Computerized analysis of pigmented skin lesions: A rev

Artificial Intelligence in Medicine 56, 69-90

DOI: 10.1016/j.artmed.2012.08.002

Citation Report

IF

CITATIONS

0

9

12

426

22

1

67

17

- 9. Melanoma thickness prediction., 0,,. 1 Machine vision 3D skin texture analysis for detection of melanoma. Sensor Review, 2011, 31, 111-119. 1.0 Skin lesion image segmentation using a color genetic algorithm., 2013,,. 4 A robust hair segmentation and removal approach for clinical images of skin lesions. , 2013, 2013, 3315-8. Noninvasive diagnosis of melanoma with tensor decomposition-based feature extraction from clinical 3.5 6 color image. Biomedical Signal Processing and Control, 2013, 8, 755-763. Detection and Analysis of Irregular Streaks in Dermoscopic Images of Skin Lesions. IEEE Transactions on Medical Imaging, 2013, 32, 849-861. 5.4 PH<sup>2</sup> - A dermoscopic image database for research and benchmarking. , 2013, 2013, 8 5437-40. A systematic review on the evaluation and characteristics of computer-aided diagnosis systems. Q Revista Brasileira De Engenharia Biomedica, 2014, 30, 355-383. 10 A cascade classifier for diagnosis of melanoma in clinical images. , 2014, 2014, 6748-51. Real-time acquisition of quality verified nonstandardized color images for skin lesions risk assessment & #x2014; A preliminary study. , 2014, , . Skin lens: Skin assessment video filters., 2014,,. 12 Hair Enhancement in Dermoscopic Images Using Dual-Channel Quaternion Tubularness Filters and MRF-Based Multilabel Optimization. IEEE Transactions on Image Processing, 2014, 23, 5486-5496. Simpler, Faster, More Accurate Melanocytic Lesion Segmentation Through MEDS. IEEE Transactions on 14 2.5 Biomedical Engineering, 2014, 61, 557-565. Spatial Normalization of Human Back Images for Dermatological Studies. IEEE Journal of Biomedical and Health Informatics, 2014, 18, 1494-1501. Melanoma Decision Support Using Lighting-Corrected Intuitive Feature Models. Series in 0.3 16 Bioengineering, 2014, , 193-219. Palpation as a useful diagnostic tool for skin lesions. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2014, 67, 804-807.
 - Pigment network detection in dermatoscopic images for melanoma diagnosis. Irbm, 2014, 35, 128-138. 3.7 11
 - 19 Skin diseases diagnosis using artificial neural networks. , 2014, , .

21

ARTICLE

#	Article	IF	CITATIONS
20	Integrating Radio Imaging With Gene Expressions Toward a Personalized Management of Cancer. IEEE Transactions on Human-Machine Systems, 2014, 44, 664-677.	2.5	18
21	Automated Detection of Melanoma in Dermoscopic Images. Series in Bioengineering, 2014, , 139-192.	0.3	14
22	Performance of a dermoscopy-based computer vision system for the diagnosis of pigmented skin lesions compared with visual evaluation by experienced dermatologists. Artificial Intelligence in Medicine, 2014, 60, 13-26.	3.8	46
23	Detection of pigment network in dermoscopy images using supervised machine learning and structural analysis. Computers in Biology and Medicine, 2014, 44, 144-157.	3.9	63
24	Methodology for diagnosing of skin cancer on images of dermatologic spots by spectral analysis. Biomedical Optics Express, 2015, 6, 3876.	1.5	21
25	Redesigning EHRs and Clinical Decision Support Systems for the Precision Medicine Era. , 2015, , .		2
26	Streak Detection in Dermoscopic Color Images Using Localized Radial Flux of Principal Intensity Curvature. , 2015, , 227-246.		12
27	A Bioinspired Color Representation for Dermoscopy Image Analysis. Digital Imaging and Computer Vision Series, 2015, , 23-66.	0.1	4
28	Where's the Lesion?: Variability in Human and Automated Segmentation of Dermoscopy Images of Melanocytic Skin Lesions. Digital Imaging and Computer Vision Series, 2015, , 67-95.	0.1	6
29	Toward a Robust Analysis of Dermoscopy Images Acquired under Different Conditions. , 2015, , 17-38.		59
30	Where's the Lesion?: Variability in Human and Automated Segmentation of Dermoscopy Images of Melanocytic Skin Lesions. , 2015, , 83-112.		2
31	A State-of-the-Art Survey on Lesion Border Detection in Dermoscopy Images. , 2015, , 113-146.		18
33	Pigmented skin lesion computerized analysis via mobile devices. , 2015, , .		2
34	Global Pattern Classiï¬eation in Dermoscopic Images. , 2015, , 199-226.		5
35	Dermoscopy Image Assessment Based on Perceptible Color Regions. , 2015, , 247-262.		2
36	A Bioinspired Color Representation for Dermoscopy Image Analysis. , 2015, , 39-82.		1
37	A Novel Framework for Supervised Mobile Assessment and Risk Triage of Skin Lesions. , 2015, , .		1
38	Digital image processing: clinical applications and challenges in cosmetics. , 2015, , .		0

