology of the Bagasse Fibers Obtained from the Elaboration Process of Mezcal and Effects on Their Tensile Properties. Journal of Natural Fibers, 2017, 14, 250-261.	3.1	8
797	Mechanical Behavior of <i>Ensete ventricosum</i> Fiber Under Tension Loading. Journal of Natural Fibers, 2017, 14, 287-296.	3.1	24
798	Effect of Natural Fiber Network on Permeability and Tensile Strength of Composites through Vacuum Infusion Process. Journal of Natural Fibers, 2017, 14, 278-286.	3.1	2
799	Environmentally conscious hybrid bio-composite material selection for automotive anti-roll bar. International Journal of Advanced Manufacturing Technology, 2017, 89, 2203-2219.	3.0	51
800	Comprehensive characterization of industrially discarded fruit fiber, Tamarindus indica L. as a potential eco-friendly bio-reinforcement for polymer composite. Journal of Cleaner Production, 2017, 142, 1321-1331.	9.3	70
801	Characterization and control of oxidized cellulose in ramie fibers during oxidative degumming. Textile Reseach Journal, 2017, 87, 1828-1840.	2.2	13
802	Evaluation of thermomechanical properties of epoxy–basalt fibre composites modified with zeolite and silsesquioxane. Composite Interfaces, 2017, 24, 489-498.	2.3	19
803	Biopolymer Composites forÂElectromagnetic InterferenceÂShielding. , 2017, , 255-275.		1
804	Experimental investigation of tuff masonry panels reinforced with surface bonded basalt textile-reinforced mortar. Composites Part B: Engineering, 2017, 108, 131-142.	12.0	108
805	Permeabilities along fiber direction of ramie bundles and through-thickness of ramie fabric stack for liquid composite molding. Journal of Reinforced Plastics and Composites, 2017, 36, 40-52.	3.1	5
806	Strategy and management for the recycling of carbon fiber-reinforced polymers (CFRPs) in the aircraft industry: a critical review. International Journal of Sustainable Development and World Ecology, 2017, 24, 214-223.	5.9	55
807	Mechanical properties of flax-fibre-reinforced preforms and composites: Influence of the type of yarns on multi-scale characterisations. Composites Part A: Applied Science and Manufacturing, 2017, 93, 72-81.	7.6	57

	Сітатіс	on Report	
#	ARTICLE	IF	Citations
808	Characterization of Sorghum Bran/Recycled Low Density Polyethylene for the Manufacturing of Polymer Composites. Journal of Polymers and the Environment, 2017, 25, 533-543.	5.0	7
809	Process parameter and surface morphology of pineapple leaf electrospun nanofibers (PALF). AIP Conference Proceedings, 2017, , .	0.4	2
810	Optimisation of mechanical properties of bamboo fibre reinforced-PLA biocomposites. AIP Conference Proceedings, 2017, , .	0.4	8
811	A study on biocomposite from local balinese areca catechu l. husk fibers as reinforced material. IOP Conference Series: Materials Science and Engineering, 2017, 201, 012002.	0.6	3
813	Bionanomaterial from agricultural waste and its application. , 2017, , 45-88.		6
814	Property of ramie fiber degummed with Fenton reagent. Fibers and Polymers, 2017, 18, 1891-1897.	2.1	32
818	Effect of low velocity impact damage on the natural frequency of composite plates. IOP Conference Series: Materials Science and Engineering, 2017, 270, 012025.	0.6	5
819	Roundness and taper of holes during drilling composites of various thickness by HSS drill bit under dry condition. AIP Conference Proceedings, 2017, , .	0.4	4
820	Opportunities for natural fiber reinforced composites towards tropical wind turbine material needs. , 2017, , .		0
821	Improvement of Thermo-Mechanical Properties of Short Natural Fiber Reinforced Recycled Polypropylene Composites through Double Step Grafting Process. IOP Conference Series: Earth and Environmental Science, 2017, 75, 012023.	0.3	1
822	Effect of Sisal Fibre Hybridisation on Static and Dynamic Mechanical Properties of Corn/Sisal/Polylactide Composites. Polymers and Polymer Composites, 2017, 25, 463-470.	1.9	6
823	Behaviour of Hybrid SiC/Jute Epoxy Composites Manufactured by Vacuum Assisted Resin Infusion. Polymers and Polymer Composites, 2017, 25, 333-344.	1.9	17
824	The Influence of Processing Additives on the Properties of Glass-fibre-reinforced Composites Based on Biobased Polyamide 1010. International Polymer Science and Technology, 2017, 44, 43-48.	0.1	2
825	5 Wear Performance of Oil Palm Seed Fibre-Reinforced Polyester (OpSeFRP) Composite Aged in Brake Fluid Solutions. , 2017, , 93-120.		1
826	Natural Fiber Composites as Potential External Strengthening Material – A Review. Indian Journal of Science and Technology, 2017, 10, .	0.7	18
827	Material selection of natural fiber composites. , 2017, , 107-168.		41
828	Rice husk and kenaf fiber reinforced polypropylene biocomposites. , 2017, , 77-94.		8
829	Thermosetting bioresins as matrix for biocomposites. , 2017, , 57-80.		3

#	Article	IF	CITATIONS
830	Water absorption behaviour of hybrid interwoven cellulosic fibre composites. Journal of Physics: Conference Series, 2017, 908, 012015.	0.4	3
831	Effect of Silane Coupling Agent on Tribological Properties of Hemp Fiber-Reinforced Plant-Derived Polyamide 1010 Biomass Composites. Materials, 2017, 10, 1040.	2.9	45
832	In Situ Self-Assembled Nanocomposites from Bacterial Cellulose Reinforced with Eletrospun Poly(lactic acid)/Lipids Nanofibers. Polymers, 2017, 9, 179.	4.5	20
833	Effects of Matrix Modification on the Mechanical Properties of Wood–Polypropylene Composites. Polymers, 2017, 9, 712.	4.5	15
834	Sustainable Materialisation of Responsive Architecture. Sustainability, 2017, 9, 435.	3.2	54
835	Natural fiber composites. , 2017, , 23-48.		26
836	Cellulose polymer composites (WPC). , 2017, , 115-139.		10
837	Natural fiber and hybrid fiber thermoplastic composites. , 2017, , 39-72.		25
838	Mechanical properties of hybrid polymer composite. , 2017, , 83-113.		21
839	Processing of hybrid polymer composites—a review. , 2017, , 1-22.		39
840	The use of biotechnology for green composites. , 2017, , 237-250.		1
841	Ballistic Performance of Mallow and Jute Natural Fabrics Reinforced Epoxy Composites in Multilayered Armor. Materials Research, 2017, 20, 399-403.	1.3	21
842	Surface modification of fibers and sizing operations. , 2017, , 81-98.		0
843	Impact of Thermomechanical Fiber Pre-Treatment Using Twin-Screw Extrusion on the Production and Properties of Renewable Binderless Coriander Fiberboards. International Journal of Molecular Sciences, 2017, 18, 1539.	4.1	23
844	Recent innovations in biocomposite products. , 2017, , 275-306.		10
845	Natural Fiber Composites: Review of Recent Automotive Trends. , 2017, , 166-174.		23
846	Natural fibre rebar cementitious composites. , 2017, , 215-234.		7
847	Thermal and flame retardancy properties of thermoplastics/natural fiber biocomposites. , 2017, , 479-508.		22

#	Article	IF	CITATIONS
	Ballistic Application of Coir Fiber Reinforced Epoxy Composite in Multilavered Armor, Materials		
848	Research, 2017, 20, 23-28.	1.3	47
849	Challenges in design of nanocellulose and its composites for different applications. , 2017, , 113-127.		19
850	Hybrid polysaccharide-based systems for biomedical applications. , 2017, , 107-149.		3
851	Polyurethane-Based Biocomposites. , 2017, , 525-546.		2
852	Single fibre strength of cellulosic fibre extracted from "Belatlan roots―plant. AIP Conference Proceedings, 2017, , .	0.4	0
853	Optimum processing parameters for the fabrication of twill flax fabric-reinforced polypropylene (PP) composites. AIP Conference Proceedings, 2017, , .	0.4	0
854	The weathering effect in natural environment on kenaf blast and unsaturated polyester composite. Journal of Physics: Conference Series, 2017, 908, 012003.	0.4	1
855	THE EFFECT OF ALKALINE TREATMENT AND FIBER LENGTH ON PINEAPPLE LEAF FIBER REINFORCED POLY LACTIC ACID BIOCOMPOSITES. Jurnal Teknologi (Sciences and Engineering), 2017, 79, .	0.4	13
856	Kenaf Productivity as Affected by Agricultural Practices in Iowa. Crop Science, 2017, 57, 3252-3263.	1.8	1
857	Predicting the potential of biomass-based composites for sustainable automotive industry using a decision-making model. , 2017, , 27-43.		7
858	Cork biomass biocomposites. , 2017, , 365-385.		4
859	Reinforcement of Polyester with Renewable Ramie Fibers. Materials Research, 2017, 20, 51-59.	1.3	26
860	Modificação quÃmica superficial de fibras de bucha vegetal visando à compatibilização e aplicação como reforço em matriz cimentÃcia. Ambiente ConstruÃdo, 2017, 17, 269-283.	0.4	5
861	Nondestructive characterization of epoxy matrix composites reinforced with Luffa lignocellulosic fibers. Revista Materia, 2017, 22, .	0.2	6
862	Study of Composites Produced with Recovered Polypropylene and Piassava Fiber. Materials Research, 2017, 20, 144-150.	1.3	11
863	Hybrid bast fiber reinforced thermoset composites. , 2017, , 203-234.		3
864	The influence of alkaline treatment on thermal stability of flax fibres. IOP Conference Series: Materials Science and Engineering, 2017, 191, 012007.	0.6	11
865	Study on the Rheological Behaviour of Sisal Fibre/HDPE Composites with Flame Retardant. Key Engineering Materials, 2017, 737, 307-312.	0.4	0

#	Article	IF	CITATIONS
866	Preparation and Mechanical Properties of Jute Fiber Reinforced Epoxy Composites. Industrial Engineering & Management, 2017, 06, .	0.1	44
867	The effect of modified ijuk fibers to crystallinity of polypropylene composite. IOP Conference Series: Materials Science and Engineering, 2017, 223, 012020.	0.6	25
868	<i>Selection, pretreatment, and use of wheat bran for making thermoplastic composite</i> . , 2017, , .		4
869	Study of the structure/property relationship of nanomaterials for development of novel food packaging. , 2017, , 265-294.		2
870	Smart Natural Fiber Reinforced Plastic (NFRP) Composites Based On Recycled Polypropylene in The Presence Kaolin. IOP Conference Series: Earth and Environmental Science, 2017, 75, 012026.	0.3	1
871	Effect of Surface Biopolymeric Treatment on Sisal Fiber Properties and Fiber-Cement Bond. Journal of Engineered Fibers and Fabrics, 2017, 12, 155892501701200.	1.0	5
872	Tensile and Impact Behaviour of Thermoplastic BOPP/Milk Pouches Blends Reinforced with Sisal Fibers. Progress in Rubber, Plastics and Recycling Technology, 2017, 33, 139-152.	1.8	7
873	Gamma radiation effect on sisal / polyurethane composites without coupling agents. Polimeros, 2017, 27, 165-170.	0.7	17
874	Are functional fillers improving environmental behavior of plastics? A review on LCA studies. Science of the Total Environment, 2018, 626, 927-940.	8.0	67
875	Nanocellulose reinforced as green agent in polymer matrix composites applications. Polymers for Advanced Technologies, 2018, 29, 1531-1546.	3.2	26
876	Strong and Flexible Nanocomposites of Carboxylated Cellulose Nanofibril Dispersed by Industrial Lignin. ACS Sustainable Chemistry and Engineering, 2018, 6, 5524-5532.	6.7	38
877	Influence of the spruce strands hygroscopic behaviour on the performances of wood-cement composites. Construction and Building Materials, 2018, 166, 522-530.	7.2	18
878	Thermal shock cycling effect on the mechanical behavior of epoxy matrix-woven flax fabric composites. AIP Conference Proceedings, 2018, , .	0.4	4
879	Correlation of injection moulding parameters with mechanical and morphological aspects of natural fibre reinforced thermoplastics. Materialwissenschaft Und Werkstofftechnik, 2018, 49, 193-205.	0.9	0
880	Cellulose recovery from Quercus sp. sawdust using Ethanosolv pretreatment. Biomass and Bioenergy, 2018, 111, 114-124.	5.7	16
881	Characterization of industrial discarded fruit wastes (Tamarindus Indica L.) as potential alternate for man-made vitreous fiber in polymer composites. Chemical Engineering Research and Design, 2018, 116, 527-534.	5.6	66
882	Mechanics of material removal when cutting natural fiber reinforced thermoplastic composites. Polymer Testing, 2018, 67, 275-283.	4.8	31
883	Optimization of Cellulose Extraction from Jute Fiber by Box-behnken Design. Fibers and Polymers, 2018, 19, 289-296.	2.1	23

#	Article	IF	CITATIONS
884	Effect of Bamboo Fiber Length on Mechanical Properties, Crystallization Behavior, and in Vitro Degradation of Bamboo Fiber/Nanohydroxyapatite/Poly(lactic-co-glycolic) Composite. Industrial & Engineering Chemistry Research, 2018, 57, 4585-4591.	3.7	13
885	A comprehensive review on surface modification, structure interface and bonding mechanism of plant cellulose fiber reinforced polymer based composites. Composite Interfaces, 2018, 25, 629-667.	2.3	115
886	Hybrid reinforced thermoset polymer composite in energy absorption tube application: A review. Defence Technology, 2018, 14, 291-305.	4.2	128
887	Mechanical properties of chemically modified Sansevieria trifasciata/natural rubber/high density polyethylene (STF/NR/HDPE) composites: Effect of silane coupling agent. AIP Conference Proceedings, 2018, , .	0.4	0
888	Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 2018, 147, 76-85.	12.0	71
889	Cure, Mechanical and Swelling Properties of Biocomposites from Chicken Feather Fibre and Acrylonitrile Butadiene Rubber. Journal of Polymers and the Environment, 2018, 26, 2720-2729.	5.0	7
890	Random short sisal fiber biocomposites: Optimal manufacturing process and reliable theoretical models. Materials and Design, 2018, 149, 87-100.	7.0	27
891	Influence of epoxidized linseed oil and sisal fibers on structure–property relationship of epoxy biocomposite. Polymer Composites, 2018, 39, E2595.	4.6	18
892	Effects of MCC Content on the Structure and Performance of PLA/MCC Biocomposites. Journal of Polymers and the Environment, 2018, 26, 3484-3492.	5.0	26
893	Pelletized cellulose fibres used in twin-screw extrusion for biocomposite manufacturing: Fibre breakage and dispersion. Composites Part A: Applied Science and Manufacturing, 2018, 109, 538-545.	7.6	28
894	Development of Abaca Fiber-reinforced Foamed Fly Ash Geopolymer. MATEC Web of Conferences, 2018, 156, 05018.	0.2	18
895	Development of sugar palm yarn/glass fibre reinforced unsaturated polyester hybrid composites. Materials Research Express, 2018, 5, 045308.	1.6	33
896	Acoustic properties of biodegradable composite micro-perforated panel (BC-MPP) made from kenaf fibre and polylactic acid (PLA). Applied Acoustics, 2018, 138, 179-187.	3.3	44
897	Effect of reinforcements on polymer matrix bio-composites – an overview. Science and Engineering of Composite Materials, 2018, 25, 1039-1058.	1.4	19
898	Modified and thermoplastic rapeseed straw xylan: A renewable additive in PCL biocomposites. Industrial Crops and Products, 2018, 119, 73-82.	5.2	13
899	Under glass weathering of hemp fibers reinforced polypropylene biocomposites: Impact of Volatile Organic Compounds emissions on indoor air quality. Polymer Degradation and Stability, 2018, 149, 85-95.	5.8	14
900	Importance of Agricultural and Industrial Waste in the Field of Nanocellulose and Recent Industrial Developments of Wood Based Nanocellulose: A Review. ACS Sustainable Chemistry and Engineering, 2018, 6, 2807-2828.	6.7	347
901	Fast-growing willow (Salix viminalis) as a filler in polyethylene composites. Composites Part B: Engineering, 2018, 143, 68-74.	12.0	12

#	Article	IF	CITATIONS
902	Novel Biocomposites Based on Sunflower Oil and Alfa Fibers as Renewable Resources. Journal of Polymers and the Environment, 2018, 26, 3086-3096.	5.0	17
903	Analysis of the morphometric variations in natural fibres by automated laser scanning: Towards an efficient and reliable assessment of the cross-sectional area. Composites Part A: Applied Science and Manufacturing, 2018, 108, 114-123.	7.6	29
904	Toughness and crystallization enhancement in wood fiber-reinforced polypropylene composite through controlling matrix nucleation. Journal of Materials Science, 2018, 53, 6542-6551.	3.7	26
905	Synthesis, characterization and application of polypyrrole-cellulose nanocomposite for efficient Ni(II) removal from aqueous solution: Box-Behnken design optimization. E-Polymers, 2018, 18, 287-295.	3.0	9
906	Utilization of Oil Palm Fiber and Palm Kernel Shell in Various Applications. , 2018, , 45-56.		7
907	Enhancement of the Mechanical Properties of a Polylactic Acid/Flax Fiber Biocomposite by WPU, WPU/Starch, and TPS Polyurethanes Using Coupling Additives. Mechanics of Composite Materials, 2018, 53, 791-800.	1.4	3
908	Effect of interface on composites made from DREF spun hybrid yarn with low twisted core flax yarn. Composites Part A: Applied Science and Manufacturing, 2018, 107, 260-270.	7.6	17
909	Effects of Compressed CO ₂ and Cotton Fibers on the Crystallization and Foaming Behaviors of Polylactide. Industrial & Engineering Chemistry Research, 2018, 57, 2094-2104.	3.7	29
910	Polypropylene/chemically treated coir composites: optimizing coir delignification conditions using central composite design. Cellulose, 2018, 25, 1159-1170.	4.9	4
911	Accelerated aging of pine wood waste/recycled LDPE composite. Polymer Degradation and Stability, 2018, 149, 39-44.	5.8	40
912	Surfaces and Interfaces in Natural Fibre Reinforced Composites. Springer Briefs in Molecular Science, 2018, , .	0.1	17
913	Modification of the Interface/Interphase in Natural Fibre Reinforced Composites: Treatments and Processes. Springer Briefs in Molecular Science, 2018, , 35-70.	0.1	9
914	Comparison of the anatomical characteristics and physical and mechanical properties of oil palm and bamboo trunks. Journal of Wood Science, 2018, 64, 186-192.	1.9	16
915	Flexural Mechanical Characterization of Polyester Composites Reinforced with Jute Fabric. Minerals, Metals and Materials Series, 2018, , 529-534.	0.4	0
916	Comparison Between Epoxy Matrix Composites Reinforced with Ramie Fabric Under Pressure and Vacuum. Minerals, Metals and Materials Series, 2018, , 185-192.	0.4	2
917	Lignocellulosic Composite Materials. Springer Series on Polymer and Composite Materials, 2018, , .	0.7	9
918	Prediction of Mode I interlaminar fracture toughness of stitched flax fiber composites. Journal of Materials Science, 2018, 53, 4173-4188.	3.7	19
919	Mechanical performance and long-term indoor stability of polyhydroxyalkanoate (PHA)-based wood plastic composites (WPCs) modified by non-reactive additives. European Polymer Journal, 2018, 98, 337-346.	5.4	27

#	Article	IF	Citations
920	Design and Fabrication of Kenaf Fibre Reinforced Polymer Composites for Portable Laptop Table. Springer Series on Polymer and Composite Materials, 2018, , 323-356.	0.7	5
922	Retting Process as a Pretreatment of Natural Fibers for the Development of Polymer Composites. Springer Series on Polymer and Composite Materials, 2018, , 97-135.	0.7	34
923	Polymer composites with functionalized natural fibers. , 2018, , 157-186.		17
924	Sodium alginate adhesives as binders in wood fibers/textile waste fibers biocomposites for building insulation. Carbohydrate Polymers, 2018, 184, 1-8.	10.2	79
925	Investigation of OH bond energy for chemically treated alfa fibers. Carbohydrate Polymers, 2018, 186, 226-235.	10.2	22
926	Improving the Performance of Bamboo and Eucalyptus Wood fiber/Polypropylene Composites Using Pectinase Pre-treatments. Journal of Wood Chemistry and Technology, 2018, 38, 44-50.	1.7	13
927	The enhancement performances of cotton stalk fiber/ <scp>PVC</scp> composites by sequential two steps modification. Journal of Applied Polymer Science, 2018, 135, 46090.	2.6	13
928	Influence of wheat, rye, and triticale straw on the properties of natural rubber composites. Advances in Polymer Technology, 2018, 37, 2866-2878.	1.7	17
929	Investigation of rheological and mechanical properties of wood flour reinforced polypropylene. Materialwissenschaft Und Werkstofftechnik, 2018, 49, 73-88.	0.9	2
930	Sustainable potato peel powder–LLDPE biocomposite preparation and effect of maleic anhydride-grafted polyolefins on their properties. Polymer Bulletin, 2018, 75, 5513-5533.	3.3	7
931	Properties of flax-polypropylene composites made through hybrid yarn and film stacking methods. Composite Structures, 2018, 197, 63-71.	5.8	27
932	The Silk Textile Embedded in Silk Fibroin Composite: Preparation and Properties. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1043-1046.	3.8	3
933	A cradle-to-gate based life cycle impact assessment comparing the KBF w EFB hybrid reinforced poly hydroxybutyrate biocomposite and common petroleum-based composites as building materials. Environmental Impact Assessment Review, 2018, 70, 11-21.	9.2	27
934	Heat Treated Luffa - PLA Composites: Effect of Cyclic Moisture Absorption and Desorption on the Mechanical Properties. Materials Science Forum, 0, 917, 42-46.	0.3	1
935	Effects of sodium carbonate on the performance of epoxy and polyester coir-reinforced composites. Polymer Testing, 2018, 67, 533-544.	4.8	80
936	Fabrication and characterization of cow dung- Polyvinyl Alcohol composite film. Composites Communications, 2018, 8, 31-35.	6.3	18
937	Preparation and characterization of natural rubber composites highly filled with brewers' spent grain/ground tire rubber hybrid reinforcement. Composites Part B: Engineering, 2018, 145, 182-188.	12.0	54
938	Effect of saline absorption on the flexural stress relaxation behavior of epoxy/cotton composite materials for orthopedics applications. AIP Conference Proceedings, 2018, , .	0.4	1

#	Article	IF	CITATIONS
939	Flexural creep behavior of epoxy/cotton composite materials before and after saline absorption for orthopedics applications. AIP Conference Proceedings, 2018, , .	0.4	2
940	Effect of surface treatment on hair fiber as reinforcement of HDPE composites: Mechanical properties and water absorption kinetics. Korean Journal of Chemical Engineering, 2018, 35, 1209-1218.	2.7	7
941	Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Progress in Polymer Science, 2018, 80, 1-38.	24.7	155
942	Dynamic compressive behavior of woven flax-epoxy-laminated composites. International Journal of Impact Engineering, 2018, 117, 63-74.	5.0	29
943	Modification of hemp shiv properties using water-repellent sol–gel coatings. Journal of Sol-Gel Science and Technology, 2018, 86, 187-197.	2.4	21
944	Influence of <scp>SOFTWOOD</scp> â€fillers content on the biodegradability and morphological properties of <scp>WOOD</scp> –polyethylene composites. Polymer Composites, 2018, 39, 29-37.	4.6	19
945	Properties and characterization of ([Mengkuang leaf fiber]â€filled ethylene vinyl acetate)/(natural) Tj ETQq0 0 0 r Additive Technology, 2018, 24, 109-115.	gBT /Over 3.4	lock 10 Tf 50 4
946	Study of Solid Particle Erosion Wear Behavior of Bamboo Fiber Reinforced Polymer Composite with Cenosphere Filler. Advances in Polymer Technology, 2018, 37, 761-769.	1.7	45
947	Mechanical and thermomechanical properties of PLA/Manâ€made cellulose green composites modified with functional chain extenders—A comprehensive study. Polymer Composites, 2018, 39, 1716-1723.	4.6	14
948	Effects of different plasma treatments of short fibers on the mechanical properties of polypropyleneâ€wood composites. Polymer Composites, 2018, 39, 1468-1479.	4.6	5
949	Thermal and dynamic mechanical analysis of hybrid jute/sisal fibre reinforced epoxy composite. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2018, 232, 743-748.	1.1	30
950	Compression molding of algae fiber and epoxy composites: Modeling of elastic modulus. Journal of Reinforced Plastics and Composites, 2018, 37, 1202-1216.	3.1	8
951	Lipid-extracted algal biomass based biocomposites fabrication with poly(vinyl alcohol). Algal Research, 2018, 31, 525-533.	4.6	32
952	A new amino silane coupling agent for old corrugated container fibers/high density polyethylene composites. Polymer Composites, 2018, 39, 2054-2064.	4.6	7
953	Mechanical, dynamic mechanical, and interfacial properties of sisal fiberâ€reinforced composite with epoxidized soybean oilâ€based epoxy matrix. Polymer Composites, 2018, 39, 2065-2072.	4.6	8
954	Preparation and characterization of compressionâ€molded green composite sheets made of poly(3â€hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 2018, 37, 1305-1315.	1.7	33
955	Hybridization effect of coir fiber on physico-mechanical properties of polyethylene-banana/coir fiber hybrid composites. Science and Engineering of Composite Materials, 2018, 25, 133-141.	1.4	21
956	Sustainable Use of Coffee Husks For Reinforcing Polyethylene Composites. Journal of Polymers and the Environment, 2018, 26, 48-58.	5.0	49

#	Article	IF	Citations
957	Effect of alkali treatment on hair fiber as reinforcement of HDPE composites: mechanical properties and water absorption behavior. Science and Engineering of Composite Materials, 2018, 25, 571-578.	1.4	4
958	Optimizing twisted yarn structure for natural fiber-reinforced polymeric composites. Journal of Composite Materials, 2018, 52, 373-381.	2.4	19
959	A Comparative Study of Doum fiber and Shrimp Chitin Based Reinforced Low Density Polyethylene Biocomposites. Journal of Polymers and the Environment, 2018, 26, 443-451.	5.0	6
960	End-Of-Life Textiles as Reinforcements in Biocomposites. Journal of Polymers and the Environment, 2018, 26, 487-498.	5.0	10
961	Electrically conducting linen fabrics for technical applications. Textile Reseach Journal, 2018, 88, 144-154.	2.2	11
962	Glycidyl methacrylate-compatibilized poly(lactic acid)/hemp hurd biocomposites: Processing, crystallization, and thermo-mechanical response. Journal of Materials Science and Technology, 2018, 34, 387-397.	10.7	44
963	Characteristics of undeinked, alkaline deinked, and neutral deinked old newspaper fibers reinforced recycled polypropylene composites. Polymer Composites, 2018, 39, 3537-3544.	4.6	7
964	Investigation on the microscopic mechanism of potassium permanganate modification and the properties of ramie fiber/polypropylene composites. Polymer Composites, 2018, 39, 3353-3362.	4.6	20
965	Thermo-mechanical characterization of banana particulate reinforced PVC composite as piping material. Journal of King Saud University, Engineering Sciences, 2018, 30, 296-304.	2.0	26
966	Processing and Characterization of Environmentally Friendly Composites from Biobased Polyethylene and Natural Fillers from Thyme Herbs. Journal of Polymers and the Environment, 2018, 26, 1218-1230.	5.0	24
967	Chemical treatment of cotton stalk and its effects on mechanical, rheological and morphological properties of Polypropylene/cotton stalk bio omposites. Polymer Composites, 2018, 39, E286.	4.6	4
968	Processing and properties of pineapple leaf fibersâ€polypropylene composites prepared by twinâ€screw extrusion. Polymer Composites, 2018, 39, 4115-4122.	4.6	21
969	Resistance of Conifer Needle Polyolefin Composites (CNPCs) Against Biodecomposition Caused by Fungi. Journal of Polymers and the Environment, 2018, 26, 1179-1193.	5.0	2
970	Degradable thermosets based on labile bonds or linkages: A review. Progress in Polymer Science, 2018, 76, 65-110.	24.7	257
971	Effects of Kevlar volume fraction and fabric structures on the mechanical properties of 3D orthogonal woven ramie/Kevlar reinforced poly (lactic acid) composites. Journal of Industrial Textiles, 2018, 47, 2074-2091.	2.4	7
972	Thermal and thermo-oxidative stability and kinetics of decomposition of PHBV/sisal composites. Chemical Engineering Communications, 2018, 205, 226-237.	2.6	9
973	Advances in Natural Fibre Reinforced Thermoplastic Composite Manufacturing: Effect of Interface and Hybrid Yarn Structure on Composite Properties. , 2018, , 99-117.		6
974	Surface Properties of Thermoplastic Starch Materials Reinforced with Natural Fillers. Springer Series on Polymer and Composite Materials, 2018, , 131-158.	0.7	23

#	Article	IF	CITATIONS
975	Philosophical Study on Composites and Their Drilling Techniques. Springer Series on Polymer and Composite Materials, 2018, , 239-280.	0.7	1
976	From lignocellulose to biocomposite: Multi-level modelling and experimental investigation of the thermal properties of kenaf fiber reinforced composites based on constituent materials. Applied Thermal Engineering, 2018, 128, 1372-1381.	6.0	32
977	Poly(lactic acid)/areca fiber laminate composites processed via film stacking technique. Journal of Applied Polymer Science, 2018, 135, 45795.	2.6	6
978	Studies on hybridization effect of jute/kenaf/E-glass woven fabric epoxy composites for potential applications: Effect of laminate stacking sequences. Journal of Industrial Textiles, 2018, 47, 1830-1848.	2.4	144
979	Hybrid composites manufactured by resin infusion with a fully recyclable bioepoxy resin. Composites Part B: Engineering, 2018, 132, 69-76.	12.0	60
980	Fabrication and characterization of olive pomace filled PP composites. Composites Part B: Engineering, 2018, 150, 277-283.	12.0	43
981	An experimental investigation on mechanical and tribological properties of Himalayan nettle fiber composite. Journal of Natural Fibers, 2018, 15, 752-761.	3.1	30
982	Impact behaviour of hybrid composites for structural applications: A review. Composites Part B: Engineering, 2018, 133, 112-121.	12.0	384
983	Lignocellulose nanofibers prepared by ionic liquid pretreatment and subsequent mechanical nanofibrillation of bagasse powder: Application to esterified bagasse/polypropylene composites. Carbohydrate Polymers, 2018, 182, 8-14.	10.2	35
984	<i>Development</i> and characterization of high-performance kenaf fiber–HDPE composites. Journal of Reinforced Plastics and Composites, 2018, 37, 191-200.	3.1	18
985	Investigation into Mode II interlaminar fracture toughness characteristics of flax/basalt reinforced vinyl ester hybrid composites. Composites Science and Technology, 2018, 154, 117-127.	7.8	71
986	Effects of heat-induced damage on impact performance of epoxy laminates with glass and flax fibres. Composite Structures, 2018, 185, 515-523.	5.8	29
987	Geometric optimisation and compression design of natural fibre composite structural channel sections. Composite Structures, 2018, 185, 549-560.	5.8	10
988	Design of doum palm fibers biocomposites by Reactor/elongational flow MiXer: Evaluation of morphological, mechanical, and microstructural performances. Polymer Composites, 2018, 39, E519.	4.6	3
989	Review of natural fibre-reinforced hybrid composites. Journal of Reinforced Plastics and Composites, 2018, 37, 331-348.	3.1	122
990	Coating applications to natural fiber composites to improve their physical, surface and water absorption characters. Industrial Crops and Products, 2018, 112, 196-199.	5.2	38
991	"Dialdehyde Cellulose―Nanofibers by Electrospinning as Polyvinyl Alcohol Blends: Manufacture and Product Characterization. Journal of Wood Chemistry and Technology, 2018, 38, 96-110.	1.7	13
992	Effect of gamma irradiation and fiber surface treatment on the properties of bagasse fiber-reinforced waste polypropylene composites. International Journal of Polymer Analysis and Characterization, 2018, 23, 181-192.	1.9	15

#	Article	IF	CITATIONS
993	Effect of chemical treatment on thermal properties of hair fiber-based reinforcement of HF/HDPE composites. Science and Engineering of Composite Materials, 2018, 25, 807-815.	1.4	2
994	PLA based biocomposites reinforced with Posidonia oceanica leaves. Composites Part B: Engineering, 2018, 139, 1-11.	12.0	79
995	Composites of Wood and Biodegradable Thermoplastics: A Review. Polymer Reviews, 2018, 58, 444-494.	10.9	134
996	Modification of hemp fibers (Cannabis Sativa L.) for composite applications. Industrial Crops and Products, 2018, 111, 422-429.	5.2	95
997	Effect of tungsten carbide on mechanical and tribological properties of jute/sisal/E-glass fabrics reinforced natural rubber/epoxy composites. Journal of Industrial Textiles, 2018, 48, 713-737.	2.4	111
998	The effects of nanoclay and tin(IV) oxide nanopowder on morphological, thermoâ€mechanical properties of hexamethylene diisocyanate treated jute/bamboo/polyethylene hybrid composites. Journal of Vinyl and Additive Technology, 2018, 24, 358-366.	3.4	13
999	Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egyptian Journal of Petroleum, 2018, 27, 775-783.	2.6	256
1000	The Response of Manicaria saccifera Natural Fabric Reinforced PLA Composites to Impact by Fragment Simulating Projectiles. , 2018, , 89-98.		3
1001	Synthesis and characterization of cotton fiber-based nanocellulose. International Journal of Biological Macromolecules, 2018, 109, 832-836.	7.5	118
1002	Cellulose nanofibres as biomaterial for nano-reinforcement of poly[styrene-(ethylene-co-butylene)-styrene] triblock copolymer. Cellulose, 2018, 25, 449-461.	4.9	15
1003	Grafting of phosphorus flame retardants on flax fabrics: Comparison between two routes. Polymer Degradation and Stability, 2018, 147, 25-34.	5.8	36
1004	Effect of <i>in situ</i> reactive interfacial compatibilization on structure and properties of polylactide/sisal fiber biocomposites. Polymer Composites, 2018, 39, E174.	4.6	11
1005	Characterization of the Chemical, Physical, and Mechanical Properties of NaOH-treated Natural Cellulosic Fibers from Corn Husks. Journal of Natural Fibers, 2018, 15, 545-558.	3.1	97
1006	Post-yield fracture correlations to morphological and micromechanical response of poly([µ-caprolactone)-based biocomposites. Journal of Thermoplastic Composite Materials, 2018, 31, 575-597.	4.2	3
1007	An environmental friendly model for materials substitution in a fiberglass reinforced polyester composite. MATEC Web of Conferences, 2018, 178, 04013.	0.2	0
1008	3D Printing & Mechanical Characteristion of Polylactic Acid and Bronze Filled Polylactic Acid Components. IOP Conference Series: Materials Science and Engineering, 2018, 376, 012042.	0.6	10
1009	The macro-fibre composite–bonded effect analysis on the micro-energy harvester performance and structural health–monitoring system of woven kenaf turbine blade for vertical axis wind turbine application. Advances in Mechanical Engineering, 2018, 10, 168781401880204.	1.6	0
1010	Preparation and evaluation of the influence of modified fiber flour wood on the properties of the fresh condition of cement-based mortars. International Journal of Industrial Chemistry, 2018, 9, 265-276.	3.1	13

#	Article	IF	CITATIONS
1011	Micro-structural and mechanical characterization of doum-palm leaves particulate reinforced PVC composite as piping materials. AEJ - Alexandria Engineering Journal, 2018, 57, 2929-2937.	6.4	11
1012	Effect of Addition of PTFE on the Rheological and Mechanical Properties of CF Reinforced Plant-Derived Semi-Aromatic Polyamide (PA10T) Biomass Composites. ECS Transactions, 2018, 88, 187-196.	0.5	0
1013	The multi-scale flow behaviors of sisal fiber reinforced composites during resin transfer molding process. Science China Technological Sciences, 2018, 61, 1925-1934.	4.0	4
1014	Experimental investigation on the mechanical properties of Hardwickia Binata fibre reinforced polymer composites. Materials Today: Proceedings, 2018, 5, 19899-19907.	1.8	3
1016	Impact properties of thermoplastic composites. Textile Progress, 2018, 50, 109-183.	2.0	27
1017	Composite adhesive bonds reinforced with microparticle filler based on egg shell waste. Journal of Physics: Conference Series, 2018, 1016, 012002.	0.4	7
1018	Mathematical modelling of water absorption behavior of bagasse fiber reinforced epoxy composite material. Materials Today: Proceedings, 2018, 5, 16912-16918.	1.8	12
1019	Effect of environmental conditioning on natural fiber reinforced epoxy composites. Materials Today: Proceedings, 2018, 5, 17006-17011.	1.8	9
1020	A Brief Review of Jute Fibre and Its Composites. Materials Today: Proceedings, 2018, 5, 28427-28437.	1.8	85
1021	Improved Mechanical Properties and Theoretical Prediction of Young's Modulus of Polylactide Composites Reinforced with Sisal Fibers. Materials Today: Proceedings, 2018, 5, 22494-22505.	1.8	3
1022	Dry Sliding Wear Behavior of Pultruded Glass Fiber Epoxy Composites: Effect of Temperature. Materials Today: Proceedings, 2018, 5, 16453-16460.	1.8	6
1023	Preparation and mechanical characterization of flax and glass fiber reinforced polyester hybrid composite laminate by hand lay-up method. Materials Today: Proceedings, 2018, 5, 26934-26940.	1.8	13
1024	Flexural and Impact Properties of A New Bulletproof Vest Insert Plate Design Using Kenaf Fibre Embedded With X-Ray Films. Materials Today: Proceedings, 2018, 5, 11193-11197.	1.8	6
1025	Studies on mechanical strengths of hemp-glass fibre reinforced epoxy composites. IOP Conference Series: Materials Science and Engineering, 0, 402, 012083.	0.6	10
1026	Long-term closed-loop recycling of high-density polyethylene/flax composites. Progress in Rubber, Plastics and Recycling Technology, 2018, 34, 171-199.	1.8	8
1027	Tensile properties of a kenaf/x-ray film hybrid composite. AIP Conference Proceedings, 2018, , .	0.4	1
1028	Natural Fibre Composites and Their Applications: A Review. Journal of Composites Science, 2018, 2, 66.	3.0	424
1029	Enzymatic treatment of flax for use in composites. Biotechnology Reports (Amsterdam, Netherlands), 2018, 20, e00294.	4.4	38

	CITATION RI	EPORT	
#	Article	IF	Citations
1030	Effects of Surface Treatments on Tensile, Thermal and Fibre-matrix Bond Strength of Coir and Pineapple Leaf Fibres with Poly Lactic Acid. Journal of Bionic Engineering, 2018, 15, 1035-1046.	5.0	68
1031	Preliminary Study on Tensile and Impact Properties of Kenaf/Bamboo Fiber Reinforced Epoxy Composites. Journal of Renewable Materials, 2018, , .	2.2	6
1033	Critical review on agrowaste cellulose applications for biopolymers. International Journal of Plastics Technology, 2018, 22, 185-216.	3.1	77
1034	Improvement of Mechanical Properties of Pineapple Leaf Fibers by Mercerization Process. Fibers and Polymers, 2018, 19, 2604-2611.	2.1	25
1035	Fabrication of gas diffusion layer from carbon ramie fiber by hot press method. IOP Conference Series: Materials Science and Engineering, 0, 432, 012029.	0.6	1
1036	Processing and Properties of MDF Fibre-Reinforced Biopolyesters with Chain Extender Additives. International Journal of Polymer Science, 2018, 2018, 1-9.	2.7	6
1037	Preparation and properties of carbonâ€fiber―and pineâ€coneâ€fiberâ€reinforced highâ€density polyethylene composites. Journal of Applied Polymer Science, 2019, 136, 47304.	2.6	9
1038	Thermoplastic Elastomer composite using Benzyl Chloride Treatment on Kenaf Core Powder Mixing with Polypropylene and Virgin Acrylonitrile Butadiene Rubber. IOP Conference Series: Materials Science and Engineering, 2018, 429, 012013.	0.6	4
1039	Interfacial Compatibility Evaluation on the Fiber Treatment in the Typha Fiber Reinforced Epoxy Composites and Their Effect on the Chemical and Mechanical Properties. Polymers, 2018, 10, 1316.	4.5	45
1040	Comparative Analysis of the Tensile Properties of Polyester and Epoxy Composites Reinforced with Hemp Fibers. Materials Science Forum, 0, 930, 201-206.	0.3	5
1041	Recycled polypropylene-polyethylene torrefied almond shell biocomposites. Industrial Crops and Products, 2018, 125, 425-432.	5.2	23
1042	High Electromagnetic Interference Shielding Effectiveness of Carbon Nanotube–Cellulose Composite Films with Layered Structures. Macromolecular Materials and Engineering, 2018, 303, 1800377.	3.6	34
1043	Investigate of wave absorption performance for oil palm frond and empty fruit bunch at 5.8 GHz. Journal of Fundamental and Applied Sciences, 2018, 9, 335.	0.2	0
1044	Hybrid teak/sal wood flour reinforced composites: mechanical, thermal and water absorption properties. Materials Research Express, 2018, 5, 125306.	1.6	28
1045	Mechanical and physical properties of industrial hemp-based insulation materials. Proceedings of the Estonian Academy of Sciences, 2018, 67, 183.	1.5	9
1046	Reinforcing poly(ε-caprolactone) with hollow glass microspheres and hemp fibers – Morphological, rheological and mechanical properties. AIP Conference Proceedings, 2018, , .	0.4	1
1047	Hyperbranched Liquid Crystals Modified with Sisal Cellulose Fibers for Reinforcement of Epoxy Composites. Polymers, 2018, 10, 1024.	4.5	5
1048	The kinetics of wooden bilayers is not affected by different wood adhesive systems. Wood Science and Technology, 2018, 52, 1589-1606.	3.2	6

#	Article	IF	CITATIONS
1049	Durability of cementitious materials reinforced with various Kraft pulp fibers. Construction and Building Materials, 2018, 191, 1191-1200.	7.2	26
1050	Mechanical properties of leaf sheath date palm fibre waste biomass reinforced polycaprolactone (PCL) biocomposites. Industrial Crops and Products, 2018, 126, 394-402.	5.2	62
1051	Ballistic behavior of a hybrid composite reinforced with curaua and aramid fabric subjected to ultraviolet radiation. Journal of Materials Research and Technology, 2018, 7, 584-591.	5.8	34
1052	Mechanical and thermal behavior of aged composites of recycled PP/EPDM/talc reinforced with bamboo fiber. Polymer Testing, 2018, 72, 357-363.	4.8	42
1053	High Density Polyethylene/Date Palm Fiber Composites: Effect of Fiber Loadings on the Dynamic Mechanical Thermal Properties. Key Engineering Materials, 2018, 777, 22-26.	0.4	1
1054	Biodegradation of natural reinforcing fillers for polymer composites. IOP Conference Series: Materials Science and Engineering, 2018, 369, 012044.	0.6	12
1055	Rapid and energy-saving preparation of ramie fiber in TEMPO-mediated selective oxidation system. Industrial Crops and Products, 2018, 126, 143-150.	5.2	26
1056	Thermal properties of coir and pineapple leaf fibre reinforced polylactic acid hybrid composites. IOP Conference Series: Materials Science and Engineering, 2018, 368, 012019.	0.6	19
1057	Flax Fibers Reinforced Thermoplastic Resin Based Biocomposites, a Future for Sustainable Composite Parts. MATEC Web of Conferences, 2018, 203, 06019.	0.2	2
1058	Nanocrystalline Cellulose: Production and Applications. Nanotechnology in the Life Sciences, 2018, , 385-405.	0.6	1
1059	Effect of Ramie Fabric Chemical Treatments on the Physical Properties of Thermoset Polylactic Acid (PLA) Composites. Aerospace, 2018, 5, 93.	2.2	18
1060	3D Printable Filaments Made of Biobased Polyethylene Biocomposites. Polymers, 2018, 10, 314.	4.5	53
1061	Influence of the delignification process on the properties of panels made with Guadua fibers and plant resin. Industrial Crops and Products, 2018, 125, 33-40.	5.2	10
1062	Evaluation of Dynamic Mechanical Properties of PALF and Coir Fiber Reinforcing Epoxy Composites. Materials Research, 2018, 21, .	1.3	25
1063	Basic Dye Removal with Sorption onto Low-Cost Natural Textile Fibers. Processes, 2018, 6, 166.	2.8	26
1064	Effect of Extrusion Temperature on the Physico-Mechanical Properties of Unidirectional Wood Fiber-Reinforced Polylactic Acid Composite (WFRPC) Components Using Fused Deposition Modeling. Polymers, 2018, 10, 976.	4.5	60
1065	Tensile and flexural properties of natural fiber reinforced polymer composites: A review. Journal of Reinforced Plastics and Composites, 2018, 37, 1435-1455.	3.1	134
1066	Characterization and Optimization of Mechanical Properties of Sustainable Moringa Oleifera Fruit Husk Fiber for Polymer Composite Applications. , 2018, , .		1

