The First Five Seconds in the Life of a Clathrin-Coated F

Cell 150, 495-507 DOI: 10.1016/j.cell.2012.05.047

Citation Report

#	Article	IF	CITATIONS
1	How vesicles put on their coat. Nature Methods, 2012, 9, 948-948.	9.0	0
2	Dynamics of Intracellular Clathrin/AP1- and Clathrin/AP3-Containing Carriers. Cell Reports, 2012, 2, 1111-1119.	2.9	55
3	Bending membranes. Nature Cell Biology, 2012, 14, 906-908.	4.6	74
4	Science and politics: Picking a winner. Nature Cell Biology, 2012, 14, 891-891.	4.6	0
5	Diversity of Clathrin Function: New Tricks for an Old Protein. Annual Review of Cell and Developmental Biology, 2012, 28, 309-336.	4.0	181
7	The non-canonical roles of clathrin and actin in pathogen internalization, egress and spread. Nature Reviews Microbiology, 2013, 11, 551-560.	13.6	43
8	A cost–benefit analysis of the physical mechanisms of membrane curvature. Nature Cell Biology, 2013, 15, 1019-1027.	4.6	194
9	The Clathrin Adaptor Complex AP-2 Mediates Endocytosis of BRASSINOSTEROID INSENSITIVE1 in <i>Arabidopsis</i> Â. Plant Cell, 2013, 25, 2986-2997.	3.1	171
10	Budding and braking news about clathrin-mediated endocytosis. Current Opinion in Plant Biology, 2013, 16, 718-725.	3.5	33
11	Cdc42 and the RhoGEF Intersectin-1 collaborate with Nck to promote N-WASP-dependent actin polymerisation. Journal of Cell Science, 2014, 127, 673-85.	1.2	52
12	Ultrafast endocytosis at mouse hippocampal synapses. Nature, 2013, 504, 242-247.	13.7	502
13	Imaging cell biology in live animals: Ready for prime time. Journal of Cell Biology, 2013, 201, 969-979.	2.3	110
14	Membrane bending: the power of protein imbalance. Trends in Biochemical Sciences, 2013, 38, 576-584.	3.7	46
15	Advances in Analysis of Low Signal-to-Noise Images Link Dynamin and AP2 to the Functions of an Endocytic Checkpoint. Developmental Cell, 2013, 26, 279-291.	3.1	330
16	Initiation of clathrinâ€mediated endocytosis: All you need is two?. BioEssays, 2013, 35, 425-429.	1.2	7
17	The clathrin adaptor complexes as a paradigm for membraneâ€associated allostery. Protein Science, 2013, 22, 517-529.	3.1	50
18	Clathrin-Mediated Endocytosis. , 2013, , 1-31.		7
19	From uncertain beginnings: Initiation mechanisms of clathrin-mediated endocytosis. Journal of Cell Biology, 2013, 203, 717-725.	2.3	68

ATION REDO

#	Article	IF	CITATIONS
20	The Endocytosis of Cellulose Synthase in Arabidopsis Is Dependent on μ2, a Clathrin-Mediated Endocytosis Adaptin Â. Plant Physiology, 2013, 163, 150-160.	2.3	145
21	Two tyrosine-based sorting signals in the Cx43 C-terminus cooperate to mediate gap junction endocytosis. Molecular Biology of the Cell, 2013, 24, 2834-2848.	0.9	45
22	NECAP 1 Regulates AP-2 Interactions to Control Vesicle Size, Number, and Cargo During Clathrin-Mediated Endocytosis. PLoS Biology, 2013, 11, e1001670.	2.6	61
23	Regulation of ubiquitin-dependent cargo sorting by multiple endocytic adaptors at the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11857-11862.	3.3	57
24	Quantifying the dynamic interactions between a clathrin-coated pit and cargo molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4591-600.	3.3	73
25	The <scp>SpoIIQ</scp> landmark protein has different requirements for septal localization and immobilization. Molecular Microbiology, 2013, 89, 1053-1068.	1.2	18
26	LMBD1 Protein Serves as a Specific Adaptor for Insulin Receptor Internalization. Journal of Biological Chemistry, 2013, 288, 32424-32432.	1.6	32
27	Identification and Dynamics of <i>Arabidopsis</i> Adaptor Protein-2 Complex and Its Involvement in Floral Organ Development. Plant Cell, 2013, 25, 2958-2969.	3.1	121
28	A clathrin coat assembly role for the muniscin protein central linker revealed by TALEN-mediated gene editing. ELife, 2014, 3, .	2.8	59
29	Reshaping biological membranes in endocytosis: crossing the configurational space of membrane-protein interactions. Biological Chemistry, 2014, 395, 275-283.	1.2	13
30	AP2 controls clathrin polymerization with a membrane-activated switch. Science, 2014, 345, 459-463.	6.0	185
31	The Molecular Mechanisms Underlying Synaptic Transmission. , 2014, , 21-109.		6
32	Ligand-specific endocytic dwell times control functional selectivity of the cannabinoid receptor 1. Nature Communications, 2014, 5, 4589.	5.8	81
33	Molecular Structure, Function, and Dynamics of Clathrin-Mediated Membrane Traffic. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016725-a016725.	2.3	377
34	The Biochemical Properties and Functions of CALM and AP180 in Clathrin Mediated Endocytosis. Membranes, 2014, 4, 388-413.	1.4	19
35	Structural Correlates of Rotavirus Cell Entry. PLoS Pathogens, 2014, 10, e1004355.	2.1	55
36	In-vivo analysis of formation and endocytosis of the Wnt/β-Catenin signaling complex in zebrafish embryos. Journal of Cell Science, 2014, 127, 3970-82.	1.2	61
37	Endosomal Signaling and Oncogenesis. Methods in Enzymology, 2014, 535, 179-200.	0.4	6