#	Article	IF	Citations
39	Computer-Aided Decision Support for Melanoma Detection Applied on Melanocytic and Nonmelanocytic Skin Lesions: A Comparison of Two Systems Based on Automatic Analysis of Dermoscopic Images. BioMed Research International, 2015, 2015, 1-8.	0.9	15
40	Novel Method for Border Irregularity Assessment in Dermoscopic Color Images. Computational and Mathematical Methods in Medicine, 2015, 2015, 1-11.	0.7	19
41	Diagnosis of skin cancer by correlation and complexity analyses of damaged DNA. Oncotarget, 2015, 6, 42623-42631.	0.8	53
42	Adaptive segmentation based on multi-classification model for dermoscopy images. Frontiers of Computer Science, 2015, 9, 720-728.	1.6	0
43	Segmentation of skin cancer images using an extension of Chan and Vese model. , 2015, , .		4
44	Pigmented Nevi Risk Assessment Based on the Correlation Dimension of the Associated Lesion's Attractor. , 2015, , .		0
45	Melanoma detection algorithm based on feature fusion. , 2015, 2015, 2653-6.		25
46	The feasibility of using manual segmentation in a multifeature computer-aided diagnosis system for classification of skin lesions: a retrospective comparative study. BMJ Open, 2015, 5, e007823-e007823.	0.8	3
47	Automatic classification of skin lesions using geometrical measurements of adaptive neighborhoods and local binary patterns. , 2015, , .		3
48	Fuzzy Based Support System for Melanoma Diagnosis. Lecture Notes in Computer Science, 2015, , 235-246.	1.0	0
49	A clinically oriented system for melanoma diagnosis using a color representation. , 2015, 2015, 7462-5.		4
50	Medical image analysis for cancer management in natural computing framework. Information Sciences, 2015, 306, 111-131.	4.0	58
51	Exploring Robust Diagnostic Signatures for Cutaneous Melanoma Utilizing Genetic and Imaging Data. IEEE Journal of Biomedical and Health Informatics, 2015, 19, 190-198.	3.9	14
52	Enhancing classification accuracy utilizing globules and dots features in digital dermoscopy. Computer Methods and Programs in Biomedicine, 2015, 118, 124-133.	2.6	38
53	High-Level Intuitive Features (HLIFs) for Intuitive Skin Lesion Description. IEEE Transactions on Biomedical Engineering, 2015, 62, 820-831.	2.5	97
54	MED-NODE: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Systems With Applications, 2015, 42, 6578-6585.	4.4	241
56	Ensemble approach for differentiation of malignant melanoma. Proceedings of SPIE, 2015, , .	0.8	6
57	Automatic differentiation of melanoma from dysplastic nevi. Computerized Medical Imaging and Graphics, 2015, 43, 44-52.	3.5	84