#	Article	IF	Citations
1067	Comprehensive Characterization of Natural Cissus quadrangularis Stem Fiber Composites as an Alternate for Conventional FRP Composites. Journal of Bionic Engineering, 2018, 15, 914-923.	5.0	51
1068	Replacement of Commercial Silica by Rice Husk Ash in Epoxy Composites: A Comparative Analysis. Materials Research, 2018, 21, .	1.3	21
1069	Evaluating Tensile Properties of Animal and Hybrid Fiber Reinforced Polyester Composites. IOP Conference Series: Materials Science and Engineering, 0, 390, 012011.	0.6	2
1070	Bamboo reinforced polymer composite - A comprehensive review. IOP Conference Series: Materials Science and Engineering, 2018, 344, 012008.	0.6	20
1071	Superficial modification by alkalization of cellulose Fibres obtained from Fique leaf. IOP Conference Series: Materials Science and Engineering, 2018, 437, 012015.	0.6	6
1072	Effect of silane treatment loading on the flexural properties of PLA/flax unidirectional composites. Composites Communications, 2018, 10, 6-10.	6.3	82
1073	Abrasion Resistance and Mechanical Properties of Waste-Glass-Fiber-Reinforced Roller-compacted Concrete. Mechanics of Composite Materials, 2018, 54, 251-256.	1.4	23
1074	Damage characterisation of flax fibre fabric reinforced epoxy composites during low velocity impacts using high-speed imaging and Stereo Image Correlation. Composite Structures, 2018, 202, 1186-1194.	5.8	18
1075	Strength failure criteria analysis for a flax fibre reinforced composite. Mechanics of Materials, 2018, 124, 26-32.	3.2	36
1076	Macrocyclic oligomers as compatibilizing agent for hemp fibres/biodegradable polyester eco-composites. Polymer, 2018, 146, 396-406.	3.8	25
1077	1.11 Natural Fibers. , 2018, , 269-294.		4
1078	Novel Carbon Fibers and Their Composites. Springer Series in Materials Science, 2018, , 295-342.	0.6	3
1079	Wasteâ€derived lowâ€cost mycelium composite construction materials with improved fire safety. Fire and Materials, 2018, 42, 816-825.	2.0	100
1080	Towards the design of high-performance plant fibre composites. Progress in Materials Science, 2018, 97, 347-408.	32.8	295
1081	Nanostructuring Biopolymers for Improved Food Quality and Safety. , 2018, , 33-64.		5
1082	Water Absorption Process in Polymer Composites: Theory Analysis and Applications. Advanced Structured Materials, 2018, , 219-249.	0.5	4
1083	Hybrid bio-composites reinforced with sisal-glass fibres and Portland cement particles: A statistical approach. Composites Part B: Engineering, 2018, 149, 58-65.	12.0	24
1084	Effect of Pineapple Leaf Fibers (PALF) concentration on nanofibers formation by electrospinning. IOP Conference Series: Materials Science and Engineering, 2018, 290, 012003.	0.6	3

#	Article	IF	Citations
1085	Recent Advances in Polyethylene-Based Biocomposites. , 2018, , 71-96.		6
1086	Physical, Mechanical and Ballistic Properties of Kenaf Fiber Reinforced Poly Vinyl Butyral and Its Hybrid Composites. , 2018, , 249-263.		11
1087	Study of the flexural modulus of lignocellulosic fibers reinforced bio-based polyamide11 green composites. Composites Part B: Engineering, 2018, 152, 126-132.	12.0	23
1088	Graphene Reinforced Natural Fiber Nanocomposites for Structural Applications. IOP Conference Series: Materials Science and Engineering, 2018, 376, 012072.	0.6	38
1089	Damping Analysis of Unidirectional Carbon/Flax Fiber Hybrid Composites. International Journal of Applied Mechanics, 2018, 10, 1850050.	2.2	20
1090	Morphological Characterization of Hydrogels. Polymers and Polymeric Composites, 2018, , 1-46.	0.6	Ο
1091	Development and characterization of agar-based edible films reinforced with nano-bacterial cellulose. International Journal of Biological Macromolecules, 2018, 118, 722-730.	7.5	113
1092	A method based on the time–temperature superposition principle to predict pressurization time in compression molding. Journal of Applied Polymer Science, 2018, 135, 46664.	2.6	3
1093	Preparation and characterization of biocomposite packaging film from poly(lactic acid) and acylated microcrystalline cellulose using rice bran oil. International Journal of Biological Macromolecules, 2018, 118, 1090-1102.	7.5	64
1094	Step–wise multi–scale deconstruction of banana pseudo–stem (Musa acuminata) biomass and morpho–mechanical characterization of extracted long fibres for sustainable applications. Industrial Crops and Products, 2018, 122, 657-668.	5.2	55
1095	The Quasi-static and Dynamic Mechanical Behavior of Epoxy Matrix Composites Reinforced with Curaua Fibers. Materials Research, 2018, 21, .	1.3	8
1096	Characterization of raffia palm fiber for use in polymer composites. Journal of Wood Science, 2018, 64, 650-663.	1.9	15
1097	Hemp-Based Materials for Metal Removal. Environmental Chemistry for A Sustainable World, 2018, , 1-34.	0.5	6
1098	The influence of date palm mesh fibre reinforcement on flexural and fracture behaviour of a cement-based mortar. Composites Part B: Engineering, 2018, 152, 292-299.	12.0	60
1099	Polydopamine induced natural fiber surface functionalization: a way towards flame retardancy of flax/poly(lactic acid) biocomposites. Composites Part B: Engineering, 2018, 154, 56-63.	12.0	108
1100	Preparation and characterization of nanocomposite films containing starch and cellulose nanofibers. Industrial Crops and Products, 2018, 123, 654-660.	5.2	115
1101	Investigation into mechanical & tribological performance of kenaf fibre particle reinforced composite. Cogent Engineering, 2018, 5, 1479210.	2.2	16
1102	The static and dynamic mechanical properties of kenaf/glass fibre reinforced hybrid composites. Materials Research Express, 2018, 5, 095304.	1.6	27

#	Article	IF	Citations
1103	The effect of pulverisation process to kenaf fibre physical properties. AIP Conference Proceedings, 2018, , .	0.4	1
1104	Characterization and Research on Mechanical Properties of Bamboo Plastic Composites. Polymers, 2018, 10, 814.	4.5	11
1105	The effect of chemical modification of wood in ionic liquids on the supermolecular structure and mechanical properties of wood/polypropylene composites. Cellulose, 2018, 25, 4639-4652.	4.9	27
1106	Hemp, jute, banana, kenaf, ramie, sisal fibers. , 2018, , 301-325.		39
1107	Interfacial Characterization by Pull-Out Test of Bamboo Fibers Embedded in Poly(Lactic Acid). Fibers, 2018, 6, 7.	4.0	27
1108	Interface Bond Improvement of Sisal Fibre Reinforced Polylactide Composites with Added Epoxy Oligomer. Materials, 2018, 11, 398.	2.9	26
1109	The Dispersion of Pulp-Fiber in High-Density Polyethylene via Different Fabrication Processes. Polymers, 2018, 10, 122.	4.5	8
1110	Performance of Plain Woven Jute Fabric-Reinforced Polyester Matrix Composite in Multilayered Ballistic System. Polymers, 2018, 10, 230.	4.5	39
1111	Fique Fabric: A Promising Reinforcement for Polymer Composites. Polymers, 2018, 10, 246.	4.5	92
1112	Towards More Sustainable Material Formulations: A Comparative Assessment of PA11-SGW Flexural Performance versus Oil-Based Composites. Polymers, 2018, 10, 440.	4.5	18
1113	Biocomposites Based on Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) (PHBHV) and Miscanthus giganteus Fibers with Improved Fiber/Matrix Interface. Polymers, 2018, 10, 509.	4.5	6
1114	A Novel In Situ Self-Assembling Fabrication Method for Bacterial Cellulose-Electrospun Nanofiber Hybrid Structures. Polymers, 2018, 10, 712.	4.5	23
1115	Tensile properties of flax fibers. , 2018, , 275-300.		11
1116	Water exposure, tensile and fatigue properties of treated hemp reinforced vinyl ester composites. AlP Conference Proceedings, 2018, , .	0.4	1
1117	Surface modification of natural fibers. , 2018, , 115-155.		22
1118	Corrugated cardboard core sandwich beams with bio-based flax fiber composite skins. Journal of Building Engineering, 2018, 20, 114-122.	3.4	43
1119	Fabrication of Natural Fiber Composites Consisting of Osage Orange Seed flour Reinforced with Non-woven Hemp Mats. Journal of Polymers and the Environment, 2018, 26, 3957-3966.	5.0	1
1120	Study of plant fibre composites with damage induced by laser and mechanical impacts. Composites Part B: Engineering, 2018, 152, 209-219.	12.0	10

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
1121	Utilisation of natural cellulose fibres in wastewater treatment. Cellulose, 2018, 25, 488	37-4903.	4.9	39
1122	Optimization of lime and clay-based hemp-concrete wall formulations for a successful l Construction and Building Materials, 2018, 184, 76-86.	ime rendering.	7.2	11
1123	A review on date palm (<i>phoenix dactylifera</i>) fibers and its polymer composites. I Series: Materials Science and Engineering, 2018, 368, 012009.	OP Conference	0.6	47
1124	Poly(lactic acid) mass transfer properties. Progress in Polymer Science, 2018, 86, 85-12	21.	24.7	71
1126	Mechanically Induced Shaping of Organic Single Crystals: Facile Fabrication of Fluoresc Elastic Crystal Fibers. Chemistry - A European Journal, 2018, 24, 8507-8512.	ent and	3.3	70
1127	Thermo-mechanical performances of polypropylene biocomposites based on untreated compatibilized spent coffee grounds. Composites Part B: Engineering, 2018, 149, 1-11	, treated and	12.0	86
1128	Thermal properties comparison of hybrid CF/FF and BF/FF cyanate ester-based composi Thermal Analysis and Calorimetry, 2018, 133, 509-518.	tes. Journal of	3.6	7
1129	Evaluation of highly filled epoxy composites modified with walnut shell waste filler. Pol Bulletin, 2018, 75, 2511-2528.	ymer	3.3	66
1130	Natural fibre reinforced non-asbestos organic non-metallic friction composites: effect c on mechanical and tribological behaviour. Materials Research Express, 2018, 5, 05510.	of abaca fibre 1.	1.6	23
1131	Development of sustainable biodegradable lignocellulosic hemp fiber/polycaprolactone biocomposites for light weight applications. Composites Part A: Applied Science and M 2018, 113, 350-358.	anufacturing,	7.6	57
1132	Charpy impact test of epoxy composites reinforced with untreated and mercerized ma Journal of Materials Research and Technology, 2018, 7, 520-527.	llow fibers.	5.8	42
1133	Influence of Low Pressure Plasma Treatment on the Durability of Thermoplastic Compo LDPE-flax/coconut under Thermal and Humidity Conditions. Fibers and Polymers, 2018	sites , 19, 1327-1334.	2.1	22
1134	Towards "green―viscoelastically prestressed composites: Cellulose fibre reinforce Part B: Engineering, 2018, 154, 439-448.	ment. Composites	12.0	11
1135	Critical length and interfacial strength of PALF and coir fiber incorporated in epoxy resi Journal of Materials Research and Technology, 2018, 7, 528-534.	n matrix.	5.8	61
1136	Performance of jute non-woven mat reinforced polyester matrix composite in multilaye Journal of Materials Research and Technology, 2018, 7, 535-540.	red armor.	5.8	45
1137	Mechanical behavior of mallow fabric reinforced polyester matrix composites. Journal c Research and Technology, 2018, 7, 515-519.	f Materials	5.8	11
1138	Processing of a Green Fiber-Reinforced Composite of High-Performance Curaua Fiber in 2018, 70, 1958-1964.	Polyester. Jom,	1.9	3
1139	Natural fiber for green technology in automotive industry: A brief review. IOP Conferen Materials Science and Engineering, 2018, 368, 012012.	ce Series:	0.6	48

#	Article	IF	Citations
1140	Thermal Behavior of Polyester Composites Reinforced with Green Sugarcane Bagasse Fiber. Jom, 2018, 70, 1965-1971.	1.9	15
1141	Facile Preparation and Characterization of Short-Fiber and Talc Reinforced Poly(Lactic Acid) Hybrid Composite with In Situ Reactive Compatibilizers. Materials, 2018, 11, 1183.	2.9	15
1142	Characterization of Polypropylene Composite Reinforced with Wood Flour or Cellulose Fiber. IOP Conference Series: Earth and Environmental Science, 2018, 166, 012002.	0.3	2
1144	Emulsion electrospinning: Fundamentals, food applications and prospects. Trends in Food Science and Technology, 2018, 80, 175-186.	15.1	184
1145	Natural lightweight hybrid composites for aircraft structural applications. , 2018, , 155-170.		46
1146	Potential of natural fiber/biomass filler-reinforced polymer composites in aerospace applications. , 2018, , 253-268.		38
1147	Potential of natural/synthetic hybrid composites for aerospace applications. , 2018, , 315-351.		77
1148	Radiation Grafting of Biopolymers and Synthetic Polymers. , 2018, , 205-250.		9
1149	Can bamboo fibres be an alternative to flax fibres as materials for plastic reinforcement? A comparative life cycle study on polypropylene/flax/bamboo laminates. Industrial Crops and Products, 2018, 121, 372-387.	5.2	55
1150	Cellulose Nanocrystals Functionalization by Grafting. , 2018, , 409-439.		2
1151	Physical properties of green composites based on poly-lactic acid or Mater-Bi® filled with Posidonia Oceanica leaves. Composites Part A: Applied Science and Manufacturing, 2018, 112, 315-327.	7.6	65
1152	PLA-coated sisal fibre-reinforced polyester composite: Water absorption, static and dynamic mechanical properties. Journal of Composite Materials, 2019, 53, 65-72.	2.4	59
1153	A new mixture of hydroxypropyl cellulose and nanocellulose for wood consolidation. Journal of Cultural Heritage, 2019, 35, 140-144.	3.3	36
1154	A Review on Peanut Shell Powder Reinforced Polymer Composites. Polymer-Plastics Technology and Materials, 2019, 58, 349-365.	1.3	28
1155	Accelerated thermal ageing behaviour of bagasse fibers reinforced Poly (Lactic Acid) based biocomposites. Composites Part B: Engineering, 2019, 156, 121-127.	12.0	53
1156	Recent developments in bamboo fiber-based composites: a review. Polymer Bulletin, 2019, 76, 2655-2682.	3.3	98
1157	Preparation and Characteristics of Poly(butylene adipate-co-terephthalate)/Polylactide Blend Films via Synergistic Efficiency of Plasticization and Compatibilization. Chinese Journal of Polymer Science (English Edition), 2019, 37, 68-78.	3.8	33
1159	The growing U.S. bioeconomy: Drivers, development and constraints. New Biotechnology, 2019, 49, 48-57.	4.4	76

#	Article	IF	CITATIONS
1160	Glass/Epoxy and Hemp/Bio based epoxy composites: Manufacturing and structural performances. Polymer Composites, 2019, 40, E723.	4.6	14
1161	Comparison of different natural fiber treatments: a literature review. International Journal of Environmental Science and Technology, 2019, 16, 629-642.	3.5	152
1162	Toughening of bamboo fibers/unsaturated polyester composites with 2â€acetoacetoxyethyl methacrylate. Polymer Composites, 2019, 40, 1595-1601.	4.6	2
1163	Effect of various enzymatic treatments on the mechanical properties of coir fiber/poly(lactic acid) biocomposites. Journal of Thermoplastic Composite Materials, 2021, 34, 1066-1079.	4.2	12
1164	Surface modification of ramie fibers with silanized CNTs through a simple spray-coating method. Cellulose, 2019, 26, 8165-8178.	4.9	18
1165	Thermogravimetric analysis of <i>Calotropis procera</i> fibers and their influence on the thermal conductivity and flammability studies of polymer composites. Materials Research Express, 2019, 6, 105341.	1.6	29
1167	Sustainable Alternative Composites Using Waste Vegetable Oil Based Resins. Journal of Polymers and the Environment, 2019, 27, 2464-2477.	5.0	24
1168	Nanocellulose for Sensing Applications. Advanced Materials Interfaces, 2019, 6, 1900424.	3.7	54
1169	Guaruman: a Natural Amazonian Fiber with Potential for Polymer Composite Reinforcement. Materials Research, 2019, 22, .	1.3	9
1170	Composite Materials Based on Synthetic Polymers Reinforced with Natural Fibers. Polymer Science - Series A, 2019, 61, 417-438.	1.0	42
1171	Integrating tough Antheraea pernyi silk and strong carbon fibres for impact-critical structural composites. Nature Communications, 2019, 10, 3786.	12.8	70
1172	Mechanical and Thermodynamic Properties of Unidirectional Flax Fiber Reinforced CNT Modified Epoxy Composites. Fibers and Polymers, 2019, 20, 1266-1276.	2.1	20
1173	Comparative Study on the Behavior of Virgin and Recycled Polyolefins–Cellulose Composites in Natural Environmental Conditions. Journal of Composites Science, 2019, 3, 60.	3.0	5
1174	Effect of water absorption on the mechanical properties of cross-ply hybrid pseudo- stem banana/glass fibre reinforced polypropylene composite. Materials Research Express, 2019, 6, 095326.	1.6	13
1175	An Alternative to Field Retting: Fibrous Materials Based on Wet Preserved Hemp for the Manufacture of Composites. Agriculture (Switzerland), 2019, 9, 140.	3.1	12
1176	Material Utilization of Cotton Post-Harvest Line Residues in Polymeric Composites. Polymers, 2019, 11, 1106.	4.5	16
1177	Flax treatment with strategic enzyme combinations: Effect on chemical fiber composition and ease of fiber extraction. Biotechnology Reports (Amsterdam, Netherlands), 2019, 23, e00358.	4.4	6
1178	Enhancement of wear and corrosion resistance of polyvinyl chloride/sorghum straw-based composites in cyclic sea water and acid rain conditions. Construction and Building Materials, 2019, 223, 133-141	7.2	18

#	Article	IF	CITATIONS
1179	Mechanical, thermal, viscoelastic performance and product application of PP- rice husk Colombian biocomposites. Composites Part B: Engineering, 2019, 176, 107135.	12.0	46
1180	Morphology, thermal and mechanical properties of extruded injection molded kenaf fiber reinforced polypropylene composites. Materials Research Express, 2019, 6, 095409.	1.6	14
1181	Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLoS ONE, 2019, 14, e0213954.	2.5	119
1182	Hyperbranched Polymers in Modifying Natural Plant Fibers and Their Applications in Polymer Matrix Composites—A Review. Journal of Agricultural and Food Chemistry, 2019, 67, 8715-8724.	5.2	27
1183	Thermal Stability, Fire and Smoke Behaviour of Epoxy Composites Modified with Plant Waste Fillers. Polymers, 2019, 11, 1234.	4.5	39
1184	Environmental and economic prospects of biomaterials in the automotive industry. Clean Technologies and Environmental Policy, 2019, 21, 1535-1548.	4.1	25
1185	Effects of magnesium hydroxide on the properties of starch/plant fiber composites with foam structure. RSC Advances, 2019, 9, 17405-17413.	3.6	5
1186	An experimental investigation on low-velocity impact response of novel jute/rubber flexible bio-composite. Composite Structures, 2019, 225, 111190.	5.8	53
1187	Natural fiber reinforced non-asbestos brake friction composites: Influence of ramie fiber on physico-mechanical and tribological properties. Materials Research Express, 2019, 6, 115701.	1.6	30
1188	Thermal-chemical and biodegradation behaviour of alginic acid treated flax fibres/ poly(hydroxybutyrate-co-valerate) PHBV green composites in compost medium. Biocatalysis and Agricultural Biotechnology, 2019, 22, 101394.	3.1	30
1189	Effect of nanofillers on the properties of natural fiber reinforced polymer composites. Materials Today: Proceedings, 2019, 18, 647-654.	1.8	46
1190	Styrene-Free Soybean Oil Thermoset Composites Reinforced by Hybrid Fibers from Recycled and Natural Resources. ACS Sustainable Chemistry and Engineering, 2019, 7, 17808-17816.	6.7	13
1191	Composites reinforced with Guadua fibers: Physical and mechanical properties. Construction and Building Materials, 2019, 228, 116749.	7.2	16
1192	Towards next-generation fiber-reinforced polymer composites: a perspective on multifunctionality. Functional Composites and Structures, 2019, 1, 042002.	3.4	24
1193	Chemically purified cellulose and its nanocrystals from sugarcane baggase: isolation and characterization. Heliyon, 2019, 5, e02635.	3.2	46
1194	Strengthening and Toughening of Polylactide/Sisal Fiber Biocomposites via in-situ Reaction with Epoxy-Functionalized Oligomer and Poly (butylene-adipate-terephthalate). Polymers, 2019, 11, 1747.	4.5	15
1195	3D Printing of Amylopectinâ€Based Natural Fiber Composites. Advanced Materials Technologies, 2019, 4, 1900521.	5.8	22
1197	Sustainability of surface treatment of natural fibre in composite formation: challenges of environment-friendly option. International Journal of Advanced Manufacturing Technology, 2019, 105, 3183-3195.	3.0	26

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
1199	State of Art Review on Natural Fibers. Materials Today: Proceedings, 2019, 18, 15-24.		1.8	23
1200	Application of Natural Plant Fibers in Cement-Based Composites and the Influence on Properties and Mass Transport. Materials, 2019, 12, 3498.	Mechanical	2.9	29
1202	Adsorptive membranes for heavy metal removal – A mini review. AIP Conference Pro	ceedings, 2019, , .	0.4	18
1203	EFFECT OF HUMIDITY ON THE MECHANICAL PROPERTIES OF KENAF YARN FIBRE/POLY BIOCOMPOSITES. Jurnal Teknologi (Sciences and Engineering), 2019, 81, .	LACTIC ACID	0.4	0
1204	Study of Agave Fiber-Reinforced Biocomposite Films. Materials, 2019, 12, 99.		2.9	16
1205	Fabrication and mechanical characterization of horse hair (HH) reinforced polypropyler composites. Materials Today: Proceedings, 2019, 19, 622-625.	ne (PP)	1.8	13
1206	Machinability analysis of drilled bamboo fibre reinforced polymer (BFRP) composite. Jo Physics: Conference Series, 2019, 1198, 042018.	urnal of	0.4	1
1207	Redesign a table arm for folding table using natural composite material and evaluate the material. AIP Conference Proceedings, 2019, , .	he strength of	0.4	2
1208	Industrial-waste agave fibres in flame-retarded thermoplastic starch biocomposites. Cc B: Engineering, 2019, 177, 107370.	omposites Part	12.0	29
1209	Experimental investigation on hygrothermal performance of a bio-based wall made of of filled with date palm fibers. Energy and Buildings, 2019, 202, 109413.	cement mortar	6.7	24
1210	Manufacture and Performance of Textile-ramie Fiber Reinforced Anionic Polyamide 6 C Fibers and Polymers, 2019, 20, 1705-1715.	omposites.	2.1	5
1211	Green Composite Materials from Biopolymers Reinforced with Agroforestry Waste. Jou Polymers and the Environment, 2019, 27, 2651-2673.	ırnal of	5.0	34
1212	Properties of treated bamboo fiber reinforced tapioca starch biodegradable composite Today: Proceedings, 2019, 16, 2367-2373.	. Materials	1.8	34
1213	Mechanical Characteristics and Terminological Behavior Study on Natural Fiber Nano r Polymer Composite – A Review. Materials Today: Proceedings, 2019, 16, 1287-1296	einforced	1.8	35
1214	Biomass porous carbon derived from jute fiber as anode materials for lithium-ion batte and Related Materials, 2019, 98, 107514.	ries. Diamond	3.9	63
1215	Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendl Comprehensive Review. Frontiers in Materials, 2019, 6, .	y Composites: A	2.4	475
1216	Jute Based Bio and Hybrid Composites and Their Applications. Fibers, 2019, 7, 77.		4.0	52
1217	Quantitively Characterizing the Chemical Composition of Tailored Bagasse Fiber and It Thermal and Mechanical Properties of Polylactic Acid-Based Composites. Polymers, 20	s Effect on the 19, 11, 1567.	4.5	33

#	Article	IF	CITATIONS
1218	Bioprocessing of bast fibers. , 2019, , 1-19.		2
1219	Effect of Particle size and Alkali-Laccase on the Properties of Pterocarpus Angolensis (Mukwa) Wood Flour. Procedia Manufacturing, 2019, 35, 465-470.	1.9	4
1220	Natural Keratin and Coconut Fibres from Industrial Wastes in Flame Retarded Thermoplastic Starch Biocomposites. Materials, 2019, 12, 344.	2.9	40
1221	Friction and wear properties of recycled natural fiber reinforced plant-derived polyamide 1010 biomass composites. AIP Conference Proceedings, 2019, , .	0.4	6
1222	Effect of nanoclay grafting onto flax fibers on the interfacial shear strength and mechanical properties of flax/epoxy composites. Polymer Composites, 2019, 40, 3482-3492.	4.6	36
1223	Synthesis of Bio-based Polymer Composites: Fabrication, Fillers, Properties, and Challenges. Lecture Notes in Bioengineering, 2019, , 29-55.	0.4	16
1224	Extraction of Cellulose Nanofibers and Their Eco/Friendly Polymer Composites. , 2019, , 37-64.		13
1225	Nano-radiogold-decorated composite bioparticles. Materials Science and Engineering C, 2019, 97, 768-775.	7.3	4
1226	Agricultural by-product suitability for the production of chitinous composites and nanofibers utilising Trametes versicolor and Polyporus brumalis mycelial growth. Process Biochemistry, 2019, 80, 95-102.	3.7	59
1227	Mechanical performance of thermoplastic olefin composites reinforced with coir and sisal natural fibers: Influence of surface pretreatment. Polymer Composites, 2019, 40, 3472-3481.	4.6	29
1228	Evaluation of a new green composite solution for wind turbine blades. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2019, 2, 141-150.	2.1	9
1229	Formulation optimization of bioreinforced composites from polyolefins and dried distillers' grains using statistical methods. Composites Part A: Applied Science and Manufacturing, 2019, 119, 246-260.	7.6	3
1230	Study on the wet-web strength and pressability of paper sheet during the press process with the addition of nano-fibrillated cellulose (NFC). Carbohydrate Polymers, 2019, 210, 332-338.	10.2	17
1231	Effect of fibre volume fraction and fibre direction on crack paths in unidirectional flax fibre-reinforced epoxy composites under static loading. Theoretical and Applied Fracture Mechanics, 2019, 101, 162-168.	4.7	9
1232	Vegetable oil-based epoxy resins and their composites with bio-based hardener: a short review. Polymer-Plastics Technology and Materials, 2019, 58, 1311-1326.	1.3	52
1233	Performance Evaluation of Composite from Recycled Polypropylene Reinforced with Mengkuang Leaf Fiber. Resources, 2019, 8, 97.	3.5	10
1234	Analysis of mechanical and tribological behavior of wood flour filled glass fiber reinforced epoxy composite. Materials Research Express, 2019, 6, 085327.	1.6	15
1235	Polymer Composites Reinforced with Natural Fibers and Nanocellulose in the Automotive Industry: A Short Review. Journal of Composites Science, 2019, 3, 51.	3.0	124

#	Article	IF	CITATIONS
1236	Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites. Composites Part B: Engineering, 2019, 174, 106927.	12.0	178
1237	Experimental and numerical analysis of the dynamic behavior of a bio-based sandwich with an auxetic core. Journal of Sandwich Structures and Materials, 2021, 23, 1058-1077.	3.5	23
1238	Investigation and identification of damage mechanisms of unidirectional carbon/flax hybrid composites using acoustic emission. Engineering Fracture Mechanics, 2019, 216, 106511.	4.3	45
1239	Investigation of the possible origins of the differences in mechanical properties of hemp and flax fibres: A numerical study based on sensitivity analysis. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105488.	7.6	17
1240	The pull-out behavior of chemically treated lignocellulosic fibers/polymeric matrix interface (LF/PM): A review. Composites Part B: Engineering, 2019, 174, 107059.	12.0	43
1241	Optimized manufacturing of thermoplastic biocomposites by fast induction-heated compression moulding: Influence of processing parameters on microstructure development and mechanical behaviour. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105493.	7.6	23
1242	High flow polypropylene/SEBS composites reinforced with differently treated hemp fibers for injection molded parts. Composites Part B: Engineering, 2019, 174, 107062.	12.0	42
1243	Effect of poly-methyltriethoxysilane on the waterproof property of starch/fiber composites with open cell structures. RSC Advances, 2019, 9, 19508-19517.	3.6	9
1244	Development and application starch films: PBAT with additives for evaluating the shelf life of Tommy Atkins mango in the freshâ€cut state. Journal of Applied Polymer Science, 2019, 136, 48150.	2.6	25
1245	Potential Natural Fiber-Reinforced Composite for Biomedical Application. IOP Conference Series: Materials Science and Engineering, 2019, 494, 012018.	0.6	3
1246	Natural Rubber Composites Filled with Crop Residues as an Alternative to Vulcanizates with Common Fillers. Polymers, 2019, 11, 972.	4.5	60
1247	Influence of fiber content on rheological and mechanical properties of pineapple leaf fibersâ€polypropylene composites prepared by twinâ€screw extrusion. Polymer Composites, 2019, 40, 4519-4529.	4.6	13
1248	Composites and Nanocomposites. Polymers and Polymeric Composites, 2019, , 447-512.	0.6	2
1249	Recent developments in the synthesis of poly(hydroxybutyrate) based biocomposites. Biotechnology Progress, 2019, 35, e2855.	2.6	20
1250	Effect of Reinforcing Fillers and Fibres Treatment on Morphological and Mechanical Properties of Typha-Phenolic Resin Composites. Fibers and Polymers, 2019, 20, 1046-1053.	2.1	8
1251	Composites and Nanocomposites. Polymers and Polymeric Composites, 2019, , 1-67.	0.6	2
1252	Effect of Fibre Loading on the Physical, Mechanical and Thermal Properties of Sugar Palm Fibre Reinforced Vinyl Ester Composites. Fibers and Polymers, 2019, 20, 1077-1084.	2.1	15
1253	Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Composites Part B: Engineering, 2019, 174, 106956.	12.0	329

#	Article	IF	CITATIONS
1254	Micro-computed tomography analysis of natural fiber and bio-matrix tubular-braided composites. Journal of Composite Materials, 2019, 53, 4003-4013.	2.4	8
1255	Characterization of polypropylene composites using yerba mate fibers as reinforcing filler. Composites Part B: Engineering, 2019, 174, 106935.	12.0	28
1256	3D printing of continuous flax fibre reinforced biocomposites for structural applications. Materials and Design, 2019, 180, 107884.	7.0	171
1257	Alfa fiber-polyurethane composite as a thermal and acoustic insulation material for building applications. SN Applied Sciences, 2019, 1, 1.	2.9	36
1258	Effect of fibre loading and Ca(OH) ₂ treatment on thermal, mechanical, and physical properties of pineapple leaf fibre/polyester reinforced composites. Materials Research Express, 2019, 6, 085545.	1.6	32
1259	Value-added composite bioproducts reinforced with regionally significant agricultural residues. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105441.	7.6	15
1260	Synthesis and properties of pandanwangi fiber reinforced polyethylene composites: Evaluation of dicumyl peroxide (DCP) effect. Composites Communications, 2019, 15, 53-57.	6.3	37
1261	Synergistic toughening effects of grafting modification and elastomer-olefin block copolymer addition on the fracture resistance of wood particle/polypropylene/elastomer composites. Materials and Design, 2019, 181, 107918.	7.0	19
1262	Recycling of textile wastes into textile composites based on natural fibres: the reinforcement type and the architecture. IOP Conference Series: Materials Science and Engineering, 0, 477, 012055.	0.6	4
1263	Mitigating the Impact of Cellulose Particles on the Performance of Biopolyester-Based Composites by Gas-Phase Esterification. Polymers, 2019, 11, 200.	4.5	22
1264	Mechanical properties of natural fibre-reinforced hybrid composites. Journal of Reinforced Plastics and Composites, 2019, 38, 910-922.	3.1	11
1265	Determination of cross-sectional area of natural plant fibres and fibre failure analysis by in situ SEM observation during microtensile tests. Cellulose, 2019, 26, 4693-4706.	4.9	17
1266	Preparation and Performance of Different Modified Ramie Fabrics Reinforced Anionic Polyamide-6 Composites. Processes, 2019, 7, 226.	2.8	8
1267	Development and characterization of jute/polypropylene composite by using comingled nonwoven structures. Journal of the Textile Institute, 2019, 110, 1652-1659.	1.9	24
1268	Rheological behavior of short Alfa fibers reinforced Mater-Bi® biocomposites. Polymer Testing, 2019, 77, 105895.	4.8	16
1269	Development of flax-PP based twist-less thermally bonded roving for thermoplastic composite reinforcement. Journal of the Textile Institute, 2019, 110, 1369-1379.	1.9	12
1270	Two Strategies to precisely tune the mechanical properties of plant oil-derived epoxy resins. Composites Part B: Engineering, 2019, 173, 106885.	12.0	20
1271	Nickel Metal–Organic Framework Derived Hierarchically Mesoporous Nickel Phosphate toward Smoke Suppression and Mechanical Enhancement of Intumescent Flame Retardant Wood Fiber/Poly(lactic) Tj ETQq1 1 C).7&\$14 r	g B3 /Overloo

#	Article	IF	CITATIONS
1272	Characterization of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment. Carbohydrate Polymers, 2019, 217, 178-189.	10.2	140
1273	Evaluation of biodegradability of disposable product prepared from poly (lactic acid) under accelerated conditions. Polymer Degradation and Stability, 2019, 164, 46-54.	5.8	9
1274	Antimicrobial, Conductive, and Mechanical Properties of AgCB/PBS Composite System. Journal of Chemistry, 2019, 2019, 1-14.	1.9	12
1275	Preparation, characterization and properties of starch-based adhesive for wood-based panels. International Journal of Biological Macromolecules, 2019, 134, 247-254.	7.5	66
1276	A Review on Bio Composites in Industrial Applications. SSRN Electronic Journal, 0, , .	0.4	0
1277	Anhydride Cured Bioâ€Based Epoxy Resin: Effect of Moisture on Thermal and Mechanical Properties. Macromolecular Materials and Engineering, 2019, 304, 1900031.	3.6	20
1278	Determination of cellulose, hemicellulose and lignin content using near-infrared spectroscopy in flax fiber. Textile Reseach Journal, 2019, 89, 4875-4883.	2.2	23
1279	Can the maximum volume fraction ensure optimum reinforcement in shortâ€fiber composites?. Journal of Applied Polymer Science, 2019, 136, 47821.	2.6	6
1280	Interface properties and their effect on the mechanical performance of flax fibre thermoplastic composites. Composites Part A: Applied Science and Manufacturing, 2019, 122, 8-17.	7.6	37
1281	Lignin-Based Adhesives and Coatings. , 2019, , 153-206.		18
1282	Influence of flax/polypropylene distribution in twistless thermally bonded rovings on their composite properties. Polymer Composites, 2019, 40, 4300-4310.	4.6	4
1283	Thermal and mechanical behavior of thermoplastic composites reinforced with fibers enzymatically extracted from Ampelodesmos mauritanicus. Polymer Engineering and Science, 2019, 59, 2418-2428.	3.1	8
1284	Physical and Chemical Modifications of Plant Fibres for Reinforcement in Cementitious Composites. Advances in Civil Engineering, 2019, 2019, 1-18.	0.7	55
1286	Critical Review of the Parameters Affecting the Effectiveness of Moisture Absorption Treatments Used for Natural Composites. Journal of Composites Science, 2019, 3, 27.	3.0	81
1287	Reliable Natural-Fibre Augmented Biodegraded Polymer Composites. , 2019, , 961-975.		1
1288	Biosynthesis of cellulose microfibre from peanut shell for the preparation of bio-nanocomposite films for food-packaging application. Bulletin of Materials Science, 2019, 42, 1.	1.7	8
1289	Exploring the potential of gas-phase esterification to hydrophobize the surface of micrometric cellulose particles. European Polymer Journal, 2019, 115, 138-146.	5.4	20
1290	Chemical treatments of flax fibers $\hat{a} \in$ Control of the diffusion of molecules into the fiber structure. Industrial Crops and Products, 2019, 132, 430-439.	5.2	8

#	Article	IF	Citations
1291	3D printed cellulose nanocrystal composites through digital light processing. Cellulose, 2019, 26, 3973-3985.	4.9	65
1292	Study on the mechanical properties of unsaturated polyester sandwich biocomposites composed of uniaxial warp-knitted and non-woven viscose fabrics. Composites Part A: Applied Science and Manufacturing, 2019, 121, 196-206.	7.6	13
1293	Recycling of textile wastes into textile composites based on natural fibres: the valorisation potential. IOP Conference Series: Materials Science and Engineering, 0, 477, 012004.	0.6	11
1294	Chemical and Morphological Characterization of Guaruman Fiber. Minerals, Metals and Materials Series, 2019, , 107-113.	0.4	2
1295	Effect of addition of PP-g-MA on the tribological properties of hemp fiber reinforced plant-derived Polyamide1010 biomass composites. AIP Conference Proceedings, 2019, , .	0.4	5
1296	Performance assessment of water hyacinth–cement composite. Construction and Building Materials, 2019, 211, 395-407.	7.2	21
1297	Thermal and Mechanical Properties of Biocomposites Made of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Potato Pulp Powder. Polymers, 2019, 11, 308.	4.5	25
1298	Production of epoxy composites reinforced by different natural fibers and their mechanical properties. Composites Part B: Engineering, 2019, 167, 461-466.	12.0	157
1299	Impact properties of kenaf Fibre/X-ray films hybrid composites for structural applications. Journal of Materials Research and Technology, 2019, 8, 1982-1990.	5.8	14
1300	Polyhydroxybutyrate/hemp biocomposite: tuning performances by process and compatibilisation. Green Materials, 2019, 7, 194-204.	2.1	10
1301	Wood flour thermoset composites using chemically modified epoxidized soybean oil. European Journal of Wood and Wood Products, 2019, 77, 569-580.	2.9	3
1302	Polyacrylic acid coated carbon nanotube–paper composites for humidity and moisture sensing. Journal of Materials Chemistry C, 2019, 7, 5374-5380.	5.5	22
1303	Deterioration of Wood Plastics Composites by the White-Rot Fungus Pycnoporus sanguineus. Journal of Composites Science, 2019, 3, 24.	3.0	8
1304	Thermal, Mechanical, Viscoelastic and Morphological Properties of Poly(lactic acid) based Biocomposites with Potato Pulp Powder Treated with Waxes. Materials, 2019, 12, 990.	2.9	24
1305	Thermoplastic starch/wood biocomposites processed with deep eutectic solvents. Composites Part A: Applied Science and Manufacturing, 2019, 121, 517-524.	7.6	44
1306	Analysis of Flexural Strength of Jute/Sisal Hybrid Polyester Composite. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2019, , 599-609.	0.3	0
1307	Compressive characteristics of unmodified and nanoclay treated banana fiber reinforced epoxy composite cylinders. Composites Part B: Engineering, 2019, 169, 118-125.	12.0	52
1308	Assessment of cellulose in bark fibers of Thespesia populnea: Influence of stem maturity on fiber characterization. Carbohydrate Polymers, 2019, 212, 439-449.	10.2	38

#	Article	IF	CITATIONS
1309	Improving the mechanical properties of ethylene propylene diene monomer rubber/low density polyethylene/rice husk biocomposites by using various additives of filler and gamma irradiation. Journal of Vinyl and Additive Technology, 2019, 25, 296-302.	3.4	3
1310	An Overview on Plant Fiber Technology: An Interdisciplinary Approach. , 2019, , 977-999.		3
1311	A review on mechanical behavior of natural fiber reinforced polymer composites and its applications. Journal of Reinforced Plastics and Composites, 2019, 38, 441-453.	3.1	143
1312	Effect of Fiber Chemical Treatments on Performance of Date Palm Fibers Using Response Surface Methodology. Environmental Progress and Sustainable Energy, 2019, 38, 13177.	2.3	6
1313	Synergic effect of fiber and matrix treatments for vegetable fiber reinforced cement of improved performance. Construction and Building Materials, 2019, 205, 52-60.	7.2	35
1314	Effect of steam treatment on the chemical composition of hemp (Cannabis sativa L.) and identification of the extracted carbohydrates and other compounds. Industrial Crops and Products, 2019, 131, 224-233.	5.2	25
1315	Thermal, Mechanical, and Rheological Properties of Biocomposites Made of Poly(lactic acid) and Potato Pulp Powder. International Journal of Molecular Sciences, 2019, 20, 675.	4.1	29
1316	Nanocellulose for improved concrete performance: A macro-to-micro investigation for disclosing the effects of cellulose filaments on strength of cement systems. Construction and Building Materials, 2019, 206, 84-96.	7.2	88
1317	Piassava Fiber as an Epoxy Matrix Composite Reinforcement for Ballistic Armor Applications. Jom, 2019, 71, 801-808.	1.9	33
1318	Isolation and characterization of cellulose fibers from Thespesia populnea barks: A study on physicochemical and structural properties. International Journal of Biological Macromolecules, 2019, 129, 396-406.	7.5	104
1319	Characterization and structural performance of hybrid fiber-reinforced composite deck panels. Advanced Composites and Hybrid Materials, 2019, 2, 115-124.	21.1	20
1320	Poly(lactic acid) green composites filled with linseed cake as an agricultural waste filler. Influence of oil content within the filler on the rheological behavior. Journal of Applied Polymer Science, 2019, 136, 47651.	2.6	22
1321	Production and Characterization of a Hybrid Composite of Polypropylene Reinforced with Piassava (Attalea funifera Martius) Fiber and Light Green Clay. Minerals, Metals and Materials Series, 2019, , 735-746.	0.4	0
1322	Fabrication and characterization of chitosan-coated sisal fiber – Phytagel modified soy protein-based green composite. Journal of Composite Materials, 2019, 53, 2481-2504.	2.4	75
1323	Microstructural and Thermo-Physical Characterization of a Water Hyacinth Petiole for Thermal Insulation Particle Board Manufacture. Materials, 2019, 12, 560.	2.9	27
1324	Natural Fibers Reinforced Polymer Composites Applied in Ballistic Multilayered Armor for Personal Protection—An Overview. Minerals, Metals and Materials Series, 2019, , 33-47.	0.4	29
1325	Static and Dynamic Mechanical Properties of Eco-friendly Polymer Composites. , 2019, , 259-292.		5
1326	XFEM modelling of single-lap Kenaf fibre composite hybrid joints under quasi-static loading. Plastics, Rubber and Composites, 2019, 48, 48-56.	2.0	7

#	Article	IF	CITATIONS	
1327	Eco-friendly Lubricants for Tribological Application. , 2019, , 3269-3286.		0	
1328	Extraction, characterization and thermal degradation kinetics with activation energy of untreated and alkali treated Saccharum spontaneum (Kans grass) fiber. Composites Part B: Engineering, 2019, 166, 436-445.	12.0	67	
1329	Tribological Properties of Nanoclay-Infused Banana Fiber Reinforced Epoxy Composites. Journal of Tribology, 2019, 141, .	1.9	29	
1330	Incidence of mercerization treatment in the mechanical properties of bamboo fibre bundles "Guadua Angustifolia Kunth" from colombian origin. DYNA (Colombia), 2019, 86, 156-163.	0.4	3	
1331	A Review on Date Palm Tree: Properties, Characterization and Its Potential Applications. Journal of Renewable Materials, 2019, 7, 1055-1075.	2.2	40	
1332	Mechanical Properties of Recycled Polymer Composites Made from Side-Stream Materials from Different Industries. Sustainability, 2019, 11, 6054.	3.2	8	
1333	Decision Support Strategy in Selecting Natural Fiber Materials for Automotive Side-Door Impact Beam Composites. Journal of Renewable Materials, 2019, 7, 997-1010.	2.2	7	
1334	Lignin-Rich PHWE Hemicellulose Extracts Responsible for Extended Emulsion Stabilization. Frontiers in Chemistry, 2019, 7, 871.	3.6	31	
1336	Estimation of injection parameters of a bio-based composite material from the rheological characterization. Journal of Physics: Conference Series, 2019, 1386, 012037.	0.4	0	
1337	Material Selection of a Natural Fibre Reinforced Polymer Composites using an Analytical Approach. Journal of Renewable Materials, 2019, 7, 1165-1179.	2.2	2	
1338	Agro-Industrial Waste Revalorization: The Growing Biorefinery. , 0, , .		26	
1340	Water-Based Processing of Fiberboard of Acrylic Resin Composites Reinforced With Cellulose Wood Pulp and Cellulose Nanofibrils. Journal of Renewable Materials, 2019, 7, 403-413.	2.2	1	
1341	Ballistic performance and statistical evaluation of multilayered armor with epoxy-fique fabric composites using the Weibull analysis. Journal of Materials Research and Technology, 2019, 8, 5899-5908.	5.8	35	
1342	3. Production of biodegradable composites from agricultural waste: A review. , 2019, , 39-48.		0	
1343	Mechanical and tribological properties of abaca-roselle/cardanol formaldehyde hybrid composites. Materials Research Express, 2019, 6, 125363.	1.6	9	
1344	Overview of Biobased Polymers. Advances in Polymer Science, 2019, , 1-35.	0.8	11	
1345	Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. Journal of Thermoplastic Composite Materials, 2022, 35, 1169-1209.	4.2	130	
1346	Assessing the Correlations between Different Traits in Copper-Sensitive and Copper-Resistant Varieties of Jute (Corchorus capsularis L.). Plants, 2019, 8, 545.	3.5	68	
\sim			~	
----------	----------------	----	--------	------------
	ΙΤΔΤΙ	ON	RED	UDL
<u> </u>	$\Pi \cap \Pi$		IVEL 1	