#	Article	IF	CITATIONS
38	Dynamin recruitment and membrane scission at the neck of a clathrin-coated pit. Molecular Biology of the Cell, 2014, 25, 3595-3609.	0.9	117
39	Retromer and the dynamin Vps1 cooperate in the retrieval of transmembrane proteins from vacuoles. Journal of Cell Science, 2015, 128, 645-55.	1.2	44
40	Rho GTPases, phosphoinositides, and actin. Small GTPases, 2014, 5, e29469.	0.7	69
41	Tagging Endogenous Loci for Live-Cell Fluorescence Imaging and Molecule Counting Using ZFNs, TALENs, and Cas9. Methods in Enzymology, 2014, 546, 139-160.	0.4	32
42	Flat clathrin lattices: stable features of the plasma membrane. Molecular Biology of the Cell, 2014, 25, 3581-3594.	0.9	103
43	Dynamics and instabilities of lipid bilayer membrane shapes. Advances in Colloid and Interface Science, 2014, 208, 76-88.	7.0	44
44	The TPLATE Adaptor Complex Drives Clathrin-Mediated Endocytosis in Plants. Cell, 2014, 156, 691-704.	13.5	238
45	Degradation of connexins and gap junctions. FEBS Letters, 2014, 588, 1221-1229.	1.3	76
46	Zooming in on the molecular mechanisms of endocytic budding by time-resolved electron microscopy. Cellular and Molecular Life Sciences, 2014, 71, 641-657.	2.4	21
47	Synaptic vesicle recycling: steps and principles. EMBO Journal, 2014, 33, 788-822.	3.5	240
48	Development of 1,8-Naphthalimides as Clathrin Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 131-143.	2.9	24
49	The Initiation of Clathrin-Mediated Endocytosis Is Mechanistically Highly Flexible. Current Biology, 2014, 24, 548-554.	1.8	57
50	Systems Dynamics in Endocytosis. Traffic, 2014, 15, 338-346.	1.3	8
51	Entry of influenza A virus: host factors and antiviral targets. Journal of General Virology, 2014, 95, 263-277.	1.3	182
52	Synthesis of the Pitstop family of clathrin inhibitors. Nature Protocols, 2014, 9, 1592-1606.	5.5	32
53	Rab Proteins and the Compartmentalization of the Endosomal System. Cold Spring Harbor Perspectives in Biology, 2014, 6, a022616-a022616.	2.3	483
54	Force Generation in B-Cell Synapses. Advances in Immunology, 2014, 123, 69-100.	1.1	40
55	Imaging the Dynamics of Endocytosis in Live Mammalian Tissues. Cold Spring Harbor Perspectives in Biology, 2014, 6, a017012-a017012.	2.3	13

#	Article	IF	CITATIONS
56	Imaging and Modeling the Dynamics of Clathrin-Mediated Endocytosis. Cold Spring Harbor Perspectives in Biology, 2014, 6, a017038-a017038.	2.3	44
57	Bending "On the Rocks"A Cocktail of Biophysical Modules to Build Endocytic Pathways. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016741-a016741.	2.3	66
58	Systematic spatial mapping of proteins at exocytic and endocytic structures. Molecular Biology of the Cell, 2014, 25, 2084-2093.	0.9	27
59	Enhanced receptor–clathrin interactions induced by <i>N</i> -glycan–mediated membrane micropatterning. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11037-11042.	3.3	67
60	Endocytic Accessory Factors and Regulation of Clathrin-Mediated Endocytosis. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016733-a016733.	2.3	105
61	Insight into nanoparticle cellular uptake and intracellular targeting. Journal of Controlled Release, 2014, 190, 485-499.	4.8	624
62	BAR Domain Scaffolds in Dynamin-Mediated Membrane Fission. Cell, 2014, 156, 882-892.	13.5	199
63	Tracking single molecules at work in living cells. Nature Chemical Biology, 2014, 10, 524-532.	3.9	290
64	Actin and dynamin2 dynamics and interplay during clathrin-mediated endocytosis. Journal of Cell Biology, 2014, 205, 721-735.	2.3	189
65	Sample Preparation for Single Virion Atomic Force Microscopy and Super-resolution Fluorescence Imaging. Journal of Visualized Experiments, 2014, , e51366.	0.2	2
66	The membrane-associated proteins FCHo and SGIP are allosteric activators of the AP2 clathrin adaptor complex. ELife, 2014, 3, .	2.8	75
67	Distinct Temporal Regulation of <scp>RET</scp> Isoform Internalization: Roles of Clathrin and <scp>AP2</scp> . Traffic, 2015, 16, 1155-1173.	1.3	22
68	Forty Years of Clathrinâ€coated Vesicles. Traffic, 2015, 16, 1210-1238.	1.3	278
69	Membrane protrusion powers clathrinâ€independent endocytosis of interleukinâ€2 receptor. EMBO Journal, 2015, 34, 2147-2161.	3.5	39
70	Visualizing the functional architecture of the endocytic machinery. ELife, 2015, 4, .	2.8	112
72	Insights into Cellular Uptake of Nanoparticles. Current Drug Delivery, 2015, 12, 63-77.	0.8	60
73	Asymmetric formation of coated pits on dorsal and ventral surfaces at the leading edges of motile cells and on protrusions of immobile cells. Molecular Biology of the Cell, 2015, 26, 2044-2053.	0.9	34
74	Actin and Endocytosis in Budding Yeast. Genetics, 2015, 199, 315-358.	1.2	203