#	Article	IF	CITATIONS
58	Consistency and Standardization of Color in Medical Imaging: a Consensus Report. Journal of Digital Imaging, 2015, 28, 41-52.	1.6	78
59	Artificial intelligence for closed-loop ventilation therapy with hemodynamic control using the open lung concept. International Journal of Intelligent Computing and Cybernetics, 2015, 8, 50-68.	1.6	16
60	Pattern Classification for Dermoscopic Images Based on Structure Textons and Bag-of-Features Model. Lecture Notes in Computer Science, 2015, , 34-45.	1.0	0
61	Texture descriptors based on adaptive neighborhoods for classification of pigmented skin lesions. Journal of Electronic Imaging, 2015, 24, 061104.	0.5	6
62	Color and Texture Influence on Computer-Aided Diagnosis of Dermatological Ulcers. , 2015, , .		4
63	Automatic classification of skin lesions using color mathematical morphology-based texture descriptors. , 2015, , .		4
64	A new risk assessment methodology for dermoscopic skin lesion images. , 2015, , .		4
65	A high performance algorithm to diagnosis of skin lesions deterioration in dermatoscopic images using new feature extraction. , 2015, , .		5
67	Divergence-based colour features for melanoma detection. , 2015, , .		10
68	From photography to microbiology: Eigenbiome models for skin appearance. , 2015, , .		2
70	From Image to Information. , 2016, , 519-535.		1
71	Incorporating Colour Information for Computer-Aided Diagnosis of Melanoma from Dermoscopy Images: A Retrospective Survey and Critical Analysis. International Journal of Biomedical Imaging, 2016, 2016, 1-18.	3.0	18
72	Automatic Classification of Specific Melanocytic Lesions Using Artificial Intelligence. BioMed Research International, 2016, 2016, 1-17.	0.9	34
73	Skin lesion segmentation in clinical images using deep learning. , 2016, , .		111
74	Skin lesion segmentation using Gray Level Co-occurance Matrix. , 2016, , .		6
75	A novel approach of black skin lesion images segmentation based on MLP Neural Network. , 2016, , .		5
76	Lesion border detection using deep learning. , 2016, , .		15
77	Classification of skin cancer images using local binary pattern and SVM classifier. AIP Conference Proceedings, 2016, , .	0.3	18

# 78	ARTICLE Set of descriptors for skin cancer diagnosis using non-dermoscopic color images. , 2016, , .	IF	Citations
79	Wavelet-based energy features for diagnosis of melanoma from dermoscopic images. International Journal of Biomedical Engineering and Technology, 2016, 20, 243.	0.2	12
80	Classification of melanoma lesions using sparse coded features and random forests. Proceedings of SPIE, 2016, , .	0.8	9
81	Effcient and Effective Automated Digital Hair Removal from Dermoscopy Images. Mathematical Morphology - Theory and Applications, 2016, 1, .	0.6	4
82	Clinically inspired analysis of dermoscopy images using a generative model. Computer Vision and Image Understanding, 2016, 151, 124-137.	3.0	16
83	Insect antimicrobial peptides: potential tools for the prevention of skin cancer. Applied Microbiology and Biotechnology, 2016, 100, 7397-7405.	1.7	56
84	Deep features to classify skin lesions. , 2016, , .		168
85	Automatic detection of melanoma using broad extraction of features from digital images. , 2016, 2016, 1357-1360.		27
86	Melanoma detection by analysis of clinical images using convolutional neural network. , 2016, 2016, 1373-1376.		194
87	A Novel Approach to Segment Skin Lesions in Dermoscopic Images Based on a Deformable Model. IEEE Journal of Biomedical and Health Informatics, 2016, 20, 615-623.	3.9	135
88	Differential diagnosis of squamous cell carcinoma in situ using skin histopathological images. Computers in Biology and Medicine, 2016, 70, 23-39.	3.9	12
89	Melanoma detection using a mobile phone app. Proceedings of SPIE, 2016, , .	0.8	0
90	A system for the detection of melanomas in dermoscopy images using shape and symmetry features. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2017, 5, 127-137.	1.3	37
91	Hybrid threshold optimization between global image and local regions in image segmentation for melasma severity assessment. Multidimensional Systems and Signal Processing, 2017, 28, 977-994.	1.7	9
92	An expert system for selecting wart treatment method. Computers in Biology and Medicine, 2017, 81, 167-175.	3.9	112
93	Computer-aided diagnosis: A survey with bibliometric analysis. International Journal of Medical Informatics, 2017, 101, 58-67.	1.6	63
94	Nonlinear Analysis of the Contour Boundary Irregularity of Skin Lesion Using Lyapunov Exponent and K-S Entropy. Journal of Medical and Biological Engineering, 2017, 37, 409-419.	1.0	8
95	Automatic Skin Lesion Segmentation Using Deep Fully Convolutional Networks With Jaccard Distance. IEEE Transactions on Medical Imaging, 2017, 36, 1876-1886.	5.4	463