#	Article	IF	CITATIONS
1347	Influence of Natural Filler on Mechanical Properties of Hemp/Kevlar Hybrid Green Composite and Analysis of Change in Material Behavior Using Acoustic Emission. Journal of Natural Fibers, 2021, 18, 1580-1591.	3.1	31
1348	NFRP strengthening of reinforced concrete beams. IOP Conference Series: Materials Science and Engineering, 2019, 640, 012074.	0.6	8
1349	Moisture Absorption in Polymer Composites Reinforced with Vegetable Fiber: A Three-Dimensional Investigation via Langmuir Model. Polymers, 2019, 11, 1847.	4.5	18
1350	Influence of the Design Solutions of Extruder Screw Mixing Tip on Selected Properties of Wheat Bran-Polyethylene Biocomposite. Polymers, 2019, 11, 2120.	4.5	9
1351	Potential of Okra for Application in Textiles: A Review. Journal of Natural Fibers, 2019, , 1-13.	3.1	10
1352	Morphological changes and antioxidative capacity of jute (Corchorus capsularis, Malvaceae) under different color light-emitting diodes. Revista Brasileira De Botanica, 2019, 42, 581-590.	1.3	47
1353	Hybrid Straw/Perlite Reinforced Natural Rubber Biocomposites. Journal of Bionic Engineering, 2019, 16, 1127-1142.	5.0	7
1354	Bagasse Fiber Reinforced Functionalized Ethylene Propylene Rubber Composites by Palsule Process. Journal of Natural Fibers, 2019, , 1-13.	3.1	9
1355	Effect of fiber content on thermal and mechanical properties of euphorbia coagulum modified polyester and bamboo fiber composite. Materials Research Express, 2019, 6, 125341.	1.6	7
1356	Effect of alkali and silane surface treatments on the mechanical and physical behaviors of date palm seed-filled thermoplastic polyurethane eco-composites. Journal of Thermoplastic Composite Materials, 2022, 35, 487-502.	4.2	12
1357	Processing of Green Composites. Textile Science and Clothing Technology, 2019, , 47-72.	0.5	10
1358	Sisal Fibers Reinforced Epoxidized Nonedible Oils Based Epoxy Green Composites and Its Potential Applications. Textile Science and Clothing Technology, 2019, , 73-102.	0.5	3
1359	Mechanical, morphological, structural and dynamic mechanical properties of alkali treated Ensete stem fibers reinforced unsaturated polyester composites. Composite Structures, 2019, 207, 589-597.	5.8	100
1360	Development and mechanical characterization of microwave-cured thermoplastic based natural fibre reinforced composites. Journal of Thermoplastic Composite Materials, 2019, 32, 1427-1442.	4.2	35
1361	Mechanical Properties' Evaluation of Hemp Fibre-Reinforced Polymer Composites. Lecture Notes in Mechanical Engineering, 2019, , 343-351.	0.4	7
1362	Tensile Fatigue Behavior of Carbon-Flax/Epoxy Hybrid Composites. Applied Condition Monitoring, 2019, , 284-291.	0.4	2
1363	Cellulose/polyacrylonitrile electrospun composite fiber for effective separation of the surfactant-free oil-in-water mixture under a versatile condition. Separation and Purification Technology, 2019, 210, 913-919.	7.9	53
1364	New Multiscale Approach for Machining Analysis of Natural Fiber ReinforcedBio-Composites. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2019, 141, .	2.2	18

	CITATION R	EPORT	
#	Article	IF	Citations
1365	A review on processing techniques of bast fibers nanocellulose and its polylactic acid (PLA) nanocomposites. International Journal of Biological Macromolecules, 2019, 121, 1314-1328.	7.5	120
1366	All â€~green' composites comprising flax fibres and humins' resins. Composites Science and Technology, 2019, 171, 70-77.	7.8	39
1367	Comprehensive characterization of natural cellulosic fiber from Coccinia grandis stem. Carbohydrate Polymers, 2019, 207, 675-683.	10.2	95
1368	Experimental analysis of tensile, flexural, and tribological properties of walnut shell powder/polyester composites. Euro-Mediterranean Journal for Environmental Integration, 2019, 4, 1.	1.3	11
1369	Experimental and numerical analysis of the influence of drill point angle when drilling biocomposites. Composite Structures, 2019, 209, 700-709.	5.8	42
1370	Effect of different degradation types on properties of plastic waste obtained from espresso coffee capsules. Waste Management, 2019, 83, 123-130.	7.4	25
1371	Electron beam irradiation effect on the mechanical and thermal properties of 2-D silk fibroin fabric/poly(lactic acid) biocomposites. Journal of Industrial and Engineering Chemistry, 2019, 71, 150-159.	5.8	8
1372	A high-density polyethylene container based on ZnO/lignin dual fillers with potential antimicrobial activity. Polymer Testing, 2019, 73, 51-59.	4.8	38
1373	Experimental and numerical study of the bending strength of natural fibre composite structural channel sections. Composite Structures, 2019, 210, 57-69.	5.8	7
1374	Vibration damping and acoustic characteristics of sisal fibre–reinforced polypropylene composite. Noise and Vibration Worldwide, 2019, 50, 13-21.	1.0	19
1375	Surface modification of natural fibers in polymer composites. , 2019, , 3-41.		86
1376	Mechanical and physical stability of polyhydroxyalkanoate (PHA)-based wood plastic composites (WPCs) under natural weathering. Polymer Testing, 2019, 73, 214-221.	4.8	36
1378	Morphological Characterization of Hydrogels. Polymers and Polymeric Composites, 2019, , 819-863.	0.6	22
1379	Cereal straw and their physical modifications with hydrophilic and hydrophobic silica – The influence of functional hybrid material on natural rubber biocomposites. European Polymer Journal, 2019, 112, 176-185.	5.4	8
1380	Water–soluble extracts from banana pseudo–stem as functional additives for polylactic acid: Thermal and mechanical investigations. European Polymer Journal, 2019, 112, 466-476.	5.4	12
1381	Epoxy-based composites reinforced with African teff straw (<i>Eragrostis tef</i>) for lightweight applications. Polymers and Polymer Composites, 2019, 27, 189-200.	1.9	13
1382	Environmentally friendly polymer composites based on PBAT reinforced with natural fibers from the amazon forest. Polymer Composites, 2019, 40, 3351-3360.	4.6	45
1383	Comparison of strength and Young modulus of aligned discontinuous fibre PLA composites obtained experimentally and from theoretical prediction models. Composite Structures, 2019, 208, 566-573.	5.8	22

			2
#		IF	CITATIONS
1384	Study of hygroscopic stresses in asymmetric biocomposite laminates. Composites Science and Technology, 2019, 169, 7-15.	7.8	29
1385	Improved heat resistance properties of poly(l-lactide)/basalt fiber biocomposites with high crystallinity under forming hybrid-crystalline morphology. International Journal of Biological Macromolecules, 2019, 122, 848-856.	7.5	16
1386	Effect of interlayer carbon fiber dispersion on the low-velocity impact performance of woven flax-carbon hybrid composites. Journal of Composite Materials, 2019, 53, 1717-1734.	2.4	31
1387	Dielectric properties and interfacial adhesion of jute, kenaf and Eâ€glass fabrics reinforcing epoxy composites. Polymer Composites, 2019, 40, 2142-2153.	4.6	32
1388	Effect of chemical treatment on the thermal properties of hybrid natural fiberâ€reinforced composites. Journal of Applied Polymer Science, 2019, 136, 47154.	2.6	120
1389	Effect of bagasse ash filled epoxy composites reinforced with hybrid plant fibres for mechanical and thermal properties. Composites Part B: Engineering, 2019, 160, 170-176.	12.0	60
1390	Corrosion detection for natural/synthetic/textiles fiber polymer composites. , 2019, , 93-112.		9
1391	Sugarcane bagasse fiber as semi-reinforcement filler in natural rubber composite sandals. Journal of Material Cycles and Waste Management, 2019, 21, 326-335.	3.0	46
1392	Development of polystyrene composites based on blue agave bagasse by <i>in situ</i> RAFT polymerization. Journal of Applied Polymer Science, 2019, 136, 47089.	2.6	3
1393	A newly developed bulletproof vest using kenaf–X-ray film hybrid composites. , 2019, , 157-169.		5
1394	Mechanical performance of natural fibers–based thermosetting composites. , 2019, , 43-60.		68
1395	Compressive and fracture toughness of natural and synthetic fiber-reinforced polymer. , 2019, , 123-140.		16
1396	The effects of metal elements on ramie fiber oxidation degumming and the potential of using spherical bacterial cellulose for metal removal. Journal of Cleaner Production, 2019, 206, 498-507.	9.3	20
1397	Ground Improvement Techniques and Geosynthetics. Lecture Notes in Civil Engineering, 2019, , .	0.4	9
1398	Mechanical performance of biofibers and their corresponding composites. , 2019, , 259-292.		11
1399	Acoustic and mechanical properties of luffa fiber-reinforced biocomposites. , 2019, , 325-341.		17
1400	Processing and evaluation of mechanical properties of epoxy-filled E-glass fiber–fly ash hybrid composites. , 2019, , 293-306.		6
1401	Sustainable composites from agricultural waste: The use of steam explosion and surface modification to potentialize the use of wheat straw fibers for wood plastic composite industry. Polymer Composites, 2019, 40, E53.	4.6	13

#	Article	IF	CITATIONS
1402	Exploring the effect of electron beam irradiation on the properties of some EPDMâ€flax fiber composites. Polymer Composites, 2019, 40, 315-327.	4.6	14
1403	Statistical modeling and optimization of the flexural strength, water absorption and density of a doum palm-Kankara clay filler hybrid composite. Journal of King Saud University, Engineering Sciences, 2019, 31, 385-394.	2.0	13
1404	Synthesis and characterization of cellulosic fiber from red banana peduncle as reinforcement for potential applications. Journal of Natural Fibers, 2019, 16, 768-780.	3.1	78
1405	Natural fiber reinforced polylactic acid composites: A review. Polymer Composites, 2019, 40, 446-463.	4.6	296
1406	The Hybrid Effect of Jute/Kenaf/E-Glass Woven Fabric Epoxy Composites for Medium Load Applications: Impact, Inter-Laminar Strength, and Failure Surface Characterization. Journal of Natural Fibers, 2019, 16, 600-612.	3.1	117
1407	Investigating the Effects of Operational Factors on Wear Properties of Heat-Treated Pultruded Kenaf Fiber-Reinforced Polyester Composites using Taguchi Method. Journal of Natural Fibers, 2019, 16, 702-717.	3.1	20
1408	The post-impact response of flax/UP composite laminates under low velocity impact loading. International Journal of Damage Mechanics, 2019, 28, 183-199.	4.2	16
1409	Quasi-static and fatigue properties of a balsa cored sandwich structure with thermoplastic skins reinforced by flax fibres. Journal of Sandwich Structures and Materials, 2019, 21, 2358-2381.	3.5	21
1410	Surface modification and performance of jute fibers as reinforcement on polymer matrix: an overview. Journal of Natural Fibers, 2019, 16, 944-960.	3.1	44
1411	Effect of stacking sequence on properties of coconut leaf sheath/jute/E-glass reinforced phenol formaldehyde hybrid composites. Journal of Industrial Textiles, 2019, 49, 3-32.	2.4	83
1412	Mechanical stability and biodegradability balance of wood fiber reinforced soybean protein composites. Polymer Composites, 2019, 40, 1228-1238.	4.6	6
1413	Proposed Method for Determining Cross-Sectional Area of <i>Guadua angustifolia</i> Bamboo Fibers. Journal of Natural Fibers, 2019, 16, 253-262.	3.1	1
1414	The effect of moisture content on electrical impedance spectroscopy response of natural fibre-polymer composite granules. Journal of Thermoplastic Composite Materials, 2019, 32, 216-227.	4.2	3
1415	Main Characteristics of Underexploited Amazonian Palm Fibers for Using as Potential Reinforcing Materials. Waste and Biomass Valorization, 2019, 10, 3125-3142.	3.4	9
1416	Comparison on the properties of the wheat straw/rubber composites by adding graphite/carbon fiber. Polymer Composites, 2019, 40, E983-E992.	4.6	0
1417	Assessment of Ichu Fibers Extraction and Their Use as Reinforcement in Composite Materials. Journal of Natural Fibers, 2020, 17, 700-715.	3.1	17
1418	Investigations on jute fibre-reinforced polyester composites: Effect of alkali treatment and poly(lactic acid) coating. Journal of Industrial Textiles, 2020, 49, 923-942.	2.4	42
1419	African Teff Straw as a Potential Reinforcement in Polymer Composites for Light-Weight Applications: Mechanical, Thermal, Physical, and Chemical Characterization before and after Alkali Treatment. Journal of Natural Fibers, 2020, 17, 1011- <u>1025</u> .	3.1	18

#	Article	IF	CITATIONS
1420	The effect of alkaline–silane treatment of rubberwood flour for water absorption and mechanical properties of plastic composites. Journal of Thermoplastic Composite Materials, 2020, 33, 599-613.	4.2	15
1421	Effect of wheat straw oxidation on thermoplastic starch composites: Mechanical, thermal, and rheological process behaviors. Journal of Thermoplastic Composite Materials, 2020, 33, 646-658.	4.2	6
1422	Investigation of the effect of titanium dioxide and clay grafted with glycidyl methacrylate by gamma radiation on the properties of EVA flexible films. Radiation Physics and Chemistry, 2020, 169, 107973.	2.8	7
1423	Green composites: A review of processing technologies and recent applications. Journal of Thermoplastic Composite Materials, 2020, 33, 1145-1171.	4.2	112
1424	On the Correlation of Lignocellulosic Filler Composition with the Performance Properties of Poly(Îμ-Caprolactone) Based Biocomposites. Waste and Biomass Valorization, 2020, 11, 1467-1479.	3.4	40
1425	Evaluation of <i>Phormium Cookianum</i> Fibers as Reinforcements for Polypropylene-based Composites. Journal of Natural Fibers, 2020, 17, 1039-1047.	3.1	2
1426	Influence of 3D warp interlock fabrics parameters made with flax rovings on their final mechanical behaviour. Journal of Industrial Textiles, 2020, 49, 1123-1144.	2.4	13
1427	Assessment of Sisal Fiber Integrity as a Reinforcing Element in MgO-Based Cement Matrices. Waste and Biomass Valorization, 2020, 11, 3045-3056.	3.4	3
1428	Effect of coupling agent content on properties of composites made from polylactic acid and chrysanthemum waste. Journal of Vinyl and Additive Technology, 2020, 26, 10-16.	3.4	13
1429	A comparison study on the mechanical properties of composites based on kenaf and pineapple leaf fibres. Polymer Bulletin, 2020, 77, 1449-1463.	3.3	37
1430	Effect of surface treatment of natural reinforcement on thermal and mechanical properties of vinyl ester/polyurethane interpenetrating polymer network-based biocomposites. Journal of Elastomers and Plastics, 2020, 52, 29-52.	1.5	8
1431	Properties of poly(lactic acid)/durian husk fiber biocomposites: Effects of fiber content and processing aid. Journal of Thermoplastic Composite Materials, 2020, 33, 1518-1532.	4.2	9
1432	Fabrication and characterization of electrospun membranes from Poly(lactic acid) and hexadecyl trimethyl ammonium chloride-modified montmorillonite clay. Journal of Industrial Textiles, 2020, 50, 415-424.	2.4	7
1433	Impact behavior of sandwich structures made of flax/epoxy face sheets and agglomerated cork. Journal of Natural Fibers, 2020, 17, 168-188.	3.1	22
1434	A review of the tensile and fatigue responses of cellulosic fibre-reinforced polymer composites. Mechanics of Advanced Materials and Structures, 2020, 27, 645-660.	2.6	37
1435	Numerical Study of Frequency and Deflection Responses of Natural Fiber (Luffa) Reinforced Polymer Composite and Experimental Validation. Journal of Natural Fibers, 2020, 17, 505-519.	3.1	36
1436	A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 2020, 55, 829-892.	3.7	478
1437	The mystery of coconut overturns the crashworthiness design of composite materials. International Journal of Mechanical Sciences, 2020, 168, 105244.	6.7	28

#	Article	IF	CITATIONS
1438	Biodegradable hybrid polymer composite reinforced with coconut shell and sweet date seed (Phoenix) Tj ETQqO (Experiments and Design, 2020, 3, 41-51.	0 o rgBT /0 2.1	Overlock 10 T 3
1439	Effect of acetylation technique on mechanical behavior and durability of palm fibre vinyl-ester composites. Materials Today: Proceedings, 2020, 21, 634-637.	1.8	12
1440	Solvent-free pulverization and surface fatty acylation of pulp fiber for property-enhanced cellulose/polypropylene composites. Journal of Cleaner Production, 2020, 244, 118811.	9.3	10
1441	The Potential of Reformed Slag on the Mechanical and Thermal Behaviour of Toughened Unsaturated Polyester Composites. Waste and Biomass Valorization, 2020, 11, 4369-4378.	3.4	1
1442	Modified hemp fibers intended for fiberâ€reinforced polymer composites used in structural applications—A review. I. Methods of modification. Polymer Composites, 2020, 41, 5-31.	4.6	92
1443	Improved properties of corn fiber-reinforced polylactide composites by incorporating silica nanoparticles at interfaces. Polymers and Polymer Composites, 2020, 28, 170-179.	1.9	6
1444	Analytical modeling and experimental validation of the low-velocity impact response of hemp and hemp/glass thermoset composites. Journal of Composite Materials, 2020, 54, 409-421.	2.4	14
1445	Characterization and Interface of Natural and Synthetic Hybrid Composites. , 2020, , 389-400.		18
1446	Development of electrically conductive composites based on recycled resources. Journal of the Textile Institute, 2020, 111, 16-25.	1.9	7
1447	Impact of silane treatment on the dielectric properties of pineapple leaf/kenaf fiber reinforced phenolic composites. Journal of Composite Materials, 2020, 54, 937-946.	2.4	26
1448	DFT study of the application of polymers cellulose and cellulose acetate for adsorption of metal ions (Cd2+, Cu2+ and Cr3+) potentially toxic. Polymer Bulletin, 2020, 77, 3443-3456.	3.3	54
1449	Milkweed floss fiber/PLA composites: effect of alkaline and epoxy-silanol surface modifications on their mechanical properties. Composite Interfaces, 2020, 27, 495-513.	2.3	12
1450	Morpho-physiological traits, gaseous exchange attributes, and phytoremediation potential of jute (Corchorus capsularis L.) grown in different concentrations of copper-contaminated soil. Ecotoxicology and Environmental Safety, 2020, 189, 109915.	6.0	93
1451	Prestrained twistless flax yarn as reinforcement for polymerâ€matrix composites. Polymer Composites, 2020, 41, 930-938.	4.6	5
1452	Towards hemp fabrics for high-performance composites: Influence of weave pattern and features. Composites Part B: Engineering, 2020, 181, 107582.	12.0	40
1453	Accelerated weathering studies of kenaf/sisal fiber fabric reinforced fully biobased hybrid bioepoxy composites for semi-structural applications: Morphology, thermo-mechanical, water absorption behavior and surface hydrophobicity. Construction and Building Materials, 2020, 235, 117464.	7.2	149
1454	Silk Lattice Structures from Unidirectional Silk Fiber–Reinforced Composites for Breaking Energy Absorption. Advanced Engineering Materials, 2020, 22, 1900921.	3.5	6
1455	Influence of gamma and ultraviolet radiation on the mechanical behavior of a hybrid polyester composite reinforced with curaua mat and aramid fabric. Journal of Materials Research and	5.8	11

#	Article	IF	CITATIONS
1456	Interfacial reinforcement mechanism in poly(lactic acid)/natural fiber biocomposites featuring ZnO nanowires at the interface. Materials and Design, 2020, 186, 108332.	7.0	21
1457	Flax treatment with strategic enzyme combinations: Effect on fiber fineness and mechanical properties of composites. Journal of Reinforced Plastics and Composites, 2020, 39, 231-245.	3.1	8
1458	Effects of acid, alkaline, and seawater aging on the mechanical and thermomechanical properties of glass fiber/epoxy composites filled with carbon nanofibers. Journal of Applied Polymer Science, 2020, 137, 48434.	2.6	26
1459	Lignin as Alternative Reinforcing Filler in the Rubber Industry: A Review. Frontiers in Materials, 2020, 6, .	2.4	60
1460	Creep model for natural fiber polymer composites (NFPCs) based on variable order fractional derivatives: Simulation and parameter study. Journal of Applied Polymer Science, 2020, 137, 48796.	2.6	21
1461	The Influence of Kaolin Clay on the Mechanical Properties and Structure of Thermoplastic Starch Films. Polymers, 2020, 12, 73.	4.5	33
1462	Interfacial crystals morphology modification in cellulose fiber/polypropylene composite by mechanochemical method. Composites Part A: Applied Science and Manufacturing, 2020, 130, 105765.	7.6	23
1463	Characterization Studies of Natural Cellulosic Fibers Extracted from Shwetark Stem. Journal of Natural Fibers, 2021, 18, 1934-1945.	3.1	51
1464	Characterization of Lignocellulosic Biomass from Malaysian's Yankee Pineapple AC6 Toward Composite Application. Journal of Natural Fibers, 2021, 18, 2006-2018.	3.1	18
1465	Key advances in development of straw fibre bio-composite boards: An overview. Materials Research Express, 2020, 7, 012005.	1.6	18
1466	Tuning of polyurethane foam mechanical and thermal properties using ball-milled cellulose. Carbohydrate Polymers, 2020, 231, 115772.	10.2	53
1467	Comparative mechanical properties between biocomposites of Epoxy and polyester matrices reinforced by hemp fiber. Journal of Materials Research and Technology, 2020, 9, 1296-1304.	5.8	72
1468	Ballistic behavior of epoxy matrix composites reinforced with piassava fiber against high energy ammunition. Journal of Materials Research and Technology, 2020, 9, 1734-1741.	5.8	41
1469	Influence of the process method on the properties of paper-fiber-reinforced composites. Materials Today: Proceedings, 2020, 31, S236-S241.	1.8	0
1470	Synthesis and properties of a glucono-î´-lactone-modified silicone surfactant from high-amine-value amodimethicone. Phosphorus, Sulfur and Silicon and the Related Elements, 2020, 195, 392-398.	1.6	1
1471	Characterizations of bacterial cellulose nanofibers reinforced edible films based on konjac glucomannan. International Journal of Biological Macromolecules, 2020, 145, 634-645.	7.5	93
1472	Thermal and structural characterization of buriti fibers and their relevance in fabric reinforced composites. Journal of Materials Research and Technology, 2020, 9, 115-123.	5.8	40
1473	Strong and Tough Polylactic Acid Based Composites Enabled by Simultaneous Reinforcement and Interfacial Compatibilization of Microfibrillated Cellulose. ACS Sustainable Chemistry and Engineering, 2020, 8, 1573-1582.	6.7	78

#	Article	IF	CITATIONS
1474	Rheological and mechanical properties of cellulose/LDPE composites using sustainable and fully renewable compatibilisers. Journal of Applied Polymer Science, 2020, 137, 48744.	2.6	12
1475	Characterization of banana fiber-reinforced polypropylene composites. Journal of the Indian Academy of Wood Science, 2020, 17, 1-8.	0.9	16
1476	Magnetic bacterial cellulose and carbon nanofiber aerogel by simple immersion and pyrolysis. Journal of Materials Science, 2020, 55, 4113-4126.	3.7	20
1477	Effects of chemical treatments and degumming methods on physical and mechanical properties of okra bast and corn husk fibers. Journal of the Textile Institute, 2020, 111, 1418-1435.	1.9	23
1478	Producing a novel edible film from mushrooms (L. edodes and F. velutipes) byproducts with a two-stage treatment namely grinding and bleaching. Journal of Food Engineering, 2020, 275, 109862.	5.2	23
1479	New processing technique for biodegradable kenaf composites: A simple alternative to commercial automotive parts. Composites Part B: Engineering, 2020, 184, 107644.	12.0	25
1480	Effects of the infill pattern on mechanical properties of fused layer modeling (FLM) 3D printed wood/polylactic acid (PLA) composites. European Journal of Wood and Wood Products, 2020, 78, 65-74.	2.9	64
1481	Variability of mechanical properties of flax fibres for composite reinforcement. A review. Industrial Crops and Products, 2020, 145, 111984.	5.2	102
1482	Water absorption and effect of temperature on the characteristics of flax/hemp hybrid composites. Materials Today: Proceedings, 2020, 31, S227-S231.	1.8	2
1483	Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Materials and Design, 2020, 187, 108397.	7.0	236
1484	Evaluation of Izod impact and bend properties of epoxy composites reinforced with mallow fibers. Journal of Materials Research and Technology, 2020, 9, 373-382.	5.8	27
1485	Lowering in water absorption capacity and mechanical degradation of sisal/epoxy composite by sodium bicarbonate treatment and PLA coating. Polymer Composites, 2020, 41, 668-681.	4.6	32
1486	Mode I fracture toughness analysis of rubber particulate epoxy composite. Materials Today: Proceedings, 2020, 22, 759-761.	1.8	1
1487	Enhancement of Mechanical Properties of Flax-Epoxy Composite with Carbon Fibre Hybridisation for Lightweight Applications. Materials, 2020, 13, 109.	2.9	34
1488	Structure and properties of recycled bamboo fiber reinforced chemically functionalized ethylene propylene rubber composites. Polymers and Polymer Composites, 2020, 28, 609-622.	1.9	11
1489	Stress–strain relationship model of glulam bamboo under axial loading. Advanced Composites Letters, 2020, 29, 2633366X2095872.	1.3	33
1490	Analysis of Selected Properties of Biocomposites Based on Polyethylene with a Natural Origin Filler. Materials, 2020, 13, 4182.	2.9	6
1491	Caranan Fiber from Mauritiella armata Palm Tree as Novel Reinforcement for Epoxy Composites. Polymers, 2020, 12, 2037.	4.5	28

#	Article	IF	CITATIONS
1492	Surface modification of sized vegetal fibers through direct fluorination for eco-composites. Journal of Fluorine Chemistry, 2020, 238, 109618.	1.7	9
1493	Inverse approach for flax yarns mechanical properties identification from statistical mechanical characterization of the fabric. Mechanics of Materials, 2020, 151, 103638.	3.2	6
1494	Study of the Influence of the Almond Shell Variety on the Mechanical Properties of Starch-Based Polymer Biocomposites. Polymers, 2020, 12, 2049.	4.5	13
1495	Recent advancement in the natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 2020, 277, 124109.	9.3	241
1496	Properties of Chemically Modified (Selected Silanes) Lignocellulosic Filler and Its Application in Natural Rubber Biocomposites. Materials, 2020, 13, 4163.	2.9	28
1497	PLA Composites Reinforced with Flax and Jute Fibers—A Review of Recent Trends, Processing Parameters and Mechanical Properties. Polymers, 2020, 12, 2373.	4.5	100
1498	Properties and Characterization of New Approach Organic Nanoparticle-Based Biocomposite Board. Polymers, 2020, 12, 2236.	4.5	5
1499	Durability of natural fibre epoxy composite structural columns: High cycle compression fatigue and moisture ingress. Composites Part C: Open Access, 2020, 2, 100013.	3.2	13
1500	A novel approach to fabricate fully biodegradable poly(butylene succinate) biocomposites using a paper-manufacturing and compression molding method. Composites Part A: Applied Science and Manufacturing, 2020, 139, 106117.	7.6	7
1501	Effect of die structure on the properties of self-reinforced polypropylene/noil ramie fiber composites prepared by solid-state extrusion. Journal of Polymer Research, 2020, 27, 1.	2.4	3
1502	Hybrid composite laminates reinforced with flax-basalt-glass woven fabrics for lightweight load bearing structures. Journal of Industrial Textiles, 2022, 51, 4622S-4664S.	2.4	13
1503	Copernicia Prunifera Leaf Fiber: A Promising New Reinforcement for Epoxy Composites. Polymers, 2020, 12, 2090.	4.5	21
1504	3D printing of biofiber-reinforced composites and their mechanical properties: a review. Rapid Prototyping Journal, 2020, 26, 1113-1129.	3.2	16
1505	Mechanical, Thermal, Void Fraction and Water Absorption of Silane Surface Modified Silk Fiber Reinforced Epoxy Composites. Polymer-Plastics Technology and Materials, 2020, 59, 1987-2002.	1.3	4
1506	Effect of chemical and enzymatic treatments of alfa fibers on polylactic acid bio-composites properties. Journal of Composite Materials, 2020, 54, 4959-4967.	2.4	20
1507	Green composite materials for green technology in the automotive industry. IOP Conference Series: Materials Science and Engineering, 2020, 872, 012064.	0.6	19
1508	A review on mechanical characterization of polymer matrix composites & amp; its effects reinforced with various natural fibres. Materials Today: Proceedings, 2020, 33, 798-805.	1.8	33
1509	Great Enhancement of Selfâ€Powered Photoresponse Performance of C ₃ H ₈ NSiâ€TiO ₂ NRAs/nâ€Si Heterojunction by Buildâ€In and Buildâ€Out Electric Field Jointly Promoting Carrier Separation. Advanced Electronic Materials, 2020, 6, 2000501.	5.1	10

#	Article	IF	CITATIONS
1510	Low Concentrations for Significant Improvements in Thermal and Thermomechanical Properties of Poly(Lactic Acid)–Keratin Biocomposites Obtained by Extrusion and 3D Printing. Journal of Natural Fibers, 2022, 19, 1715-1728.	3.1	9
1511	A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites. Polymer Composites, 2020, 41, 3940-3965.	4.6	179
1512	Biodegradable thermosets polymers as an alternative solution to pollution generated by plastics. Journal of Physics: Conference Series, 2020, 1672, 012013.	0.4	7
1513	Ballistic Performance of Ramie Fabric Reinforcing Graphene Oxide-Incorporated Epoxy Matrix Composite. Polymers, 2020, 12, 2711.	4.5	25
1514	Elucidating the Sound Absorption Characteristics of Foxtail Millet (Setariaitalica) Husk. Materials, 2020, 13, 5126.	2.9	5
1515	Biodegradation of sustainable nonwovens used in water absorbing geocomposites supporting plants vegetation. Sustainable Materials and Technologies, 2020, 26, e00235.	3.3	5
1516	Effect of a Bio-Based Dispersing Aid (Einar® 101) on PLA-Arbocel® Biocomposites: Evaluation of the Interfacial Shear Stress on the Final Mechanical Properties. Biomolecules, 2020, 10, 1549.	4.0	7
1517	Scientific Literature Analysis on Sustainability with the Implication of Open Innovation. Journal of Open Innovation: Technology, Market, and Complexity, 2020, 6, 162.	5.2	16
1518	Recent Progress in Hybrid Biocomposites: Mechanical Properties, Water Absorption, and Flame Retardancy. Materials, 2020, 13, 5145.	2.9	52
1519	Research progress for plastic waste management and manufacture of value-added products. Advanced Composites and Hybrid Materials, 2020, 3, 443-461.	21.1	104
1519 1520	Research progress for plastic waste management and manufacture of value-added products. Advanced Composites and Hybrid Materials, 2020, 3, 443-461. Study of the Influence of Plant-Based Filler on the Physicomechanical Properties and Processing Parameters of a Composite Based on Secondary Polymer Raw Materials. Theoretical Foundations of Chemical Engineering, 2020, 54, 745-749.	21.1 0.7	104 0
1519 1520 1521	Research progress for plastic waste management and manufacture of value-added products. Advanced Composites and Hybrid Materials, 2020, 3, 443-461. Study of the Influence of Plant-Based Filler on the Physicomechanical Properties and Processing Parameters of a Composite Based on Secondary Polymer Raw Materials. Theoretical Foundations of Chemical Engineering, 2020, 54, 745-749. A Review on the Production of Thermo-Plastic Starch From the Wastes of Starchy Fruits and Vegetables. , 2020,	21.1	104 0 0
1519 1520 1521 1522	Research progress for plastic waste management and manufacture of value-added products. Advanced Composites and Hybrid Materials, 2020, 3, 443-461. Study of the Influence of Plant-Based Filler on the Physicomechanical Properties and Processing Parameters of a Composite Based on Secondary Polymer Raw Materials. Theoretical Foundations of Chemical Engineering, 2020, 54, 745-749. A Review on the Production of Thermo-Plastic Starch From the Wastes of Starchy Fruits and Vegetables., 2020, . Lignocellulosic Natural Fiber Reinforced Bisphenol F Epoxy Based Bio-composites: Characterization of Mechanical Electrical Performance. Journal of Natural Fibers, 2020, , 1-16.	21.1 0.7 3.1	104 0 0 13
1519 1520 1521 1522	Research progress for plastic waste management and manufacture of value-added products. Advanced Composites and Hybrid Materials, 2020, 3, 443-461. Study of the Influence of Plant-Based Filler on the Physicomechanical Properties and Processing Parameters of a Composite Based on Secondary Polymer Raw Materials. Theoretical Foundations of Chemical Engineering, 2020, 54, 745-749. A Review on the Production of Thermo-Plastic Starch From the Wastes of Starchy Fruits and Vegetables., 2020, , . Lignocellulosic Natural Fiber Reinforced Bisphenol F Epoxy Based Bio-composites: Characterization of Mechanical Performance. Journal of Natural Fibers, 2020, , 1-16. On the Use of Biobased Waxes to Tune Thermal and Mechanical Properties of Polyhydroxyalkanoates–Bran Biocomposites. Polymers, 2020, 12, 2615.	21.1 0.7 3.1 4.5	104 0 0 13 18
1519 1520 1521 1522 1523	Research progress for plastic waste management and manufacture of value-added products. Advanced Composites and Hybrid Materials, 2020, 3, 443-461. Study of the Influence of Plant-Based Filler on the Physicomechanical Properties and Processing Parameters of a Composite Based on Secondary Polymer Raw Materials. Theoretical Foundations of Chemical Engineering, 2020, 54, 745-749. A Review on the Production of Thermo-Plastic Starch From the Wastes of Starchy Fruits and Vegetables. , 2020, , . Lignocellulosic Natural Fiber Reinforced Bisphenol F Epoxy Based Bio-composites: Characterization of Mechanical Electrical Performance. Journal of Natural Fibers, 2020, , 1-16. On the Use of Biobased Waxes to Tune Thermal and Mechanical Properties of Polyhydroxyalkanoatesate" Bran Biocomposites. Polymers, 2020, 12, 2615. A detailed characterization of sandalwood-filled high-density polyethylene composites. Journal of Thermoplastic Composite Materials, 2022, 35, 1903-1920.	 21.1 0.7 3.1 4.5 4.2 	104 0 0 13 18 4
1519 1520 1521 1522 1523 1524	Research progress for plastic waste management and manufacture of value-added products. Advanced Composites and Hybrid Materials, 2020, 3, 443-461. Study of the Influence of Plant-Based Filler on the Physicomechanical Properties and Processing Parameters of a Composite Based on Secondary Polymer Raw Materials. Theoretical Foundations of Chemical Engineering, 2020, 54, 745-749. A Review on the Production of Thermo-Plastic Starch From the Wastes of Starchy Fruits and Vegetables. , 2020, . Lignocellulosic Natural Fiber Reinforced Bisphenol F Epoxy Based Bio-composites: Characterization of Mechanical Electrical Performance. Journal of Natural Fibers, 2020, , 1-16. On the Use of Biobased Waxes to Tune Thermal and Mechanical Properties of Polyhydroxyalkanoateså€"Bran Biocomposites. Polymers, 2020, 12, 2615. A detailed characterization of sandalwood-filled high-density polyethylene composites. Journal of Thermoplastic Composite Materials, 2022, 35, 1903-1920. Development of glass-stalks-unsaturated polyester hybrid composites. Composites Communications, 2020, 22, 100428.	 21.1 0.7 3.1 4.5 4.2 6.3 	104 0 0 13 18 4 6
1519 1520 1521 1522 1523 1525	Research progress for plastic waste management and manufacture of value-added products. Advanced Study of the Influence of Plant-Based Filler on the Physicomechanical Properties and Processing Parameters of a Composite Based on Secondary Polymer Raw Materials. Theoretical Foundations of Chemical Engineering, 2020, 54, 745-749. A Review on the Production of Thermo-Plastic Starch From the Wastes of Starchy Fruits and Vegetables., 2020, Lignocellulosic Natural Fiber Reinforced Bisphenol F Epoxy Based Bio-composites: Characterization of Mechanical Electrical Performance. Journal of Natural Fibers, 2020, 1-16. On the Use of Biobased Waxes to Tune Thermal and Mechanical Properties of Polyhydroxyalkanoatesåe" Bran Biocomposites. Polymers, 2020, 12, 2615. A detailed characterization of sandalwood-filled high-density polyethylene composites. Journal of Thermoplastic Composite Materials, 2022, 35, 1903-1920. Development of glass-stalks-unsaturated polyester hybrid composites. Composites Communications, 2020, 22, 100428. The effect of granite powder on mechanical, structural and water absorption characteristics of alkali treated cordia dichotoma fiber reinforced polyester composite. Polymer Testing, 2020, 91, 106782.	 21.1 0.7 3.1 4.5 4.2 6.3 4.8 	104 0 0 13 13 4 4 6 35

		LEPORT	
#	Article	IF	Citations
1528	Valorization of agricultural wastes for multidimensional use. , 2020, , 41-78.		4
1529	High-performance lignocellulose/polycarbonate biocomposites fabricated by in situ reaction: Structure and properties. Composites Part A: Applied Science and Manufacturing, 2020, 138, 106068.	7.6	14
1530	Low-velocity impact behaviour of green epoxy biocomposite laminates reinforced by sisal fibers. Composite Structures, 2020, 253, 112744.	5.8	35
1531	Biomass-Based Cellulose Functionalized by Phosphonic Acid with High Selectivity and Capacity for Capturing U(VI) in Aqueous Solution. Applied Sciences (Switzerland), 2020, 10, 5455.	2.5	7
1532	Surface treatment of Basalt fiber for use in automotive composites. Materials Today Chemistry, 2020, 17, 100334.	3.5	63
1533	Comparing mechanical properties of impact modified polypropylene-copolymer (IMPP) from injection molding (IM) and fused layer modeling (FLM) processes. Rapid Prototyping Journal, 2020, 26, 993-1003.	3.2	6
1534	Water Absorption in Vegetable Fiber-Reinforced Polymer Composites: A Three-Dimensional Investigation Using the Langmuir-Type Model. Defect and Diffusion Forum, 0, 399, 164-170.	0.4	3
1535	Rigid Polyurethane Foams Based on Bio-Polyol and Additionally Reinforced with Silanized and Acetylated Walnut Shells for the Synthesis of Environmentally Friendly Insulating Materials. Materials, 2020, 13, 3245.	2.9	20
1536	Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability. Polymers, 2020, 12, 1558.	4.5	209
1537	Effect of NaOH Treatment on the Flexural Modulus of Hemp Core Reinforced Composites and on the Intrinsic Flexural Moduli of the Fibers. Polymers, 2020, 12, 1428.	4.5	4
1538	Sound-Absorption Properties of Materials Made of Esparto Grass Fibers. Sustainability, 2020, 12, 5533.	3.2	36
1539	Fused Deposition Modeling of Poly (lactic acid)/Nutshells Composite Filaments: Effect of Alkali Treatment. Journal of Polymers and the Environment, 2020, 28, 3139-3152.	5.0	14
1540	A novel approach for development of printed circuit board from biofiber based composites. Polymer Composites, 2020, 41, 4550-4558.	4.6	101
1541	Effects of microcrystalline cellulose surface modification on the mechanical and thermal properties of polylactic acid composite films. Plastics, Rubber and Composites, 2020, 49, 450-455.	2.0	6
1542	Nanocellulose Production: Exploring the Enzymatic Route and Residues of Pulp and Paper Industry. Molecules, 2020, 25, 3411.	3.8	101
1543	Effect of the Fiber Treatment on the Stiffness of Date Palm Fiber Reinforced PP Composites: Macro and Micromechanical Evaluation of the Young's Modulus. Polymers, 2020, 12, 1693.	4.5	25
1544	Impact of Hot Water Treated Lotus Leaves on Interfacial and Physico-Mechanical of Gelatin/Lotus Leaf Composites. Journal of Polymers and the Environment, 2020, 28, 3270-3278.	5.0	7
1546	Development of an extrudable paste to build mycelium-bound composites. Materials and Design, 2020, 195, 109058.	7.0	48

#	Article	IF	CITATIONS
1547	Mechanical characterization and optimization of delamination factor in drilling bidirectional jute fibre-reinforced polymer biocomposites. International Journal of Advanced Manufacturing Technology, 2020, 111, 2073-2094.	3.0	38
1548	Direct Comparison of the Structural Compression Characteristics of Natural and Synthetic Fiber-Epoxy Composites: Flax, Jute, Hemp, Glass and Carbon Fibers. Fibers, 2020, 8, 62.	4.0	22
1549	Efficacy of modified rice straw fibre on properties of cementitious composites. Journal of Cleaner Production, 2020, 276, 124184.	9.3	21
1550	The influence of extraction method to the properties of α-cellulose from abaca stem (Musa textillis). AIP Conference Proceedings, 2020, , .	0.4	1
1551	Promising Mechanical, Thermal, and Ballistic Properties of Novel Epoxy Composites Reinforced with Cyperus malaccensis Sedge Fiber. Polymers, 2020, 12, 1776.	4.5	62
1552	Palm leaf sheath fiber extraction and surface modification. Journal of Engineered Fibers and Fabrics, 2020, 15, 155892502095072.	1.0	4
1553	Composites with Natural Fibers and Conventional Materials Applied in a Hard Armor: A Comparison. Polymers, 2020, 12, 1920.	4.5	58
1554	Fracture Behaviors of SiC Particle Filled and Jute Fiber Reinforced Natural Composites. Journal of Natural Fibers, 2022, 19, 2338-2355.	3.1	10
1555	The influence of fibre orientation and chemical treatment on the performance of unsaturated polyester/chrysanthemum stem fibre composites. Polymers and Polymer Composites, 2021, 29, 1103-1113.	1.9	2
1556	An empirical research on areca fiber polymer composite for automotive components in modern industry. Materials Today: Proceedings, 2020, 33, 4493-4497.	1.8	9
1557	Review of Hybrid Fiber Based Composites with Nano Particles—Material Properties and Applications. Polymers, 2020, 12, 2088.	4.5	41
1558	Temperature-frequency-dependent properties analysis of a bio-composite based on a new liquid thermoplastic resin reinforced with jute fibers. Journal of Thermoplastic Composite Materials, 2022, 35, 2125-2145.	4.2	2
1559	Moisture absorption studies on Kenaf composites at various temperatures. IOP Conference Series: Materials Science and Engineering, 2020, 764, 012016.	0.6	1
1560	Performance evaluation of conventional and hybrid woven fabrics for the development of sustainable personal protective clothing. Environmental Science and Pollution Research, 2020, 27, 33835-33847.	5.3	7
1561	Mechanical and Thermal Characterization of Jute Fabric-Reinforced Polypropylene Composites: Effect of Maleic Anhydride. Journal of Natural Fibers, 2022, 19, 1792-1804.	3.1	10
1562	Mechanical characterization of metal-composite laminates based on cellulosic kenaf and pineapple leaf fiber. Journal of Natural Fibers, 2022, 19, 2163-2175.	3.1	11
1563	Exploring the innovation landscape of bamboo fiber technologies from global patent data perspective. Cellulose, 2020, 27, 9137-9156.	4.9	5
1564	Functional principles of baobab fruit pedicels – anatomy and biomechanics. Annals of Botany, 2020, 126, 1215-1223.	2.9	0