		CITATION R	EPORT	
#	Article		IF	CITATIONS
75	Single Molecule Imaging Deciphers the Relation between Mobility and Signaling of a Prot Protein-coupled Receptor in Living Cells. Journal of Biological Chemistry, 2015, 290, 2772	otypical G !3-27735.	1.6	32
76	Change your Tplate, change your fate: plant CME and beyond. Trends in Plant Science, 20	015, 20, 41-48.	4.3	54
77	Presynaptic Terminals. , 2015, , .			2
78	Casein Kinase 1 Promotes Initiation of Clathrin-Mediated Endocytosis. Developmental Ce 231-240.	l, 2015, 32,	3.1	43
79	Phosphoinositides in endocytosis. Biochimica Et Biophysica Acta - Molecular and Cell Biol Lipids, 2015, 1851, 794-804.	ogy of	1.2	137
80	Ultrafast Tracking of a Single Live Virion During the Invagination of a Cell Membrane. Sma 2782-2788.	all, 2015, 11,	5.2	27
81	Toxicity of an α-Pore-forming Toxin Depends on the Assembly Mechanism on the Target Revealed by Single Molecule Imaging. Journal of Biological Chemistry, 2015, 290, 4856-4	Vembrane as 865.	1.6	48
82	Endocytic sites mature by continuous bending and remodeling of the clathrin coat. Scien 1369-1372.	ce, 2015, 348,	6.0	216
83	Recruitment of RNA polymerase II by the pioneer transcription factor PHA-4. Science, 201	5, 348, 1372-1376.	6.0	65
84	Architecture Dependence of Actin Filament Network Disassembly. Current Biology, 2015,	25, 1437-1447.	1.8	104
85	<scp><i>A</i></scp> <i>spergillus nidulans</i> flippase <scp>DnfA</scp> is cargo of the collar and plays complementary roles in growth and phosphatidylserine asymmetry with a flippase, <scp>DnfB</scp> . Molecular Microbiology, 2015, 97, 18-32.	endocytic another	1.2	60
86	A Second Las17 Monomeric Actinâ€Binding Motif Functions in Arp2/3â€Dependent Actir During Endocytosis. Traffic, 2015, 16, 379-397.	Polymerization	1.3	14
87	Building endocytic pits without clathrin. Nature Reviews Molecular Cell Biology, 2015, 16	, 311-321.	16.1	175
88	Molecular Mechanisms of B Cell Antigen Gathering and Endocytosis. Current Topics in Mi and Immunology, 2015, 393, 45-63.	crobiology	0.7	48
89	Role of the clathrin adaptor PICALM in normal hematopoiesis and polycythemia vera path Haematologica, 2015, 100, 439-451.	ophysiology.	1.7	35
90	CALM Regulates Clathrin-Coated Vesicle Size and Maturation by Directly Sensing and Dri Membrane Curvature. Developmental Cell, 2015, 33, 163-175.	ving	3.1	187
91	HIV-1 Nef hijacks clathrin coats by stabilizing AP-1:Arf1 polygons. Science, 2015, 350, aad	:5137.	6.0	39
92	Deep and high-resolution three-dimensional tracking of single particles using nonlinear ar multiplexed illumination. Nature Communications, 2015, 6, 7874.	nd	5.8	81

#	Article	IF	CITATIONS
93	CELLULOSE SYNTHASE INTERACTIVE1 Is Required for Fast Recycling of Cellulose Synthase Complexes to the Plasma Membrane in Arabidopsis. Plant Cell, 2015, 27, tpc.15.00442.	3.1	57
94	The TWD40-2 protein and the AP2 complex cooperate in the clathrin-mediated endocytosis of cellulose synthase to regulate cellulose biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12870-12875.	3.3	80
95	Bax monomers form dimer units in the membrane that further self-assemble into multiple oligomeric species. Nature Communications, 2015, 6, 8042.	5.8	140
96	Machine-Learning-Based Analysis in Genome-Edited Cells Reveals the Efficiency of Clathrin-Mediated Endocytosis. Cell Reports, 2015, 12, 2121-2130.	2.9	48
97	Membrane indentation triggers clathrin lattice reorganization and fluidization. Soft Matter, 2015, 11, 439-448.	1.2	22
98	Static Clathrin Assemblies at the Peripheral Vacuole—Plasma Membrane Interface of the Parasitic Protozoan Giardia lamblia. PLoS Pathogens, 2016, 12, e1005756.	2.1	44
99	Structural basis for the recognition of two consecutive mutually interacting DPF motifs by the SGIP1 μ homology domain. Scientific Reports, 2016, 6, 19565.	1.6	13
100	Evolutionary Changes on the Way to Clathrin-Mediated Endocytosis in Animals. Genome Biology and Evolution, 2016, 8, 588-606.	1.1	23
101	Steric Pressure among Membrane-Bound Polymers Opposes Lipid Phase Separation. Langmuir, 2016, 32, 3774-3784.	1.6	17
102	The long life of an endocytic patch that misses AP-2. Current Genetics, 2016, 62, 765-770.	0.8	7
103	Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy. Molecular Biology of the Cell, 2016, 27, 3418-3435.	0.9	121
104	Endocytosis in Giardia : Evidence of Absence. Trends in Parasitology, 2016, 32, 838-840.	1.5	6
105	Clathrin coated pits, plaques and adhesion. Journal of Structural Biology, 2016, 196, 48-56.	1.3	81
106	Eps15 membrane-binding and -bending activity acts redundantly with Fcho1 during clathrin-mediated endocytosis. Molecular Biology of the Cell, 2016, 27, 2675-2687.	0.9	20
107	Comparative analysis of adaptor-mediated clathrin assembly reveals general principles for adaptor clustering. Molecular Biology of the Cell, 2016, 27, 3156-3163.	0.9	15
108	Clathrin and Clathrin-Dependent Endocytosis. , 2016, , 384-393.		3
109	Deciphering dynamics of clathrin-mediated endocytosis in a living organism. Journal of Cell Biology, 2016, 214, 347-358.	2.3	45
110	DePFth Perception in Clathrin-Mediated Endocytosis. Developmental Cell, 2016, 37, 387-388.	3.1	2