#	Article	IF	CITATIONS
96	Extraction of skin lesions from non-dermoscopic images for surgical excision of melanoma. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 1021-1030.	1.7	62
97	Development of a clinically oriented system for melanoma diagnosis. Pattern Recognition, 2017, 69, 270-285.	5.1	53
98	Melanoma Detection Based on Mahalanobis Distance Learning and Constrained Graph Regularized Nonnegative Matrix Factorization. , 2017, , .		12
99	Skin melanoma segmentation using recurrent and convolutional neural networks. , 2017, , .		55
100	Hybrid dermoscopy image classification framework based on deep convolutional neural network and Fisher vector. , 2017, , .		37
101	A Health Decision Support System for Disease Diagnosis Based on Wearable Medical Sensors and Machine Learning Ensembles. IEEE Transactions on Multi-Scale Computing Systems, 2017, 3, 228-241.	2.5	84
102	Melanoma Classification on Dermoscopy Images Using a Neural Network Ensemble Model. IEEE Transactions on Medical Imaging, 2017, 36, 849-858.	5.4	201
103	Automatic diagnosis of melanoma using linear and nonlinear features from digital image. , 2017, 2017, 4281-4284.		12
104	Hair segmentation using adaptive threshold from edge and branch length measures. Computers in Biology and Medicine, 2017, 89, 314-324.	3.9	19
105	Multispectral skin patterns analysis using fractal methods. Expert Systems With Applications, 2017, 88, 318-326.	4.4	4
106	Detection of Malignant Melanomas in Dermoscopic Images Using Convolutional Neural Network with Transfer Learning. Communications in Computer and Information Science, 2017, , 404-414.	0.4	8
107	Bagged textural and color features for melanoma skin cancer detection in dermoscopic and standard images. Expert Systems With Applications, 2017, 90, 101-110.	4.4	58
108	Automatic discrimination of actinic keratoses from clinical photographs. Computers in Biology and Medicine, 2017, 88, 50-59.	3.9	19
109	A simple weighted thresholding method for the segmentation of pigmented skin lesions in macroscopic images. Pattern Recognition, 2017, 64, 92-104.	5.1	52
110	Deep learning for skin lesion segmentation. , 2017, , .		29
111	A multispectral analysis of black skin color images for linea nigra segmentation. , 2017, , .		0
112	Segmentation of dermoscopy images based on fully convolutional neural network. , 2017, , .		13
113	Classification of multiple diseases based on wavelet features. Journal of Engineering, 2017, 2017, 110-118.	0.6	5