#	Article	IF	CITATIONS
1565	Quasi-Static Shear Test of Hybrid Adhesive Bonds Based on Treated Cotton-Epoxy Resin Layer. Polymers, 2020, 12, 2945.	4.5	5
1566	Bagasse Fiber Reinforced Functionalized Styrene Ethylene Butylene Styrene Composites by Palsule Process. Journal of Natural Fibers, 2020, , 1-12.	3.1	5
1567	Effect of Chemical Treatment and Length of Raffia Fiber (Raphia vinifera) on Mechanical Stiffening of Polyester Composites. Polymers, 2020, 12, 2899.	4.5	18
1568	The Effect Of Filler Content and Chemical Modification On The Properties Of Poly(Lactic) Tj ETQq1 1 0.784314 Engineering, 2020, 957, 012010.	rgBT /Over 0.6	lock 10 Tf 50 0
1569	Induced Modification of Flexural Toughness of Natural Hydraulic Lime Based Mortars by Addition of Giant Reed Fibers. Case Studies in Construction Materials, 2020, 13, e00425.	1.7	8
1570	Biomass derived Fibers as a Substitute to Synthetic Fibers in Polymer Composites. ChemBioEng Reviews, 2020, 7, 193-215.	4.4	14
1571	A Review of Permeability and Flow Simulation for Liquid Composite Moulding of Plant Fibre Composites. Materials, 2020, 13, 4811.	2.9	15
1572	Mechanical Properties of Hollow Glass Microspheres Filled Jute Woven Comingled Composites. Key Engineering Materials, 0, 858, 41-46.	0.4	5
1573	Influence of Mercerization Process on the Surface of Coconut Fiber for Composite Reinforcement. Materials Science Forum, 0, 1012, 37-42.	0.3	2
1574	Plant-Based Natural Fibre Reinforced Composites: A Review on Fabrication, Properties and Applications. Coatings, 2020, 10, 973.	2.6	104
1575	Hybrid Polymer Composites of Bio-Based Bast Fibers with Glass, Carbon and Basalt Fibers for Automotive Applications—A Review. Molecules, 2020, 25, 4933.	3.8	32
1576	Non-Fickian Moisture Transport in Vegetable-Fiber-Reinforced Polymer Composites Using a Langmuir-Type Model. Polymers, 2020, 12, 2503.	4.5	8
1577	Effects of magnesium carbonate concentration and lignin presence on properties of natural cellulosic Cissus quadrangularis fiber composites. International Journal of Biological Macromolecules, 2020, 164, 3611-3620.	7.5	14
1578	New Materials Based on Ethylene Propylene Diene Terpolymer and Hemp Fibers Obtained by Green Reactive Processing. Materials, 2020, 13, 2067.	2.9	7
1579	Fabrication of agave tequilana bagasse/PLA composite and preliminary mechanical properties assessment. Industrial Crops and Products, 2020, 152, 112523.	5.2	30
1580	Wood-plastic from <i>Pennisetum Purpureum</i> Fibers and Recycled Low-density Polyethylene. Journal of Natural Fibers, 2022, 19, 858-871.	3.1	10
1581	Investigation of long-term ageing effect on the thermal properties of chicken feather fibre/poly(lactic) Tj ETQq() 0 0 rgBT /(2.4	Overlock 10 Ti 18

1582	Bacterial celluloseâ€based biosensors. Medical Devices & Sensors, 2020, 3, e10102.	2.7	26
------	--	-----	----

#	Article	IF	CITATIONS
1583	Study of Mechanical and Thermomechanical Properties of Vinyl Ester/Polyurethane Interpenetrating Polymer Network Based Hybrid Composites. Fibers and Polymers, 2020, 21, 1096-1114.	2.1	9
1584	Potential Natural Fiber Polymeric Nanobiocomposites: A Review. Polymers, 2020, 12, 1072.	4.5	154
1585	Mechanical characterization of hybrid composites based on flax, basalt and glass fibers. Journal of Composite Materials, 2020, 54, 4185-4205.	2.4	44
1586	Study on the mechanical and thermal properties of poly(lactic acid)/office waste paper fiber composites. Journal of Applied Polymer Science, 2020, 137, 49390.	2.6	18
1587	Synthesis and analysis of microwave stealth material. Materials Today: Proceedings, 2020, 24, 585-590.	1.8	1
1588	Feasibility of Barley Straw Fibers as Reinforcement in Fully Biobased Polyethylene Composites: Macro and Micro Mechanics of the Flexural Strength. Molecules, 2020, 25, 2242.	3.8	15
1589	Studies on durability of sustainable biobased composites: a review. RSC Advances, 2020, 10, 17955-17999.	3.6	110
1590	Characteristics of biodegradable textiles used in environmental engineering: A comprehensive review. Journal of Cleaner Production, 2020, 268, 122129.	9.3	64
1591	A review on natural fiber reinforced composites. Materials Today: Proceedings, 2020, 28, 1616-1621.	1.8	103
1592	Investigating the potential of different jute varieties for phytoremediation of copper-contaminated soil. Environmental Science and Pollution Research, 2020, 27, 30367-30377.	5.3	42
1593	Low velocity impact response of flax/polypropylene hybrid roving based woven fabric composites: Where does it stand with respect to GRPC?. Polymer Testing, 2020, 89, 106565.	4.8	13
1594	Pathways for Alkali Ion Transport in Mold Compounds. ECS Journal of Solid State Science and Technology, 2020, 9, 053001.	1.8	2
1595	Recent advances on cellulose nanocrystals for Pickering emulsions: Development and challenge. Trends in Food Science and Technology, 2020, 102, 16-29.	15.1	178
1596	Influence of surface modification on the performance of borassus fruit fiber composites. Emerging Materials Research, 2020, 9, 686-694.	0.7	2
1597	Mechanical properties and toughening mechanisms of natural silkworm silks and their composites. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103942.	3.1	18
1598	Effect of Different Enzymatic Treatment on Mechanical, Water Absorption and Thermal Properties of Bamboo Fibers Reinforced Poly(Hydroxybutyrate-co-Valerate) Biocomposites. Journal of Polymers and the Environment, 2020, 28, 2377-2385.	5.0	12
1599	Optimisation of the mechanical properties of Miscanthus lightweight concrete. Construction and Building Materials, 2020, 258, 119643.	7.2	14
1600	Water absorption and mechanical properties of sabai yarn in FRP composite. Materials Today: Proceedings, 2020, 26, 1610-1615.	1.8	2

щ		15	CITATIONS
Ŧ	Applications of hemp in textiles, paper industry, insulation and building materials, horticulture,	IF	CHATIONS
1601	animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: a review. Environmental Chemistry Letters, 2020, 18, 1451-1476.	16.2	184
1602	Effect of the melt flow index of an HDPE matrix on the properties of composites with wood particles. Polymer Testing, 2020, 90, 106678.	4.8	18
1603	Novel sandwich structure of composite-metal laminates based on cellulosic woven pineapple leaf fibre. Journal of Sandwich Structures and Materials, 2021, 23, 3450-3465.	3.5	13
1604	Biofibers and Biopolymers for Biocomposites. , 2020, , .		9
1605	Hydrophobic cellulose aerogel from waste napkin paper for oil sorption applications. Nordic Pulp and Paper Research Journal, 2020, 35, 137-147.	0.7	22
1606	A comprehensive review on chemical properties and applications of biopolymers and their composites. International Journal of Biological Macromolecules, 2020, 154, 329-338.	7.5	297
1607	Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. Journal of Cleaner Production, 2020, 258, 120978.	9.3	482
1608	Polyurethane derived from castor oil reinforced with long cotton fibers: Static and dynamic testing of a novel eco-friendly composite material. Journal of Composite Materials, 2020, 54, 3125-3142.	2.4	11
1609	Mechanical Stability of Polyhydroxyalkanoate (PHA)-Based Wood Plastic Composites (WPCs). Journal of Polymers and the Environment, 2020, 28, 1571-1577.	5.0	10
1610	The use of natural fibers in repairing and strengthening of cultural heritage buildings. Materials Today: Proceedings, 2020, 31, S321-S328.	1.8	20
1611	Study of natural fibre composite material and its hybridization techniques. Materials Today: Proceedings, 2020, 26, 1368-1372.	1.8	13
1612	Properties of Poplar Fiber/PLA Composites: Comparison on the Effect of Maleic Anhydride and KH550 Modification of Poplar Fiber. Polymers, 2020, 12, 729.	4.5	17
1613	A review of jute fiber reinforced polymer composites. Materials Today: Proceedings, 2020, 26, 2079-2082.	1.8	56
1614	A Review: Bio-fiber's as reinforcement in composites of polylactic acid (PLA). Materials Today: Proceedings, 2020, 26, 2116-2122.	1.8	67
1615	Natural Compounds as Sustainable Additives for Biopolymers. Polymers, 2020, 12, 732.	4.5	28
1616	Effect of layering sequence on mechanical properties of woven kenaf/jute fabric hybrid laminated microwave-processed composites. Journal of Industrial Textiles, 2022, 51, 2731S-2752S.	2.4	15
1617	Experimental investigation on dynamic mechanical and thermal characteristics of Coccinia Indica fiber reinforced polyester composites. Journal of Engineered Fibers and Fabrics, 2020, 15, 155892502090583.	1.0	17
1618	Effect of Mesh Sensitivity and Cohesive Properties on Simulation of Typha Fiber/Epoxy Microbond Test. Computation, 2020, 8, 2.	2.0	6

# 1619	ARTICLE A literature review on life cycle tools fostering holistic sustainability assessment: An application in biocomposite materials. Journal of Environmental Management, 2020, 262, 110308.	IF 7.8	Citations 34
1620	Morphology and Mechanical Properties of 3D Printed Wood Fiber/Polylactic Acid Composite Parts Using Fused Deposition Modeling (FDM): The Effects of Printing Speed. Polymers, 2020, 12, 1334.	4.5	65
1621	Property changes in plant fibres during the processing of bio-based composites. Industrial Crops and Products, 2020, 154, 112705.	5.2	57
1622	A review of 3D and 4D printing of natural fibre biocomposites. Materials and Design, 2020, 194, 108911.	7.0	146
1623	Comparative study of properties of corn husk and glass fibre reinforced composite. AIP Conference Proceedings, 2020, , .	0.4	2
1624	Mechanical Properties of Boehmeria nivea Natural Fabric Reinforced Epoxy Matrix Composite Prepared by Vacuum-Assisted Resin Infusion Molding. Polymers, 2020, 12, 1311.	4.5	13
1625	Study of the mechanical and physical properties of bio-composite material based on wheat starch and wheat straw fibers. IOP Conference Series: Materials Science and Engineering, 2020, 745, 012075.	0.6	2
1626	Mechanical Properties of Hierarchical Biopolymer Composite with a Modified Surface of Knitting Fabric. Materials Science Forum, 2020, 994, 179-188.	0.3	2
1627	A Study About Water/Alkali Treatments of Hemp Fiber on Ultraviolet Ageing of the Reinforced Polypropylene Composites. Journal of Polymers and the Environment, 2020, 28, 2572-2583.	5.0	16
1628	Valorization of Hemp Core Residues: Impact of NaOH Treatment on the Flexural Strength of PP Composites and Intrinsic Flexural Strength of Hemp Core Fibers. Biomolecules, 2020, 10, 823.	4.0	10
1629	Polymer blends as matrix materials for the preparation of the nanocomposites. , 2020, , 21-54.		2
1630	Recent progress in cellulose-based smart nanocrystals by agricultural resources. , 2020, , 461-483.		3
1631	Use of Mineral Flame Retardants to Reduce the Combustibility of Thermal Insulating Board Composites from Plant Waste. IOP Conference Series: Earth and Environmental Science, 2020, 459, 062115.	0.3	0
1638	Adsorption of xyloglucan and cellulose nanocrystals on natural fibres for the creation of hierarchically structured fibres. Carbohydrate Polymers, 2020, 248, 116713.	10.2	9
1639	Physical and mechanical properties of polyurethane thermoset matrices reinforced with green coconut fibres. Journal of Composite Materials, 2020, 54, 4841-4852.	2.4	9
1640	Mechanical and Thermal Properties of All-Wood Biocomposites through Controllable Dissolution of Cellulose with Ionic Liquid. Polymers, 2020, 12, 361.	4.5	6
1641	Biocomposite Fabrication from Enzymatically Treated Nanocellulosic Fibers and Recycled Polylactic Acid. Energies, 2020, 13, 1003.	3.1	5
1642	Jute: A Potential Candidate for Phytoremediation of Metals—A Review. Plants, 2020, 9, 258.	3.5	102

#	Article	IF	CITATIONS
1643	Effect of Natural Rubber in Polyethylene Composites on Morphology, Mechanical Properties and Biodegradability. Polymers, 2020, 12, 437.	4.5	20
1644	Morphological and Mechanical Properties of Bilayers Wood-Plastic Composites and Foams Obtained by Rotational Molding. Polymers, 2020, 12, 503.	4.5	26
1645	Development and characterization of jute composites for sustainable product: effect of chemical treatments and polymer coating. Materials Research Express, 2020, 7, 015306.	1.6	14
1646	An investigation into the tribological properties of wood flour reinforced polypropylene composites. Materials Research Express, 2020, 7, 015313.	1.6	20
1647	Fully Green Poly(vinyl alcohol)/Tea Polyphenol Composites and Super Antiâ€Ultraviolet and â€Bacterial Properties. Macromolecular Materials and Engineering, 2020, 305, 1900669.	3.6	10
1648	Physical and rheological properties of biodegradable poly(butylene succinate)/Alfa fiber composites. Journal of Thermoplastic Composite Materials, 2022, 35, 1709-1727.	4.2	9
1649	A Novel Acoustic Sandwich Panel Based on Sheep Wool. Coatings, 2020, 10, 148.	2.6	9
1650	Formation mechanism of hierarchically crystalline structures under coupled external fields in multi-melt multi-injection molding: Simulation and experiment. Composites Part B: Engineering, 2020, 188, 107770.	12.0	11
1651	Tensile strength prediction of natural fiber and natural fiber yarn: Strain rate variation upshot. Materials Today: Proceedings, 2020, 27, 1218-1223.	1.8	11
1652	Preparation and evaluation of composites containing polypropylene and cotton gin trash. Journal of Applied Polymer Science, 2020, 137, 49151.	2.6	11
1653	Fiber extraction and energy recovery from Cocos nucifera Linn mesocarp residues employing steam explosion and anaerobic digestion. Industrial Crops and Products, 2020, 147, 112180.	5.2	14
1654	Physico-chemical and Mechanical Properties of Alkali-Treated Red Banana Peduncle Fiber. Journal of Natural Fibers, 2021, 18, 2102-2111.	3.1	34
1655	The Effect of Filler Content on the Tensile Behavior of Polypropylene/Cotton Fiber and poly(vinyl) Tj ETQq0 0 0 rg	BT_/Overlo	ck 10 Tf 50 2
1656	Pineapple Leaf Fibers. Green Energy and Technology, 2020, , .	0.6	17
1657	Influence of Water Absorption on the Low Velocity Falling Weight Impact Damage Behaviour of Flax/Glass Reinforced Vinyl Ester Hybrid Composites. Molecules, 2020, 25, 278.	3.8	32
1658	Investigation of the Flame-Retardant and Mechanical Properties of Bamboo Fiber-Reinforced Polypropylene Composites with Melamine Pyrophosphate and Aluminum Hypophosphite Addition. Materials, 2020, 13, 479.	2.9	24
1659	Characterization of silane treated Malaysian Yankee Pineapple AC6 leaf fiber (PALF) towards industrial applications. Journal of Materials Research and Technology, 2020, 9, 3128-3139.	5.8	39
1660	Sustainable conducting polymer composites: study of mechanical and tribological properties of natural fiber reinforced PVA composites with carbon nanofillers. Polymer-Plastics Technology and Materials, 2020, 59, 1088-1099.	1.3	23

# 1661	ARTICLE New investigation of mechanical properties of a horizontal axis wind turbine blade based on a hybrid composites with kenaf fibers. SN Applied Sciences, 2020, 2, 1.	IF 2.9	CITATIONS
1662	Nano- and microcellulose-based adsorption materials in water treatment. , 2020, , 1-83.		3
1663	Influence of laminate thickness and impactor shape on low velocity impact response of jute-epoxy composite: FE study. Materials Today: Proceedings, 2020, 28, 545-550.	1.8	18
1664	Compressive Characterization of Hemp Fiber–Epoxy Matrix Composite for Lightweight Structures. Jom, 2020, 72, 2324-2331.	1.9	5
1665	Cationic modification of nanocrystalline cellulose from sago fronds. Cellulose, 2020, 27, 3121-3141.	4.9	35
1666	Process optimization for the production of cellulose nanocrystals from rice straw derived α-cellulose. Materials Science for Energy Technologies, 2020, 3, 328-334.	1.8	67
1667	Environmental Degradation of Plastic Composites with Natural Fillers—A Review. Polymers, 2020, 12, 166.	4.5	120
1668	Fused Deposition Modeling of Poly (lactic acid)/Macadamia Composites—Thermal, Mechanical Properties and Scaffolds. Materials, 2020, 13, 258.	2.9	17
1669	Environmental Durability Enhancement of Natural Fibres Using Plastination: A Feasibility Investigation on Bamboo. Molecules, 2020, 25, 474.	3.8	9
1670	From aviation to automotive - a study on material selection and its implication on cost and weight efficient structural composite and sandwich designs. Heliyon, 2020, 6, e03716.	3.2	38
1671	Woven Natural Fibre Reinforced Composite Materials for Medical Imaging. Materials, 2020, 13, 1684.	2.9	11
1672	Statistical distribution of mechanical properties and energy absorption of laminated cotton fabric reinforced epoxy composites. Polymer Composites, 2020, 41, 2829-2840.	4.6	6
1673	Mechanisms involved in thermal degradation of lignocellulosic fibers: a survey based on chemical composition. Cellulose, 2020, 27, 4949-4961.	4.9	33
1674	Elaboration of eco-efficient vegetable fibers reinforced cement-based composites using glass powder residue. Cement and Concrete Composites, 2020, 110, 103599.	10.7	18
1675	Hygroscopic stresses in asymmetric biocomposite laminates submitted to various relative humidity conditions. Composites Part A: Applied Science and Manufacturing, 2020, 134, 105896.	7.6	9
1676	Structural behaviour of pre-damaged reinforced concrete beams strengthened with natural fibre reinforced polymer composites. Composite Structures, 2020, 244, 112309.	5.8	57
1677	Influence of moisture and drying on fatigue damage mechanisms in a woven hemp/epoxy composite: Acoustic emission and micro-CT analysis. International Journal of Fatigue, 2020, 136, 105593.	5.7	22
1678	A comprehensive framework for the production of mycelium-based lignocellulosic composites. Science of the Total Environment, 2020, 725, 138431.	8.0	116

#	Article	IF	CITATIONS
1679	The Role of Green Building Materials in Reducing Environmental and Human Health Impacts. International Journal of Environmental Research and Public Health, 2020, 17, 2589.	2.6	58
1680	Effects of Chemically Treated Eucalyptus Fibers on Mechanical, Thermal and Insulating Properties of Polyurethane Composite Foams. Materials, 2020, 13, 1781.	2.9	36
1681	Nonconventional Ca(OH)2 Treatment of Bamboo for the Reinforcement of Cement Composites. Materials, 2020, 13, 1892.	2.9	12
1682	Flax (Linum usitatissimum L.): A Potential Candidate for Phytoremediation? Biological and Economical Points of View. Plants, 2020, 9, 496.	3.5	102
1683	Well-Dispersed Cellulose Nanofiber in Low Density Polyethylene Nanocomposite by Liquid-Assisted Extrusion. Polymers, 2020, 12, 927.	4.5	51
1684	Modern Biodegradable Plastics—Processing and Properties: Part I. Materials, 2020, 13, 1986.	2.9	19
1685	Influence of lignocellulosic substrate and phosphorus flame retardant type on grafting yield and flame retardancy. Reactive and Functional Polymers, 2020, 153, 104612.	4.1	12
1686	Thermal behavior of graphene oxide-coated piassava fiber and their epoxy composites. Journal of Materials Research and Technology, 2020, 9, 5343-5351.	5.8	50
1687	Recent researches in fiber reinforced composite materials: A review. Materials Today: Proceedings, 2021, 46, 9291-9296.	1.8	13
1688	Utilization of carrot (Daucus carota L.) fiber as a filler for chitosan based films. Food Hydrocolloids, 2020, 106, 105861.	10.7	37
1689	Large-scale tribological characterisation of eco-friendly basalt and jute fibre reinforced thermoset composites. Wear, 2020, 450-451, 203274.	3.1	11
1690	Upcycling Legume Water: from wastewater to food ingredients. , 2020, , .		16
1691	Characterization of Fiber Extracted from Agave americana after Burial in Soil. Fibers and Polymers, 2020, 21, 724-732.	2.1	8
1692	Investigation of biodegradable hybrid composites: effect of fibers on tribo-mechanical characteristics. Advanced Composites and Hybrid Materials, 2020, 3, 194-204.	21.1	18
1693	Alkali treatment of lignocellulosic fibers extracted from sugarcane bagasse: Composition, structure, properties. Polymer Testing, 2020, 88, 106549.	4.8	77
1694	Copper Uptake and Accumulation, Ultra-Structural Alteration, and Bast Fibre Yield and Quality of Fibrous Jute (Corchorus capsularis L.) Plants Grown under Two Different Soils of China. Plants, 2020, 9, 404.	3.5	52
1695	Falling Weight Impact Damage Characterisation of Flax and Flax Basalt Vinyl Ester Hybrid Composites. Polymers, 2020, 12, 806.	4.5	11
1696	Cellulose Nanofibers Isolated from the Cuscuta Reflexa Plant as a Green Reinforcement of Natural Rubber. Polymers, 2020, 12, 814.	4.5	47

#	Article	IF	CITATIONS
1697	Evaluation of Different Compatibilization Strategies to Improve the Performance of Injection-Molded Green Composite Pieces Made of Polylactide Reinforced with Short Flaxseed Fibers. Polymers, 2020, 12, 821.	4.5	38
1698	Mechanical and Thermal Characterization of Natural Intralaminar Hybrid Composites Based on Sisal. Polymers, 2020, 12, 866.	4.5	64
1699	Natural fibres as promising environmental-friendly reinforcements for polymer composites. Polymers and Polymer Composites, 2021, 29, 277-300.	1.9	25
1700	Influence of flax fibers on network formation of DGEBA/DETA matrix. Composite Interfaces, 2021, 28, 17-34.	2.3	3
1701	Influence of thickness and projectile shape on penetration resistance of the compliant composite. Defence Technology, 2021, 17, 245-256.	4.2	15
1702	Synthesis and characterization of lignin-poly lactic acid film as active food packaging material. Materials Technology, 2021, 36, 585-593.	3.0	25
1703	Development and characterization of hybrid composite laminate based on luffa and glass fibers. Materials Today: Proceedings, 2021, 36, 22-28.	1.8	6
1704	First report on fabrication and characterization of soybean hull fiber: polymer composite filaments for fused filament fabrication. Progress in Additive Manufacturing, 2021, 6, 39-52.	4.8	17
1705	Development and characterization of a new cork-based material. Materials Today: Proceedings, 2021, 36, 34-40.	1.8	7
1706	Study the effect of fiber orientation on mechanical properties of bidirectional basalt fiber reinforced epoxy composites. Materials Today: Proceedings, 2021, 39, 1581-1587.	1.8	14
1707	Effects of length and content of natural cellulose fiber on the mechanical behaviors of phenol formaldehyde composites. Materials Today: Proceedings, 2021, 45, 516-521.	1.8	4
1708	Analysis of the Mechanical Strength of Polymeric Composites Reinforced with Sisal Fibers. Journal of Natural Fibers, 2021, 18, 105-110.	3.1	8
1709	Natural fiber–reinforced composites: A review on material, manufacturing, and machinability. Journal of Thermoplastic Composite Materials, 2021, 34, 238-284.	4.2	220
1710	Impact of Alkali Treatment on Characterization of Tapsi (<i>Sterculia Urens</i>) Natural Bark Fiber Reinforced Polymer Composites. Journal of Natural Fibers, 2021, 18, 378-389.	3.1	40
1711	Characterisation of the woven fabric of jute, ramie and roselle for reinforcement material for polymer composite. Materials Today: Proceedings, 2021, 46, 1705-1710.	1.8	2
1712	The spectroscopic and microscopic evaluation of cellulose used in conservation of archival materials. Microchemical Journal, 2021, 160, 105707.	4.5	4
1713	Dielectric Properties of Jute Fibers Reinforced Poly(lactic acid)/Poly(butylene succinate) Blend Matrix. Journal of Polymers and the Environment, 2021, 29, 1240-1256.	5.0	18
1714	Natural Fibre Polymer Composites - A game changer for the aviation sector?. Journal of Cleaner Production, 2021, 286, 124986.	9.3	24

ARTICLE IF CITATIONS Multiscale Tribo-Mechanical Behavior of Natural Fiber Composites., 2021, , 149-158. 1 1715 Mechanical and thermal behavior analysis of wood–polypropylene composites. Textile Reseach 1716 2.2 Journal, 2021, 91, 347-357. Hybrid epoxy composites made from treated curauÃ; fibres and organophilic clay. Journal of Composite 1717 2.4 9 Materials, 2021, 55, 57-69. Challenges on machining characteristics of natural fiber-reinforced composites – A review. Journal 1718 3.1 of Reinforced Plastics and Composites, 2021, 40, 41-69. Flame retardancy and thermal stability of agricultural residue fiberâ€reinforced polylactic acid: A 1719 4.6 40 Review. Polymer Composites, 2021, 42, 15-44. Influence of fiber length on mechanical properties and microstructural analysis of jute fiber 1.8 reinforced polymer composites. Materia'ls Today: Proceedings, 2021, 39, 398-402 A comprehensive review on surface modification of UHMWPE fiber and interfacial properties. 1721 7.6 67 Composites Part A: Applied Science and Manufacturing, 2021, 140, 106146. Surface modification of banana fiber: A review. Materials Today: Proceedings, 2021, 43, 904-915. 1.8 Influence of fiber loading on mechanical characterization of pineapple leaf and kenaf fibers 1723 25 1.8 reinforced polyester composites. Materials Today: Proceedings, 2021, 46, 439-444. Hierarchical thermoplastic biocomposites reinforced with flax fibres modified by xyloglucan and 1724 10.2 cellulose nanocrystals. Carbohydrate Polymers, 2021, 254, 117403. Failure prediction of a new sandwich panels based on flax fibres reinforced epoxy bio-composites. 1725 9 5.8 Composite Structures, 2021, 257, 113361. Luffa fibers as promising reinforcement for polymer composites: Mechanical characterization of NaOH treated and untreated dumbbell test-pieces with Weibull statistics. Journal of Composite 2.4 Materials, 2021, 55, 1667-1681. Review on the performances, foaming and injection molding simulation of natural fiber composites. 1727 4.6 28 Polymer Composites, 2021, 42, 1305-1324. Effect of plant cellulose microfibers on hydration of cement composites. Construction and Building 7.2 Materials, 2021, 267, 121734. Lignocellulosic Materials as Reinforcement of Polyhydroxybutyrate and its Copolymer with 1729 5.017 Hydroxyvalerate: A Review. Journal of Polymers and the Environment, 2021, 29, 1350-1364. Effects of fiber loading on mechanical characterization of pineapple leaf and sisal fibers reinforced 1.8 24 polyester composites for various applications. Materials Today: Proceedings, 2021, 44, 546-553. Evaluation of recycling degumming and solvent recovery of ramie with high-boiling glycol solvent. 1731 5.28 Industrial Crops and Products, 2021, 159, 113056. Recycling of sustainable polymers and composites., 2021, , 267-282.

#	Article	IF	CITATIONS
1733	Structural optimization of a horizontal axis wind turbine blade made from new hybrid composites with kenaf fibers. Composite Structures, 2021, 260, 113252.	5.8	16
1734	Effect of yarn singeing and commingling on the mechanical properties of jute/polypropylene composites. Polymer Composites, 2021, 42, 828-841.	4.6	14
1735	Effect of surface treatment of fibers on the accelerated aging of biocomposites. Construction and Building Materials, 2021, 271, 121875.	7.2	5
1736	Environmental benign natural fibre reinforced thermoplastic composites: A review. Composites Part C: Open Access, 2021, 4, 100082.	3.2	68
1737	Effect of walnut shell filler on mechanical properties of jute-basalt hybrid epoxy composites. Materials Today: Proceedings, 2021, 44, 4537-4541.	1.8	13
1738	Urban parks and gardens green waste: A valuable resource for the production of fillers for biocomposites applications. Waste Management, 2021, 120, 538-548.	7.4	16
1739	Effect of bone ash fillers on mechanical and thermal properties of biobased epoxy nanocomposites. Journal of Applied Polymer Science, 2021, 138, 50046.	2.6	1
1740	Prediction of the compressive damage response of flax-reinforced laminates using a mesoscale framework. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106153.	7.6	8
1741	Utilization of coffee silverskin in the production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biopolymer-based thermoplastic biocomposites for food contact applications. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106172.	7.6	27
1742	Upcycling of Vine Shoots: Production of Fillers for PHBV-Based Biocomposite Applications. Journal of Polymers and the Environment, 2021, 29, 404-417.	5.0	6
1743	Microwave-sonochemical synergistically assisted synthesis of hybrid Ni-Fe3O4/ZnO nanocomposite for enhanced antibacterial performance. Materials Today Communications, 2021, 26, 101835.	1.9	5
1744	Properties and Applications of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biocomposites. Journal of Polymers and the Environment, 2021, 29, 1010-1030.	5.0	31
1745	Development of quasi-unidirectional fabrics with hemp fiber: A competitive reinforcement for composite materials. Journal of Composite Materials, 2021, 55, 551-564.	2.4	19
1746	Experimental fatigue behavior of carbon/flax hybrid composites under tensile loading. Journal of Composite Materials, 2021, 55, 581-596.	2.4	15
1747	A review on kenaf fiber hybrid composites: Mechanical properties, potentials, and challenges in engineering applications. Progress in Rubber, Plastics and Recycling Technology, 2021, 37, 66-83.	1.8	19
1748	Effect of various organic fibers on the stiffness, strength and impact resistance of polypropylene; a comparison. Polymer International, 2021, 70, 145-153.	3.1	14
1749	Compendious Characterization of Chemically Treated Natural Fiber from Pineapple Leaves for Reinforcement in Polymer Composites. Journal of Natural Fibers, 2021, 18, 845-856.	3.1	25
1750	Physico-Mechanical Characterization of Composite Materials Based on Date Palm Tree Fibers. Journal of Natural Fibers, 2021, 18, 789-802.	3.1	23

#	Article	IF	CITATIONS
1751	Effect of Graphene Powder on Banyan Aerial Root Fibers Reinforced Epoxy Composites. Journal of Natural Fibers, 2021, 18, 1029-1036.	3.1	58
1752	Investigation of Green Composite: Preparation and Characterization of Alkali-Treated Jute Fabric-reinforced Polymer Matrix Composites. Journal of Natural Fibers, 2021, 18, 510-519.	3.1	16
1753	Mechanical Characterisation of Woven Kenaf Fabric as Reinforcement for Composite Materials. Journal of Natural Fibers, 2021, 18, 653-663.	3.1	8
1754	Principle of Green Chemistry: A modern perspective for development of sustainable textile fiber-based green nanocomposites. , 2021, , 121-136.		3
1755	Characterization of mechanical properties of kenaf fibre reinforced polymer composite using orientation with angle variation. AIP Conference Proceedings, 2021, , .	0.4	1
1756	Mechanical properties of particulate organic natural filler-reinforced polymer composite: A review. Composites and Advanced Materials, 2021, 30, 263498332110075.	0.8	15
1757	Composites and biocomposites for noise and vibration control in automotive structures. , 2021, , 305-345.		0
1758	Bamboo Nanocomposites Future Development and Applications. Engineering Materials, 2021, , 183-191.	0.6	1
1759	Study on the Propagation of Stress Waves in Natural Fiber Composite Strips. Journal of Composites Science, 2021, 5, 34.	3.0	3
1760	Recent Trends in the Surface Modification of Natural Fibers for the Preparation of Green Biocomposite. Materials Horizons, 2021, , 273-293.	0.6	7
1761	Sustainable reinforcers for polymer composites. , 2021, , 59-88.		1
1762	Sustainable Natural Bio-composites and its Applications. Lecture Notes in Mechanical Engineering, 2021, , 433-439.	0.4	1
1764	Effect of glass fibre hybridization on the water absorption and thickness of alkali treated kenaf-epoxy composites. Materials Today: Proceedings, 2021, 44, 2093-2096.	1.8	3
1765	Hierarchical Vegetal Fiber Reinforced Composites. Composites Science and Technology, 2021, , 379-412.	0.6	3
1766	Sustainable Product Packaging Using Vegetables Fibres and Its Composite. Composites Science and Technology, 2021, , 275-302.	0.6	0
1767	The bright side of cellulosic hibiscus sabdariffa fibres: towards sustainable materials from the macro- to nano-scale. Materials Advances, 2021, 2, 4945-4965.	5.4	17
1768	Multifunctional Biopolymersâ€Based Composite Materials for Biomedical Applications: A Systematic Review. ChemistrySelect, 2021, 6, 154-176.	1.5	15
1769	Experimental assessment of low velocity impact damage in flax fabrics reinforced biocomposites by coupled high-speed imaging and DIC analysis. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106137.	7.6	30

#	Article	IF	CITATIONS
1770	Thermoplastic Pultrusion: A Review. Polymers, 2021, 13, 180.	4.5	78
1771	A Review on Development of Natural Fibre Composites for Construction Applications. Journal of Materials Science and Chemical Engineering, 2021, 09, 1-9.	0.4	5
1772	Interphase and interfacial properties of composite materials. , 2021, , 151-177.		0
1773	Development of strong and tough electrospun fiber-reinforced composites. , 2021, , 287-313.		1
1774	Design, manufacturing processes and their effects on bio-composite properties. , 2021, , 121-177.		2
1775	Sustainable natural fibre reinforcements and their morphological structures. , 2021, , 17-51.		0
1776	Lightweight composites, important properties and applications. , 2021, , 53-119.		3
1777	Material selection for hybrid natural fiber laminated composites in vibration using a stochastic optimization method. , 2021, , 281-307.		2
1778	3D Printing of Continuous Natural Fibre Reinforced Biocomposites for Structural Applications. Composites Science and Technology, 2021, , 205-218.	0.6	1
1779	Future prospective of advanced green materials. , 2021, , 733-749.		0
1780	Recent advances in the fabrication of hybrid natural fiber composites. , 2021, , 113-131.		5
1781	Hydrophilicity in natural fibers – A mini review. AIP Conference Proceedings, 2021, , .	0.4	2
1782	Sustainable packaging from coir fibers. , 2021, , 113-126.		1
1783	Introduction to natural fibres and textiles. , 2021, , 1-32.		8
1784	Bioprocessing of natural textile fibres and clothes. , 2021, , 221-262.		1
1785	Mechanical and thermal properties of NaOH treated sisal natural fiber reinforced polymer composites: Barium sulphate used as filler. Materials Today: Proceedings, 2021, 45, 5575-5578.	1.8	12
1786	Efficiency of Twin-Screw Extrusion of Biodegradable Poly (Butylene Succinate)-Wheat Bran Blend. Materials, 2021, 14, 424.	2.9	12
1787	A new study on <scp>flaxâ€basaltâ€carbon</scp> fiber reinforced epoxy/ <scp>bioepoxy</scp> hybrid composites. Polymer Composites, 2021, 42, 1891-1900.	4.6	59

		CITATION REPORT		
#	Article		IF	CITATIONS
1788	Green Composite Using Agricultural Waste Reinforcement. Materials Horizons, 2021,	, 21-34.	0.6	23
1789	Stress and Strain Analysis of the Traditional Boat Jaloe Kayoh Made of Composite Mate Centered Loading Using the Finite Element Method. Lecture Notes in Mechanical Engin 289-299.	erials with neering, 2021, ,	0.4	1
1790	A Mini Review on Testing Methods for Mechanical Properties of Natural Fibre Honeyco Structure and Fractography Analysis. Journal of Materials Science and Chemical Engine 29-38.	mb Sandwich ering, 2021, 09,	0.4	0
1791	Potential of Pineapple Leaf Fibers and Their Modifications for Development of Tile Com of Natural Fibers, 2022, 19, 4822-4834.	iposites. Journal	3.1	4
1792	A Life Cycle Engineering Perspective on Biocomposites as a Solution for a Sustainable Sustainability, 2021, 13, 1160.	Recovery.	3.2	56
1793	A state-of-the-art review on coir fiber-reinforced biocomposites. RSC Advances, 2021, 2	11, 10548-10571.	3.6	78
1794	Recent development in kenaf (Hibiscus cannabinus)-based biocomposites and their po applications: A review. , 2021, , 329-368.	tential industrial		0
1795	CaCO ₃ blowing agent mixing method for biomass composites improved b performance. RSC Advances, 2021, 11, 2501-2511.	ouffer packaging	3.6	4
1796	Green Composite as an Adequate Material for Automotive Applications. Materials Hori 151-208.	zons, 2021, ,	0.6	3
1797	Green Fiber Thermoplastic Composites. Materials Horizons, 2021, , 35-62.		0.6	1
1798	Recent advancements in thermal properties and behavior of modified natural fiber com 73-89.	1posites. , 2021, ,		1
1800	Sugarcane nanocellulose fiber-reinforced vinyl ester nanocomposites. , 2021, , 249-26-	4.		4
1801	An overview of metal oxide-filled biocomposites. , 2021, , 97-111.			1
1802	Ductile behaviour and dynamic mechanical analysis of hybrid bio composites. Materials Proceedings, 2021, 46, 772-776.	s Today:	1.8	5
1803	Processing of high weight fraction banana fiber reinforced epoxy composites using predip casting method. Journal of Composite Materials, 2021, 55, 2301-2313.	essure induced	2.4	9
1804	Impact of Brick Powder on Tensile and Flexural Properties of a Hemp Fiber. Springer Pro Materials, 2021, , 115-124.	oceedings in	0.3	0
1805	Comprehensive review on plant fiber-reinforced polymeric biocomposites. Journal of M Science, 2021, 56, 7231-7264.	aterials	3.7	122
1806	Coccinia grandis stem fiber polymer composite: thermal and mechanical analysis. Irania Journal (English Edition), 2021, 30, 369-380.	an Polymer	2.4	4

#	Article	IF	Citations
1807	Mechanical modeling of hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and nanoparticles. , 2021, , 247-270.		1
1808	A Review on Natural Fiber Bio-Composites, Surface Modifications and Applications. Molecules, 2021, 26, 404.	3.8	124
1809	From natural cellulose to functional nanocomposites for environmental applications. , 2021, , 111-151.		2
1810	Kenaf fibers reinforced unsaturated polyester composites: A review. Journal of Engineered Fibers and Fabrics, 2021, 16, 155892502110401.	1.0	14
1811	Natural fiber–reinforced composites for ballistic protection. , 2021, , 229-248.		5
1812	Compatibility of Natural Fiber and Hydrophobic Matrix in Composite Modification. , 2021, , 3489-3507.		0
1813	Enhancement of Thermo-mechanical Properties of Okra Fiber by Photografting Technique. Journal of the Institution of Engineers (India): Series E, 2021, 102, 45-59.	0.9	2
1814	Effect of surface modification and fiber content on the mechanical performance of compression molded polyethyleneâ€maple composites. Polymer Composites, 2021, 42, 1977-1987.	4.6	3
1815	Improvement of Fiber-Matrix Adhesion of Vegetable Natural Fibers by Chemical Treatment. Composites Science and Technology, 2021, , 153-177.	0.6	1
1816	Properties of wood-based composites manufactured from densified beech wood in viscoelastic and plastic region of the force-deflection diagram (FDD). Reviews on Advanced Materials Science, 2021, 60, 702-718.	3.3	1
1817	A review on allotropes of carbon and natural filler-reinforced thermomechanical properties of upgraded epoxy hybrid composite. Reviews on Advanced Materials Science, 2021, 60, 237-275.	3.3	13
1818	Effect of basalt fiber hybridization on mechanical properties of silk fiber reinforced epoxy composites. Materials Today: Proceedings, 2021, 43, 986-994.	1.8	15
1819	Mechanical Characterization and Evaluation of NaOH Treated Chopped Abaca Fiber Reinforced Epoxy Composites. Materials Science Forum, 0, 1019, 12-18.	0.3	6
1821	Correlation Between Composites Behavior and the Manufacturing Process Used. Macromolecular Symposia, 2021, 395, .	0.7	1
1822	Banana fibre: a natural and sustainable bioresource for eco-friendly applications. Clean Technologies and Environmental Policy, 2021, 23, 1389-1401.	4.1	35
1823	Effect of Surface Modification on the Properties of Polypropylene Matrix Reinforced with Coir Fibre and Yam Peel Particulate. Scientific World Journal, The, 2021, 2021, 1-12.	2.1	13
1824	Characterization of Natural Cellulosic Fibers from Stem of <i>Symphirema Involucratum</i> Plant. Journal of Natural Fibers, 2022, 19, 5355-5370.	3.1	31
1825	Physical and Mechanical Performance of Coir Fiber-Reinforced Rendering Mortars. Materials, 2021, 14, 823.	2.9	12

#	Article	IF	Citations
1826	Date Seeds Fiber Reinforced Low-Density Polyethylene: Effect of Stearic Acid on its Mechanical and Morphological Characteristics. Materials Science Forum, 0, 1021, 290-298.	0.3	0
1827	Testing and Assessing Method for the Resistance of Wood-Plastic Composites to the Action of Destroying Fungi. Materials, 2021, 14, 697.	2.9	5
1829	Stiffening Potential of Lignocellulosic Fibers in Fully Biobased Composites: The Case of Abaca Strands, Spruce TMP Fibers, Recycled Fibers from ONP, and Barley TMP Fibers. Polymers, 2021, 13, 619.	4.5	10
1830	Synthesis and applications of fungal mycelium-based advanced functional materials. Journal of Bioresources and Bioproducts, 2021, 6, 1-10.	20.5	95
1832	The Role of Zinc Chloride in Enhancing Mechanical, Thermal and Electrical Performance of Ethylene Vinyl Acetate/Carbonized Wood Fiber Conductive Composite. Polymers, 2021, 13, 600.	4.5	1
1833	Effect of Modified Silica Fume and Cellulose Fiber Used as Fillers on Properties of Antivibration Rubber. Key Engineering Materials, 0, 877, 34-39.	0.4	0
1834	Synthesis and Thermo-Mechanical Study of Epoxy Resin-Based Composites with Waste Fibers of Hemp as an Eco-Friendly Filler. Polymers, 2021, 13, 503.	4.5	29
1835	Effect of Acetylation with Perchloric Acid as Catalyst in Sugarcane Bagasse Waste. Journal of Natural Fibers, 2022, 19, 5050-5064.	3.1	7
1836	Feasibility of the use of different types of enzymatically treated cellulosic fibres for polylactic acid (PLA) recycling. Waste Management, 2021, 121, 237-247.	7.4	12
1837	A Review on the Kenaf Fiber Reinforced Thermoset Composites. Applied Composite Materials, 2021, 28, 491-528.	2.5	19
1838	Processing Characterization of Sisal/Epoxy Prepregs. Journal of Research Updates in Polymer Science, 0, 10, 42-50.	0.3	2
1839	Towards More Sustainable Materials for Geo-Environmental Engineering: The Case of Geogrids. Sustainability, 2021, 13, 2585.	3.2	13
1840	Influence of Epoxy Resin Treatment on the Mechanical and Tribological Properties of Hemp-Fiber-Reinforced Plant-Derived Polyamide 1010 Biomass Composites. Molecules, 2021, 26, 1228.	3.8	7
1841	Thermo-mechanical properties of pretreated coir fiber and fibrous chips reinforced multilayered composites. Scientific Reports, 2021, 11, 3618.	3.3	47
1842	Biocomposites based on the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix with the hemp fibers: thermal and mechanical properties. Journal of Thermal Analysis and Calorimetry, 2022, 147, 1017-1029.	3.6	9
1843	Towards Next-Generation Sustainable Composites Made of Recycled Rubber, Cenospheres, and Biobinder. Polymers, 2021, 13, 574.	4.5	16
1844	Lignocellulosic Fiber Cement Compatibility: A State of the Art Review. Journal of Natural Fibers, 2022, 19, 5409-5434.	3.1	44
1845	Aramid <scp>nanofiber</scp> reinforced nitrile rubber assisted by cellulose nanocrystals. Journal of Applied Polymer Science, 2021, 138, 50546.	2.6	9

#	Article	IF	Citations
1846	Key Improvements in Interfacial Adhesion and Dispersion of Fibers/Fillers in Polymer Matrix Composites; Focus on PLA Matrix Composites. Composite Interfaces, 2022, 29, 1071-1120.	2.3	24
1847	Influence of Chemical Treatment on the Physico-mechanical Characteristics of Natural Fibers Extracted from the Barks of <i>Vachellia Farnesiana</i> . Journal of Natural Fibers, 2022, 19, 5065-5075.	3.1	26
1848	A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers, 2021, 13, 646.	4.5	213
1849	In state of art: Mechanical behavior of natural fiberâ€based hybrid polymeric composites for application of automobile components. Polymer Composites, 2021, 42, 2678-2703.	4.6	58
1850	Bio-sourced vinyl ester resin reinforced with microfibrillar cellulose: Mechanical and thermal properties. Polymers and Polymer Composites, 0, , 096739112110020.	1.9	2
1851	Effect of Non-Acidic Chemical Treatment of Kenaf Fiber on Physico Mechanical Properties of PLA Based Composites. Journal of Natural Fibers, 2022, 19, 5709-5727.	3.1	10
1852	Effects of Ammonium Polyphosphate on the Flame Retarding, Tensile, Dynamic Mechanical, and Thermal Properties of Kenaf Fiber/Poly(lactic acid) Biocomposites Fabricated by Compression Molding. Fibers and Polymers, 2021, 22, 1388-1396.	2.1	5
1853	A Review on Chemical Modification by using Sodium Hydroxide (NaOH) to Investigate the Mechanical Properties of Sisal, Coir and Hemp Fiber Reinforced Concrete Composites. Journal of Natural Fibers, 2022, 19, 5133-5151.	3.1	24
1854	Analysis and availability of lignocellulosic wastes: Assessments for Indonesia and Peru. Environmental Quality Management, 2021, 30, 71-82.	1.9	8
1855	Composites of Polymer Blends and Their Applications Using Natural Fibres: A Review. IOP Conference Series: Materials Science and Engineering, 2021, 1068, 012006.	0.6	3
1856	Dynamic Mechanical Properties of a Biocomposite Reinforced with Sodiumbicarbonate-Treated Sisal Fibers at Different Frequencies. Mechanics of Composite Materials, 2021, 57, 81-90.	1.4	10
1857	The use of sustainable composites for the manufacturing of electric cars. Composites Part C: Open Access, 2021, 4, 100096.	3.2	21
1858	Low carbon biodegradable polymer matrices for sustainable future. Composites Part C: Open Access, 2021, 4, 100111.	3.2	34
1859	Mechanical and Physical Characterisation of Typha domingensis-Based Thermal Insulation Boards for Developing Areas such as Nigeria. Waste and Biomass Valorization, 2021, 12, 5795-5806.	3.4	1
1860	An overview of refinements, processing methods and properties of natural fiber composites. Materials Today: Proceedings, 2022, 49, 296-300.	1.8	14
1861	Developments in Chemical Treatments, Manufacturing Techniques and Potential Applications of Natural-Fibers-Based Biodegradable Composites. Coatings, 2021, 11, 293.	2.6	76
1862	Environmental impact and effect of chemical treatment on bio fiber based polymer composites. Materials Today: Proceedings, 2022, 49, 3418-3422.	1.8	8
1863	A Review on Coir fibre Reinforced Composites with Different Matrix. , 2021, 7, 25-32.		21