	CITATION	REPORT	
#	Article	IF	CITATIONS
111	Linking up at the BAR: Oligomerization and F-BAR protein function. Cell Cycle, 2016, 15, 1977-1985.	1.3	27
112	The APâ€2 complex is required for proper temporal and spatial dynamics of endocytic patches in fission yeast. Molecular Microbiology, 2016, 100, 409-424.	1.2	12
113	CXCR4 signaling is controlled by immobilization at the plasma membrane. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 607-616.	1.9	5
114	Membrane bending by protein crowding is affected by protein lateral confinement. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1152-1159.	1.4	38
115	Endocytic pathways and endosomal trafficking: a primer. Wiener Medizinische Wochenschrift, 2016, 166, 196-204.	0.5	185
116	Endocytic control of signaling at the plasma membrane. Current Opinion in Cell Biology, 2016, 39, 21-27.	2.6	73
117	Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membrane. Molecular Biology of the Cell, 2016, 27, 1101-1119.	0.9	165
118	SGIP1 alters internalization and modulates signaling of activated cannabinoid receptor 1 in a biased manner. Neuropharmacology, 2016, 107, 201-214.	2.0	30
119	Endocytic membrane trafficking and neurodegenerative disease. Cellular and Molecular Life Sciences, 2016, 73, 1529-1545.	2.4	130
120	Rab35 GTPase Triggers Switch-like Recruitment of the Lowe Syndrome Lipid Phosphatase OCRL on Newborn Endosomes. Current Biology, 2016, 26, 120-128.	1.8	84
121	B Cell Receptor Signaling. Current Topics in Microbiology and Immunology, 2016, , .	0.7	1
122	Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells. ACS Nano, 2017, 11, 2575-2585.	7.3	80
123	Functional implication of the common evolutionary origin of nuclear pore complex and endomembrane management systems. Seminars in Cell and Developmental Biology, 2017, 68, 10-17.	2.3	4
124	Lipid-mediated PX-BAR domain recruitment couples local membrane constriction to endocytic vesicle fission. Nature Communications, 2017, 8, 15873.	5.8	101
125	Forty years on: clathrin-coated pits continue to fascinate. Molecular Biology of the Cell, 2017, 28, 843-847.	0.9	16
126	Regulation of clathrin-mediated endocytosis by hierarchical allosteric activation of AP2. Journal of Cell Biology, 2017, 216, 167-179.	2.3	140
127	Early stages of clathrin aggregation at a membrane in coarse-grained simulations. Journal of Chemical Physics, 2017, 146, 155102.	1.2	21
128	The ins and outs of Ca2+ in plant endomembrane trafficking. Current Opinion in Plant Biology, 2017, 40, 131-137.	3.5	27

#	Article	IF	CITATIONS
129	Extracellular Vesicles. Methods in Molecular Biology, 2017, , .	0.4	17
130	Imaging of Isolated Extracellular Vesicles Using Fluorescence Microscopy. Methods in Molecular Biology, 2017, 1660, 233-241.	0.4	19
131	Differential mast cell outcomes are sensitive to FcεRI-Syk binding kinetics. Molecular Biology of the Cell, 2017, 28, 3397-3414.	0.9	32
132	Flat clathrin lattices are dynamic actin-controlled hubs for clathrin-mediated endocytosis and signalling of specific receptors. Nature Communications, 2017, 8, 16068.	5.8	93
133	Measurement of Epidermal Growth Factor Receptor-Derived Signals Within Plasma Membrane Clathrin Structures. Methods in Molecular Biology, 2017, 1652, 191-225.	0.4	13
134	Single-molecule imaging and tracking of molecular dynamics in living cells. National Science Review, 2017, 4, 739-760.	4.6	37
135	Dynamics of phosphoinositide conversion in clathrin-mediated endocytic traffic. Nature, 2017, 552, 410-414.	13.7	119
136	The Other Function: Class II-Restricted Antigen Presentation by B Cells. Frontiers in Immunology, 2017, 8, 319.	2.2	104
137	Recruitment dynamics of ESCRT-III and Vps4 to endosomes and implications for reverse membrane budding. ELife, 2017, 6, .	2.8	138
138	Revealing dynamically-organized receptor ion channel clusters in live cells by a correlated electric recording and super-resolution single-molecule imaging approach. Physical Chemistry Chemical Physics, 2018, 20, 8088-8098.	1.3	7
139	Probing Dynamic Heterogeneity in Aggregated Ion Channels in Live Cells. Journal of Physical Chemistry C, 2018, 122, 13716-13723.	1.5	1
140	Regulation of Clathrin-Mediated Endocytosis. Annual Review of Biochemistry, 2018, 87, 871-896.	5.0	381
141	Epsin and Sla2 form assemblies through phospholipid interfaces. Nature Communications, 2018, 9, 328.	5.8	47
142	Mechanisms of clathrin-mediated endocytosis. Nature Reviews Molecular Cell Biology, 2018, 19, 313-326.	16.1	1,060
143	Quantitative single-molecule study of TGF-β/Smad signaling. Acta Biochimica Et Biophysica Sinica, 2018, 50, 51-59.	0.9	10
144	Gaussian curvature directs the distribution of spontaneous curvature on bilayer membrane necks. Soft Matter, 2018, 14, 2281-2294.	1.2	28
145	The function of endocytosis in Wnt signaling. Cellular and Molecular Life Sciences, 2018, 75, 785-795.	2.4	54
146	Inroads into Internalization: Five Years of Endocytic Exploration. Plant Physiology, 2018, 176, 208-218.	2.3	69