		CHATION RE	PORT	
#	Article		IF	CITATIONS
1864	Mechanical and thermal properties of a novel Spinifex Littoreus fiber reinforced polymer compo as an alternate for synthetic glass fiber composites. Materials Research Express, 2021, 8, 03530	sites 91.	1.6	5
1865	Fabrication and analysis of physico-mechanical characteristics of NaOH treated PALF reinforced composites: Effect of gamma irradiation. Journal of Materials Research and Technology, 2021, 1 914-928.	LDPE 1,	5.8	12
1866	Experimental evaluation of bamboo fiber/particulate coconut shell hybrid PVC composite. Scien Reports, 2021, 11, 5465.	tific	3.3	19
1867	Impact modification of fiber reinforced polypropylene composites with flexible poly(ethylene) Tj	ETQq1 1 0.7843	14 rgBT /0 3.1	Overlock 10
1868	Effect of single-fiber properties and fiber volume fraction on the mechanical properties of loncel fiber composites. Journal of Reinforced Plastics and Composites, 2021, 40, 741-748.	I	3.1	6
1869	Enhancement of impact toughness and damage behaviour of natural fibre reinforced composite their hybrids through novel improvement techniques: A critical review. Composite Structures, 20 259, 113496.	s and 021,	5.8	74
1870	Development of Utilization Alkali-Treated Bamboo Fiber as a Strengthener in Thermoset and Thermoplastic Composites. IOP Conference Series: Materials Science and Engineering, 2021, 10 012037.	196,	0.6	2
1871	Evaluation of mechanical properties of coconut shell particle/vinyl ester composite based on the untreated and treated conditions. Materials Research Express, 2021, 8, 035309.		1.6	1
1872	Manufacturing and Characterization of Hybrid Composites with Basalt and Flax Fabrics and a Pa Bio-based Epoxy Resin. Fibers and Polymers, 2021, 22, 751-763.	rtially	2.1	4
1873	Experimental evaluation of adobe mixtures reinforced with jute fibers. Construction and Buildin Materials, 2021, 276, 122127.	у 5	7.2	32
1874	The Effects of Different Chemical Treatment Methods and Maleic Anhydride Grafted Polyethyler the Mechanical and Thermal Properties of <i>Alpinia galanga</i> Fiber Reinforced Polyethylene Composites. Materials Science Forum, 0, 1025, 69-76.	ie on	0.3	0
1875	Developing a TRL-oriented roadmap for the adoption of biocomposite materials in the construct industry. Frontiers of Engineering Management, 2023, 10, 223-236.	ion	6.1	5
1876	Effect of banana, pineapple and coir fly ash filled with hybrid fiber epoxy based composites for mechanical and morphological study. Journal of Material Cycles and Waste Management, 2021, 1277-1288.	23,	3.0	41
1877	Study of Elastic Behavior of Polylactic Acid with Yanchama Fibers Composite Simulated as Elasti Orthotropic Material. Journal of Natural Fibers, 2022, 19, 5741-5754.	c	3.1	1
1878	Composites based on poly(ethylene-co-vinyl acetate) and silver-calcined scallop shell powder: Mechanical, thermal, photocatalytic, and antibacterial properties. Journal of Elastomers and Plas 2021, 53, 902-921.	tics,	1.5	5
1879	Tensile Properties Optimization of Date Palm Leaflets Using Taguchi Method. Journal of Natural 2022, 19, 6348-6364.	Fibers,	3.1	7
1880	Non-woody Biomass as Sources of Nanocellulose Particles: A Review of Extraction Procedures. Frontiers in Energy Research, 2021, 9, .		2.3	28
1881	Effect of poly(methylhydrogen)siloxane modification on adjusting mechanical properties of ban flourâ€reinforced HDPE composites. Cellulose, 2021, 28, 5463.	iboo	4.9	9

#	Article	IF	CITATIONS
1882	The Challenges and Future Perspective of Woven Kenaf Reinforcement in Thermoset Polymer Composites in Malaysia: A Review. Polymers, 2021, 13, 1390.	4.5	25
1883	Recent advances of natural fibers based green rubber composites: Properties, current status, and future perspectives. Journal of Applied Polymer Science, 2021, 138, 50866.	2.6	34
1885	Alfa fibers for Cereplast bio-composites reinforcement: Effects of chemical and biological treatments on the mechanical properties. Polymers and Polymer Composites, 2021, 29, S441-S449.	1.9	3
1886	Chemical Surface Modification of Oil Palm Fibre: a Case study of developed Oil Palm Fibre-Plastic Composites. IOP Conference Series: Materials Science and Engineering, 2021, 1107, 012091.	0.6	2
1887	Potential for Natural Fiber Reinforcement in PLA Polymer Filaments for Fused Deposition Modeling (FDM) Additive Manufacturing: A Review. Polymers, 2021, 13, 1407.	4.5	63
1888	Refining of Banana Fiber for Load Bearing Application through Emulsion Treatment and Its Comparison with Other Traditional Methods. Journal of Natural Fibers, 0, , 1-18.	3.1	7
1889	Biodegradable green composite film developed from Moringa Oleifera (Sahajana) seed filler and PVA: Surface functionalization, characterization and barrier properties. Journal of Thermoplastic Composite Materials, 2023, 36, 345-371.	4.2	9
1890	Natural and Synthetic Fiberâ€Based Adsorbents for Water Remediation. Clean - Soil, Air, Water, 2021, 49, 2000189.	1.1	14
1891	Physical and Mechanical Properties of Natural Leaf Fiber-Reinforced Epoxy Polyester Composites. Polymers, 2021, 13, 1369.	4.5	48
1892	Improvement of Performance Profile of Acrylic Based Polyester Bio-Composites by Bast/Basalt Fibers Hybridization for Automotive Applications. Journal of Composites Science, 2021, 5, 100.	3.0	1
1893	Ballistic Performance of Guaruman Fiber Composites in Multilayered Armor System and as Single Target. Polymers, 2021, 13, 1203.	4.5	24
1894	Flammability, Tensile, and Morphological Properties of Oil Palm Empty Fruit Bunches Fiber/Pet Yarn-Reinforced Epoxy Fire Retardant Hybrid Polymer Composites. Polymers, 2021, 13, 1282.	4.5	57
1895	Effect of pine needle fibre reinforcement on the mechanical properties of concrete. Construction and Building Materials, 2021, 278, 122333.	7.2	31
1896	Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers, 2021, 13, 1326.	4.5	208
1897	Thermal degradation kinetics of <i>Opuntia Ficus Indica</i> flour and talc-filled poly (lactic acid) hybrid biocomposites by TGA analysis. Journal of Composite Materials, 2021, 55, 3099-3118.	2.4	5
1898	Characteristics of Unidirectional Green Wood Fiber/Polylactic Acid Composite Parts Printed with Various Layer Thicknesses by Fused Filament Fabrication. 3D Printing and Additive Manufacturing, 0, , .	2.9	0
1899	Mechanical Characterization Of Polymer Nano Composite: Progress In Last Decade. IOP Conference Series: Materials Science and Engineering, 2021, 1116, 012039.	0.6	0
1900	A Review on Green Composites Based on Natural Fiber-Reinforced Polybutylene Succinate (PBS). Polymers, 2021, 13, 1200.	4.5	56

#	Article	IF	CITATIONS
1901	Green composites and their contribution toward sustainability: A review. Polymers and Polymer Composites, 2021, 29, S1588-S1608.	1.9	18
1902	On the Use of Paper Sludge as Filler in Biocomposites for Injection Moulding. Materials, 2021, 14, 2688.	2.9	6
1903	Effects of the liquid natural rubber (LNR) on mechanical properties and microstructure of epoxy/silica/kenaf hybrid composite for potential automotive applications. Journal of Materials Research and Technology, 2021, 12, 1026-1038.	5.8	43
1904	Thermoplastic Starch Nanocomposites Reinforced with Cellulose Nanocrystal Suspensions Containing Residual Salt from Neutralization. Macromolecular Materials and Engineering, 2021, 306, 2100161.	3.6	6
1905	Combination of Corn Pith Fiber and Biobased Flame Retardant: A Novel Method toward Flame Retardancy, Thermal Stability, and Mechanical Properties of Polylactide. Polymers, 2021, 13, 1562.	4.5	11
1906	Insight into the Surface Properties of Wood Fiber-Polymer Composites. Polymers, 2021, 13, 1535.	4.5	5
1907	Degradation Behavior, Biocompatibility, Electrochemical Performance, and Circularity Potential of Transient Batteries. Advanced Science, 2021, 8, 2004814.	11.2	44
1908	Characterization of novel natural cellulosic fibers from purple bauhinia for potential reinforcement in polymer composites. Cellulose, 2021, 28, 5373.	4.9	58
1910	A Review on Agro-industrial Waste as Cellulose and Nanocellulose Source and Their Potentials in Food Applications. Food Reviews International, 2023, 39, 663-688.	8.4	20
1911	A comprehensive review on natural fiber/ <scp>nanoâ€clay</scp> reinforced hybrid polymeric composites: Materials and technologies. Polymer Composites, 2021, 42, 3687-3701.	4.6	91
1912	Recycled Cellulose Fiber Reinforced Plaster. Materials, 2021, 14, 2986.	2.9	11
1913	Recent Advances in Elongational Flow Dominated Polymer Processing Technologies. Polymers, 2021, 13, 1792.	4.5	7
1914	Mechanical Properties of Rice-Straw Reinforced PLA Composite after Alkalization, Heating and Coating Treatments. Materials Science Forum, 0, 1030, 63-70.	0.3	3
1915	Extraction, Treatment and Applications of Natural Fibers for Bio-Composites – A Critical Review. International Polymer Processing, 2021, 36, 114-130.	0.5	23
1916	Utilization of decayed wood for polyvinyl chloride/wood flour composites. Journal of Materials Research and Technology, 2021, 12, 862-869.	5.8	46
1917	Problems and Constraints Involved in the Injection Moulding Process of Biocomposites: A Review. International Journal of Management, Finance and Accounting, 2021, 2, .	0.2	0
1918	Kenaf Fiber/Pet Yarn Reinforced Epoxy Hybrid Polymer Composites: Morphological, Tensile, and Flammability Properties. Polymers, 2021, 13, 1532.	4.5	42
1919	The fertilizer release into water and soil as the biodegradation process in the sustainable material enhancing the fertilizer efficiency. Environmental Technology and Innovation, 2021, 22, 101417.	6.1	13

#	Article	IF	CITATIONS
1920	Simulation and experimental studies on the formation and evolution of hierarchical crystalline structures at the multi-melt flow interface. Composites Part A: Applied Science and Manufacturing, 2021, 144, 106269.	7.6	8
1921	Enhancement for Mechanical Properties of Green Composites Using Treated Yellow Bamboo. Materials Science Forum, 0, 1029, 57-63.	0.3	2
1923	Environmentally friendly polymeric films based on biocarbon, synthetic zeolite and PVP for agricultural chemistry. Polymer Bulletin, 0, , 1.	3.3	2
1924	Natural Fibre-Reinforced Composite for Ballistic Applications: A Review. Journal of Polymers and the Environment, 2021, 29, 3795-3812.	5.0	31
1925	Physicochemical and Thermal Properties of Cellulosic Fiber Extracted from the Bark of <i>Albizia Saman</i> . Journal of Natural Fibers, 2022, 19, 6659-6675.	3.1	10
1926	A review on Borassus flabellifer lignocellulose fiber reinforced polymer composites. Carbohydrate Polymers, 2021, 262, 117929.	10.2	25
1927	ENVIRONMENTAL PROPERTIES OF ENVIRONMENTALLY FRIENDLY CONSTRUCTION MATERIALS: RECYCLED LDPE COMPOSITES FILLED BY BLAST FURNACE DUST. Journal of Green Building, 2021, 16, 135-153.	0.8	5
1928	A review on the extraction of cellulose and nanocellulose as a filler through solid waste management. Journal of Thermoplastic Composite Materials, 2023, 36, 1306-1327.	4.2	9
1929	Nanocrystalline Cellulose from Kapok Fiber (<i>CeibaÂpentandra</i>) and its Reinforcement Effect on AlginateÂHydrogel Bead. Starch/Staerke, 2021, 73, 2100033.	2.1	17
1930	Influence of the Alkali Treatment of Flax and Hemp Fibers on the Properties of PHBV Based Biocomposites. Polymers, 2021, 13, 1965.	4.5	16
1932	Extraction and determination of the Pimelea toxin simplexin in complex plant-polymer biocomposites using ultrahigh-performance liquid chromatography coupled with quadrupole Orbitrap mass spectrometry. Analytical and Bioanalytical Chemistry, 2021, 413, 5121-5133.	3.7	4
1933	Influence of alkali treatment on physio-mechanical properties of jute–epoxy composite. Advances in Materials and Processing Technologies, 2022, 8, 380-391.	1.4	11
1934	Comparing the ignition and burning hazards of sugarâ€cane bagasse and hemp epoxy composites. Fire and Materials, 2022, 46, 529-543.	2.0	2
1935	Recent progress in biomaterials for heart valve replacement: Structure, function, and biomimetic design. View, 2021, 2, 20200142.	5.3	9
1936	Fungal biocomposites: How process engineering affects composition and properties?. Bioresource Technology Reports, 2021, 14, 100692.	2.7	17
1937	Mechano-chemically activated fly-ash and sisal fiber reinforced PP hybrid composite with enhanced mechanical properties. Cellulose, 2021, 28, 8493-8508.	4.9	22
1938	Influence of Calcium Silicate and Hydrophobic Agent Coatings on Thermal, Water Barrier, Mechanical and Biodegradation Properties of Cellulose. Nanomaterials, 2021, 11, 1488.	4.1	2
1939	Opuntia spp. Fibre Characterisation to Obtain Sustainable Materials in the Composites Field. Polymers, 2021, 13, 2085.	4.5	11

#	Article	IF	CITATIONS
1940	Khalasa date palm leaf fiber as a potential reinforcement for polymeric composite materials. Composite Structures, 2021, 265, 113501.	5.8	30
1941	Role of Silk Fiber Loading on Physico-Mechanical Properties of Epoxy Composites. Journal of Natural Fibers, 0, , 1-12.	3.1	4
1943	Potential Uses of Musaceae Wastes: Case of Application in the Development of Bio-Based Composites. Polymers, 2021, 13, 1844.	4.5	7
1944	Effect of fiber attrition, particle characteristics and interfacial adhesion on the properties of PP/sugarcane bagasse fiber composites. Polymer Testing, 2021, 98, 107189.	4.8	16
1945	Damping Behavior of Thermoplastic Organic Sheets with Continuous Natural Fiber-Reinforcement. Vibration, 2021, 4, 529-536.	1.9	4
1946	Effects of water absorption on the mechanical properties of hybrid natural fibre/phenol formaldehyde composites. Scientific Reports, 2021, 11, 13385.	3.3	124
1947	Geopolymers and Fiber-Reinforced Concrete Composites in Civil Engineering. Polymers, 2021, 13, 2099.	4.5	47
1948	Utilization of Natural Cellulosic African Teff Straw Fiber for Development of Epoxy Composites: Thermal Characterization with Activation Energy Analysis. Journal of Natural Fibers, 2022, 19, 6564-6575.	3.1	8
1949	Lignin-Based High-Performance Fibers by Textile Spinning Techniques. Materials, 2021, 14, 3378.	2.9	19
1950	Mechanical properties and dimensional stability of jute/VER-isocyanate hybrid matrix composites. Polymers and Polymer Composites, 2021, 29, S803-S816.	1.9	2
1951	Bionic Design and 3D Printing of Continuous Carbon Fiber-Reinforced Polylactic Acid Composite with Barbicel Structure of Eagle-Owl Feather. Materials, 2021, 14, 3618.	2.9	6
1952	Rice straw and energy reed fibers reinforced phenol formaldehyde resin polymeric biocomposites. Cellulose, 2021, 28, 7859-7875.	4.9	30
1953	Synthesis and characterization of polyvinyl chloride/wood flour/organoclay ternary composites. Polymers and Polymer Composites, 2021, 29, S949-S958.	1.9	6
1954	Effective Treatment of Musa acuminata Fibre Using Wood Ash Solution to Produce Bio-Composite with Enhanced Mechanical Properties. Waste and Biomass Valorization, 2022, 13, 255-269.	3.4	3
1955	A critical review of the ultrastructure, mechanics and modelling of flax fibres and their defects. Progress in Materials Science, 2022, 124, 100851.	32.8	30
1956	The role of fiber-matrix compatibility in vacuum processed natural fiber/epoxy biocomposites. Cellulose, 2021, 28, 7845-7857.	4.9	4
1957	Effect of Mercerization/Alkali Surface Treatment of Natural Fibres and Their Utilization in Polymer Composites: Mechanical and Morphological Studies. Journal of Composites Science, 2021, 5, 175.	3.0	33
1958	A Comparative Study between Jute and Glass Fiber Reinforced Composites. Key Engineering Materials, 0, 891, 125-130.	0.4	3

#	Article	IF	CITATIONS
1959	Evaluation of the Mechanical and Biocidal Properties of Lapacho from Tabebuia Plant as a Biocomposite Material. Materials, 2021, 14, 4241.	2.9	4
1960	Polymeric Biocomposites from Renewable and Sustainable Natural Resources. Advances in Material Research and Technology, 2022, , 65-108.	0.6	1
1961	Recent Progress on Natural Lignocellulosic Fiber Reinforced Polymer Composites: A Review. Journal of Natural Fibers, 2022, 19, 7100-7131.	3.1	29
1962	An Experimental Investigation on Low-velocity Impact Response of Abaca/Epoxy Bio-composite. Journal of Natural Fibers, 2022, 19, 6977-6992.	3.1	7
1963	Tribological and mechanical fracture performance of Mediterranean lignocellulosic fiber reinforced polypropylene composites. Polymer Composites, 2021, 42, 5501-5511.	4.6	26
1964	Wet processing of agro-residual fibres for potential application in fancy décor items. Advances in Materials and Processing Technologies, 2022, 8, 3215-3230.	1.4	1
1965	On Mechanical Behavior of Pine Nut Shell and Polyurethane Derived from Castor Oil Green Composite. Journal of Natural Fibers, 2022, 19, 7454-7469.	3.1	3
1966	<scp>PBAT</scp> / <scp>PLA</scp> /cellulose nanocrystals biocomposites compatibilized with polyethylene grafted maleic anhydride (<scp>PEâ€gâ€MA</scp>). Journal of Applied Polymer Science, 2021, 138, 51342.	2.6	17
1967	Potential Application of Peppermint (Mentha piperita L.), German Chamomile (Matricaria chamomilla L.) and Yarrow (Achillea millefolium L.) as Active Fillers in Natural Rubber Biocomposites. International Journal of Molecular Sciences, 2021, 22, 7530.	4.1	16
1968	Critical Factors for Optimum Biodegradation of Bast Fiber's Gums in Bacterial Retting. Fibers, 2021, 9, 52.	4.0	5
1969	Incorporation of Biochar to Improve Mechanical, Thermal and Electrical Properties of Polymer Composites. Polymers, 2021, 13, 2663.	4.5	47
1970	Extrusion and injection moulding induced degradation of date palm fibre - polypropylene composites. Polymer Degradation and Stability, 2021, 190, 109641.	5.8	8
1971	Mechanical and Moisture Absorption Behaviour of Alkali Treated Sida Acuta Composite. Transactions of the Indian Institute of Metals, 0, , 1.	1.5	1
1972	Research trends and status of wheat (Triticum aestivum L.) based on the Essential Science Indicators during 2010–2020: a bibliometric analysis. Cereal Research Communications, 2022, 50, 335-346.	1.6	4
1973	Green composites in bone tissue engineering. Emergent Materials, 2022, 5, 603-620.	5.7	11
1974	Bioâ€Sourced Poly l â€Lactideâ€Flax Composites with Close to Maximum Stiffness at Low Fiber Content through Twoâ€Stage Annealing. Macromolecular Materials and Engineering, 2021, 306, 2100327.	3.6	2
1975	Mechanical Evaluation of Vegetal Fibers Impregnated in Vacuum in the Cultivation of Pea (Pisum) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50

1976	Heat Transfer in Straw-Based Thermal Insulating Materials. Materials, 2021, 14, 4408.	2.9	16
------	---	-----	----

ARTICLE IF CITATIONS Seleção de materiais invertida. DAPesquisa, 0, 16, 01-23. 1977 0.0 0 The Use of Computed Tomography in the Study of Microstructure of Molded Pieces Made of 1978 Poly(3-hydroxybutyric-co-3-hydroxyvaleric acid) (PHBV) Biocomposites with Natural Fiber. Polymers, 4.5 2021, 13, 2942. Physicochemical and Thermal Properties of New Cellulosic Fiber Obtained from the Stem of 1979 3.16 <i>Markhamia lutea</i>. Journal of Natural Fibers, 2022, 19, 8429-8447. Characterization of enzyme treated cellulosic stem fiber from Cissus quadrangularis plant: An 1980 exploratory investigation. Current Research in Green and Sustainable Chemistry, 2021, 4, 100162. Effect of Evening Primrose (Oenothera biennis) Oil Cake on the Properties of Polyurethane/Polyisocyanurate Bio-Composites. International Journal of Molecular Sciences, 2021, 22, 1981 4.1 5 8950. Composites of a Polypropylene Random Copolymer and Date Stone Flour: Crystalline Details and Mechanical Response. Polymers, 2021, 13, 2957. 1982 4.5 Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced 1983 9.3 251 composites – A comprehensive review. Journal of Ćleaner Production, 2021, 310, 127483. Simultaneous analysis and optimum design of synthetic and vegetable fiber-reinforced composites for 1984 2.6 buckling - failure phenomena. Mechanics of Advanced Materials and Structures, 2022, 29, 5501-5510. Thermo-mechanical recycling of polypropylene for the facile and scalable fabrication of highly 1985 12.0 48 loaded wood plastic composites. Composites Part B: Engineering, 2021, 219, 108873. Drilling of a bidirectional jute fibre and cork-reinforced polymer biosandwich structure: ANN and RSM approaches for modelling and optimization. International Journal of Advanced Manufacturing Technology, 2021, 117, 3819-3839. Improving the ductility and heat deflection temperature of injection molded Poly(lactic acid) 1987 4.8 58 products: A comprehénsive review. Polymer Testing, 2021, 101, 107282. Sunflower Stalks versus Corn Cobs as Raw Materials for Sustainable Concrete. Materials, 2021, 14, 1988 2.9 5078. Axial behavior of concrete confined with flax fiber-reinforced polymers. Materials Today 1989 1.9 7 Communications, 2021, 28, 102646. Development and Characterization of a 3D Printed Cocoa Bean Shell Filled Recycled Polypropylene for 1990 4.5 Sustainable Composites. Polymers, 2021, 13, 3162. A comprehensive review on mechanical and surface characteristics of composites reinforced with 1991 3.0 24 coated fibres. Surfaces and Interfaces, 2021, 27, 101449. A review on applications of natural Fiber-Reinforced composites (NFRCs). Materials Today: 1992 1.8 Proceedings, 2022, 50, 1632-1636. Effective use of olive pulp as biomass additive for eco-grade TPU-based composites using functional 1993 4.6 5 surface modifiers. Biomass Conversion and Biorefinery, 2023, 13, 12303-12318. An investigation into mechanical properties of jute–polyester laminates for numerical prediction of 1994 strength and failure. Polymer Composites, 2021, 42, 5975-5999.

#	Article	IF	CITATIONS
1995	Natural fiber reinforced composites: Sustainable materials for emerging applications. Results in Engineering, 2021, 11, 100263.	5.1	193
1996	Eigenfrequency Behavior of Banana/Glass/Epoxy Hybrid Composite-A Numerical and Experimental Investigation. Journal of Natural Fibers, 2022, 19, 9514-9530.	3.1	3
1997	Fibre-Cement Panel Ventilated Façade Smart Control System. Materials, 2021, 14, 5076.	2.9	4
1998	Effect of the Micronization of Pulp Fibers on the Properties of Green Composites. Molecules, 2021, 26, 5594.	3.8	16
1999	Comprehensive characterization of raw and alkali (NaOH) treated natural fibers from Symphirema involucratum stem. International Journal of Biological Macromolecules, 2021, 186, 886-896.	7.5	54
2001	Review: Textile-based natural fibre-reinforced polymeric composites in automotive lightweighting. Journal of Materials Science, 2021, 56, 18867-18910.	3.7	34
2002	Experimental Determination of Coefficients for the Renner Model of the Thermodynamic Equation of State of the Poly(butylene succinate) and Wheat Bran Biocomposites. Materials, 2021, 14, 5293.	2.9	2
2003	Multivariable analysis for selection of natural fibers as fillers for a sustainable food packaging industry. Materials Research Express, 2021, 8, 095504.	1.6	10
2005	Comprehensive biocompatible hemp fibers improved by phosphate zwitterion with high U(VI) affinity in the marine conditions. Chemical Engineering Journal, 2022, 430, 132742.	12.7	19
2006	Recent advances in nanocellulose-based different biomaterials: types, properties, and emerging applications. Journal of Materials Research and Technology, 2021, 14, 2601-2623.	5.8	114
2007	A review on extraction, chemical treatment, characterization of natural fibers and its composites for potential applications. Polymer Composites, 2021, 42, 6239-6264.	4.6	112
2008	Mechanical Characterization and Fracture Analysis of Epoxy Resin Composites Reinforced with Quasi-Unidirectional Salago Fibers. Solid State Phenomena, 0, 324, 145-150.	0.3	0
2009	Advances in barrier coatings and film technologies for achieving sustainable packaging of food products – A review. Trends in Food Science and Technology, 2021, 115, 461-485.	15.1	122
2010	Characterization of Natural Cellulosic Fiber from Coccinia Grandis Root. Journal of Natural Fibers, 0, , 1-13.	3.1	0
2011	Effect of the compatilizer and chemical treatments on the performance of poly(lactic acid)/ramie fiber composites. Composites Communications, 2021, 27, 100843.	6.3	20
2012	Recent developments on the overmolding process for the fabrication of thermoset and thermoplastic composites by the integration of nano/micron-scale reinforcements. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106525.	7.6	31
2013	Temperature effect on impact response of flax/epoxy laminates: Analytical, numerical and experimental results. Composite Structures, 2021, 274, 114316.	5.8	11
2014	Surface modification of maize stem with polydopamine and tannic acid coatings. Surfaces and Interfaces, 2021, 26, 101319.	3.0	9
#	Article	IF	CITATIONS
------	---	-----	-----------
2015	Cellulosic Grewia Optiva fibres: Towards chemistry, surface engineering and sustainable materials. Journal of Environmental Chemical Engineering, 2021, 9, 106059.	6.7	32
2016	Statistical analysis of surface roughness during high speed edge trimming of flax-fiber composite based on the Split-Split plot randomized complete block design. Measurement: Journal of the International Measurement Confederation, 2021, 184, 109921.	5.0	4
2017	Utilization of wheat-bran cellulosic fibers as reinforcement in bio-based polypropylene composite. Industrial Crops and Products, 2021, 172, 114028.	5.2	14
2018	Effect of stacking sequence on the performance of hybrid natural/synthetic fiber reinforced polymer composite laminates. Composite Structures, 2021, 276, 114525.	5.8	66
2019	Agro-industrial wastes as building insulation materials: A review and challenges for Euro-Mediterranean countries. Industrial Crops and Products, 2021, 171, 113833.	5.2	55
2020	Thermal analysis of cellulosic stalk (stem) fiber from the ornamental Allamanda Blanchetii plant for commercial exploitations. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100069.	2.6	0
2021	Biodegradable and high-performance multiscale structured nanofiber membrane as mask filter media via poly(lactic acid) electrospinning. Journal of Colloid and Interface Science, 2022, 606, 961-970.	9.4	91
2022	Properties and Applications of Bamboo Fiber–A Current-State-of-the Art. Journal of Renewable Materials, 2022, 10, 605-624.	2.2	24
2024	Recent research and developments in hybrid natural fiber composites. , 2021, , 91-112.		3
2025	Manufacturing Defects in Natural Fibre Composites. Composites Science and Technology, 2021, , 219-227.	0.6	0
2026	Drilling Performances of Kenaf Fibre/Steel Mesh Reinforced Hybrid Epoxy Composites. Lecture Notes in Mechanical Engineering, 2021, , 291-300.	0.4	0
2027	Future outlooks and challenges of sustainable lightweight composites. , 2021, , 285-290.		0
2028	Testing and damage characterisation of biocomposite materials. , 2021, , 179-227.		1
2029	Greener Composites from Plant Fibers: Preparation, Structure, and Properties. , 2021, , 307-325.		0
2030	A systematic review on sustainable green fibre reinforced composite and their analytical models. Materials Today: Proceedings, 2021, 46, 6541-6546.	1.8	7
2031	Experimental study and simulation of Natural Fibers Reinforced Polyester Matrix composite. Materials Today: Proceedings, 2021, 46, 862-867.	1.8	2
2032	Enhancement of Static and Fatigue Strength of Short Sisal Fiber Biocomposites by Low Fraction Nanotubes. Applied Composite Materials, 2021, 28, 91-112.	2.5	6
2033	Parametric study on impact behaviour of sisal and cenosphere reinforced natural rubber-based hybrid composites: FE approach. Materials Today: Proceedings, 2021, 46, 8767-8771.	1.8	2

		CITATION REP	ORT	
#	Article		IF	CITATIONS
2034	Fiber extraction and mechanical properties of Agave Americana/Kenaf fiber reinforced hyb composite. Materials Today: Proceedings, 2021, 46, 8594-8601.	rid epoxy	1.8	6
2037	Biopolymer composites: a review. International Journal of Biobased Plastics, 2021, 3, 40-8	4.	5.6	118
2038	Exploring the possibilities of FDM filaments comprising natural fiber-reinforced biocompo- additive manufacturing. AIMS Materials Science, 2021, 8, 524-537.	sites for	1.4	15
2039	Straw/Nano-Additive Hybrids as Functional Fillers for Natural Rubber Biocomposites. Mate 14, 321.	rials, 2021,	2.9	12
2041	Thermoplastic natural fiber based composites. , 2021, , 113-139.			2
2042	Surface treatments in fiber-reinforced composites. , 2021, , 47-81.			1
2043	Industrial and biomedical applications of fiber reinforced composites. , 2021, , 753-783.			3
2045	Determination of mechanical attributes of natural fibers reinforced polyester bio composi Materials Today: Proceedings, 2021, 46, 767-771.	tes.	1.8	7
2046	Biodegradable Polymer Composite Films for Green Packaging Applications. , 2021, , 177-1	93.		1
2047	An experimental investigation of the effect of natural fiber treatment and marine environr Cannabis Sativa/epoxy laminates. Journal of Applied Engineering Science, 2021, 19, 841-8	nent on 47.	0.9	4
2048	The Effect of Stacking Sequence and Ply Orientation on the Mechanical Properties of Pine Fibre (PALF)/Carbon Hybrid Laminate Composites. Polymers, 2021, 13, 455.	apple Leaf	4.5	26
2049	Tribological behavior of fiber-reinforced polymer composites. , 2021, , 63-94.			3
2051	Agrofiber nanocomposites for industrial applications. , 2021, , 251-293.			0
2052	Effect of chemical treatment on thermophysical behavior of Spanish broom flour-reinforce polypropylene biocomposite. Journal of Polymer Engineering, 2021, 41, 9-18.	d	1.4	2
2053	Introduction to composite materials. , 2021, , 1-16.			1
2054	Sustainable composites and techniques for property enhancement. , 2021, , 229-283.			0
2055	Influence of Almond Shell Content and Particle Size on Mechanical Properties of Starch-Ba Biocomposites. Waste and Biomass Valorization, 2021, 12, 5823-5836.	ised	3.4	6
2056	Life cycle analysis for green composites: A review of literature including considerations fo and global agricultural use. Journal of Engineered Fibers and Fabrics, 2021, 16, 15589250	local 2110269.	1.0	12

#	Article	IF	CITATIONS
2057	A review on fibres and fillers on improving the mechanical behaviour of fibre reinforced polymer composites. Materials Today: Proceedings, 2021, 46, 6482-6489.	1.8	14
2059	Effect of Recycling Cycles on the Mechanical and Damping Properties of Flax Fibre Reinforced Elium Composite: Experimental and Numerical Studies. Journal of Renewable Materials, 2021, 9, 695-721.	2.2	20
2060	Thermal Degradation of a Phenolic Resin, Vegetable Fibers, and Derived Composites. Composites Science and Technology, 2021, , 179-213.	0.6	0
2061	Tribological Behaviour of Natural Fibre Based Polymer Composites. Composites Science and Technology, 2021, , 55-69.	0.6	4
2062	Processing and characterization of pineapple fiber reinforced recycled polyethylene composites. Materials Today: Proceedings, 2021, 44, 2153-2157.	1.8	8
2063	Effect of fish scales on fabrication of polyester composite material reinforcements. Open Engineering, 2021, 11, 915-921.	1.6	1
2067	Poly(lactide)/cellulose nanocrystal nanocomposites by highâ€shear mixing. Polymer Engineering and Science, 2021, 61, 1028-1040.	3.1	13
2068	Effect of Drilling Parameters on Delamination and Hole Quality in Drilling Flax Fiber Reinforced Bio-Composites. Smart Innovation, Systems and Technologies, 2019, , 71-81.	0.6	8
2069	Biodegradable Polymer Composite Films for Green Packaging Applications. , 2020, , 1-17.		1
2070	Bamboo Strips with Nodes: Composites Viewpoint. , 2020, , 159-169.		2
2071	Assessing the Application Potential of Selected Ecosystem-Based, Low-Regret Coastal Protection Measures. Advances in Natural and Technological Hazards Research, 2016, , 457-482.	1.1	6
2072	Charpy Impact Tests in Epoxy Matrix Composites Reinforced with Malva Fibers. , 2014, , 425-432.		1
2073	Eco-friendly Lubricants for Tribological Application. , 2018, , 1-18.		2
2075	Computational Evaluation of Transverse Thermal Conductivity of Natural Fiber Composites. Advanced Structured Materials, 2018, , 197-206.	0.5	5
2077	Potential Use of Cellulose Fibre Composites in Marine Environment—A Review. Advanced Structured Materials, 2018, , 25-55.	0.5	8
2078	Durability of Composites in the Marine Environment. Solid Mechanics and Its Applications, 2014, , 1-13.	0.2	7
2079	Effects of Water Ageing on the Mechanical Properties of Flax and Glass Fibre Composites: Degradation and Reversibility. RILEM Bookseries, 2016, , 183-196.	0.4	6
2080	Pineapple Leaf Fibres for Automotive Applications. Green Energy and Technology, 2020, , 279-296.	0.6	5

щ.		IF	CITATIONS
# 2081	Tensile and flexural properties of polymer composites reinforced by flax, jute and sisal fibres. International Journal of Advanced Manufacturing Technology, 2020, 108, 895-916.	1r 3.0	44
2082	Surface Modification of Flax Fibers with Isocyanate and Its Effects on Fiber/Epoxy Interfacial Properties. Fibers and Polymers, 2020, 21, 2888-2895.	2.1	7
2083	Extraction and investigation of lightweight and porous natural fiber from Conium maculatum as a potential reinforcement for composite materials in transportation. Composites Part B: Engineering, 2018, 140, 1-8.	12.0	65
2084	A comprehensive review on light weight kenaf fiber for automobiles. International Journal of Lightweight Materials and Manufacture, 2020, 3, 328-337.	2.1	37
2085	Extraction process optimization of Juncus plant fibers for its use in a green composite. Industrial Crops and Products, 2017, 107, 172-183.	5.2	44
2086	Hemp fiber reinforced thermoplastic polyurethane composite: An investigation in mechanical properties. Industrial Crops and Products, 2017, 108, 853-863.	5.2	80
2087	Steam-exploded fibers of almond tree leaves as reinforcement of novel recycled polypropylene composites. Journal of Materials Research and Technology, 2020, 9, 11791-11800.	5.8	25
2088	Comparative experimental investigation of natural fibers reinforced light weight concrete as thermally efficient building materials. Journal of Building Engineering, 2020, 31, 101411.	3.4	54
2089	Acoustic isolation of Jute and Kapok fiber reinforced Polypropylene composites. IOP Conference Series: Materials Science and Engineering, 0, 932, 012096.	0.6	2
2090	Recent Researches In Polylactic Acid Reinforced With Natural Fiber Composites– A Literature Review. IOP Conference Series: Materials Science and Engineering, 0, 988, 012025.	0.6	3
2091	On the dynamics of axially functionally graded CNT strengthened deformable beams. European Physical Journal Plus, 2020, 135, 1.	2.6	21
2092	Introduction to Natural Fiber Composites. , 2015, , 1-34.		7
2093	Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis from Sugarcane Bagasse as Agro-Waste. Journal of Materials Physics and Chemistry, 2020, 2, 1-8.	8.6	270
2094	Strontium-Modified Bacterial Cellulose and a Polyvinylidene Fluoride Composite as an Electroactive Material. Forest Products Journal, 2017, 67, 288-296.	0.4	3
2095	The Influence of the Type of Lime on the Hygric Behaviour and Bio-Receptivity of Hemp Lime Composites Used for Rendering Applications in Sustainable New Construction and Repair Works. PLoS ONE, 2015, 10, e0125520.	2.5	18
2096	Changes in hemp secondary fiber production related to technical fiber variability revealed by light microscopy and attenuated total reflectance Fourier transform infrared spectroscopy. PLoS ONE, 2017, 12, e0179794.	2.5	18
2097	Hybrid Composite Laminates from UPE/ESOA Blend Reinforced with Chitosan and Bamboo Fiber: A Study of Mechanical and Thermal Properties. Asian Journal of Chemistry, 2020, 32, 1321-1328.	0.3	2
2098	Study and fire test of banana fibre reinforced composites with flame retardance properties. Open Chemistry, 2020, 18, 275-286.	1.9	11

#	Article	IF	CITATIONS
2099	Influence of chemical pretreatments on plant fiber cell wall and their implications on the appearance of fiber dislocations. Holzforschung, 2020, 74, 949-955.	1.9	10
2100	Pyrolysis kinetics and mechanical properties of poly(lactic acid)/bamboo particle biocomposites: Effect of particle size distribution. Nanotechnology Reviews, 2020, 9, 524-533.	5.8	23
2101	A Review of Physio-Biochemical Properties of Natural Fibers and Their Application in Soil Reinforcement. Advances in Civil Engineering Materials, 2017, 6, 323-359.	0.6	25
2102	Curing behaviour of unsaturated polyester resin and interfacial shear stress of sugar palm fibre. Journal of Mechanical Engineering and Sciences, 2017, 11, 2650-2664.	0.6	27
2103	Mechanical and Thermal Properties of Waste Bio-Polymer Compound by Hot Compression Molding Technique. Journal of Mechanical Engineering and Sciences, 2013, 5, 582-591.	0.6	11
2104	Effects of physical treatment of hemp fibers on fiber structure and biocomposite properties. Pollack Periodica, 2015, 10, 117-124.	0.4	3
2105	Surface Esterification of Sisal Fibres for use as Reinforcement in Cementitious Matrix. Materials Research, 2019, 22, .	1.3	4
2106	Evaluation of Dynamic Mechanical Properties of Fique Fabric/Epoxy Composites. Materials Research, 2019, 22, .	1.3	9
2108	Creep Behaviour of the Polymer Composite with False Banana's Fibres (Ensete Ventricosum). Manufacturing Technology, 2016, 16, 188-192.	1.4	6
2109	The Fibre Damage Due to the Mechanical Cutting of Treated and Untreated Kenaf Short Fibre/Unsaturated Polyester Composite. Journal of Engineering Science, 2017, 13, 63-74.	0.4	3
2110	Nexus Among Bio-plastic, Circularity, Circular Value Chain & Circular Economy. SSRN Electronic Journal, 0, , .	0.4	3
2111	Plastics: physical-and-mechanical properties and biodegradable potential. Foods and Raw Materials, 2020, 8, 149-154.	2.1	6
2112	Flexural and interlaminar shear study of hybrid woven kenaf/recycled GFRP (rGFRP) composites subjected to bending load. International Journal of Advanced and Applied Sciences, 2017, 4, 45-50.	0.4	6
2113	Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications. European Mechanical Science, 2018, 2, 83-91.	0.9	49
2114	Mechanical properties of plain woven kenaf/glass fiber reinforced polypropylene hybrid composites. Materialpruefung/Materials Testing, 2019, 61, 1095-1100.	2.2	13
2115	Influence of fiber weight ratio on the mechanical and water absorption performance of borassus/epoxy composites. Materialpruefung/Materials Testing, 2020, 62, 937-942.	2.2	5
2116	Low Density Polypropylene/Waste Cellulose Fiber Composites by High-Shear Thermo-Kinetic Mixer. International Polymer Processing, 2017, 32, 562-567.	0.5	3
2117	Effect of a Novel Chemical Treatment on the Physico-Thermal Properties of Sugarcane Nanocellulose Fiber Reinforced Epoxy Nanocomposites. International Polymer Processing, 2020, 35, 211-220.	0.5	19

#	Article	IF	CITATIONS
2118	Utilisation of Waste Plantain (<i>Musa Paradisiaca</i>) Peels and Waste Polystyrene in the Development of Reinforced Polymer Composites. International Polymer Processing, 2020, 35, 331-337.	0.5	9
2119	Effects of UV-accelerated weathering and natural weathering conditions on anti-fungal efficacy of wood/PVC composites doped with propylene glycol-based HPQM. EXPRESS Polymer Letters, 2016, 10, 289-301.	2.1	14
2120	Tucum Fiber from Amazon Astrocaryum vulgare Palm Tree: Novel Reinforcement for Polymer Composites. Polymers, 2020, 12, 2259.	4.5	27
2121	Concise review on the mechanical characteristics of hybrid natural fibres with filler content. AIMS Materials Science, 2020, 7, 650-664.	1.4	5
2122	Fabrication and Processing of Pineapple Leaf Fiber Reinforced Composites. Advances in Chemical and Materials Engineering Book Series, 0, , 125-147.	0.3	8
2123	The effect of Poly-ethylene-co-glycidyl methacrylate efficiency and clay platelets on thermal and rheological properties of wood polyethylene composites Advances in Chemical Engineering and Science, 2016, 06, 436-455.	0.5	6
2124	The Application of a Representative Volume Element (RVE) Model for the Prediction of Rice Husk Particulate-Filled Polymer Composite Properties. Materials Sciences and Applications, 2019, 10, 78-103.	0.4	4
2125	Recent Eco-Friendly Developments in Personal Protective Clothing Materials for Reducing Plastic Pollution: A Review. Engineering, Technology & Applied Science Research, 2019, 9, 4012-4018.	1.9	5
2126	APPLICATION OF POLYMER COMPOSITES WITH PLANT REINFORCEMENT USED IN MACHINE AND AIRCRAFT CONSTRUCTION IN CHANGEABLE ENVIRONMENTAL CONDITIONS. Journal of KONES, 2016, 23, 223-230.	0.2	1
2127	Overview of Wood Plastic Composites: Focusing on Use of Bio-based Plastics and Co-extrusion Technique. Journal of the Korean Wood Science and Technology, 2014, 42, 499-509.	3.0	8
2128	Improvement of Interfacial Adhesion in Natural Plant Fiber-reinforced Unsaturated Polyester Composites: A Critical Review. Reviews of Adhesion and Adhesives, 2015, 3, 98-120.	3.4	17
2129	Evaluation of Bast Fibres of the Stem of Carica papaya L. for Application as Reinforcing Material in Green Composites. Annual Research & Review in Biology, 2015, 6, 245-252.	0.4	8
2130	A critical review on cellulose wastes as the novel substrates for colorimetric and electrochemical sensors. Current Research in Green and Sustainable Chemistry, 2021, 4, 100190.	5.6	3
2131	Study the mechanical properties of natural fiber of jute and kenaf in polymer composites. AIP Conference Proceedings, 2021, , .	0.4	0
2132	Biocomposites from Food Waste. , 2021, , 287-310.		0
2133	Analysis of the Frequency of Acoustic Emission Events in Terms of the Assessment of the Reduction of Mechanical Parameters of Cellulose–Cement Composites. Materials, 2021, 14, 5882.	2.9	2
2134	Durable Polylactic Acid (PLA)-Based Sustainable Engineered Blends and Biocomposites: Recent Developments, Challenges, and Opportunities. ACS Engineering Au, 2021, 1, 7-38.	5.1	72
2135	A comparative review of Nettle and Ramie fiber and their use in biocomposites, particularly with a PLA matrix. Journal of Natural Fibers, 2022, 19, 8205-8229.	3.1	19

#	Article	IF	CITATIONS
2136	Effect of Fabrication Parameters on the Mechanical Properties of Water Hyacinth Fiber-Reinforced High-Density Polyethylene Composite. Transactions of the Indian Institute of Metals, 0, , 1.	1.5	1
2137	A review of interfacial bonding mechanism of bamboo fiber reinforced polymer composites. Cellulose, 2022, 29, 83-100.	4.9	14
2138	Characterization of the mechanical and thermal properties of rape short natural-fiber reinforced thermoplastic composites. Iranian Polymer Journal (English Edition), 2022, 31, 143-151.	2.4	16
2139	Novel cattail fiber composites: converting waste biomass into reinforcement for composites. Bioresources and Bioprocessing, 2021, 8, 101.	4.2	9
2140	Spirulinaâ€based composites for <scp>3D</scp> â€printing. Journal of Polymer Science, 2021, 59, 2878-2894.	3.8	8
2141	Critical Review of Natural Fiber Reinforced Hybrid Composites: Processing, Properties, Applications and Cost. Polymers, 2021, 13, 3514.	4.5	85
2142	Hemp fibers modified with graphite oxide as green and efficient solution for water remediation: Application to methylene blue. Chemosphere, 2022, 288, 132614.	8.2	9
2143	Effect of Surface Treatment on the Mechanical Performance of Unidirectional Enset Fiber Reinforced Polypropylene Composite. Journal of Natural Fibers, 2022, 19, 9111-9124.	3.1	2
2144	Effect of Natural Crosslinker on the Properties of Chicken Feather and Modified Vegetable Oil Based Green Composites. Journal of Natural Fibers, 0, , 1-13.	3.1	0
2145	Effectiveness of treated flax fibers in improving the early age behavior of high-performance concrete. Journal of Building Engineering, 2022, 45, 103448.	3.4	10
2146	A comprehensive overview of jute fiber reinforced cementitious composites. Case Studies in Construction Materials, 2021, 15, e00724.	1.7	27
2147	Fabrication of long bamboo fiber-reinforced thermoplastic composite by extrusion and improvement of its properties. Industrial Crops and Products, 2021, 173, 114120.	5.2	10
2148	Obtention and characterization of polypropylene composites reinforced with new natural fibers from Yucca aloifolia L. Composites Part B: Engineering, 2021, 227, 109414.	12.0	14
2149	Damping and sound absorption properties of polymer matrix composites: A review. Polymer Testing, 2021, 104, 107388.	4.8	53
2150	Determinación del porcentaje de humedad, solubles e insolubles en agua de la fibra de Carludovica Palmata (paja toquilla). Ingenius: Revista De Ciencia Y TecnologÃa, 2013, , .	0.1	1
2152	FORMULAÇÃO E CARACTERIZAÇÃO DE BIOCOMPÓSITOS DE POLIHIDROXIBUTIRATO (PHB) DIAMANTADOS PARA O DESENVOLVIMENTO DE DISPOSITIVOS ORTOPÉDICOS. , 0, , .		0
2154	Izod Impact Tests in Polyester Matrix Composites Reinforced with Malva Fibers. , 2014, , 417-423.		0
2155	Performance of Fibreboards Made from Wetpreserved Hemp. Materials Science Textile and Clothing Technology, 2014, 8, 65.	0.1	1

#	Article	IF	Citations
2156	EFFECTS OF THE INCORPORATION OF CLAY ON PROPERTIES OF THE BIODEGRADABLE COPOLYESTER/PLA FLEXIBLE FILM. , 0, , .		0
2157	Thermal Analysis of Epoxy Based Coconut Fiber-Almond Shell Particle Reinforced Biocomposites. Advances in Manufacturing Science and Technology, 2014, 38, 37-50.	0.3	2
2158	Morphological Characteristics of Weed Seed Fibers. Weed & Turfgrass Science, 2014, 3, 196-205.	0.1	2
2160	Fibers from Sugarcane Bagasse. , 2015, , 29-30.		4
2161	Chemical and Physical Characteristics of Four Weed Seed Fibers (Hemistepta lyrata, Imperata) Tj ETQqO O O rgBT 253-261.	/Overlock 0.1	10 Tf 50 58 0
2162	DESIGN PARA A SUSTENTABILIDADE E O CICLO DE VIDA DOS MATERIAIS: UMA REFLEXÃO ACERCA DA PRODUÇÃO DE COMPÓSITOS BIODEGRADÃVEIS. , 0, , .		0
2163	Comparative Analysis of the Mechanical Properties of Matrix Based on Polyester Composites Reinforced with Particulated, Continuous and Aligned Tauari Fiber (Couratariguianensis). ITEGAM- Journal of Engineering and Technology for Industrial Applications (ITEGAM-JETIA), 2015, 1, .	0.2	0
2164	Chapter 4. Natural Fibre-reinforced Thermoplastic Starch Composites. RSC Green Chemistry, 2015, , 109-142.	0.1	0
2165	OPTIMIZATION OF ORGANIC FILLER PROPERTIES BY ITS PHYSICAL TREATMENT. Journal of Civil Engineering, Environment and Architecture, 2015, XXXII, 427-433.	0.0	0
2166	Biodegradable Starch/Copolyesters Film Reinforced with Silica Nanoparticles: Preparation and Characterization. , 2015, , 687-693.		0
2167	Simulation of Fragmentation Technique Using ANSYS Software. Advances in Chemical and Materials Engineering Book Series, 2015, , 341-372.	0.3	0
2168	Comparison of damage behaviour of different plant fibre composites under laser impact loading. Materiaux Et Techniques, 2015, 103, 108.	0.9	0
2170	Additional Questions and Answers. , 2015, , 327-352.		0
2172	Effect of Sisal Fibre Loading on Mechanical Properties of Jute Fibre Reinforced Epoxy Composite. , 2015, , .		0
2173	Unidirectional Cordenka Fibre-Reinforced Furan Resin Full Biocomposite: Properties and Influence of High Fibre Mass Fraction. Journal of Composites, 2015, 2015, 1-8.	0.8	12
2174	Matrices for Natural Fiber Composites. , 2015, , 93-126.		0
2175	Biokompozyty epoksydowe wzmacniane naturalnymi wÅ,óknami krótkimi oraz mikrowÅ,óknami z Å,usek zbożowych. InÅ»ynieria MateriaÅowa, 2015, 1, 5-9.	0.2	1
2176	Processing of Wet Preserved Natural Fibers with Injection Molding Compounding (IMC). RILEM Bookseries, 2016, , 197-210.	0.4	2

#	Article	IF	Citations
2177	Biodegradable Poly(Lactic Acid) and Its Composites. , 2016, , 890-931.		0
2179	Preliminary Study on the Compatibilization Techniques of Natural Fibers as Reinforcement of Polymeric Matrices. , 2016, , .		1
2180	Comparative Study of the Effects of Cellulose Nanowhiskers and Microcrystalline Cellulose Addition as Reinforcement in Flexible Films Based on Biopolymer Blends. , 2016, , 409-416.		0
2182	Guar Gum and Its Derivatives: Versatile Materials for Controlled Drug Delivery. , 2016, , 289-316.		0
2183	Biocompuestos para perfiles avanzados adaptados a la edificación = Biocomposites for Advanced Profiles Adapted to Building Envelope. Anales De Edificación, 2016, 2, 20.	0.1	0
2184	FLEXURAL PROPERTIES OF COMPRESSION MOULDED KENAF POLYETHYLENE COMPOSITE. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	0
2185	Wtryskiwane opakowania cienkościenne z biokompozytów na osnowie PLA wzmocnionych mikrowÅ,óknami z Å,usek zbożowych. Opakowanie, 2016, 1, 52-55.	0.1	0
2186	The Effect of Plasma Treatment on Tensile Strength of Ensete Ventricosum Fibres. Manufacturing Technology, 2016, 16, 928-933.	1.4	2
2187	Application of Bioactive Composite Green Polymer for the Development of Artificial Organs. Materials Research Foundations, 2016, , 61-100.	0.3	3
2188	Viscoelastic Performance of Biocomposites. , 0, , .		0
2189	Banana Fiber Processing for the Production of Technical Textiles to Reinforce Polymeric Matrices. Smart Innovation, Systems and Technologies, 2017, , 452-459.	0.6	0
2190	Fabrication and Processing of Pineapple Leaf Fiber Reinforced Composites. , 2017, , 876-893.		2
2191	ADVANCES IN POLYPROPYLENE BASED MATERIALS. Prilozi: Makedonska Akdemija Na Naukite I Umetnostite Oddelenie Za Prirodno-matematiÄki I BiotehniÄki Nauki, 2017, 35, .	0.3	1
2193	The Use of Reductants in Oxidation Degumming of Ramie. Journal of Textile Engineering & Fashion Technology, 2017, 2, .	0.3	0
2194	Effect of Composition of Fibers on Properties of Hybrid Composites. International Journal of Manufacturing, Materials, and Mechanical Engineering, 2017, 7, 28-43.	0.4	2
2195	Sustainable Composites Based on Pine Resin and Flax Fibre. , 2018, , 145-157.		0
2196	Characterization of the Mechanical and Vibration Behavior of Flax Composites with an Interleaved Natural Viscoelastic Layer. Applied Condition Monitoring, 2019, , 186-194.	0.4	0
2198	Comportamento térmico de compósitos de poliestireno reciclado reforçado com celulose de bagaço de cana. Revista Materia, 2019, 24, .	0.2	4

#	Article	IF	CITATIONS
2199	Effect of nanoclay addition and chemical treatment on static and dynamic mechanical analysis of jute fibre composites. Polimeros, 2019, 29, .	0.7	8
2201	Study of Tribo-Performance and Application of Polymer Composite. Energy, Environment, and Sustainability, 2019, , 65-99.	1.0	6
2202	Impact of Weathering on the Mechanical and Weight Reduction Properties of High-density Polyethylene (HDPE) Composites Filled with Treated and Untreated Eggshell Powder (ESP) Fillers. Journal of Engineering Science, 2019, 15, 109-123.	0.4	2
2203	Theoretical and Experimental Studies on Tribological Behavior of Luffa Fiber Reinforced Polyester under the Influence of Surface Treatment. International Polymer Processing, 2019, 34, 72-80.	0.5	2
2205	Characterization of Areca and Tamarind Fiber Reinforced Hybrid Polymer Composites for Structural Applications. , 0, , .		0
2206	Polietilen Tereftalat Şişelerin Geri Dönüştürülmüş Yüksek Yoğunluklu Polietilen Kapaklarını Yapılarda Değerlendirilmesi. International Journal of Advances in Engineering and Pure Sciences, 0, , 104-110.	n Kompoz 0.8	zit 1
2207	A Short Review: Manufacturing problems and Solutions of Natural Fiber Reinforced Composites. Journal of Applied and Emerging Sciences, 2019, , 68-77.	0.1	0
2208	Characterization of Natural Fibres and Their Polymer-based Composites. Journal of Research Updates in Polymer Science, 0, , 35-51.	0.3	0
2209	Biodegradability and Composite Coatings: Past, Present and Future Prospects. , 2020, , 399-415.		2
2210	A Comparative Study of the Properties of the Bio-Plastic Sheets Produced From Three Conventional and Unconventional Starch Sources. , 2020, , .		0
2211	Properties of Cellulose Based Bio-fibres Reinforced Polymer Composites. , 2020, , 71-89.		2
2212	Traditional and New Applications of Hemp. Sustainable Agriculture Reviews, 2020, , 37-87.	1.1	12
2213	Evaluación térmica de material compuesto de cemento portland reforzado con agregado fino de CBC y FO tratada con Silano. IngenierÃa Investigación Y TecnologÃa, 2020, 21, 1-11.	0.1	1
2214	Assimilation of Mechanical properties of reinforced aluminum, stainless steel wire mesh with glass fiber epoxy hybrid composites for aircraft application. Advances in Materials and Processing Technologies, 2021, 7, 288-303.	1.4	3
2215	Research on wear resistance of polymeric composite materials based on microparticles from tyre recyclation process. Manufacturing Technology, 2020, 20, 223-228.	1.4	5
2216	<i>Opuntia</i> Fiber and Its Potential to Obtain Sustainable Materials in the Composites Field: A Review. Journal of Natural Fibers, 2022, 19, 10053-10067.	3.1	6
2217	Activated Carbon Derived from Carbonization of Kevlar Waste Materials: A Novel Single Stage Method. Materials, 2021, 14, 6433.	2.9	12
2218	Development and characterization of bio-composites using senegalia catechu resin. Polymers and Polymer Composites, 2021, 29, S1268-S1279.	1.9	2

#	Article	IF	CITATIONS
2219	Pineapple Leaf Fiber Polymer Composites as a Promising Tool for Sustainable, Eco-friendly Composite Material: Review. Journal of Natural Fibers, 2022, 19, 10031-10052.	3.1	6
2220	Performance Evaluation of PLA Based Biocomposites Reinforced with Photografted PALF. Tekstilec, 2021, 64, 230-246.	0.6	0
2221	Bioactive Poly(lactic acid)–Cocoa Bean Shell Composites for Biomaterial Formulation: Preparation and Preliminary In Vitro Characterization. Polymers, 2021, 13, 3707.	4.5	9
2222	Colour Fastness to Various Agents and Dynamic Mechanical Characteristics of Biocomposite Filaments and 3D Printed Samples. Polymers, 2021, 13, 3738.	4.5	4
2223	Experimental Studies on Abrasion Wear and Thermal Characteristics of Plain Derived Flax Woven Fabric Reinforced Epoxy Composites. Journal of Natural Fibers, 0, , 1-16.	3.1	0
2224	Integration of Agave plants into the polyhydroxybutyrate (PHB) production: A gift of the ancient Aztecs to the current bioworld. Industrial Crops and Products, 2021, 174, 114188.	5.2	10
2225	Edible Packaging from Legume By-Products. , 2020, , 155-167.		0
2226	Physical-Chemical and Mechanical Characterization of the Bast Fibers of <i>Triumfetta cordifolia</i> A.Rich. from the Equatorial Region of Cameroon. Journal of Minerals and Materials Characterization and Engineering, 2020, 08, 163-176.	0.4	18
2227	Physico-Chemical and Thermal Characterization of Some Lignocellulosic Fibres: <i>Ananas comosus</i> (AC), <i>Neuropeltis acuminatas</i> (NA) and <i>Rhecktophyllum camerunense</i> (RC), Journal of Minerals and Materials Characterization and Engineering, 2020, 08, 205-222.	0.4	15
2228	Unbleached cellulose from waste corncob for isolation of cellulose nanocrystals. Emerging Materials Research, 2020, 9, 1258-1265.	0.7	1
2229	INVESTIGATION OF THERMAL CONDUCTIVITY OF LUFFA AND LUFFA-COIR REINFORCED EPOXY COMPOSITES. International Journal of Research -GRANTHAALAYAH, 2020, 8, 69-79.	0.1	2
2230	Mechanical and Thermal Properties of Chloris barbata flower fiber /Epoxy Composites: Effect of Alkali treatment and Fiber weight fraction. Journal of Natural Fibers, 2022, 19, 3453-3466.	3.1	33
2231	Influence of composite architecture and interfacial bonding on their impact properties. Materials Today: Proceedings, 2020, , .	1.8	0
2233	Tribological Properties of Natural Fibre Reinforced Polymer Composites. Composites Science and Technology, 2021, , 347-381.	0.6	3
2234	Impact response of a new kevlar/flax/epoxy hybrid composite using infrared thermography and high-speed imaging. Composite Structures, 2022, 280, 114885.	5.8	16
2235	A influência de microfibras de celulose no estado fresco de argamassas. Ambiente ConstruÃdo, 2022, 22, 179-190.	0.4	2
2236	Aprovechamiento de fibras tejidas de yute como material de refuerzo en biocompuestos de Ãicido polilÃictico//Use of jute woven fibers as reinforcement material in polylactic acid biocomposites. Biotecnia, 2019, 22, 67-73.	0.3	0
2237	Recycling of Flax Fiber Towards Developing Biocomposites for Automotive Application From a Life Cycle Assessment Perspective. , 2020, , 535-545.		0

		CITATION R	EPORT	
#	Article		IF	CITATIONS
2238	Compatibility of Natural Fiber and Hydrophobic Matrix in Composite Modification. , 202	20, , 1-20.		0
2239	Quasi-static Properties of a Bio-Based Sandwich Structure with an Auxetic Core. Lecture Mechanical Engineering, 2020, , 576-585.	e Notes in	0.4	0
2240	Efficacy of Quasi Agro Binding Fibre on the Hybrid Composite Used in Advance Applicat Notes in Mechanical Engineering, 2020, , 565-574.	ion. Lecture	0.4	1
2241	Fibers for Geotextiles. Topics in Mining, Metallurgy and Materials Engineering, 2020, , 1	29-149.	1.6	3
2242	Effect of Surface Modification on Characteristics of Naturally Woven Coconut Leaf She Potential Reinforcement of Composites. , 2020, , 285-294.	ath Fabric as		0
2243	Hemp Fibers in Serbia: Cultivation, Processing and Applications. Sustainable Agriculture , 111-146.	Reviews, 2020,	1.1	4
2244	Potential Future Applications of Date Palm Fiber Composites. , 2020, , 407-417.			2
2245	Improving Flame Retardancy of Pineapple Leaf Fibers. Green Energy and Technology, 20	20, , 123-141.	0.6	2
2246	Appraisal on Varied Natural and Artificial Fiber Reinforced Polymeric Composites. Mater Proceedings, 2020, 22, 3213-3219.	ials Today:	1.8	1
2247	Biopolymer Nanocomposite Based Food Packaging. Food Engineering Series, 2020, , 17	7-188.	0.7	0
2248	INFLUENCE OF PANDANUS TECTORIUS LEAF FIBER ON MECHANICAL PROPERTIES AND POLYPROPYLENE COMPOSITE. Angkasa Jurnal Ilmiah Bidang Teknologi, 2020, 12, .	MORPHOLOGY OF	0.1	0
2250	Multi-scale physico-chemical characterization of CEB/ANS bio-composites. Materials Too Proceedings, 2021, 52, 45-45.	day:	1.8	1
2251	Removing silica from oil palm mesocarp fibers. Biomass Conversion and Biorefinery, 0, ,	1.	4.6	2
2252	Compressive Characterization of Date Palm Leaf Fiber. Journal of Natural Fibers, 2022, 2	19, 9813-9826.	3.1	1
2253	Natural Fibers for the Production of Green Composites. Advances in Chemical and Mate Engineering Book Series, 0, , 1-23.	rials	0.3	2
2254	Coir Fiber-Reinforced Composites. Advances in Chemical and Materials Engineering Boc 247-275.	k Series, 0, ,	0.3	1
2255	Available Mechanical and Chemical Properties of Natural Fibers. Advances in Chemical a Engineering Book Series, 0, , 110-136.	nd Materials	0.3	0
2256	Renewable Energy in Ukraine-Poland Region: Comparison, Critical Analysis, and Opport	unities. , 0, , .		2

		CITATION REPO	DRT	
#	Article	I	F	Citations
2257	Silk-Based Materials and Composites: Fabrication and Biomedical Applications. , 2021, , 35-57.			0
2258	Squeeze Orientation Reinforcement Effect on Cellulose Nanocrystals/Poly(butylene) Tj ETQq1 I	. 0.784314 rgBT /Ov	erlock 1(о Д f 50 70 <mark>2</mark>
2259	Greener Composites from Plant Fibers: Preparation, Structure, and Properties. , 2021, , 1-19.			0
2260	Futuristic Prospects of Bamboo Fiber in Textile and Apparel Industries: Fabrication and Characterization. , 2021, , 189-213.			1
2261	Bamboo: A Potential Natural Material for Bio-composites. , 2021, , 15-37.			1
2262	Natural Fibers Based Phenolic Hybrid Composites. , 2021, , 77-87.			0
2263	Sustainable kenaf/bamboo fibers/clay hybrid nanocomposites: properties, environmental aspect applications. Journal of Cleaner Production, 2022, 330, 129938.	:s and g	9.3	40
2264	Thermal insulation and mechanical characteristics of polyester filled with date seed wastes. Construction and Building Materials, 2022, 315, 125805.	7	7.2	15
2265	Biobased composites from jojoba oil and fibers from alfa stems: Elaboration and characterizatic Industrial Crops and Products, 2022, 176, 114294.	n. E	5.2	4
2266	A Review of Flax Fiber Reinforced Thermoset Polymer Composites: Structure and Mechanical Performance. Journal of Natural Fibers, 2022, 19, 9656-9680.	8	3.1	9
2267	Potential of lignocellulosic residues from coconut, fique, and sugar cane as substrates for pleurotus and ganoderma in the development of biomaterials. Environmental Quality Managem 2022, 32, 343-353.	ient, 1	L . 9	2
2268	Life cycle assessment of bio-composite laminates. A comparative study. IOP Conference Series: and Environmental Science, 2021, 899, 012041.	Earth o).3	1
2269	The Influence of Chosen Plant Fillers in PHBV Composites on the Processing Conditions, Mecha Properties and Quality of Molded Pieces. Polymers, 2021, 13, 3934.	nical 4	1.5	12
2270	Effective Young's Modulus Estimation of Natural Fibers through Micromechanical Models: 1 of Henequen Fibers Reinforced-PP Composites. Polymers, 2021, 13, 3947.	he Case 4	1.5	8
2271	Effect of moisture susceptibility and aging on interlaminar fracture behavior of fumed silica reinforced <scp>Juteâ€Kevlar</scp> hybrid nanocomposite. Polymer Composites, 2022, 43, 51	7-532.	1.6	7
2272	Biobased sustainable materials made from starch and plasma/ultrasound modified Agave fibers: Structural and water barrier performance. International Journal of Biological Macromolecules, 2021, 193, 2374-2381.	7	7.5	8
2273	Study on characterization of mechanical, thermal properties, machinability and biodegradability natural fiber reinforced polymer composites and its Applications, recent developments and futu potentials: A comprehensive review. Materials Today: Proceedings, 2022, 52, 1255-1259.	r of Ire 1	8	21
2274	Alkali Concentration and Diluent Effects on Properties of Grape Cane Fiber-Reinforced Polymer Composites. Polymers, 2021, 13, 4055.	4	1.5	1

#	Article	IF	CITATIONS
2275	The effect of chemically treated all-cellulose composites (ACCs) with dodecyltriethoxysilane (DTES) solution on the structural-property relationship. IOP Conference Series: Materials Science and Engineering, 2021, 1192, 012002.	0.6	0
2276	Evaluating durability parameters of concrete containing bacteria and basalt fiber. Journal of Building Pathology and Rehabilitation, 2022, 7, 1.	1.5	2
2277	Physical and Mechanical Characterization of Titica Vine (Heteropsis flexuosa) Incorporated Epoxy Matrix Composites. Polymers, 2021, 13, 4079.	4.5	13
2278	On the development of a green composites based on poly (lactic acid)/poly (butylene succinate) blend matrix reinforced by long flax fibers. Materials Today: Proceedings, 2021, , .	1.8	7
2279	Influence of the Cellulose and Soft Wood Fibres on the Impact and Tensile Properties in Polypropylene Bio Composites. Key Engineering Materials, 0, 903, 134-139.	0.4	0
2280	Biopolymerâ€Based Membrane Adsorber for Removing Contaminants from Aqueous Solution: Progress and Prospects. Macromolecular Rapid Communications, 2022, 43, e2100669.	3.9	18
2281	Characterization of the structural rheological properties of wood flour–polyethylene composites with ultrahigh filling on the basis of uniaxial cyclic compression method. Composites Part A: Applied Science and Manufacturing, 2022, 153, 106724.	7.6	5
2282	Extraction and characterization of natural cellulosic fiber from fragrant screw pine prop roots as potential reinforcement for polymer composites. Polymer Composites, 2022, 43, 320-329.	4.6	26
2283	Evaluation of the mechanical characteristics of hygrothermally aged 2-D basalt-aramid/epoxy hybrid interply composites. Journal of Physics: Conference Series, 2021, 2070, 012234.	0.4	5
2284	Mechanical Properties of Compression Moulded Aggregate-Reinforced Thermoplastic Composite Scrap. Journal of Composites Science, 2021, 5, 299.	3.0	2
2285	Characterization of mechanical properties of jute/PLA composites containing nano SiO2 modified by coupling agents. Cellulose, 2022, 29, 835-848.	4.9	8
2286	Investigation of Physico-chemical, Mechanical, and Thermal Properties of New Cellulosic Bast Fiber Extracted from the Bark of <i>Bauhinia purpurea</i> . Journal of Natural Fibers, 2022, 19, 9624-9641.	3.1	6
2287	Surface modification of recycled coir fibers with hybrid coating and its effect on the properties of ABS composites. Materials Research Express, 2022, 9, 025307.	1.6	2
2288	Lignocellulosic fiber reinforced composites: Progress, performance, properties, applications, and future perspectives. Polymer Composites, 2022, 43, 645-691.	4.6	182
2289	Enhancement of impact toughness using graphene oxide in epoxy composite reinforced with ramie fabric. Composite Structures, 2022, 282, 115023.	5.8	9
2290	Effects of steam-treatment on the chemical component and thermal resistance of bagasse particle for natural-bonded composites product. IOP Conference Series: Earth and Environmental Science, 2021, 922, 012012.	0.3	0
2291	Moisture Absorption Effects on the Mechanical Properties of Sandwich Biocomposites with Cork Core and Flax/PLA Face Sheets. Molecules, 2021, 26, 7295.	3.8	5
2292	Health monitoring of sandwich composites with auxetic core subjected to indentation tests using acoustic emission. Structural Health Monitoring, 2022, 21, 2264-2275.	7.5	4

#	Article	IF	CITATIONS
2293	Impact of metakaolin on mechanical performance of flax textile-reinforced cement-based composites. Cement and Concrete Composites, 2022, 126, 104367.	10.7	16
2294	Progress in research on natural cellulosic fibre modifications by polyelectrolytes. Carbohydrate Polymers, 2022, 278, 118966.	10.2	7
2295	Internal curing of cement composites using kenaf cellulose microfibers. Journal of Building Engineering, 2022, 47, 103867.	3.4	10
2296	Development of novel cellulose-based functional materials. Advanced Technologies, 2021, 10, 73-83.	0.4	3
2297	Study of the Impact of Rice Straw Particle Size on the Mechanical and Thermal Properties of Straw Lime Concretes. , 0, , .		0
2298	The effect of stacking sequence on the tensile properties of jute fibre reinforced hybrid composite material for axial flow fan blades: An experimental and finite element investigation. Materials Today: Proceedings, 2022, 59, 747-755.	1.8	4
2299	Physical and mechanical properties of mortars containing date palm fibers. Materials Research Express, 2022, 9, 015102.	1.6	12
2300	Natural Fiber-Reinforced Polylactic Acid, Polylactic Acid Blends and Their Composites for Advanced Applications. Polymers, 2022, 14, 202.	4.5	157
2301	Flame retardancy of flax fibers by pre-irradiation grafting of a phosphonate monomer. Industrial Crops and Products, 2022, 176, 114334.	5.2	7
2302	A high-performance hybrid green composite using plastinated bamboo fillers, with reduced environmental degradation effect. Composite Structures, 2022, 282, 115123.	5.8	4
2303	Stacking optimization of 3D printed continuous fiber layer designs. Advances in Engineering Software, 2022, 164, 103077.	3.8	4
2304	Mechanical and thermophysical properties of compressed earth brick rienforced by raw and treated doum fibers. Construction and Building Materials, 2022, 318, 126031.	7.2	23
2305	Sustainable biobased composites for advanced applications: recent trends and future opportunities – A critical review. Composites Part C: Open Access, 2022, 7, 100220.	3.2	81
2306	Sugar beet pulp: Resurgence and trailblazing journey towards a circular bioeconomy. Fuel, 2022, 312, 122953.	6.4	24
2307	3D printing technology for textiles and fashion. Textile Progress, 2020, 52, 167-260.	2.0	18
2308	A Characterization Study of Morphology and Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH)/Aloe Vera Fibers Biocomposites: Effect of Fiber Surface Treatments. , 2020, 69, .		1
2309	Multi-scale physico-chemical characterization of CEB/ANS bio-composites. MATEC Web of Conferences, 2021, 348, 01008.	0.2	0
2310	Mechanical Property Optimization of Tamarind Fruit Fiber for Lightweight Structural Composites Applications. , 0, , .		0

ARTICLE IF CITATIONS Production and Characterization of Palm Oil Based Epoxy Biocomposite by RSM Design. Hittite Journal 2311 0.5 16 of Science & Engineering, 2021, 8, 287-297. Recent Advances in the Development of Fire-Resistant Biocompositesâ€"A Review. Polymers, 2022, 14, 362. 4.5 Properties of bio-based fibers., 2022, , 33-64. 2 2313 A Review on the Effect of Various Chemical Treatments on the Mechanical Properties of Renewable 2314 1.8 Fiber-Reinforced Composites. Advances in Materials Science and Engineering, 2022, 2022, 1-24. General practice to enhance bast fiber composite properties for state of art applications $\hat{a} \in A$ Review. 2316 1.6 18 Engineering Research Express, 2022, 4, 012002. Natural fibers., 2022, , 85-107. Joining behavior of natural fiber reinforced polymer composites., 2022, , 33-63. 2319 4 Green composites from natural fibers and biopolymers: A review on processing, properties, and 3.1 application's. Journal of Reinforced Plastics and Composites, 2022, 41, 526-557 Manufacturing and utilization of novel sustainable composites using pulled wool fibers waste from 2322 leather tanneries: Mechanical, physical, and dynamic characterization. Journal of Industrial Textiles, 2.4 1 2022, 51, 5708S-5727S. On the mechanical behaviour of cement paste reinforced with natural sisal fibres. Proceedings of 1.1 Institution of Civil Engineers: Construction Materials, 2023, 176, 255-262. Biocomposites potential for nanotechnology., 2022, , 489-510. 2326 0 The effect of surface treatments and graphene-based modifications on mechanical properties of 4.1 natural jute fiber composites: A review. IScience, 2022, 25, 103597. Prediction and Optimization on Tribological Behaviour of Kenaf/Carbon Fiber Reinforced Epoxy Matrix 2328 0.4 2 Hybrid Composites. Key Engineering Materials, 0, 908, 3-8. Biostability of binder-free wood and plant plastics protected with antiseptics. Foods and Raw 2329 2.1 Materials, 2022, , 148-154. Effects of Natural Weathering on Aesthetics, Thermal and Mechanical Properties of Completely 2330 0.6 1 Biodegradable Composites. Composites Science and Technology, 2022, , 173-188. Natural Fillers as Potential Modifying Agents for Epoxy Composition: A Review. Polymers, 2022, 14, 265. 33 Plasma-treated lignocellulosic fibers for polymer reinforcement. A review. Cellulose, 2022, 29, 2333 4.9 6 659-683. 2334 Surface Modification of Vegetal Fibre., 2022, , 206-216.

	CITATION R	EPORT	
#	Article	IF	CITATIONS
2336	Biodegradability of Polyolefin-Based Compositions: Effect of Natural Rubber. Polymers, 2022, 14, 530.	4.5	11
2337	Role of agricultural waste in recycled plastic biocomposites. , 2022, , 165-194.		0
2338	Waste coconut leaf sheath as reinforcement composite material with <scp>phenolâ€formaldehyde</scp> matrix. Polymer Composites, 2022, 43, 1985-1995.	4.6	13
2339	Advances in Computational Intelligence of Polymer Composite Materials: Machine Learning Assisted Modeling, Analysis and Design. Archives of Computational Methods in Engineering, 2022, 29, 3341-3385.	10.2	59
2340	Hybrid materials for the removal of emerging pollutants in water: classification, synthesis, and properties. Chemical Engineering Journal Advances, 2022, 10, 100252.	5.2	26
2341	Numerical Simulation of Impregnation Process of Reactive Injection Pultrusion for Class Fiber/PA6 Composites. Polymers, 2022, 14, 666.	4.5	5
2342	A review on Lantana camara lignocellulose fiber-reinforced polymer composites. Biomass Conversion and Biorefinery, 2024, 14, 1495-1513.	4.6	8
2343	A comprehensive review on the properties and functionalities of biodegradable and semibiodegradable food packaging materials. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 689-718.	11.7	36
2344	Effect of silane treatment on tensile strength, moisture absorption and thermal property of unidirectional woven mat enset fibers reinforced polypropylene composite. Composite Interfaces, 2022, 29, 795-815.	2.3	3
2345	A review investigating the influence of nanofiller addition on the mechanical, thermal and water absorption properties of cellulosic fibre reinforced polymer composite. Journal of Industrial Textiles, 2022, 51, 65S-100S.	2.4	24
2347	Recent Developments in Textile Reinforced Polymer Composites. Asian Journal of Chemistry, 2022, 34, 487-496.	0.3	2
2348	Biodegradable Fibers, Polymers, Composites and Its Biodegradability, Processing and Testing Methods. Composites Science and Technology, 2022, , 75-104.	0.6	2
2349	Bio-fibre Reinforced Polymeric Composites for Industrial, Medicine and Domestic Applications. Composites Science and Technology, 2022, , 31-49.	0.6	1
2351	Composite materials reinforced with fique fibers $\hat{a} \in $ a review. Revista UIS Ingenier \tilde{A} as, 2022, 21, .	0.2	2
2353	Lignocellulosic Fiber Structure. SpringerBriefs in Materials, 2022, , 11-19.	0.3	1
2354	Effect of fiber orientation on the mechanical properties of Sumberejo Kenaf fiber/epoxy composites. AIP Conference Proceedings, 2022, , .	0.4	0
2355	Introduction to nanocellulose production from biological waste. , 2022, , 1-37.		2
2356	Natural Fiber Reinforced Polymer Composites as Sustainable Green Composites. , 2022, , 987-996.		8

# 2357	ARTICLE Natural fibers and surface treatment methods. , 2022, , 1-18.	IF	CITATIONS 2
2358	Green Composite Solutions. SpringerBriefs in Materials, 2022, , 1-9.	0.3	0
2359	Maleated coupling agents for the surface treatment of natural fibers. , 2022, , 95-123.		7
2360	Reinforced Composites from Natural Fiber: A Review. Lecture Notes in Mechanical Engineering, 2022, , 847-857.	0.4	1
2361	Miscellaneous Study on Epoxy/Synthetic/Natural Fiber Hybrid Composites. , 2022, , 1-29.		1
2362	Dielectric Properties of Epoxy/Natural Fiber Composites. , 2022, , 1-35.		1
2363	Biological pretreatments of lignocellulosic fibers and their effects on biocomposites performance. , 2022, , 147-186.		0
2364	Thermoset composites. , 2022, , 371-418.		4
2365	Environmental and Durability Perspective of the Use of Curaua Fiber Treated in Mortars. Journal of Renewable Materials, 2022, 10, 2409-2429.	2.2	5
2366	Natural-Fiber-Reinforced Chitosan, Chitosan Blends and Their Nanocomposites for Various Advanced Applications. Polymers, 2022, 14, 874.	4.5	110
2367	Properties Enhancement Nano Coconut Shell Filled in Packaging Plastic Waste Bionanocomposite. Polymers, 2022, 14, 772.	4.5	5
2368	Experimental investigation of the effect of weave type on the mechanical properties of woven hemp fabric/epoxy composites. Journal of Composite Materials, 2022, 56, 1255-1265.	2.4	6
2369	Blast behaviour of fibre reinforced polymers containing sustainable constituents. Journal of Reinforced Plastics and Composites, 2022, 41, 771-790.	3.1	2
2370	Development and Characterization of Plantain (Musa paradisiaca) Flour-Based Biopolymer Films Reinforced with Plantain Fibers. Polymers, 2022, 14, 748.	4.5	9
2371	Uncertainty analysis of mechanical behavior of natural fiber composites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 0, , 146442072210790.	1.1	0
2372	ĐžĐ¢ĐĐˆĐœĐĐĐĐ⁻ ĐœĐ†ĐšĐОВОĐኦОКОЕD¦Đ•ĐኦЮЛОЗĐ⁻ Đ— Đ¢ĐĐ•D¡Đ¢Đ⁻ Đ¢Đ•Đ¥ĐІЧĐĐžĐ	‡ðšĐžĐĐ	žĐŸĐ>ІĐ
2373	Biocomposites based on natural fibers and polymers: A review on properties and potential applications. Journal of Reinforced Plastics and Composites, 2022, 41, 705-742.	3.1	26
2374	Chemical Treatments for Modification of the Surface Morphology of Coir Fiber: A Review. Journal of Natural Fibers, 2022, 19, 11940-11961.	3.1	1

#	Article	IF	CITATIONS
2375	A Review on the Parameters Affecting the Mechanical, Physical, and Thermal Properties of Natural/Synthetic Fibre Hybrid Reinforced Polymer Composites. Advances in Materials Science and Engineering, 2022, 2022, 1-28.	1.8	7
2376	The Effect of Adding Phragmites australis Fibers on the Properties of Concrete. Buildings, 2022, 12, 278.	3.1	12
2377	Thermoplastic Hybrid Composites with Wood Fibers: Bond Strength of Back-Injected Structures. Materials, 2022, 15, 2473.	2.9	0
2378	Characterization of long bamboo Guadua Angustifolia fibre composite extracted via rotary–peeling method. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, 1.	1.6	0
2379	Process optimization and comprehensive utilization of recyclable deep eutectic solvent for the production of ramie cellulose fibers. Cellulose, 2022, 29, 3689-3701.	4.9	17
2380	Effect of Alkaline Treatment and Graphene Oxide Coating on Thermal and Chemical Properties of Hemp (<i>Cannabis Sativa L</i> .) Fibers. Journal of Natural Fibers, 2022, 19, 12168-12181.	3.1	10
2381	Effect of the Addition of Oil Palm Mesocarp Fibers on the Physical and Mechanical Properties of a Polyester Matrix Composite. International Journal of Polymer Science, 2022, 2022, 1-12.	2.7	5
2382	Novel ranking framework for retrospective simultaneous assessment of fire and mechanical performances of natural fiberâ€reinforced polymeric composites: Literature update from the previous decade. Journal of Vinyl and Additive Technology, 0, , .	3.4	5
2383	A layer-by-layer approach based on APTES/Cloisite to produce novel and sustainable high performances materials based on hemp fiberboards. Polymer Degradation and Stability, 2022, 198, 109892.	5.8	4
2384	Current Development and Future Perspective on Natural Jute Fibers and Their Biocomposites. Polymers, 2022, 14, 1445.	4.5	32
2385	Toward enabling manufacturing paradigm of 4D printing of shape memory materials: Open literature review. European Polymer Journal, 2022, 168, 111106.	5.4	22
2386	Biological matrix composites from cultured plant cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119523119.	7.1	7
2387	Toughened Bio-Polyamide 11 for Impact-Resistant Intraply Basalt/Flax Hybrid Composites. Macromol, 2022, 2, 154-167.	4.4	3
2388	Recycling end-of-life WPC products into ultra-high-filled, high-performance wood fiber/polyethylene composites: a sustainable strategy for clean and cyclic processing in the WPC industry. Journal of Materials Research and Technology, 2022, 18, 1-14.	5.8	19
2389	Biodegradable Polymer Compositions Based on Polyolefins. Polymer Science - Series A, 2021, 63, 623-636.	1.0	3
2390	Complex Behavior in the Dynamics of a Polymeric Biocomposite Material—"Liquid Wood― Experimental and Theoretical Aspects. Polymers, 2022, 14, 64.	4.5	0
2391	Ubim Fiber (Geonoma baculÃfera): A Less Known Brazilian Amazon Natural Fiber for Engineering Applications. Sustainability, 2022, 14, 421.	3.2	9
2392	A study of parameters affecting mechanical characteristics of hybrid composite. Materials Today: Proceedings, 2021, , .	1.8	3

#	Article	IF	CITATIONS
2397	Uporaba lesno-plastiÄnih kompozitov v tehnologiji 4D tiska. Les/Wood, 2021, 70, 53-69.	0.3	0
2398	Mechanical and Water Absorption Properties of Short Banana Fiber/Unsaturated Polyester/Molecular Sieves + ZnO Nanorod Hybrid Nanobiocomposites. ACS Omega, 2021, 6, 35256-35271.	3.5	6
2400	Formulation of Microwave-Assisted Natural-Synthetic Polymer Composite Film and Its Physicochemical Characterization. International Journal of Polymer Science, 2021, 2021, 1-13.	2.7	0
2401	Optimization and Characterization of Cellulose Nanocrystal Production from Aseptic Tetra Pak Food Packaging Waste. Journal of the Turkish Chemical Society, Section A: Chemistry, 2022, 9, 131-148.	1.1	6
2402	Nanocellulose Hybrid Lignin Complex Reinforces Cellulose to Form a Strong, Water-Stable Lignin–Cellulose Composite Usable as a Plastic Replacement. Nanomaterials, 2021, 11, 3426.	4.1	8
2403	Surface Modification of Commingled Flax/PP and Flax/PLA Fibres by Silane or Atmospheric Argon Plasma Exposure to Improve Fibre–Matrix Adhesion in Composites. Fibers, 2022, 10, 2.	4.0	11
2404	Systems Based on Biobased Thermoplastics: From Bioresources to Biodegradable Packaging Applications. Polymer Reviews, 2022, 62, 653-721.	10.9	6
2405	Biobased materials for food packaging. Journal of Bioresources and Bioproducts, 2022, 7, 1-13.	20.5	102
2407	Natural fiber-reinforced nanocomposites in automotive industry. , 2022, , 85-103.		3
2408	Alkali Konsantrasyonunun Odun Unu Takviyeli PVC Kompozitlerin Mekanik Özelliklerine Etkisi. Bartın Orman Fakültesi Dergisi, 2022, 24, 145-156.	0.3	1
2409	An Investigation into Water Lubrication Performance of UHMWPE Reinforced with Oriented Polyester Fiber of Different Densities. Fibers and Polymers, 0, , 1.	2.1	2
2410	A Comprehensive Review on Epoxy Biocomposites Based on Natural Fibers and Bio-fillers: Challenges, Recent Developments and Applications. Advanced Fiber Materials, 2022, 4, 683-704.	16.1	22
2411	Effect of polyethylene glycol modified MWCNTs-OH on the crystallization of PLLA and its stereocomplex. Journal of Polymer Research, 2022, 29, 1.	2.4	8
2412	A Review on the Utilization of Date Palm Fibers as Inclusion in Concrete and Mortar. Fibers, 2022, 10, 35.	4.0	14
2413	Valorization of Liquor Waste Derived Spent Coffee Grains for the Development of Injection-Molded Polylactide Pieces of Interest as Disposable Food Packaging and Serving Materials. Foods, 2022, 11, 1162.	4.3	11
2414	Mechanical characterization of alkaline treated Ananus Comosus and Musa Sepientum fibers reinforced epoxy hybrid composites. Materials Today: Proceedings, 2022, , .	1.8	2
2415	The Effect of Alkali Treatment on Pineapple Leaf Fibers (PALF) on the Performance of PALF Reinforced Rice Starch Biocomposites. Journal of Natural Fibers, 2022, 19, 14235-14249.	3.1	5
2416	Mussel-inspired polydopamine microspheres self-adhered on natural hemp fibers for marine uranium harvesting and photothermal-enhanced antifouling properties. Journal of Colloid and Interface Science, 2022, 622, 109-116.	9.4	12