#	ARTICLE	IF	CITATIONS
 147	Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Research Letters, 2018, 13, 339.	3.1	872
148	Surface Immobilization of Viruses and Nanoparticles Elucidates Early Events in Clathrin-Mediated Endocytosis. ACS Infectious Diseases, 2018, 4, 1585-1600.	1.8	18
149	Membrane remodeling in clathrin-mediated endocytosis. Journal of Cell Science, 2018, 131, .	1.2	96
150	AP180 N-Terminal Homology (ANTH) and Epsin N-Terminal Homology (ENTH) Domains: Physiological Functions and Involvement in Disease. Advances in Experimental Medicine and Biology, 2018, 1111, 55-76.	0.8	6
151	Structural organization and energy storage in crosslinked actin assemblies. PLoS Computational Biology, 2018, 14, e1006150.	1.5	39
152	NECAPs are negative regulators of the AP2 clathrin adaptor complex. ELife, 2018, 7, .	2.8	22
153	Quantitative Biology of Endocytosis. Colloquium Series on Quantitative Cell Biology, 2018, 4, i-74.	0.5	6
154	Single-Molecule Microscopy Reveals Dynamic FLNA Interactions Governing SSTR2 Clustering and Internalization. Endocrinology, 2018, 159, 2953-2965.	1.4	22
155	Sensing Exocytosis and Triggering Endocytosis at Synapses: Synaptic Vesicle Exocytosis–Endocytosis Coupling. Frontiers in Cellular Neuroscience, 2018, 12, 66.	1.8	27
156	Quantitative imaging of clathrin-mediated endocytosis. Current Opinion in Cell Biology, 2018, 53, 105-110.	2.6	20
158	Endocytosis and Signaling. Progress in Molecular and Subcellular Biology, 2018, , .	0.9	2
159	Endosomal Trafficking During Mitosis and Notch-Dependent Asymmetric Division. Progress in Molecular and Subcellular Biology, 2018, 57, 301-329.	0.9	10
160	Assaying the Contribution of Membrane Tension to Clathrin-Mediated Endocytosis. Methods in Molecular Biology, 2018, 1847, 37-50.	0.4	3
161	Measuring Clathrin-Coated Vesicle Formation with Single-Molecule Resolution. Methods in Molecular Biology, 2018, 1847, 197-216.	0.4	3
162	Minimizing ATP depletion by oxygen scavengers for single-molecule fluorescence imaging in live cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5706-E5715.	3.3	11
163	Cytosolic proteins can exploit membrane localization to trigger functional assembly. PLoS Computational Biology, 2018, 14, e1006031.	1.5	48
164	Conformational regulation of AP1 and AP2 clathrin adaptor complexes. Traffic, 2019, 20, 741-751.	1.3	27
165	Quantitative proteomics reveals reduction of endocytic machinery components in gliomas. EBioMedicine, 2019, 46, 32-41.	2.7	26

#	Article	IF	CITATIONS
166	Geometric coupling of helicoidal ramps and curvature-inducing proteins in organelle membranes. Journal of the Royal Society Interface, 2019, 16, 20190354.	1.5	8
167	Kinetics of Histidine-Tagged Protein Association to Nickel-Decorated Liposome Surfaces. Langmuir, 2019, 35, 12550-12561.	1.6	15
168	IFITM3 Clusters on Virus Containing Endosomes and Lysosomes Early in the Influenza A Infection of Human Airway Epithelial Cells. Viruses, 2019, 11, 548.	1.5	28
169	Molecularly Distinct Clathrin-Coated Pits Differentially Impact EGFR Fate and Signaling. Cell Reports, 2019, 27, 3049-3061.e6.	2.9	58
170	FgAPâ€2 complex is essential for pathogenicity and polarised growth and regulates the apical localisation of membrane lipid flippases in <scp><i>Fusarium graminearum</i></scp> . Cellular Microbiology, 2019, 21, e13041.	1.1	12
171	Akt-ing Up Just About Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Frontiers in Cell and Developmental Biology, 2019, 7, 70.	1.8	97
172	Growth factor stimulation promotes multivesicular endosome biogenesis by prolonging recruitment of the late-acting ESCRT machinery. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6858-6867.	3.3	20
173	Taming the Triskelion: Bacterial Manipulation of Clathrin. Microbiology and Molecular Biology Reviews, 2019, 83, .	2.9	14
174	F-BAR domain only protein 1 (FCHO1) deficiency is a novel cause of combined immune deficiency in human subjects. Journal of Allergy and Clinical Immunology, 2019, 143, 2317-2321.e12.	1.5	21
175	Nanoscale coupling of endocytic pit growth and stability. Science Advances, 2019, 5, eaax5775.	4.7	17
176	The CHD Protein, Kismet, is Important for the Recycling of Synaptic Vesicles during Endocytosis. Scientific Reports, 2019, 9, 19368.	1.6	8
177	Endocytic Adaptor Proteins in Health and Disease: Lessons from Model Organisms and Human Mutations. Cells, 2019, 8, 1345.	1.8	24
178	Non-small cell lung cancer tumour antigen, MUC-1 peptide-loaded non-aggregated poly (lactide- <i>co</i> -glycolide) nanoparticles augmented cellular uptake in mouse professional antigen-presenting cells: optimisation and characterisation. Journal of Microencapsulation, 2020, 37, 14-28.	1.2	12
179	Tracking Calcium Dynamics and Immune Surveillance at the Choroid Plexus Blood-Cerebrospinal Fluid Interface. Neuron, 2020, 108, 623-639.e10.	3.8	56
180	An internally <scp>eGFP</scp> â€ŧagged αâ€edaptin is a fully functional and improved fiduciary marker for clathrin oated pit dynamics. Traffic, 2020, 21, 603-616.	1.3	11
181	Dynamics of the HIV Gag Lattice Detected by Localization Correlation Analysis and Time-Lapse iPALM. Biophysical Journal, 2020, 119, 581-592.	0.2	7
182	Delay-driven oscillations via Axin2 feedback in the Wnt/ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si69.svg"><mml:mrow><mml:mi>l²</mml:mi></mml:mrow>-catenin signalling pathway. Journal of Theoretical Biology, 2020, 507, 110458.</mml:math 	0.8	7
183	Architecture of the AP2/clathrin coat on the membranes of clathrin-coated vesicles. Science Advances, 2020, 6, eaba8381.	4.7	75

#	Article	IF	CITATIONS
184	Inhibition of PIKfyve kinase prevents infection by Zaire ebolavirus and SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20803-20813.	3.3	154
185	Role of Post-translational Modifications in Influenza A Virus Life Cycle and Host Innate Immune Response. Frontiers in Microbiology, 2020, 11, 517461.	1.5	26
186	Complimentary action of structured and unstructured domains of epsin supports clathrin-mediated endocytosis at high tension. Communications Biology, 2020, 3, 743.	2.0	14
187	Geometry and dynamics of lipid membranes: The Scriven-Love number. Physical Review E, 2020, 101, 052401.	0.8	7
188	Frustrated clathrin-mediated endocytosis – causes and possible functions. Journal of Cell Science, 2020, 133, .	1.2	20
189	Single-Molecule Imaging of Protein Interactions and Dynamics. Annual Review of Analytical Chemistry, 2020, 13, 337-361.	2.8	22
190	The Beginning of the End: Initial Steps in the Degradation of Plasma Membrane Proteins. Frontiers in Plant Science, 2020, 11, 680.	1.7	18
191	The Machado–Joseph diseaseâ€associated form of ataxinâ€3 impacts dynamics of clathrinâ€coated pits. Cell Biology International, 2020, 44, 1252-1259.	1.4	4
192	Effect of elasticity on the phagocytosis of micro/nanoparticles. Journal of Materials Chemistry B, 2020, 8, 2381-2392.	2.9	20
193	Human FCHO1 deficiency reveals role for clathrin-mediated endocytosis in development and function of T cells. Nature Communications, 2020, 11, 1031.	5.8	23
194	Biomimetic Models to Investigate Membrane Biophysics Affecting Lipid–Protein Interaction. Frontiers in Bioengineering and Biotechnology, 2020, 8, 270.	2.0	30
195	Epsin but not APâ€2 supports reconstitution of endocytic clathrinâ€coated vesicles. FEBS Letters, 2020, 594, 2227-2239.	1.3	8
196	Mechanical Regulation of Endocytosis: New Insights and Recent Advances. Advanced Biology, 2020, 4, e1900278.	3.0	37
197	PTEN: Bridging Endocytosis and Signaling. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a036103.	2.9	10
198	Endocytosis of Intestinal Tight Junction Proteins: In Time and Space. Inflammatory Bowel Diseases, 2021, 27, 283-290.	0.9	25
199	Inhibition of clathrinâ€mediated endocytosis by knockdown of <scp>AP</scp> â€2 leads to alterations in the plasma membrane proteome. Traffic, 2021, 22, 6-22.	1.3	16
200	Unconventional endocytosis and trafficking of transferrin receptor induced by iron. Molecular Biology of the Cell, 2021, 32, 98-108.	0.9	18
201	Specialised endocytic proteins regulate diverse internalisation mechanisms and signalling outputs in physiology and cancer. Biology of the Cell, 2021, 113, 165-182.	0.7	6