#	Article	IF	CITATIONS
2419	Life cycle assessment of plant fibers and their composites. , 2022, , 457-484.		2
2420	Introduction to plant fibers and their composites. , 2022, , 1-24.		0
2421	Modeling the mechanical behavior of epoxy Curaua reinforced composites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0, , 095440622210835.	2.1	0
2422	Effect of stacking sequence on the mechanical properties of non-interlaced multiaxial jute yarn/epoxy composites. Journal of Composite Materials, 2022, 56, 2083-2094.	2.4	3
2423	Structure modification and property improvement of plant cellulose: Based on emerging and sustainable nonthermal processing technologies. Food Research International, 2022, 156, 111300.	6.2	17
2424	Suitability examination of novel cellulosic plant fiber from <i>Furcraea selloa</i> K. <i>Koch</i> peduncle for a potential polymeric composite reinforcement. Polymer Composites, 2022, 43, 4223-4243.	4.6	20
2425	Thermochemical and structural characterization of promising carnauba novel leaf fiber (Copernicia) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
2426	Advancement in hemp fibre polymer composites: a comprehensive review. Journal of Polymer Engineering, 2022, 42, 575-598.	1.4	15
2427	The Influence of Silica Fume on the Properties of Mortars Containing Date Palm Fibers. Fibers, 2022, 10, 41.	4.0	3
2428	Dynamic and Ballistic Performance of Graphene Oxide Functionalized Curaua Fiber-Reinforced Epoxy Nanocomposites. Polymers, 2022, 14, 1859.	4.5	3
2429	Use of vegetable fibers as reinforcements in cement-matrix composite materials: A review. Construction and Building Materials, 2022, 340, 127729.	7.2	25
2430	A study using a combined method of scientometric and manual analysis to review the present research of plant fibres reinforced concrete. Construction and Building Materials, 2022, 341, 127551.	7.2	9
2431	Alfa fibers, their composites and applications. , 2022, , 51-74.		6
2432	Flax-based natural composites hierarchically reinforced by cast or printed carbon fibres. Composites Science and Technology, 2022, 226, 109527.	7.8	9
2433	Environment and Green Technology. , 2022, , 111-129.		3
2434	A Review of the Use of Natural Fibers in Cement Composites: Concepts, Applications and Brazilian History. Polymers, 2022, 14, 2043.	4.5	25
2435	Improvement of Mechanical, Thermal, and Physical Behaviors of Jute/Cotton Biocomposites Reinforced by Spent Tea Leaf Particles. Journal of Composites Science, 2022, 6, 145.	3.0	1
2436	A Review on Natural Plant Fiber Epoxy and Polyester Composites – Coating and Performances. Journal of Natural Fibers, 2022, 19, 12772-12790.	3.1	10

#	Article	IF	CITATIONS
2437	Machinability of Polymeric Composites and Future Reinforcements—A Review. Journal of Materials Science and Chemical Engineering, 2022, 10, 40-72.	0.4	3
2438	Sugar Palm Fibre-Reinforced Polymer Composites: Influence of Chemical Treatments on Its Mechanical Properties. Materials, 2022, 15, 3852.	2.9	24
2439	Modification of Fibers and Matrices in Natural Fiber Reinforced Polymer Composites: A Comprehensive Review. Macromolecular Rapid Communications, 2022, 43, .	3.9	37
2440	Effects of Treatment-Duration on Mechanical, Chemical, Structural and Thermal Properties of Baobab-Pod Fibres. Journal of Natural Fibers, 0, , 1-12.	3.1	0
2441	Plastic/Natural Fiber Composite Based on Recycled Expanded Polystyrene Foam Waste. Polymers, 2022, 14, 2241.	4.5	5
2442	Comfort properties of fabrics knitted from a two-ply yarn derived from abacÃ; and cotton. Textile Reseach Journal, 0, , 004051752211026.	2.2	1
2443	Experimental investigations on the moisture absorption and mechanical behaviour of basalt-aramid/epoxy hybrid interply composites under different ageing environments. Cogent Engineering, 2022, 9, .	2.2	6
2444	Comprehensive characterization of <i>Echinochloa frumentacea</i> leaf fiber as a novel reinforcement for composite applications. Polymer Composites, 2022, 43, 5031-5046.	4.6	7
2445	Epoxy Biocomposites. ACS Symposium Series, 0, , 69-98.	0.5	1
2447	Bacterial retting agents: sustainable bioremediation of bast fibers farming strains. , 2022, , 359-375.		0
2448	Influence of sisal fibre modification on the microbial stability of poly(hydroxybutyrate-co-valerate): thermal analysis. Polimery, 2022, 67, 93-101.	0.7	2
2449	Degradation by Electron Beam Irradiation of Some Composites Based on Natural Rubber Reinforced with Mineral and Organic Fillers. International Journal of Molecular Sciences, 2022, 23, 6925.	4.1	8
2450	Biodegradable Polymer Materials Based on Polyethylene and Natural Rubber: Acquiring, Investigation, Properties. Polymers, 2022, 14, 2457.	4.5	6
2451	"Film-stacking method as an alternative Agave tequilana fibre/PLA composite fabrication― Materials Today Communications, 2022, 31, 103853.	1.9	2
2452	A Comprehensive Review of Types, Properties, Treatment Methods and Application of Plant Fibers in Construction and Building Materials. Materials, 2022, 15, 4362.	2.9	20
2453	Physico-Chemical and Mechanical Characterization of <i>Triumfetta Pentandra</i> Bast Fiber from the Equatorial Region of Cameroon as a Potential Reinforcement of Polymer Composites. Journal of Natural Fibers, 2022, 19, 13106-13119.	3.1	9
2454	Stem Porosity Determination of Straws Using Conventional Laboratory Tests and Image Processing Methods. Journal of Natural Fibers, 0, , 1-15.	3.1	0
2455	Biodegradable Nonwovens with Poultry Feather Addition as a Method for Recycling and Waste Management. Polymers, 2022, 14, 2370.	4.5	0

#	Article	IF	Citations
2456	Investigation of the crystallization and mechanical properties of wood fiber/polypropylene composites nucleated by a self-assembly β-nucleating agent. Polymer Bulletin, 2023, 80, 5239-5256.	3.3	4
2457	Effect of Aluminium Tetrahydrate Nanofiller Addition on the Mechanical and Thermal Behaviour of Luffa Fibre-Based Polyester Composites under Cryogenic Environment. Journal of Nanomaterials, 2022, 2022, 1-10.	2.7	49
2458	Effect of particle doping on the mechanical behavior of 2D woven (0\$\$^circ \$\$/90\$\$^circ \$\$) jute fabric (plain weave) reinforced polymer matrix composites. Sadhana - Academy Proceedings in Engineering Sciences, 2022, 47, .	1.3	1
2459	Hygroscopic ramie fabrics for recovering highly viscous low sulfur fuel oil. Environmental Pollution, 2022, 308, 119668.	7.5	4
2460	Tensile behavior analysis combined with digital image correlation and mechanical and thermal properties of microfibrillated cellulose fiber/ polylactic acid composites. Polymer Testing, 2022, 113, 107665.	4.8	8
2461	In-Plane Cyclic Performance of Masonry Walls Retrofitted with Flax Textile–Reinforced Mortar Overlays. Journal of Composites for Construction, 2022, 26, .	3.2	5
2462	Interactions between biofiller-modified polymeric composites and wood-rotting fungi in terms of their biotechnological applications. Industrial Crops and Products, 2022, 186, 115125.	5.2	3
2463	Polymer-based bio-composites and their applications. , 2022, , 109-121.		0
2464	4D printing of natural fiber composite. , 2022, , 297-333.		1
2465	Viscoplastic deformation of cotton fabricâ€reinforced polypropylene composites. Polymer Composites, 2022, 43, 7450-7462.	4.6	2
2466	Alternative Materials from Agro-Industry for Wood Panel Manufacturing—A Review. Materials, 2022, 15, 4542.	2.9	7
2467	Tensile Properties of Curaua–Aramid Hybrid Laminated Composites for Ballistic Helmet. Polymers, 2022, 14, 2588.	4.5	19
2468	Numerical and Experimental Analysis of Mechanical Properties of Natural-Fiber-Reinforced Hybrid Polymer Composites and the Effect on Matrix Material. Polymers, 2022, 14, 2612.	4.5	16
2469	Evaluation of Effective Elastic Properties for Wood–Cement Composites: Experimental and Computational Investigations. Sustainability, 2022, 14, 8638.	3.2	2
2470	Effect of Various Factors on Plant Fibre-Reinforced Composites with Nanofillers and Its Industrial Applications: A Critical Review. Journal of Nanomaterials, 2022, 2022, 1-23.	2.7	8
2471	Global Trends in Natural Biopolymers in the 21st Century: A Scientometric Review. Frontiers in Chemistry, 0, 10, .	3.6	9
2472	Strengthening of plain concrete cylinders with hybrid composites based on basalt and sisal fiber systems. Materials Today: Proceedings, 2022, 66, 2444-2448.	1.8	4
2473	Effect of Fiber Orientation on the Tribological Performance of Abaca-Reinforced Epoxy Composite under Dry Contact Conditions. Journal of Composites Science, 2022, 6, 204.	3.0	9

		CITATION REPORT		
#	Article		IF	Citations
2474	Interlaminar Shear Properties of Bamboo Composite for Structural Applications. Fibers	, 2022, 10, 59.	4.0	3
2475	Reuse of black cumin biomass into beneficial additive for thermoplastic polyurethane- composites with silane modifiers. Biomass Conversion and Biorefinery, 2023, 13, 1416	based green 59-14184.	4.6	2
2476	Poly(butylene succinate) (PBS): Materials, processing, and industrial applications. Prog Science, 2022, 132, 101579.	ress in Polymer	24.7	82
2477	The mechanical properties of alkali and laccase treated pterocarpus angolensis (mukw acid (PLA) composites. International Journal of Biological Macromolecules, 2022, 217,	a)-polylactic 398-406.	7.5	11
2478	Surface treatment to improve water repellence and compatibility of natural fiber with matrix: Recent advancement. Polymer Testing, 2022, 115, 107707.	polymer	4.8	45
2479	Recent advancement in sisal fiber reinforced polymer composites. Materials Today: Pro 65, 3893-3901.	oceedings, 2022,	1.8	2
2480	A state-of-the-art review on potential applications of natural fiber-reinforced polymer c filled with inorganic nanoparticle. Composites Part C: Open Access, 2022, 9, 100298.	omposite	3.2	38
2481	Preparation and properties of the PLA-based conductive biocomposites with the additi nanoplatelets. Materials Today Communications, 2022, 32, 104115.	on of rGO	1.9	0
2482	Miscellaneous Study on Epoxy/Synthetic/Natural Fiber Hybrid Composites. , 2022, , 10	29-1057.		0
2483	Preparation of a Conductive Cellulose Nanofiber-reinforced PVA Composite Film with S Nanowires Loading. Nano Structures Nano Objects, 2022, 31, 100904.	Silver	3.5	8
2484	Predicted Tensile Properties of Natural Fibre Reinforced Acrylonitrile Butadiene Styrene Comparison of Experimental and Standard Equations. IOP Conference Series: Material Engineering, 2022, 1248, 012098.	? Composites s Science and	0.6	1
2485	A method for chemical and physical modification of oriented pulp fibre sheets. Cellulo: 8371-8386.	se, 2022, 29,	4.9	3
2486	Development and Characterization of PHB-PLA/Corncob Composite for Fused Filamen Journal of Composites Science, 2022, 6, 249.	: Fabrication.	3.0	6
2487	Insights on the performance of modified agave fibers on polypropylene matrix: physico mechanical features. Journal of Polymer Research, 2022, 29, .	ochemical and	2.4	1
2488	Erosion response analysis of waste marble dust reinforced kenaf-polyester composites Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, .	. Journal of the	1.6	3
2489	Analysis of the Significance of Changes in the Number and Energy Parameters of Acou Signals on the Assessment of the Strength of Fibre–Cement Boards. Materials, 2022	stic Emission 2, 15, 5757.	2.9	2
2490	Hierarchical Flax Fibers by ZnO Electroless Deposition: Tailoring the Natural Fibers/Syn Interphase in Composites. Nanomaterials, 2022, 12, 2765.	thetic Matrix	4.1	5
2491	Engineering, Recyclable, and Biodegradable Plastics in the Automotive Industry: A Revi 2022, 14, 3412.	ew. Polymers,	4.5	35

#	Article	IF	CITATIONS
2492	Experimental Investigations on the Mechanical Characteristics of Natural Fiber Particle-Reinforced Polymer Composites under Cryogenic Environment. Journal of Nanomaterials, 2022, 2022, 1-8.	2.7	1
2493	Some Mechanical Properties of Composite Materials with Chopped Wheat Straw Reinforcer and Hybrid Matrix. Polymers, 2022, 14, 3175.	4.5	0
2494	Aloe vera Nanofibers Contained Pseudomonas Bacteriophages Fabrication, Characterization, and Biofunction. BioNanoScience, 2022, 12, 1125-1135.	3.5	3
2495	Towards widespread properties of cellulosic fibers composites: A comprehensive review. Journal of Reinforced Plastics and Composites, 2023, 42, 222-263.	3.1	23
2496	Microwave Hybrid Heating for Moulding of Sisal/Jute/HDPE Composites. Journal of Natural Fibers, 2022, 19, 13524-13538.	3.1	6
2497	A Novel endo-β-1,4-xylanase xyl-1 from <i>Aspergillus terreus</i> HG-52 for High-Efficiency Ramie Degumming. Journal of Natural Fibers, 2022, 19, 13890-13900.	3.1	4
2498	Improvement of Interfacial Adhesion and Thermomechanical Properties of PLA Based Composites with Wheat/Rice Bran. Polymers, 2022, 14, 3389.	4.5	8
2499	Effective utilization of natural fibres (coir and jute) for sustainable low-volume rural road construction – A critical review. Construction and Building Materials, 2022, 347, 128606.	7.2	10
2500	Recycling different textile wastes for methane production: Morphological and microstructural changes and microbial community dynamics. Waste Management, 2022, 151, 154-162.	7.4	2
2501	GFRP biocomposites produced with a novel high-performance bio-based unsaturated polyester resin. Composites Part A: Applied Science and Manufacturing, 2022, 161, 107098.	7.6	13
2502	Optimizing the alkali treatment of cellulosic Himalayan nettle fibre for reinforcement in polymer composites. Carbohydrate Polymers, 2022, 296, 119937.	10.2	14
2503	Halloysite infused jute fiber/poly (3-hydroxy-butyrate-co-3-valerate) bionanocomposites: Thermal, mechanical and fire retardant properties. Journal of Composite Materials, 2022, 56, 4069-4079.	2.4	3
2504	Effect of Agave Americana fibers content on morphology and mechanical, rheological, and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biocomposites. Polymers From Renewable Resources, 0, , 204124792211289.	1.3	1
2505	Sustainable Fiberâ€Reinforced Composites: A Review. Advanced Sustainable Systems, 2022, 6, .	5.3	61
2506	Natural nano-fillers materials for the Bio-composites: A review. Journal of the Indian Chemical Society, 2022, 99, 100715.	2.8	13
2507	Assessment of internal curing of cellulose microfibers-incorporated cement composites using destructive and nondestructive methods. Construction and Building Materials, 2022, 352, 129004.	7.2	4
2508	Rheological behavior and mechanical properties of ultra-high-filled wood fiber/polypropylene composites using waste wood sawdust and recycled polypropylene as raw materials. Construction and Building Materials, 2022, 351, 128977.	7.2	9
2509	Mechanical properties and interface improvement of bamboo cellulose nanofibers reinforced autoclaved aerated concrete. Cement and Concrete Composites, 2022, 134, 104760.	10.7	10

	CITATION RI	EPORT	
#	Article	IF	CITATIONS
2510	Damping of micro- and nanocellulose reinforced PA610 composites and influences of moisture absorption. Materials Today Communications, 2022, 33, 104325.	1.9	4
2511	A censorious review on the role of natural lignocellulosic fiber waste as a low-cost adsorbent for removal of diverse textile industrial pollutants. Environmental Research, 2022, 215, 114183.	7.5	10
2512	Recent advances in polymer composite, extraction, and their application for wastewater treatment: A review. Chemosphere, 2022, 308, 136368.	8.2	23
2513	Introduction to natural fiber composites. , 2022, , 1-13.		1
2514	Dielectric Properties of Epoxy/Natural Fiber Composites. , 2022, , 575-609.		2
2515	Water Absorption Behavior of Bast Fibers Incorporated Polymer Composites. Springer Series on Polymer and Composite Materials, 2022, , 167-182.	0.7	0
2516	A review on the influence of natural-synthetic fibre hybrid reinforced polymer composites for bulletproof and ballistic applications. Materiaux Et Techniques, 2022, 110, 503.	0.9	2
2517	Plant Fibers. Engineering Materials, 2022, , 7-23.	0.6	0
2518	FIBRAS NATURALES COMO REFUERZO EN MATERIALES COMPUESTOS DE MATRIZ POLIMÉRICA. Momento, 2022, , 65-79.	0.7	2
2519	Synthesis and Effect of Nanocellulose Obtained from East Java Kenaf Fiber on Mechanical Properties of Polyurethane Foam Composites as Strong and Lightweight Materials. Nano Hybrids and Composites, 0, 37, 79-90.	0.8	Ο
2520	Effect of stacking sequence on tensile properties of glass, hemp and kenaf hybrid composites. ChemistrySelect, 2024, 9, 95-105.	1.5	0
2521	Titica Vine Fiber (Heteropsis flexuosa): A Hidden Amazon Fiber with Potential Applications as Reinforcement in Polymer Matrix Composites. Journal of Composites Science, 2022, 6, 251.	3.0	6
2522	An experimental study on production opportunities of biocomposite by using fungal mycelium. Journal of Design for Resilience in Architecture and Planning:, 0, , .	0.2	0
2523	Flexural analysis of hemp, kenaf and glass fibre-reinforced polyester resin. ChemistrySelect, 2024, 9, 107-122.	1.5	0
2524	A review on engineering biocomposites and natural fiber-reinforced materials. Journal of Sustainable Construction Materials and Technologies, 2022, 7, 231-249.	1.0	0
2525	Damage mechanisms and constitutive models for natural fiberâ€based green composites: A review. Materialwissenschaft Und Werkstofftechnik, 2022, 53, 1072-1105. 	0.9	0
2526	The Water Absorption and Thermal Properties of Green Pterocarpus Angolensis (<i>Mukwa</i>) Tj ETQq0 0 0 rg	BT/Overlo	ck ₃ 10 Tf 50 1

2527	Study of the mechanical properties of polylactide composites with jute reinforcements. Green Materials, 2023, 11, 69-78.	2.1	2
------	--	-----	---

#	Article	IF	CITATIONS
2528	Optimization of process parameters for ballistic impact response of hybrid sandwich composites. International Journal on Interactive Design and Manufacturing, 2023, 17, 1099-1111.	2.2	2
2529	Extraction, characterization, and fabrication of cellulose biopolymer sheets from Pistia stratiotes as a biodegradative coating material: an unique strategy for the conversion of invasive weeds into value-added products. Journal of Polymers and the Environment, 2022, 30, 5057-5068.	5.0	4
2530	Experimental investigation on banana stem fibre in the production of M40 grade concrete: A review. Materials Today: Proceedings, 2022, 68, 2520-2524.	1.8	1
2531	Biobased Polymer Composites: A Review. Journal of Composites Science, 2022, 6, 255.	3.0	31
2532	The characterization of unidirectional and woven water hyacinth fiber reinforced with epoxy resin composites. Heliyon, 2022, 8, e10484.	3.2	2
2533	Factors Affecting Mechanical Properties of Reinforced Bioplastics: A Review. Polymers, 2022, 14, 3737.	4.5	33
2534	The biocomposites properties of compounded poly(lactic acid) with untreated and treated spent coffee grounds. Journal of Applied Polymer Science, 0, , .	2.6	2
2535	Influence of Hygrothermal Aging on Mechanical Properties and Damage Mechanisms of Hemp-Reinforced Biocomposites. Journal of Natural Fibers, 2022, 19, 15404-15421.	3.1	4
2536	A Review on Gypsum-Based Composites Reinforced With Palm Fibers in Construction Applications. International Journal of Thermophysics, 2022, 43, .	2.1	2
2537	Experimental Characterization of CNSL-Epoxy Resin Reinforce Natural Fiber. Lecture Notes in Mechanical Engineering, 2023, , 67-76.	0.4	0
2538	A review on engineering biocomposites and natural fiber-reinforced materials. Journal of Sustainable Construction Materials and Technologies, 0, , 231-249.	1.0	0
2539	The Mechanical and Thermal Behavior of Electrostatic Powder Coating Waste Reinforced Epoxy Composites. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 2022, 11, 846-856.	0.5	0
2540	Effect of fibre stacking orientation on the mechanical and thermal properties of laminated kenaf fibre/epoxy composites. Advances in Materials and Processing Technologies, 0, , 1-18.	1.4	0
2541	Study of Progress on Nanocrystalline Cellulose and Natural Fiber Reinforcement Biocomposites. Journal of Nanomaterials, 2022, 2022, 1-16.	2.7	3
2542	Characterization of novel natural cellulosic fibers from <i>Abutilon Indicum</i> for potential reinforcement in polymer composites. Polymer Composites, 2023, 44, 340-355.	4.6	23
2543	Recent Developments in Cassava (Manihot esculenta) Based Biocomposites and Their Potential Industrial Applications: A Comprehensive Review. Materials, 2022, 15, 6992.	2.9	14
2544	Investigation on Microstructure, Tensile Properties and Fatigue Characterization of Porous Date Palm Fiber. Journal of Natural Fibers, 0, , 1-14.	3.1	1
2545	FRP Bridges in the Flanders Region: Experiences from the C-Bridge Project. Applied Sciences (Switzerland), 2022, 12, 10897.	2.5	5

#	Article	IF	CITATIONS
2547	Styrene-Free Bio-Based Thermosetting Resins with Tunable Properties Starting from Vegetable Oils and Terpenes. Polymers, 2022, 14, 4185.	4.5	4
2548	Carbon Nanotube Reinforced Natural Rubber Nanocomposite as a Stretchable Electronic Material. Journal of Materials Engineering and Performance, 0, , .	2.5	3
2549	The Mechanical Properties of Plant Fiber-Reinforced Geopolymers: A Review. Polymers, 2022, 14, 4134.	4.5	13
2550	Review on natural plant fibres and their hybrid composites for structural applications: Recent trends and future perspectives. Composites Part C: Open Access, 2022, 9, 100322.	3.2	27
2551	Taguchi's Optimization of Areca Fruit Husk Fiber Mechanical Properties for Polymer Composite Applications. Fibers and Polymers, 2022, 23, 3207-3213.	2.1	15
2552	Corn: Its Structure, Polymer, Fiber, Composite, Properties, and Applications. Polymers, 2022, 14, 4396.	4.5	14
2553	Development of New Bio-Composite of PEO/Silk Fibroin Blends Loaded with Piezoelectric Material. Polymers, 2022, 14, 4209.	4.5	5
2554	Influence of Viscose Fibre Geometry on the Structure–Property Relationships of High-Density Polyethylene Composites. Polymers, 2022, 14, 4389.	4.5	0
2555	Selected Properties of Bio-Based Layered Hybrid Composites with Biopolymer Blends for Structural Applications. Polymers, 2022, 14, 4393.	4.5	2
2556	Biocomposites with Epoxy Resin Matrix Modified with Ingredients of Natural Origin. Materials, 2022, 15, 7167.	2.9	3
2557	Study of Treatment Effect on the Cocos Nucifera Lignocellulosic Fibers as Alternative for Polymer Composites. Journal of Natural Fibers, 2023, 20, .	3.1	2
2558	Investigation of Hemp and Flax Fiber-Reinforced EcoPoxy Matrix Biocomposites: Morphological, Mechanical, and Hydrophilic Properties. Polymers, 2022, 14, 4530.	4.5	3
2559	Development and Characterization of PBSA-Based Green Composites in 3D-Printing by Fused Deposition Modelling. Materials, 2022, 15, 7570.	2.9	5
2560	Investigation of Dry Sliding Tribological Behaviour of Epoxy Composites Filled with Hemp Particulates Using Artificial Neural Networks. Arabian Journal for Science and Engineering, 2023, 48, 3989-4001.	3.0	4
2561	Coir and Hop Fibres: Tensile Characterization and Comparison Between Fibres from Distinct Climates. Advanced Structured Materials, 2023, , 17-27.	0.5	0
2563	Ultrasonic Welding of Banana/ Bagasse Based Polypropylene Composites. Journal of Natural Fibers, 2022, 19, 15808-15823.	3.1	3
2564	Quantitatively evaluation of the hydrogen bonding, wettability and sorption behaviors of poly(vinyl) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5

2565	Mechanical properties of unsaturated polyester/epoxidized palm oil/Kenaf fibre composite at different styrene content. Materials Today: Proceedings, 2023, 75, 46-50.	1.8	2	
------	---	-----	---	--

#	Article	IF	CITATIONS
2566	Hydro/Hygrothermal Behavior of Plant Fibers and Its Influence on Bio-Composite Properties. , 0, , .		1
2567	Effect of Process Parameters on the Quality of Additively Manufactured PETG-Silk Composite. Applied Composite Materials, 2023, 30, 135-155.	2.5	1
2568	Extraction of Cellulosic Filler from Artocarpus heterophyllus (Jackfruit) as a Reinforcement Material for Polymer Composites. Journal of Polymers and the Environment, 2023, 31, 479-487.	5.0	5
2569	Ultrasound/Plasma-Modified Agave Fibers as Alternative Eco-sustainable Raw Material to Reinforce Starch-Based Films. Journal of Polymers and the Environment, 2023, 31, 595-607.	5.0	4
2570	Hierarchical Model for Optimizing Natural Fiber Selection Process for Eco-design of Buildings. Journal of Natural Fibers, 2022, 19, 10897-10909.	3.1	2
2571	The bonded macro fiber composite (MFC) and woven kenaf effect analyses on the micro energy harvester performance of kenaf plate using modal testing and Taguchi method. Journal of Vibroengineering, 2016, 18, 699-716.	1.0	1
2572	Study of chemically treated natural plant fibers in soil reinforcement technology: A review. Materials Today: Proceedings, 2023, 78, 55-61.	1.8	1
2573	Selection signatures for fiber production in commercial species: A review. Animal Genetics, 2023, 54, 3-23.	1.7	9
2574	Acid and alkali chemical treatments on synthetic and natural cellulosic, fibroin and keratin-based fabrics: study of structural changes. Journal of the Textile Institute, 2023, 114, 1539-1549.	1.9	1
2577	Enhancement of Fracture Toughness Characteristics of Woven Jute Fabric Mat Reinforced Epoxy Composites with SiC Fillers. Journal of Natural Fibers, 2023, 20, .	3.1	1
2578	Acoustical properties of banana midribs. AIP Conference Proceedings, 2022, , .	0.4	0
2579	Synergistic association of wood /hemp fibers reinforcements on mechanical, physical and thermal properties of polypropylene-based hybrid composites. Industrial Crops and Products, 2023, 192, 116052.	5.2	13
2580	Hydrophobic thermal insulation material designed from hazelnut shells, pinecone, paper and sheep wool. Construction and Building Materials, 2023, 365, 130131.	7.2	9
2581	Recently explored natural cellulosic plant fibers 2018–2022: A potential raw material resource for lightweight composites. Industrial Crops and Products, 2023, 192, 116099.	5.2	34
2582	Turning waste plant fibers into advanced plant fiber reinforced polymer composites: A comprehensive review. Composites Part C: Open Access, 2023, 10, 100333.	3.2	19
2583	Effectiveness of alkaline and hydrothermal treatments on cellulosic fibers extracted from the Moroccan Pennisetum Alopecuroides plant: Chemical and morphological characterization. Carbohydrate Polymer Technologies and Applications, 2023, 5, 100276.	2.6	5
2584	Extraction and Characterization of Fiber from the Stem of <i>Cyperus Papyrus</i> Plant. Journal of Natural Fibers, 2023, 20, .	3.1	5
2585	Investigation of Mechanical Properties of Coffee Husk-HDPE-ABS Polymer Composite Using Injection-Molding Method. Journal of Composites Science, 2022, 6, 354.	3.0	4

#	Article	IF	CITATIONS
2586	Novel Production Methods of Polyhydroxyalkanoates and Their Innovative Uses in Biomedicine and Industry. Molecules, 2022, 27, 8351.	3.8	8
2587	Experimental Investigation on Density and Volume Fraction of Void, and Mechanical Characteristics of Areca Nut Leaf Sheath Fiber-Reinforced Polymer Composites. International Journal of Polymer Science, 2022, 2022, 1-13.	2.7	5
2588	Physical, mechanical and abrasive wear behavior of attapulgite reinforced walnut shell/PVC composites. Journal of Polymer Research, 2022, 29, .	2.4	1
2589	Sugar Cane Bagasse Ash: An Agricultural Residue with Potential Rubber Filler Applications. , O, , .		0
2590	INVESTIGATION ON PHYSICO-CHEMICAL, MECHANICAL AND THERMAL PROPERTIES OF EXTRACTED NOVEL PINUS ROXBURGHII FIBER. Journal of Natural Fibers, 2023, 20, .	3.1	8
2591	Tensile properties of a hybrid kenaf-glass fibre composite shaft. Materials Today: Proceedings, 2023, 74, 492-498.	1.8	2
2593	Development of natural fiber reinforced nanocomposites: Future Scope, challenges, and applications. Materials Today: Proceedings, 2023, 78, 614-619.	1.8	2
2594	Development of woven and quasi-unidirectional reinforcement fabrics with hemp fibers: study of mechanical and preforming behaviors. International Journal of Material Forming, 2023, 16, .	2.0	2
2595	Study of mechanical properties of reinforced polypropylene (PP)/nettle fibers biocomposites and its application in automobile industry. Materials Today: Proceedings, 2023, 74, 980-984.	1.8	2
2596	Flammability of Polymer Compositions Filled with Wheat Bran. Materials, 2022, 15, 8955.	2.9	1
2597	Experimental Evaluation of Impact and Thermal Properties of Abaca/Epoxy Composite. , 0, , .		1
2598	The effect of alkali treatment on thermo-physical properties of Calotropis Procera (Aak) fibres. Materials Today: Proceedings, 2022, , .	1.8	1
2599	Bamboo Fiber Reinforced Chemically Functionalized Acrylonitrile Butadiene Styrene Composites by Palsule Process. Journal of Natural Fibers, 2023, 20, .	3.1	4
2600	Manufacturing of Natural Fiber-Based Thermoplastic Composites Using Microwave Energy. Lecture Notes in Mechanical Engineering, 2023, , 445-454.	0.4	0
2601	Treatment of Natural Fibers. Engineering Materials, 2023, , 19-39.	0.6	1
2602	High-performance structural linear low-density polyethylene/Saccharum munja composite: a "design-of-experiments" approach. Iranian Polymer Journal (English Edition), 2023, 32, 389-402.	2.4	4
2604	Comparative study on low velocity impact behavior of natural hybrid and non hybrid flexible thermoplastic based composites. Journal of Thermoplastic Composite Materials, 2023, 36, 3990-4007.	4.2	5
2605	Mechanical Properties of Twill Weave of Bamboo Fabric Epoxy Composite Materials. , 0, , .		5

#	Article	IF	CITATIONS
2606	Zooming in to the Composites from the Aquatic Environment. Composites Science and Technology, 2023, , 1-13.	0.6	1
2607	Multiscale micromechanics modeling of plant fibers: upscaling of stiffness and elastic limits from cellulose nanofibrils to technical fibers. Materials and Structures/Materiaux Et Constructions, 2023, 56, .	3.1	6
2608	Epoxy–Date Palm Fiber Composites: Study on Manufacturing and Properties. International Journal of Polymer Science, 2023, 2023, 1-12.	2.7	6
2609	Advances towards development of industrially relevant short natural fiber reinforced and hybridized polypropylene composites for various industrial applications: a review. Journal of Polymer Research, 2023, 30, .	2.4	13
2610	A review of environmental friendly green composites: production methods, current progresses, and challenges. Environmental Science and Pollution Research, 2023, 30, 16905-16929.	5.3	23
2611	Extraction and Characterization of Fiber and Cellulose from Ethiopian Linseed Straw: Determination of Retting Period and Optimization of Multi-Step Alkaline Peroxide Process. Polymers, 2023, 15, 469.	4.5	6
2612	Characterization of lignocellulosic glycyrrhiza glabra fibers as a potential reinforcement for polymer composites. Journal of Thermoplastic Composite Materials, 2023, 36, 4241-4256.	4.2	4
2613	Sugarcane bagasse as an environmentally friendly composite material to face the sustainable development era. Biomass Conversion and Biorefinery, 0, , .	4.6	2
2614	A Comprehensive Review Based on Chitin and Chitosan Composites. Composites Science and Technology, 2023, , 15-66.	0.6	2
2615	Morphology and selected properties of kenaf fiber/cornhusk reinforced corn starch hybrid biocomposites. Polimery, 2022, 67, 575-588.	0.7	2
2616	Investigation on potential application of non-wood pulp for hygiene products as absorbent core substantial. Biomass Conversion and Biorefinery, 0, , .	4.6	1
2617	Plasma Surface Engineering of Natural and Sustainable Polymeric Derivatives and Their Potential Applications. Polymers, 2023, 15, 400.	4.5	17
2618	Simultaneously enhancing strength and toughness for green poly (butylene succinate) composites by regulating the dispersed rice husk with the silane coupling agent. Journal of Polymer Research, 2023, 30, .	2.4	1
2619	Natural fiber-reinforced shotcrete mixture: Quantitative assessment of the impact of fiber on fresh and plastic shrinkage cracking properties. Construction and Building Materials, 2023, 366, 130032.	7.2	8
2620	Ecofriendly panels for building with eucalyptus sawdust and vegetal polyurethane resin: A mechanical evaluation. Case Studies in Construction Materials, 2023, 18, e01839.	1.7	2
2621	Utilization of wrightia tinctoria nano seed fibers as a reinforcement in the preparation of epoxy-based composites. Acta Innovations, 2022, , 5-17.	1.0	0
2622	Synthesis and characterization of carboxymethyl cellulose from pineapple leaf and kenaf core biomass: a comparative study of new raw materials. Biomass Conversion and Biorefinery, 0, , .	4.6	2
2623	Lightweight Glass Fiber-Reinforced Polymer Composite for Automotive Bumper Applications: A Review. Polymers, 2023, 15, 193.	4.5	15

#	Article	IF	CITATIONS
2624	Mechanical and Thermal Properties of Bamboo Fiber–Reinforced PLA Polymer Composites: A Critical Study. International Journal of Polymer Science, 2022, 2022, 1-15.	2.7	23
2625	Effect of Various Plasticizers in Different Concentrations on Physical, Thermal, Mechanical, and Structural Properties of Wheat Starch-Based Films. Polymers, 2023, 15, 63.	4.5	13
2626	Biobased composites. , 2013, , 395-416.		0
2627	Improving the Flexural and Tensile Properties of Reinforced Polypropylene Composites by Using Pineapple Leaf Fibre. Composites Science and Technology, 2023, , 205-212.	0.6	0
2628	Fused deposition modeling of polymer-matrix composites with natural fibers. , 2023, , 189-210.		0
2629	Microperforated Panel Made by Biodegradable Natural Fiber Composite for Acoustic Application. Composites Science and Technology, 2023, , 61-71.	0.6	0
2630	STATISTICAL ANALYSIS OF PRELIMINARY STUDIES FOR HEMP CONCRETE. Journal of Applied Life Sciences and Environment, 2023, 55, 145-158.	0.3	0
2631	Effects of Thermal Treatment on the Mechanical Properties of Bamboo Fiber Bundles. Materials, 2023, 16, 1239.	2.9	6
2632	Investigation on natural plant powder reinforced 3D printed composite absorption properties. Materials Today: Proceedings, 2023, , .	1.8	0
2633	Physical, Chemical, and Mechanical Characterization of Natural Bark Fibers (NBFs) Reinforced Polymer Composites: A Bibliographic Review. Fibers, 2023, 11, 13.	4.0	8
2634	Caracterização reológica de pastas ternárias para o desenvolvimento de bioconcretos leves de casca de arroz. Revista Materia, 2023, 28, .	0.2	0
2635	Compatibilization of coir fiber and elastomeric polyurethane by green modification routes. Green Materials, 2023, 11, 125-136.	2.1	3
2636	Jute-basalt reinforced epoxy hybrid composites for lightweight structural automotive applications. Journal of Composite Materials, 2023, 57, 1315-1330.	2.4	20
2637	Mechanical characterization of natural and synthetic fibre based penta layered hybrid polymer composite. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0, , 095440622311523.	2.1	0
2638	Evaluation of thermal and spectroscopic properties of hybrid biocomposite OPW/ramie fiber for materials building. AIP Conference Proceedings, 2023, , .	0.4	0
2639	Cellulose fiber-reinforced composites—History of evolution, chemistry, and structure. , 2023, , 1-22.		12
2640	Jute and luffa fibers: Physical, acoustical, and mechanical properties. , 2023, , 357-378.		0
2641	Evaluation of the effect of processing and surface treatment on the interfacial adhesion in cellulose fiber composites. , 2023, , 129-148.		0

#	ARTICLE Removal of Bezathren green dve from aqueous solution: equilibrium, kinetic and thermodynamic	IF	CITATIONS
2642	study. Euro-Mediterranean Journal for Environmental Integration, 0, , .	1.3	0
2643	Multifunctional Cellulosic Natural Rubber and Silver Nanoparticle Films with Superior Chemical Resistance and Antibacterial Properties. Nanomaterials, 2023, 13, 521.	4.1	2
2644	Biodegradable Hybrid Polymer Film for Packaging: A Review. Journal of Natural Fibers, 2023, 20, .	3.1	9
2645	Production of composite filaments for fused deposition modeling. , 2023, , 89-108.		1
2646	Fused deposition modeling of composite materials at a glance – supplementary tables. , 2023, , 329-445.		1
2647	Material Properties and Fracture Energy of Kenaf FRP Composites. , 2023, , 223-236.		0
2648	Potential of natural fiber in unsaturated polyester biocomposite application. , 2023, , 169-203.		0
2649	New Bamboo-Based Materials. Environmental Footprints and Eco-design of Products and Processes, 2023, , 323-344.	1.1	0
2650	Biomass-derived composites for various applications. Advances in Bioenergy, 2023, , 145-196.	1.3	2
2651	Intelligent assessment of quality characteristics of <i>miscanthus</i> fiber-reinforced polypropylene for sustainable products development. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 0, , 095440892311677.	2.5	2
2652	The potential of adopting natural fibers reinforcements for fused deposition modeling: Characterization and implications. Heliyon, 2023, 9, e15023.	3.2	5
2653	Nano filler incorporated epoxy based natural hybrid fiber confinement of concrete systems: Effect of fiber layers and nano filler addition. Structures, 2023, 51, 320-331.	3.6	2
2654	Application of natural fibres in cement concrete: A critical review. Materials Today Communications, 2023, 35, 105833.	1.9	11
2655	Self-organized mycelium biocomposites: Effects of geometry and laterite composition on compressive behavior. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 142, 105831.	3.1	1
2656	Natural Fiber-Reinforced Polymer Composite Manufacturing Processes. , 2022, , 1-14.		0
2657	Development of Cork Biocomposites Enriched with Chitosan Targeting Antibacterial and Antifouling Properties. Molecules, 2023, 28, 990.	3.8	2
2658	Selected Biopolymers' Processing and Their Applications: A Review. Polymers, 2023, 15, 641.	4.5	9
2659	Reinforcement of polypropylene with natural fibers: Mitigation of environmental pollution. Environmental Challenges, 2023, 11, 100688.	4.2	2

#	Article	IF	CITATIONS
2660	Experimental Study on Fiber Balls for Bridging in Fractured-Vuggy Reservoir. SPE Journal, 2023, 28, 1880-1894.	3.1	8
2661	A study on the mechanical properties of pineapple, bamboo, and cotton woven fabrics. Biomass Conversion and Biorefinery, 0, , .	4.6	2
2662	An empirical model of heat-treated straw bulks' thermal conductivity based on changes in mass and chemical composition. Journal of Thermal Analysis and Calorimetry, 2023, 148, 3731-3749.	3.6	2
2663	Effect of particle sizes on physical, thermal and mechanical behavior of a hybrid composite with polymer matrix with raffia vinifera cork and Bambusa vulgaris. Polymer Bulletin, 2024, 81, 275-295.	3.3	1
2664	Water hyacinth plant powder particle with moringa filler powder reinforced epoxy polymer composite absorption properties. Materials Today: Proceedings, 2023, , .	1.8	0
2665	Cardanol-based adhesive with reduced formaldehyde emission to produce particleboards with waste from bean crops. Environmental Science and Pollution Research, 2023, 30, 48270-48287.	5.3	4
2666	Manufacturing of biodegradable Flax-PLA curvatures using a unique vacuum-temperature profile. Advanced Industrial and Engineering Polymer Research, 2023, 6, 265-277.	4.7	0
2667	Can Industry Counteract the Ecological Crisis? An Approach for the Development of a New Circular Bioeconomic Model Based on Biocomposite Materials. Sustainability, 2023, 15, 3382.	3.2	1
2668	å⁻¼ç"µå¾®çºॖ฿҉»´çš"å¾®æµæŽ§å^¶å¤åŠå¶åœ¨æŸ"性电åé⊄†åŸŸçš"应用. Chinese Science Bulletin, 2023, , .	0.7	0
2669	Effect of Fungi Removal Method on the Mechanical Properties of Polymer Composites Reinforced with Oat and Millet Husks. , 0, , .		0
2670	Properties and Applications of Natural Fiber-Reinforced 3D-Printed Polymer Composites. Advances in Chemical and Materials Engineering Book Series, 2023, , 31-52.	0.3	1
2671	Plant fiber-reinforced polymer composites: a review on modification, fabrication, properties, and applications. Polymer Bulletin, 2024, 81, 1-85.	3.3	13
2672	Natural Fiber-Reinforced Biopolymers as Construction Materials. , 2023, , 1-21.		0
2673	Characterization of Cellulose Fiber Extracted from Stems of Myriostachya wightiana (MW) Plants: A Viable Reinforcement for Polymer Composite. Fibers and Polymers, 2023, 24, 489-503.	2.1	6
2674	Lignocellulose coffee waste-based epoxy composites: effect of various treatment methods on composite properties. Cellulose, 2023, 30, 3589-3609.	4.9	2
2675	3D printing of plant fiber reinforced polymer composites (PFRC's): an insight into methods, challenges and opportunities. Polymer-Plastics Technology and Materials, 2023, 62, 816-838.	1.3	2
2676	An experimental and simulation study on dielectric properties of bio-based kenaf composite laminated with PVC for futuristic applications. Materials Today: Proceedings, 2023, , .	1.8	2
2677	Effect of Mercerization on Coconut Fiber Surface Condition for Use in Natural Fiber-Reinforced Polymer Composites. Lecture Notes in Production Engineering, 2023, , 701-713.	0.4	0

#	Article	IF	CITATIONS
2678	Effect of Polymer Ether Ketone Fibers on the Tribological Properties of Resin-Based Friction Materials. Materials, 2023, 16, 2094.	2.9	1
2679	Influencia del tipo de fibras y del tratamiento superficial de las fibras en las propiedades fÃsicas y mecánicas de compuestos reforzados con fibras vegetales. IngenierÃa, 2023, 28, e18852.	0.3	2
2680	Recent Trends in Treatment and Fabrication of Plant-Based Fiber-Reinforced Epoxy Composite: A Review. Journal of Composites Science, 2023, 7, 120.	3.0	48
2681	Synergy of waste plastics and natural fibers as sustainable composites for structural applications concerning circular economy. Environmental Science and Pollution Research, 0, , .	5.3	2
2682	Properties of polybutylene succinate and polybutylene succinate -polycaprolactone based composite reinforced with coconut shell particles. Composite Interfaces, 0, , 1-26.	2.3	0
2683	Identifying the Most Efficient Natural Fibre for Common Commercial Building Insulation Materials with an Integrated PSI, MEREC, LOPCOW and MCRAT Model. Polymers, 2023, 15, 1500.	4.5	17
2684	Evaluation of physical, mechanical, and thermal properties of woven kenaf/bio-epoxy composites. Journal of Industrial Textiles, 2023, 53, 152808372311633.	2.4	3
2685	Study of the Influence of the Additive "Polymateria" on the Ability to Biodegrade Polyethylene Films. Health, Food & Biotechnology, 2023, 4, .	0.2	0
2686	Chemical recycling of waste clothes: a smarter approach to sustainable development. Environmental Science and Pollution Research, 2023, 30, 54448-54469.	5.3	2
2687	Biobased Epoxy Composites Reinforced with Acetylated Corn Straw. ACS Omega, 2023, 8, 12644-12652.	3.5	2
2688	Bioresource Polymer Composite for Energy Generation and Storage: Developments and Trends. Chemical Record, 2024, 24, .	5.8	4
2689	Recent Advances of GFRP Composite Cross Arms in Energy Transmission Tower: A Short Review on Design Improvements and Mechanical Properties. Materials, 2023, 16, 2778.	2.9	7
2690	Date and doum palm natural fibers as renewable resource for improving interface damage of cement composites materials. Beni-Suef University Journal of Basic and Applied Sciences, 2023, 12, .	2.0	0
2691	Optimization and Modelling the Mechanical Performance of Date Palm Fiber-Reinforced Concrete Incorporating Powdered Activation Carbon Using Response Surface Methodology. Materials, 2023, 16, 2977.	2.9	2
2692	A comprehensive review of natural fiber reinforced composite and their modern application. Materials Today: Proceedings, 2023, 92, 542-548.	1.8	2
2693	Hierarchical biopolymerâ€based materials and composites. Journal of Polymer Science, 2023, 61, 2585-2632.	3.8	2
2694	Sugar palm (Arenga pinnata) fibers: new emerging natural fibre and its relevant properties, treatments and potential applications. Journal of Materials Research and Technology, 2023, 24, 4551-4572.	5.8	17
2695	An initial investigation to explore the feasibility of fruit waste fillers for developing sustainable thermoplastic composites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 0, , 146442072311691.	1.1	3