#	Article	IF	CITATIONS
202	A glucose-starvation response governs endocytic trafficking and eisosomal retention of surface cargoes in budding yeast. Journal of Cell Science, 2021, 134, .	1.2	23
203	Dynamic interactions and intracellular fate of label-free, thin graphene oxide sheets within mammalian cells: role of lateral sheet size. Nanoscale Advances, 2021, 3, 4166-4185.	2.2	17
205	Sterols Lower Energetic Barriers of Membrane Bending and Fission Necessary for Efficient Clathrin Mediated Endocytosis. SSRN Electronic Journal, 0, , .	0.4	1
208	Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight. Journal of Nanobiotechnology, 2021, 19, 106.	4.2	32
209	Quantitative visualization of endocytic trafficking through photoactivation of fluorescent proteins. Molecular Biology of the Cell, 2021, 32, 892-902.	0.9	6
210	Dynamic interplay between cell membrane tension and clathrinâ€mediated endocytosis. Biology of the Cell, 2021, 113, 344-373.	0.7	33
212	Inflammatory Bowel Disease and Guillain Barre Syndrome in FCHO1 Deficiency. Journal of Clinical Immunology, 2021, 41, 1406-1410.	2.0	1
214	Antagonistic regulation controls clathrin-mediated endocytosis: AP2 adaptor facilitation vs restraint from clathrin light chains. Cells and Development, 2021, 168, 203714.	0.7	9
215	Nanoscape, a data-driven 3D real-time interactive virtual cell environment. ELife, 2021, 10, .	2.8	5
216	CALM supports clathrin-coated vesicle completion upon membrane tension increase. Proceedings of the United States of America, 2021, 118, .	3.3	15
218	Weakly Internalized Receptors Use Coated Vesicle Heterogeneity to Evade Competition during Endocytosis. Biochemistry, 2021, 60, 2195-2205.	1.2	1
219	The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell, 2021, 184, 3528-3541.e12.	13.5	308
220	Inherited nuclear pore substructures template post-mitotic pore assembly. Developmental Cell, 2021, 56, 1786-1803.e9.	3.1	21
221	Mechanism of Lentinan Intestinal Absorption: Clathrin-Mediated Endocytosis and Macropinocytosis. Journal of Agricultural and Food Chemistry, 2021, 69, 7344-7352.	2.4	26
222	Clathrin: the molecular shape shifter. Biochemical Journal, 2021, 478, 3099-3123.	1.7	16
223	Synergistic Block of SARS-CoV-2 Infection by Combined Drug Inhibition of the Host Entry Factors PIKfyve Kinase and TMPRSS2 Protease. Journal of Virology, 2021, 95, e0097521.	1.5	34
224	Nanodissected elastically loaded clathrin lattices relax to increased curvature. Science Advances, 2021, 7, .	4.7	14
225	Multiâ€modal adaptorâ€clathrin contacts drive coated vesicle assembly. EMBO Journal, 2021, 40, e108795.	3.5	8

#	Article	IF	CITATIONS
226	Cytokine receptor cluster size impacts its endocytosis and signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
227	<scp>BMP2K</scp> phosphorylates <scp>AP</scp> â€2 and regulates clathrinâ€mediated endocytosis. Traffic, 2021, 22, 377-396.	1.3	9
229	Stoichiometry of at the During Their Using Total Internal Reflection Fluorescent (TIRF) Live Imaging and Single-Molecule Tracking. Methods in Molecular Biology, 2021, 2233, 3-17.	0.4	2
230	Functional characterization of 67 endocytic accessory proteins using multiparametric quantitative analysis of CCP dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31591-31602.	3.3	34
231	Dynamics of Auxilin 1 and GAK in clathrin-mediated traffic. Journal of Cell Biology, 2020, 219, .	2.3	37
232	Wbox2: A clathrin terminal domain–derived peptide inhibitor of clathrin-mediated endocytosis. Journal of Cell Biology, 2020, 219, .	2.3	13
233	Evolving models for assembling and shaping clathrin-coated pits. Journal of Cell Biology, 2020, 219, .	2.3	57
241	Endocytosis and the internalization of pathogenic organisms: focus on phosphoinositides. F1000Research, 2020, 9, 368.	0.8	20
242	Endocytosis of Fgf8 Is a Double-Stage Process and Regulates Spreading and Signaling. PLoS ONE, 2014, 9, e86373.	1.1	6
243	Steady-State Acceptor Fluorescence Anisotropy Imaging under Evanescent Excitation for Visualisation of FRET at the Plasma Membrane. PLoS ONE, 2014, 9, e110695.	1.1	10
244	Tracking Calcium Dynamics and Immune Surveillance at the Choroid Plexus Blood-Cerebrospinal Fluid Interface. SSRN Electronic Journal, 0, , .	0.4	4
245	Single molecule imaging reveals a major role for diffusion in the exploration of ciliary space by signaling receptors. ELife, 2013, 2, e00654.	2.8	128
246	Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junctions. ELife, 2013, 2, e00723.	2.8	209
247	Characterization of TSET, an ancient and widespread membrane trafficking complex. ELife, 2014, 3, e02866.	2.8	114
248	A nanobody-based molecular toolkit provides new mechanistic insight into clathrin-coat initiation. ELife, 2019, 8, .	2.8	18
249	A structural mechanism for phosphorylation-dependent inactivation of the AP2 complex. ELife, 2019, 8,	2.8	15
250	DASC, a sensitive classifier for measuring discrete early stages in clathrin-mediated endocytosis. ELife, 2020, 9, .	2.8	23
253	Endocytic Machinery at the Neuronal Synapse. , 2015, , 223-256.		1

#	Article	IF	CITATIONS
254	Synaptic Vesicle Pools: Classical and Emerging Roles. , 2015, , 329-359.		0
259	The B-Side of theÂlmmune Response. Rare Diseases of the Immune System, 2019, , 1-20.	0.1	Ο
260	Quantitative Proteomics Reveals Global Reduction of Endocytic Machinery Components in Gliomas. SSRN Electronic Journal, 0, , .	0.4	0
266	Intra-Organ Delivery of Nanotherapeutics for Organ Transplantation. ACS Nano, 2021, 15, 17124-17136.	7.3	12
271	The endocytic pathway taken by cationic substances requires Rab14 but not Rab5 and Rab7. Cell Reports, 2021, 37, 109945.	2.9	18
272	Biomembranes undergo complex, non-axisymmetric deformations governed by Kirchhoff–Love kinematicsand revealed by a three-dimensional computational framework. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20210246.	1.0	4
273	Sterols lower energetic barriers of membrane bending and fission necessary for efficient clathrin-mediated endocytosis. Cell Reports, 2021, 37, 110008.	2.9	20
274	De novo endocytic clathrin coats develop curvature at early stages of their formation. Developmental Cell, 2021, 56, 3146-3159.e5.	3.1	28
275	Synaptic Plasticity 101: The Story of the AMPA Receptor for the Brain Stimulation Practitioner. Neuromodulation, 2022, 25, 1289-1298.	0.4	17
276	Role of Clathrin and Dynamin in Clathrin Mediated Endocytosis/Synaptic Vesicle Recycling and Implications in Neurological Diseases. Frontiers in Cellular Neuroscience, 2021, 15, 754110.	1.8	16
277	Dynamics and nanoscale organization of the postsynaptic endocytic zone at excitatory synapses. ELife, 2022, 11, .	2.8	13
280	Single molecule localization-based analysis of clathrin-coated pit and caveolar dynamics. Nanoscale Horizons, 2022, 7, 385-395.	4.1	3
281	Serotonin Receptor and Transporter Endocytosis Is an Important Factor in the Cellular Basis of Depression and Anxiety. Frontiers in Cellular Neuroscience, 2021, 15, 804592.	1.8	3
283	Large self-assembled clathrin lattices spontaneously disassemble without sufficient adaptor proteins. PLoS Computational Biology, 2022, 18, e1009969.	1.5	7
284	Structural basis of an endocytic checkpoint that primes the AP2 clathrin adaptor for cargo internalization. Nature Structural and Molecular Biology, 2022, 29, 339-347.	3.6	13
287	Characterization of cell-induced astigmatism in high-resolution imaging. Biomedical Optics Express, 2022, 13, 464.	1.5	4
288	Condensation of Ede1 promotes the initiation of endocytosis. ELife, 2022, 11, .	2.8	29
289	FCHO controls AP2's initiating role in endocytosis through a PtdIns(4,5)P ₂ -dependent switch. Science Advances, 2022, 8, eabn2018.	4.7	14

#	Article	IF	CITATIONS
290	Modulation of the endosomal pathway for optimized response to drought stress: from model to crop plants. Bodenkultur, 2021, 72, 57-72.	0.1	0
291	Induced nanoscale membrane curvature bypasses the essential endocytic function of clathrin. Journal of Cell Biology, 2022, 221, .	2.3	16
293	Advances in structural, spatial, and temporal mechanics of plant endocytosis. FEBS Letters, 2022, 596, 2269-2287.	1.3	6
298	Generation of nanoscopic membrane curvature for membrane trafficking. Nature Reviews Molecular Cell Biology, 2023, 24, 63-78.	16.1	32
299	Endocytosis at extremes: Formation and internalization of giant clathrin-coated pits under elevated membrane tension. Frontiers in Molecular Biosciences, 0, 9, .	1.6	5
300	Membrane shaping for clathrin-coated pits and endocytosis. , 2023, , 205-218.		1
301	SARS-CoV-2 requires acidic pH to infect cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	54
302	Nanomolar inhibition of SARS-CoV-2 infection by an unmodified peptide targeting the prehairpin intermediate of the spike protein. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	21
303	A Nanomedicine Structure–Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS Nano, 2022, 16, 17497-17551.	7.3	10
304	Transcriptomic-Guided Phosphonate Utilization Analysis Unveils Evidence of Clathrin-Mediated Endocytosis and Phospholipid Synthesis in the Model Diatom, <i>Phaeodactylum tricornutum</i> . MSystems, 2022, 7, .	1.7	3
306	Temperature and friction fluctuations inside a harmonic potential. Physical Review E, 2022, 106, .	0.8	3
307	Immunoprecipitation and Western Blot Analysis of AP-1 Clathrin-Coated Vesicles. Methods in Molecular Biology, 2023, , 619-633.	0.4	0
308	O-GlcNAc transferase modulates the cellular endocytosis machinery by controlling the formation of clathrin-coated pits. Journal of Biological Chemistry, 2023, 299, 102963.	1.6	2
309	Steric pressure between glycosylated transmembrane proteins inhibits internalization by endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	2
310	Clathrin mediates both internalization and vesicular release of triggered T cell receptor at the immunological synapse. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	8
311	Clathrin coats partially preassemble and subsequently bend during endocytosis. Journal of Cell Biology, 2023, 222, .	2.3	9
312	Insights of Endocytosis Signaling in Health and Disease. International Journal of Molecular Sciences, 2023, 24, 2971.	1.8	8
313	A conformational switch in clathrin light chain regulates lattice structure and endocytosis at the plasma membrane of mammalian cells. Nature Communications, 2023, 14, .	5.8	1

		Сітатіс	on Report	
#	Article		IF	CITATIONS
314	The readily retrievable pool of synaptic vesicles. Biological Chemistry, 2023, 404, 385-3	97.	1.2	3
317	Structure-based design of a SARS-CoV-2 Omicron-specific inhibitor. Proceedings of the Academy of Sciences of the United States of America, 2023, 120, .	National	3.3	3
318	DYRK1-mediated phosphorylation of endocytic components is required for extracellular expansion in ascidian notochord. Biological Research, 2023, 56, .	lumen	1.5	2
341	A live cell imaging-based assay for tracking particle uptake by clathrin-mediated endocy in Enzymology, 2024, , .	tosis. Methods	0.4	0