#	Article	IF	CITATIONS
2696	Physico-mechanical and tribological behaviour of natural fiber reinforced polymer composites: A short review. Materials Today: Proceedings, 2023, , .	1.8	1
2697	Biointelligent Waste-to-X systems: A novel concept for sustainable, decentralized and interconnected value creation. Procedia CIRP, 2023, 116, 576-581.	1.9	0
2698	Evaluation of Thermal Adsorption and Mechanical Behaviour of Intralaminar Jute/Sisal/E-Glass Fibre-Bonded Epoxy Hybrid Composite as an Insulator. Adsorption Science and Technology, 2023, 2023, .	3.2	3
2699	Waste materials as adsorbents for heavy metals removal from water: Comparative analysis of modification techniques. Tekstilna Industrija, 2023, 71, 4-10.	0.6	1
2701	Experimental investigations on material properties of alkali retted Pinus Roxburghii Fiber. Biomass Conversion and Biorefinery, 0, , .	4.6	3
2702	Shape-recovery in organic solvents of water-responsive cellulose nanofiber actuators. Cellulose, 2023, 30, 5811-5824.	4.9	4
2703	Study on the physicomechanical, fracture-deformation, interface-adhesion, and water-absorption properties of twill fabric cotton-bamboo/epoxy composites. Journal of Materials Research and Technology, 2023, 24, 8429-8442.	5.8	11
2704	Core–shell encapsulation of PMHS@EPDM onto BF surface for strengthening and toughening of BF/HDPE composites. Cellulose, 2023, 30, 5749-5759.	4.9	0
2705	Eco-friendly materials for brake pad- ANSYS overview. Materials Today: Proceedings, 2023, , .	1.8	0
2706	Reinforced kenaf composite as a feeder for 3D printing application. AlP Conference Proceedings, 2023, , .	0.4	0
2707	Characterisation of Sodium Acetate Treatment on Acacia pennata Natural Fibres. Polymers, 2023, 15, 1996.	4.5	9
2708	Polymer-Grafted Cellulose Nanofibrils with Enhanced Interfacial Compatibility for Stronger Poly(lactic acid) Composites. ACS Applied Polymer Materials, 2023, 5, 3661-3676.	4.4	4
2709	Natural Fiber-Reinforced Biopolymers as Construction Materials. , 2023, , 1173-1193.		0
2710	Tensile Behavior of [0/90]7 Hemp/Elium Biocomposites after Water Aging: In-Situ Micro-CT Testing and Numerical Analysis. Micro, 2023, 3, 496-509.	2.0	1
2711	Mapping the progress in natural fiber reinforced composites: Preparation, mechanical properties, and applications. Polymer Composites, 2023, 44, 3748-3788.	4.6	16
2712	PTT-Based Green Composites. Materials Horizons, 2023, , 167-185.	0.6	0
2713	Proposal for a fiber cement panel with the addition of sugarcane bagasse. Revista De Ingenierila Civil, 0, , 46-53.	0.0	0
2714	Hemp composite. , 2023, , 89-112.		0
#	ARTICLE	IF	Citations
------	---	-----	-----------
2715	Bast fiber composites and their applications. , 2023, , 167-193.		0
2716	A review on waste wood reinforced polymer composites and their processing for construction materials. International Journal of Sustainable Engineering, 2023, 16, 104-116.	3.5	2
2717	Effects of moist ageing on composites of bamboo fiber and montmorillonite/eggshell powder. Cellulose, 2023, 30, 6349-6363.	4.9	4
2718	Bio-based sandwich beams made of paper honeycomb cores and flax FRP facings: Flexural and shear characteristics. Structures, 2023, 54, 446-460.	3.6	4
2719	Modification of palm fiber with chitosan-AESO blend coating. International Journal of Biological Macromolecules, 2023, 242, 125099.	7.5	7
2720	Gamma-irradiated recycled polyethylene filled with Tectona grandis (teak) leaf powder: a method for upcycling of polyethylene. Iranian Polymer Journal (English Edition), 2023, 32, 1075-1087.	2.4	1
2721	Hemp Fiber Reinforced Lightweight Concrete (HRLWC) with Supplementary Cementitious Materials (SCM). Lecture Notes in Civil Engineering, 2023, , 1067-1074.	0.4	0
2722	Natural fibers and their applications: A review. , 2022, 1, 13.		0
2723	Sustainable feedstocks for 4D printing: biodegradable polymers and natural resources. Green Materials, 0, , 1-17.	2.1	2
2724	Synthesis and physicochemical study of bisphenol-C epoxy cinnamate resin and its glass/jute and jute-natural fiber-reinforced composites. Polymer Bulletin, 2024, 81, 3191-3207.	3.3	0
2725	Effect of Potassium Permanganate treatment on physico-Chemical and mechanical properties of extracted Pine Needle Fiber. E3S Web of Conferences, 2023, 391, 01036.	0.5	0
2726	Effect of activated coal waste and treated Pinus fibers on the physico-mechanical properties and durability of fibercement composites. Construction and Building Materials, 2023, 392, 132038.	7.2	1
2727	Plant-Based Natural Fibers For Food Packaging: A Green Approach To The Reinforcement of Biopolymers. Journal of Polymers and the Environment, 2023, 31, 5029-5049.	5.0	3
2728	Challenges and advancement in water absorption of natural fiber-reinforced polymer composites. Polymer Testing, 2023, 124, 108083.	4.8	23
2729	Biodegradable, Colorless, and Odorless PLA/PBAT Bioplastics Incorporated with Corn Stover. ACS Sustainable Chemistry and Engineering, 2023, 11, 8870-8883.	6.7	4
2730	Recyclable Extrudable Biopolymer Composites from Alginate and Lignocellulosic Biomass Waste. ACS Sustainable Chemistry and Engineering, 2023, 11, 8939-8947.	6.7	2
2731	Biopolymer-Based Composites: An Eco-Friendly Alternative from Agricultural Waste Biomass. Journal of Composites Science, 2023, 7, 242.	3.0	14
2732	The state of the art of biopolymers-new challenges, opportunities, and future prospects. , 2023, , 1-18.		1

#	Article	IF	CITATIONS
2733	Effect of Plant Fiber on Early Properties of Geopolymer. Molecules, 2023, 28, 4710.	3.8	1
2734	Development of a Fire-Resistant Straw- and Waste Glass-Based Thermal Insulation Board. RILEM Bookseries, 2023, , 885-898.	0.4	0
2735	Creating Customized Hip-Spacers Using PMMA-Based Green Composites to Fulfill Specific Needs of Individuals with Disabilities. , 2023, 2, .		0
2736	Introduction to pultrusion. , 2023, , 1-16.		0
2737	Nanoclay/organic filler-reinforced polymeric hybrid composites as promising materials for building, automotive, and construction applications- a state-of-the-art review. Composite Interfaces, 2023, 30, 1363-1386.	2.3	3
2738	Comprehensive insights on mechanical attributes of natural-synthetic fibres in polymer composites. Journal of Materials Research and Technology, 2023, 25, 4960-4988.	5.8	4
2739	Harnessing of waste cenosphere in development of natural/synthetic and rubber core sandwich composite and its mechanical characterization. Biomass Conversion and Biorefinery, 0, , .	4.6	2
2740	3D strain fields in a plant fibre composite during fragmentation test: Micro-CT based DIC and DVC. Composites Part B: Engineering, 2023, 263, 110860.	12.0	1
2741	Application of Expert Decision Systems for Optimal Fiber Selection for Green Building Design Components. , 2023, , 21-37.		0
2742	A comprehensive review on the use of natural fibers in cement/geopolymer concrete: A step towards sustainability. Case Studies in Construction Materials, 2023, 19, e02244.	1.7	0
2743	Physical & mechanical and chemical properties on papaya tree bast fibers from different portions. Biomass Conversion and Biorefinery, 0, , .	4.6	1
2744	Fabrication of transparent cellulose nanofibril composite film with smooth surface and ultraviolet blocking ability using hydrophilic lignin. International Journal of Biological Macromolecules, 2023, 245, 125545.	7.5	4
2745	Excellent interfacial bonding in UHMWPE fiber/ epoxy resin composites fabricated via a swelling approach. Journal of Polymer Research, 2023, 30, .	2.4	0
2746	Characterization of <i>Grewia bicolor</i> fibre and its use in the development of composites. International Wood Products Journal, 2023, 14, 74-86.	1.1	3
2747	Bionanocomposites for rejuvenation of heavily contaminated environment. , 2023, , 75-125.		1
2748	Economic, social and ecological impacts of bioenergy at local, national and global levels. , 2023, , 507-533.		0
2749	Experimental investigation of effect of reinforcing teak wood dust and tamarind kernel powder in polymer composite. Materials Today: Proceedings, 2023, , .	1.8	0
2750	Ecosystem sustainability and conservation of waste natural fiber strengthen epoxy composites for lightweight applications. Environmental Quality Management, 0, , .	1.9	3

# 2751	ARTICLE Biodegradable biocomposites. , 2023, , 215-228.	IF	Citations 0
2752	Water content and nail head pulled-through strength of epoxy/Sumberejo kenaf fiber composite with fiber orientation 0°/0°/0°/0° and 0°/90°/0ð/90°. AIP Conference Proceedings, 2023, , .	0.4	0
2753	3D printed human hair - polymer continuous fiber reinforced composites through Vat Photopolymerization process. Materials Today Communications, 2023, 35, 106096.	1.9	1
2754	Optimizing Numerous Influencing Parameters of Nano-SiO2/Banana Fiber-Reinforced Hybrid Composites using Taguchi and ANN Approach. Journal of Nanomaterials, 2023, 2023, 1-14.	2.7	3
2755	Green stalk fibers and their application in cement-based composites. , 2023, , 195-218.		0
2756	Additive Manufacturing of Biodegradable Hemp-Reinforced Polybutylene Succinate (PBS) and Its Mechanical Characterization. Polymers, 2023, 15, 2271.	4.5	4
2757	Animal fiber–based green composites. , 2023, , 305-346.		0
2758	Green wood fiber composites and their applications. , 2023, , 1-28.		0
2759	Design formulation and analysis of overhead water tank: Material used for automatic cleaning mechanism. Materials Today: Proceedings, 2023, , .	1.8	0
2760	Review on composite classification, manufacturing, and applications. Materials Today: Proceedings, 2023, , .	1.8	4
2761	Biocompatible and Biodegradable 3D Printing from Bioplastics: A Review. Polymers, 2023, 15, 2355.	4.5	8
2762	Development of rice starch/recycled polypropylene biocomposites with jute waste nanofiber-based filler. Sustainable Chemistry and Pharmacy, 2023, 33, 101101.	3.3	1
2763	The use of fibres in asphalt mixtures: A state of the art review. Construction and Building Materials, 2023, 390, 131754.	7.2	11
2764	Polymer-Matrix Composites: Characterising the Impact of Environmental Factors on Their Lifetime. Materials, 2023, 16, 3913.	2.9	5
2765	Preparation of sorghum fibers reinforcing agent by alkalinization–thermal method. AIP Conference Proceedings, 2023, , .	0.4	0
2766	Development of shelf life-extending packaging for vitamin C syrup based on high-density polyethylene and extracted lignin argan shells. International Journal of Biological Macromolecules, 2023, 242, 125077.	7.5	2
2767	Effect of stacking sequence and thickness variation on the thermo-mechanical properties of flax-kenaf laminated biocomposites and prediction of the optimal configuration using a decision-making framework. International Polymer Processing, 2023, 38, 404-423.	0.5	3
2768	Influence of Vinyl Acetate Content and Melt Flow Index of Ethylene-Vinyl Acetate Copolymer on Physico-Mechanical and Physico-Chemical Properties of Highly Filled Biocomposites. Polymers, 2023, 15, 2639.	4.5	0

#	Article	IF	CITATIONS
2769	Significance of ballistic parameters and nanohybridization in the development of textile-based body armor: A review. International Journal of Impact Engineering, 2023, 180, 104700.	5.0	2
2770	In Situ Tensile Testing under High-Speed Optical Recording to Determine Hierarchical Damage Kinetics in Polymer Layers of Flax Fibre Elements. Polymers, 2023, 15, 2794.	4.5	1
2771	UV and UV+ Water Effects on Mechanical, Thermal and Morphological Properties of Thermoplastic Polyurethane Based Composites. Hittite Journal of Science & Engineering, 2023, 10, 177-184.	0.5	2
2772	Effect of Fumigation Treatment on the Mechanical Properties of Cantala Fiber–Unsaturated Polyester Composite Fabricated by Compression Molding Method. Springer Proceedings in Materials, 2023, , 251-261.	0.3	0
2773	Characterization and Comparative Evaluation of Structural, Chemical, Thermal, Mechanical, and Morphological Properties of Plant Fibers. Composites Science and Technology, 2023, , 1-45.	0.6	1
2774	A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results in Engineering, 2023, 19, 101271.	5.1	54
2775	Vegetable Cellulose Fibers in Natural Rubber Composites. Polymers, 2023, 15, 2914.	4.5	3
2776	Fiber classifications and physical and mechanical properties of different fibers used in alkali-activated composites. , 2023, , 23-58.		0
2777	Natural fiber reinforcements: classification, extraction, treatment, and properties. , 2023, , 3-29.		1
2778	Three-dimensional (3D) braided natural fiber preforms. , 2023, , 279-310.		0
2779	Advanced Natural/Synthetic Composite Materials for Marine Applications. Composites Science and Technology, 2023, , 211-231.	0.6	0
2780	Influence of nanoparticles in reinforced aluminium metal matrix composites in aerospace applications – A review. Materials Today: Proceedings, 2023, , .	1.8	1
2781	Mechanical performance of date palm fiber-reinforced concrete modified with nano-activated carbon. Nanotechnology Reviews, 2023, 12, .	5.8	0
2782	Effect of treatment type of natural fibers on the rheological and micromechanical behavior of polyvinyl alcohol composites. Journal of Applied Polymer Science, 2023, 140, .	2.6	3
2783	Unveiling Sustainable Potential: A Life Cycle Assessment of Plant–Fiber Composite Microcellular Foam Molded Automotive Components. Materials, 2023, 16, 4952.	2.9	2
2784	Influence of fibre orientation, moisture absorption and repairing performance on the low-velocity impact response of woven flax/Elium ^{$\hat{A}^{@}$} thermoplastic bio-composites. Journal of Composite Materials, 0, , .	2.4	0
2785	Effect of Luffa/Basalt Fiber Hybridization on the Mechanical and Surface Morphology of Epoxy Composites. Journal of the Institution of Engineers (India): Series D, 0, , .	1.0	1
	Methodologies to Evaluate the Micromechanics Flexural Strength Properties of		

#	Article	IF	CITATIONS
2788	Potential of Non-wood Fibers as Sustainable Reinforcements for Polymeric Composites—A Review. Environmental Footprints and Eco-design of Products and Processes, 2023, , 123-150.	1.1	0
2789	Water Hyacinth (Eichhornia Crassipes) Plant Ash, Moringa Filler Powder Reinforced Epoxy Polymer Composite Properties for Medium Density Fiberboard (MDF) Applications. Lecture Notes in Mechanical Engineering, 2023, , 441-450.	0.4	0
2790	Natural fiber reinforced rPET/polyester composites: a review on development, mechanical performance, and sustainable management. Polymer-Plastics Technology and Materials, 2023, 62, 1823-1843.	1.3	2
2791	A Comprehensive Study on Various Factors Influences the Mechanical Behavior of Natural Fiber-Reinforced Composite. Lecture Notes in Mechanical Engineering, 2023, , 471-481.	0.4	3
2792	Forest-Based Polymeric Biocomposites: Current Development, Challenges, and Emerging Trends. Environmental Footprints and Eco-design of Products and Processes, 2023, , 151-165.	1.1	0
2793	A comprehensive review on recent developments of natural fiber composites synthesis, processing, properties, and characterization. Engineering Research Express, 2023, 5, 032001.	1.6	2
2794	Automated Design of Tooling for the Production of Tape Prepreg Based on Thermoplastic Polymers. Lecture Notes in Mechanical Engineering, 2023, , 632-640.	0.4	0
2795	Advances in biocomposite fabrication: Emerging technologies and their potential applications. , 2023, , .		0
2796	Water absorption and thickness swelling behavior of agave Americana fiber epoxy-based composite at different fiber length. AIP Conference Proceedings, 2023, , .	0.4	1
2797	Influence of fiber orientation on the moisture adsorption of continuous bamboo fiber composites. Materials Today: Proceedings, 2023, , .	1.8	2
2798	A review of recent developments in application of plant fibers as reinforcements in concrete. Journal of Cleaner Production, 2023, 419, 138265.	9.3	5
2799	Artificial Neural Network Identification of the Chemical and Crystallinity of Pine Needle Fiber at Different Altitudes in India's Garhwal Region. , 2023, , .		0
2800	Effect of nano silica on mechanical and water absorption properties of basalt/polyester hybrid composite with glass/hemp. Journal of Polymer Research, 2023, 30, .	2.4	3
2801	Mechanics of Polymers and Composites. , 2023, , .		0
2802	Sustainable Materials for Advanced Products. , 2023, , 1001-1017.		0
2803	Low Velocity Impact Performance of Natural Fibre Reinforced Polymer Composites: A Review. Functional Composites and Structures, 0, , .	3.4	2
2804	Green Composites Using Naturally Occurring Fibers: A Comprehensive Review. , 2023, 1, 1-26.		0
2805	A Comparative Study of the Impact of the Bleaching Method on the Production and Characterization of Cotton-Origin Nanocrystalline Cellulose by Acid and Enzymatic Hydrolysis. Polymers, 2023, 15, 3446.	4.5	0

3.1

0

#	Article	IF	CITATIONS
2806	Effect of alkaline treatment time of fibers and microcrystalline cellulose addition on mechanical properties of unsaturated polyester composites reinforced by cantala fibers. Reviews on Advanced Materials Science, 2023, 62, .	3.3	1
2807	Enhancement of sustainable fused deposition modeling <scp>3Dâ€printing</scp> with agave Americana fiberâ€reinforced poly(lactic) acid biofilaments. Journal of Applied Polymer Science, 2023, 140, .	2.6	0
2808	Thermo-mechanical analysis of bhimal fiber (Grewia optiva)-CaCO3/flyash/TiO2 reinforced epoxy bio-composites. Industrial Crops and Products, 2023, 204, 117341.	5.2	0
2809	Current situation and future perspectives for the use of fungi in the biomaterial industry and proposal for a new classification of fungal-derived materials. , 0, 5, e31.		1
2810	Development of unidirectional tapes using jute fiber for automotive applications. Materials Today: Proceedings, 2023, , .	1.8	0
2811	Application of Natural (Plant) Fibers Particularly Hemp Fiber as Reinforcement in Hybrid Polymer Composites - Part I. Origin of Hemp and Its Coming into Prominence, Cultivation Statistics, and Legal Regulations. Journal of Natural Fibers, 2023, 20, .	3.1	1
2812	Properties of mortar containing Phragmites Australis Ash. Journal of Engineering, Design and Technology, 0, , .	1.7	0
2813	Polysaccharide Composite Films Utilising Wood Waste. Materials, 2023, 16, 6031.	2.9	0
2814	Babassu Coconut Fibers: Investigation of Chemical and Surface Properties (Attalea speciosa.). Polymers, 2023, 15, 3863.	4.5	1
2815	Fiber chemistry and technology: their contributions to shaping Society 5.0. , 2023, 18, .		0
2816	Quantitatively evaluation of the hydrogen bonding effects on the thermal properties of poly(vinyl) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50
2817	Recent progress in thermal and acoustic properties of natural fiber reinforced polymer composites: Preparation, characterization, and data analysis. Polymer Composites, 2023, 44, 7235-7297.	4.6	4
2818	Bio-based composites made from bamboo fibers with high lignin contents: a multiscale analysis. Composite Interfaces, 0, , 1-18.	2.3	0
2819	A comprehensive study on the effect of hybridization and stacking sequence in fabricating cotton-blended jute and pineapple leaf fibre biocomposites. Heliyon, 2023, 9, e19792.	3.2	2
2820	Diethylaminoethyl cellulose and quaternary ammonium cellulose matrices as adsorbent materials for potentially toxic CrO42â^', Cr2O72â^', SeO32â^' and SeO42â^' anions: A theoretical study. Journal of Molecular Liquids, 2023, 390, 123051.	4.9	1
2821	Unveiling new frontiers: Bast fiberâ€reinforced polymer composites and their mechanical properties. Polymer Composites, 2023, 44, 7317-7349.	4.6	6

2823	Mapping the recent advancements in bast fiber reinforced biocomposites: A review on fiber modifications, mechanical properties, and their applications. Results in Materials, 2023, 20, 100448.	1.8	4	

Influence of Hydroxyl-Terminated Hyperbranched Polymer and Coupling Agent on the Performance of SF/PLA Composites. Journal of Natural Fibers, 2023, 20, .

2822

#	Article	IF	CITATIONS
2824	Properties and bonding interface characteristics of an innovative bamboo flattening and grooving unit (BFGU) for laminated bamboo lumber. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 676, 132185.	4.7	1
2825	A critical review on the properties of natural fibre reinforced concrete composites subjected to impact loading. Journal of Building Engineering, 2023, 77, 107497.	3.4	2
2827	Investigation of Novel Flax Fiber/Epoxy Composites with Increased Biobased Content. Polymers, 2023, 15, 4030.	4.5	0
2828	Effect of fiber surface treatment on mechanical, interfacial, and moisture absorption properties of cattail fiberâ€reinforced composites. Journal of Applied Polymer Science, 2024, 141, .	2.6	0
2829	Comparative analysis of drilled and molded holes in short natural fiber reinforced composites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 0, , .	1.1	1
2830	Development of Nanomaterials from Natural Resources for Biosensing and Biomedical Technology. , 2023, , 239-269.		0
2831	Investigations on Dielectric Constant of Coir Powder-Reinforced PVC Composites. Journal of Natural Fibers, 2023, 20, .	3.1	1
2832	In-plane shear behavior of brick masonry walls strengthened with basalt textile-reinforced concrete. Construction and Building Materials, 2023, 401, 132732.	7.2	0
2833	Fracture toughness of hybrid natural fiber/nanoclay reinforced starch biocomposite material. Composites and Advanced Materials, 2023, 32, .	0.8	0
2834	Preparation and Investigation of Mechanical and Physical Properties of Flax/Glass Fabric Reinforced Polymer Hybrid Composites. Journal of Textile Science and Technology, 2023, 09, 165-182.	0.7	0
2836	Polymers in tissue engineering and regenerative medicine. , 2023, , 463-489.		0
2837	Potential of grass families as reinforcement material in composites: A review. AIP Conference Proceedings, 2023, , .	0.4	0
2839	Freezing and Thawing Resistance of Hemp Fiber Reinforced Clays. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 2023, 12, 822-828.	0.5	0
2840	Production and Recycling of Biocomposites: Present Trends and Future Perspectives. , 2023, , 389-403.		1
2841	Tensile, Thermal Properties, and Biodegradability Test of Paddy Straw Powder-Filled Polyhydroxybutyrate-3-Valerate (PHBV) Biocomposites: Acrylation Pretreatment. , 2023, , 307-322.		0
2842	A critical review of different properties of natural fibre-reinforced composites. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 0, , .	2.5	0
2843	Influence of Layering Pattern, Fibre Architecture, and Alkalization on Physical, Mechanical, and Morphological Behaviour of Banana Fibre Epoxy Composites. International Journal of Polymer Science, 2023, 2023, 1-14.	2.7	0
2844	Optimization of the alkali treatment on the tempoâ€modified cellulosic nanoreinforcement in autoclaved epoxy matrix. Polymer Composites, 2023, 44, 8988-9007.	4.6	0

#	Article	IF	Citations
2845	Effect of quercetin addition on chitosan film composite of cellulose microcrystals from coconut fibers (Cocos Nucifera). Journal of Physics: Conference Series, 2023, 2596, 012029.	0.4	0
2846	Does the moisture content of mercerized wood influence the modulus of rupture of thermopressed polyurethane-based composites?. Industrial Crops and Products, 2023, 206, 117585.	5.2	0
2847	Flame retardancy and fire mechanical properties for natural fiber/polymer composite: A review. Composites Part B: Engineering, 2024, 268, 111069.	12.0	9
2848	The Natural Growth of CaCO3 Crystals on Hemp Yarns: A Morphology Analysis and the Mechanical Effects on Composites. Fibers, 2023, 11, 88.	4.0	0
2849	Extraction and Physicochemical and Thermomechanical Characterizations of Water Hyacinth Fibers Eichhornia crassipes. International Journal of Polymer Science, 2023, 2023, 1-9.	2.7	0
2850	Hybrid Fiber/Filler Reinforced Vegetable Oil-Based Composites: A Short Review. Springer Proceedings in Materials, 2023, , 152-162.	0.3	0
2851	Development and Characterization of Sugar Palm (<i>Arenga Pinnata (Wurmb. Merr)</i>) Fiber Reinforced Cassava (<i>Manihot esculenta</i>) Starch Biopolymer Composites. Journal of Natural Fibers, 2023, 20, .	3.1	0
2852	Recycling as a Key Enabler for Sustainable Additive Manufacturing of Polymer Composites: A Critical Perspective on Fused Filament Fabrication. Polymers, 2023, 15, 4219.	4.5	1
2853	Various factors affecting the fatigue performance of natural fiber-reinforced polymer composites: a systematic review. Iranian Polymer Journal (English Edition), 0, , .	2.4	0
2854	Biobased composites reinforced with annual plants—Design, manufacturing techniques, and parameters influencing the overall properties. , 2023, , .		0
2855	Biobased composites for advanced applications: Possibilities and difficulties on the path to circularity. , 2023, , .		0
2856	Manufacturing and characterization of sustainable and recyclable wood-polypropylene biocomposites: Multiprocessing-properties-structure relationships. Industrial Crops and Products, 2024, 207, 117710.	5.2	1
2857	High-performance thermosets for additive manufacturing. Systematic Bioscience and Engineering, 2023, 10, .	0.1	3
2858	Composite materials from synthetic and natural sources: Fabrication techniques and applications. , 2023, , .		0
2859	Effects of carbon-based nanofillers on mechanical, electrical, and thermal properties of bast fiber reinforced polymer composites. Journal of Thermoplastic Composite Materials, 0, , .	4.2	1
2860	Thermal insulation material produced from recycled materials for building applications: cellulose and rice husk-based material. Frontiers in Built Environment, 0, 9, .	2.3	1
2861	Polyhydroxyalkanoates, A prospective solution in the textile industry - A review. Polymer Degradation and Stability, 2024, 219, 110619.	5.8	0
2862	Polycaprolactone Composites/Blends and Their Applications Especially in Water Treatment. ChemEngineering, 2023, 7, 104.	2.4	1

#	Article	IF	CITATIONS
2863	Natural Fibers Composites: Origin, Importance, Consumption Pattern, and Challenges. Journal of Composites Science, 2023, 7, 506.	3.0	6
2864	Study of fibre to fibre and ply to ply comingling technique for fabrication of natural fibre reinforced thermoplastic composites. Journal of the Textile Institute, 0, , 1-10.	1.9	0
2865	Properties prediction of composites based on machine learning models: A focus on statistical index approaches. Materials Today Communications, 2024, 38, 107659.	1.9	0
2866	Recent developments in functional plant fiber-based composites and their engineering applications. , 2023, , .		0
2867	A Comprehensive Review of Natural Fibre Reinforced Polymer Composites. , 2023, 1, 21-26.		0
2868	Acoustic emission characteristics of waste fiberâ€reinforced recycled highâ€density polyethylene composites under damage conditions. Polymer Composites, 0, , .	4.6	0
2869	Modeling approaches for bio-based composites. , 2023, , .		0
2870	Effects of fibre weight fraction on the mechanical properties of bio-Composite reinforced with Alfa fibres: Experimental and numerical investigation. Journal of Composite Materials, 0, , .	2.4	0
2871	Characterization of an Arundo donax-based composite: A solution to improve indoor comfort. Industrial Crops and Products, 2024, 208, 117756.	5.2	1
2872	Fabrication of mycelium (oyster mushroom)-based composites derived from spent coffee grounds with pineapple fibre reinforcement. Mycology, 0, , 1-18.	4.4	1
2873	Impacts of Baobab Stem Fibre Reinforcement in Enhancing the Concrete Strength. , 2023, 2, 361-381.		0
2874	Valorization of Agricultural Waste Lignocellulosic Fibers for Poly(3-Hydroxybutyrate-Co-Valerate)-Based Composites in Short Shelf-Life Applications. Polymers, 2023, 15, 4507.	4.5	0
2875	Examining the physico-chemical, structural and thermo-mechanical properties of naturally occurring Acacia pennata fibres treated with KMnO4. Scientific Reports, 2023, 13, .	3.3	1
2876	Computational Buckling Analysis of Epoxy-Based Composite Reinforced with Sugarcane Fiber, Fly-Ash, and Carbon Nanotube. Brazilian Archives of Biology and Technology, 0, 66, .	0.5	0
2877	Effect of fillers and weave architecture hybridization on the impact performance of <scp>3D</scp> woven hybrid green composites. Polymer Composites, 0, , .	4.6	0
2878	Enhanced Dynamic Impact Resistance of 3D-Printed Continuous Optical Fiber-Reinforced Helicoidal Polylactic Acid Composites. Polymers, 2023, 15, 4599.	4.5	0
2879	Preliminary Research on Moss-Based Biocomposites as an Alternative Substrate in Moss Walls. Sustainability, 2023, 15, 16500.	3.2	0
2880	Hybridization Effect on Interlaminar Bond Strength, Flexural Properties, and Hardness of Carbon–Flax Fiber Thermoplastic Bio-Composites. Polymers, 2023, 15, 4619.	4.5	1

#	Article	IF	CITATIONS
2881	Dynamic micromechanical measurement of the flexural modulus of micrometre-sized diameter single natural fibres using a vibrating microcantilever technique. Journal of Micromechanics and Microengineering, 2024, 34, 015009.	2.6	1
2882	Barrier, converting, and trayâ€forming properties of paperboard packaging materials coated with waterborne dispersions. Packaging Technology and Science, 2024, 37, 149-165.	2.8	0
2883	Application of plant fibers in subgrade engineering: current situation and challenges. , 0, , .		0
2884	Study on Fabrication and Mechanical Performance of Flax Fibre-Reinforced Aluminium 6082 Laminates. Journal of the Institution of Engineers (India): Series D, 0, , .	1.0	2
2885	Possible Interaction of PVC with Micro-and Nano-fillers. Engineering Materials, 2024, , 335-360.	0.6	0
2886	Enhancing properties of jute/starch bio-composite material through incorporation of magnesium carbonate hydroxide pentahydrate: A sustainable approach. Materials Chemistry and Physics, 2023, , 128690.	4.0	0
2887	Mechanical properties of straw basalt fiber reinforced concrete composites. , 2023, 1, .		0
2889	Modified abaca fiber prepared by radiation-induced graft polymerization as a reinforcement for unsaturated polyester resin composites. Polymer Journal, 2024, 56, 97-105.	2.7	0
2890	Processing and properties of jute (Corchorus olitorius L.) fibres and their sustainable composite materials: A review. Journal of Materials Chemistry A, 0, , .	10.3	0
2891	Natural Fiber-Reinforced Polymer Composite: A Review. , 2023, , 141-153.		0
2892	Nano Boron Oxide and Zinc Oxide Doped Lignin Containing Cellulose Nanocrystals Improve the Thermal, Mechanical and Flammability Properties of High-Density Poly(ethylene). Polymers, 2024, 16, 36.	4.5	0
2893	A feasible re-use of an agro-industrial by-product: Hazelnut shells as high-mass bio-aggregate in boards for indoor applications. Journal of Cleaner Production, 2024, 434, 140297.	9.3	1
2894	Reprocessing Possibilities of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)–Hemp Fiber Composites Regarding the Material and Product Quality. Materials, 2024, 17, 55.	2.9	0
2895	Characterization of Natural and Synthetic Fabrics for the Treatment of Complex Wastes. Polymers, 2024, 16, 84.	4.5	0
2896	Effects of Fiber Treatment and Humidity on the Mechanical, Fracture Toughness, Dynamic and Thermal Properties of Grewia Optiva Natural Fiber Reinforced Epoxy Composites. Journal of Engineering Materials and Technology, Transactions of the ASME, 0, , 1-36.	1.4	0
2897	Effect on dynamic parameters of waste reinforced soil under vibrations generated through traffic loading: Experimental evaluation. Journal of Engineering Research, 2023, , .	0.7	0
2898	Ayçiçeği Kabuğu Takviyeli Biyo-Epoksi Matrisli Çevreci ve Maliyet Etkin Kompozitlerin Geliştirilmesi ve Mekanik Karakterizasyonu. International Journal of Advances in Engineering and Pure Sciences, 2023, 35, 494-503.	0.8	0
2899	A review of emerging bio-based constituents for natural fiber polymer composites. Journal of the Textile Institute, 0, , 1-27.	1.9	0

#	Article	IF	CITATIONS
2900	Preparation of a honeycomb-like magnetically controlled release straw-based fertilizer. Sustainable Chemistry and Pharmacy, 2024, 37, 101428.	3.3	0
2901	Functional modification of silk fibroin from silkworms and its application to medical biomaterials: A review. International Journal of Biological Macromolecules, 2024, 259, 129099.	7.5	2
2902	Effect of gradual thermoforming pressure on the mechanical properties of jute/polypropylene commingled composites. Journal of Composite Materials, 2024, 58, 505-517.	2.4	0
2903	Experimental investigation of mechanical properties of jute/hemp fibers reinforced hybrid polyester composites. SPE Polymers, 2024, 5, 192-205.	3.3	1
2904	Processing of Biobased Packaging Materials. , 2023, , 37-66.		0
2905	Effect of Interfacial Bonding Characteristics on the Tensile Properties of Kenaf Fiber Reinforced Composites. Composites Science and Technology, 2024, , 97-112.	0.6	0
2906	Effects of Low-Velocity-Impact on Facesheet-Core Debonding of Natural-Core Composite Sandwich Structures—A Review of Experimental Research. Journal of Composites Science, 2024, 8, 23.	3.0	0
2907	Advancement in nanomaterials for environmental pollutants remediation: a systematic review on bibliometrics analysis, material types, synthesis pathways, and related mechanisms. Journal of Nanobiotechnology, 2024, 22, .	9.1	3
2908	Recent studies on modeling of the hygrothermal aging of the natural fiber-reinforced composite. , 2024, , 29-60.		0
2909	Biocomposites derived from plant fiber resources. , 2024, , 23-54.		0
2910	Towards a green & ecological revolution: Review of natural reinforcing bio-composites and bio-hybrid composites. Polymers and Polymer Composites, 2024, 32, .	1.9	0
2911	The prospects of natural fiber composites: A brief review. International Journal of Lightweight Materials and Manufacture, 2024, 7, 496-506.	2.1	0
2912	Morphology of the Interfacial Interface of the Natural Fibre Reinforced Polymer Composites. Composites Science and Technology, 2024, , 47-77.	0.6	0
2913	Surface Modification and Different Recycling Techniques of Natural Fibre Reinforced Polymer Matrix Composites to Overcome Current & Future Challenges. Composites Science and Technology, 2024, , 291-316.	0.6	0
2914	Plant fiberâ€reinforced composites based on injection molding process: Manufacturing, service life, and remanufacturing. Polymer Composites, 2024, 45, 4876-4899.	4.6	0
2915	Finite element modeling studies on the static properties of the biocomposites: A review. , 2024, , 275-309.		0
2916	A Novel Approach for Glycero-(9,10-trioxolane)-Trialeate Incorporation into Poly(lactic) Tj ETQq0 0 0 rgBT /Overlo	ck 10 Tf 5 4.5	0 102 Td (ac

2917	An algae-derived partially renewable epoxy resin formulation for glass fibre-reinforced sustainable polymer composites. , 2024, 2, 149-154.
------	---

0

#	Article	IF	CITATIONS
2918	Synthesis and characterization of fiber based composites made from naturally available reinforcement. AIP Conference Proceedings, 2024, , .	0.4	0
2920	An alternative method to evaluate the micromechanics tensile strength properties of natural fiber strand reinforced polyolefin composites. The case of hemp strand-reinforced polypropylene. Composites Part B: Engineering, 2024, 273, 111211.	12.0	0
2921	Amazon Natural Fibers for Application in Engineering Composites and Sustainable Actions: A Review. Eng, 2024, 5, 133-179.	2.4	1
2922	Pre and post-adsorption properties of modified banana fibre as sustainable bio-material for environmental and futuristic industrial applications. Industrial Crops and Products, 2024, 209, 118003.	5.2	0
2923	Emerging materials for transition: A taxonomy proposal from a design perspective. Sustainable Futures, 2024, 7, 100155.	3.2	0
2924	Effect of Interfacial Bonding Characteristics of Flexural Fractured Pineapple Leaf Fibre Reinforced Composites. Composites Science and Technology, 2024, , 113-124.	0.6	0
2925	Biodegradable and biobased plastic materials based on starch. , 2024, , 311-334.		0
2926	Effect of plasticizer, molecular weight, and cross-linking agent on glass transition temperature of polymer composites. , 2024, , 217-239.		0
2927	Potential of lignocellulosic fiber reinforced polymer composites for automobile parts production: Current knowledge, research needs, and future direction. Heliyon, 2024, 10, e24683.	3.2	0
2928	Microstructure and Mechanical Characterization of Rice Husks from the Tolima Region of Colombia. Resources, 2024, 13, 16.	3.5	0
2929	Biocomposites derived from animal fibers and other minerals. , 2024, , 55-78.		0
2930	Effect of the Addition of Naringenin Derived from Citrus on the Properties of Epoxy Resin Compositions. Molecules, 2024, 29, 512.	3.8	Ο
2931	Compressive characterization of different chemically treated <i>Borassus flabellifer</i> fruit fibers. SPE Polymers, 2024, 5, 127-135.	3.3	0
2932	Evaluation of mechanical properties of hybridised coir-carbon-basalt reinforced epoxy composites. Advances in Materials and Processing Technologies, 0, , 1-13.	1.4	Ο
2933	Experimental and numerical investigation into interlaminar toughening effect of chopped fiber-interleaved flax fiber reinforced composites. Acta Mechanica Sinica/Lixue Xuebao, 2024, 40, .	3.4	0
2935	Physically processed waste pineapple leaf fibre for high performance composite with polypropylene. Cellulose, 2024, 31, 2881-2901.	4.9	0
2936	Aging effects on the physicochemical properties of the wood polymer-based composites. , 2024, , 61-76.		0
2937	Bioresorbable polymers and their composites for biomedical applications. , 2024, , 23-40.		0

#	Article	IF	CITATIONS
2938	Crashworthiness of biocomposites in automotive applications. , 2024, , 169-194.		0
2939	A review of experimental and numerical methodologies for impact testing of composite materials. , 2024, 2, .		0
2940	A comprehensive review on the machining and joining characteristics of natural fiberâ€reinforced polymeric composites. Polymer Composites, 2024, 45, 4850-4875.	4.6	1
2941	A Comprehensive Review of Sustainability in Natural-Fiber-Reinforced Polymers. Sustainability, 2024, 16, 1223.	3.2	0
2942	A review of starch-based biocomposites reinforced with plant fibers. International Journal of Biological Macromolecules, 2024, 261, 129916.	7.5	1
2943	Production of Cellulose Nanocrystal (CNC) Combine with Silane Treatment from Pennisetum Purpureum via Acid Hydrolysis. Lecture Notes in Mechanical Engineering, 2024, , 535-543.	0.4	0
2944	Static micromechanical measurements of the flexural modulus and strength of micrometre-diameter single fibres using deflecting microcantilever techniques. Scientific Reports, 2024, 14, .	3.3	0
2946	Compatibilization of ultra-high molecular weight polyethylene (UHMWPE) fibers and their composites for superior mechanical performance: A concise review. Composites Part B: Engineering, 2024, 275, 111294.	12.0	0
2947	Experimental Investigation on the Impact of Tungsten Carbide Reinforcement on the Mechanical Properties of Sisal-Fiber-Reinforced Composites. , 0, , .		0
2948	Nettle (Urtica spp.) phytotomy and applications: Crop variety selection and advanced product development for the manufacturing of natural fiber composites. Industrial Crops and Products, 2024, 210, 118180.	5.2	0
2949	Nano-clay treatment of jute fiber for reinforcement in polymer composites: Mechanical, morphological, and thermo-kinetic analysis. Journal of Reinforced Plastics and Composites, 0, , .	3.1	0
2950	A review on biodegradable composites based on poly (lactic acid) with various bio fibers. Chemical Papers, 2024, 78, 2695-2728.	2.2	0
2951	Bio-Based Disposable Containers for Food Services. Advances in Polymer Technology, 2024, 2024, 1-20.	1.7	0
2952	Enhancement of the Fracture Toughness of Carbon-Reinforced Plastics by Introducing a Thermoplastic Phase into an Epoxy Matrix. Russian Journal of Applied Chemistry, 2023, 96, 474-483.	0.5	0
2953	Enhancing Concrete Properties with Agave Americana Fiber Reinforcement. ACS Omega, 2024, 9, 8743-8753.	3.5	0
2954	Utilizing the Potential of Waste Hemp Reinforcement: Investigating Mechanical and Thermal Properties of Polypropylene and Polylactic Acid Biocomposites. ACS Omega, 2024, 9, 8818-8828.	3.5	0
2955	Enhanced Optimization of Composite Laminates: Multi-Objective Genetic Algorithms with Improved Ply-Stacking Sequences. Materials, 2024, 17, 887.	2.9	0
2956	Exploring the Potential of ZnO Nanoparticle-Treated Fibers in Advancing Natural Fiber Reinforced Composites: A Review. Journal of Natural Fibers, 2024, 21, .	3.1	0

#	Article	IF	CITATIONS
2957	A Review on the Mercerization of Natural Fibers: Parameters and Effects. Korean Journal of Chemical Engineering, 2024, 41, 571-587.	2.7	0
2958	Biocomposites with natural fibers. , 2024, , 81-120.		0
2959	A review study on derivation of nanocellulose to its functional properties and applications in drug delivery system, food packaging, and biosensing devices. Polymer Bulletin, 0, , .	3.3	0
2960	Study on Low-Velocity Impact Performance of Chemical Treated Flax Fibre-Reinforced Aluminium 6082 Laminates. Journal of the Institution of Engineers (India): Series D, 0, , .	1.0	0
2961	Ageing effect on low-velocity impact response on sustainable compliant sandwich composite. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, 46, .	1.6	0
2962	Biopolymer composites based on ultrasound/plasmaâ€modified fiber waste and polybutylene adipate terephthalate (<scp>PBAT</scp>): Physicochemical and functional performance. Polymer Composites, 0, , .	4.6	0
2963	Modified hemp fibers as a novel and green adsorbent for organic dye adsorption: adsorption, kinetic studies and modeling. Euro-Mediterranean Journal for Environmental Integration, 0, , .	1.3	0
2964	Biodegradable polymer composite containing ground corn stalk modified with polydopamine. Journal of Applied Polymer Science, 2024, 141, .	2.6	0
2965	Exploring the potential of sustainable natural cellulosic fiber from Sorghum bicolor (Sorghum) Tj ETQq0 0 0 rgBT	/Overlock 4.9	10 Tf 50 422
2966	Alkali-treated and silanated luffa fiber reinforced poly(butylene succinate) composites: A study of mechanical and water absorption characterization. Journal of Thermoplastic Composite Materials, 0, , .	4.2	0
2967	Classification, applications, and impact behavior of composite materials: A review. Mechanics of Advanced Materials and Structures, 0, , 1-44.	2.6	0
2968	The Influence of Urtica dioica and Vitis vinifera Fibers on the Thermal Properties and Flammability of Polylactide Composites. Materials, 2024, 17, 1256.	2.9	0
2969	Exploring the development and applications of sustainable natural fiber composites: A review from a nanoscale perspective. Composites Part B: Engineering, 2024, 276, 111369.	12.0	0
2971	Tensile Properties and Damage Mechanisms of a 3D Printed Bio-Sourced Material with a Rectangular Shape. Lecture Notes in Mechanical Engineering, 2024, , 265-274.	0.4	0
2972	Study on the mechanical properties of ramie fiber/polypropylene composites prepared by hot pressing after the carding machine mixing. Polymer Composites, 0, , .	4.6	0
2973	Durian (Durio zibenthinus) waste: a promising resource for food and diverse applications—a comprehensive review. Food Production Processing and Nutrition, 2024, 6, .	3.5	0
2974	Physicochemical properties of oil palm biomass waste fibres and its cellulose for engineering applications: a review. Biomass Conversion and Biorefinery, 0, , .	4.6	0

IF ARTICLE CITATIONS # Processing and Characteristics Evaluation of Polyester Resin Nanocomposite Synthesized with 2976 1.0 0 Natural Fiber. Journal of the Institution of Engineers (India): Series D, 0, , . Preparation and characterization of hybrid PMC using natural fiber coir and sugarcane. AIP 0.4 Conference Proceedings, 2024, , . A review on natural fiber composites: Polymer matrices, fiber surface treatments, fabrication 2979 3.10 methods, properties, and applications. Polymer Engineering and Science, 0, , . Investigation of the effect of enzymatic and alkali treatments on the physico-chemical properties of Sambucus ebulus L. plant fiber. International Journal of Biological Macromolecules, 2024, 266, 130968. Enrichment of flexural strength of epoxy matrix nanocomposite reinforced with novel calotropis 2981 0.4 0 procera/Si nanoparticles fabricated by hand layup method. AIP Conference Proceedings, 2024, , . Plant biomass-based composites in the maritime industry: A review. Marine Structures, 2024, 96, 103609. 3.8