	Cr	tation Report	
#	Article	IF	CITATIONS
114	Computer-Aided Detection: Cost Effectiveness Analysis with Learning Model. , 2017, , .		1
115	Comparison of computer systems and ranking criteria for automatic melanoma detection in dermoscopic images. PLoS ONE, 2017, 12, e0190112.	1.1	11
116	Bag-of-features based classification of dermoscopic images. , 2017, , .		15
117	Performance of a computer-aided digital dermoscopic image analyzer for melanoma detection in 1,07 pigmented skin lesion biopsies. Journal of the American Academy of Dermatology, 2018, 78, 927-934.		16
118	Computer-Aided Diagnosis of Melanoma Skin Cancer: A Review. Lecture Notes in Networks and Syste 2018, , 63-73.	ms, 0.5	7
119	Recent Deep Learning Methods forÂMelanoma Detection: A Review. Communications in Computer ar Information Science, 2018, , 118-132.	nd 0.4	17
120	Diagnosis of a dermatological lesion using intelligent feature selection technique. Imaging Science Journal, 2018, 66, 303-313.	0.2	3
121	A review on smartphone skin cancer diagnosis apps in evaluation and benchmarking: coherent taxonomy, open issues and recommendation pathway solution. Health and Technology, 2018, 8, 223-	-238. ^{2.1}	74
122	Fusion of structural and textural features for melanoma recognition. IET Computer Vision, 2018, 12, 185-195.	1.3	45
123	A Systematic Review on Smartphone Skin Cancer Apps: Coherent Taxonomy, Motivations, Open Challenges and Recommendations, and New Research Direction. Journal of Circuits, Systems and Computers, 2018, 27, 1830003.	1.0	22
124	Drug delivery strategies for chemoprevention of <scp>UVB</scp> â€induced skin cancer: A review. Photodermatology Photoimmunology and Photomedicine, 2018, 34, 60-68.	0.7	21
125	Clinical Skin Lesion Diagnosis Using Representations Inspired by Dermatologist Criteria. , 2018, , .		56
126	DeepPCA Based Objective Function for Melanoma Detection. , 2018, , .		1
127	Visual inspection and dermoscopy, alone or in combination, for diagnosing keratinocyte skin cancers in adults. The Cochrane Library, 2018, 2018, CD011901.	1.5	32
128	Dermoscopy, with and without visual inspection, for diagnosing melanoma in adults. The Cochrane Library, 2018, 2018, CD011902.	1.5	89
129	Segmentation of Melanoma Skin Lesions Using Anisotropic Diffusion and Adaptive Thresholding. , 20, , \cdot	18,	5
130	Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Computer Methods and Programs in Biomedicine, 2018, 162, 221-231.	2.6	309
132	Data augmentation importance for classification of skin lesions via deep learning. , 2018, , .		40

#	Article	IF	CITATIONS
133	eSkin: Study on the Smartphone Application for Early Detection of Malignant Melanoma. Wireless Communications and Mobile Computing, 2018, 2018, 1-11.	0.8	20
134	Deep residual network with regularised fisher framework for detection of melanoma. IET Computer Vision, 2018, 12, 1096-1104.	1.3	38
135	Melanoma recognition in dermoscopy images using lesion's peripheral region information. Computer Methods and Programs in Biomedicine, 2018, 163, 143-153.	2.6	30
136	Smart Healthcare. Foundations and Trends in Electronic Design Automation, 2018, 12, 401-166.	1.0	25
137	Classification of non-tumorous skin pigmentation disorders using voting based probabilistic linear discriminant analysis. Computers in Biology and Medicine, 2018, 99, 123-132.	3.9	18
138	A Survey of Feature Extraction in Dermoscopy Image Analysis of Skin Cancer. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 1096-1109.	3.9	121
139	An Improved Skin Lesion Matching Scheme in Total Body Photography. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 586-598.	3.9	17
140	Melanoma Recognition in Dermoscopy Images via Aggregated Deep Convolutional Features. IEEE Transactions on Biomedical Engineering, 2019, 66, 1006-1016.	2.5	172
141	Recent advancement in the early detection of melanoma using computerized tools: An image analysis perspective. Skin Research and Technology, 2019, 25, 129-141.	0.8	13
142	Fully Convolutional Neural Networks to Detect Clinical Dermoscopic Features. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 578-585.	3.9	38
143	Artificial Intelligence Approach in Melanoma. , 2019, , 599-628.		5
144	Dense-Residual Network With Adversarial Learning for Skin Lesion Segmentation. IEEE Access, 2019, 7, 77037-77051.	2.6	28
145	Region Extraction and Classification of Skin Cancer: A Heterogeneous framework of Deep CNN Features Fusion and Reduction. Journal of Medical Systems, 2019, 43, 289.	2.2	167
146	Accurate Segmentation of Dermoscopic Images based on Local Binary Pattern Clustering. , 2019, , .		4
147	Skin Lesion Segmentation in Dermoscopic Images with Combination of YOLO and GrabCut Algorithm. Diagnostics, 2019, 9, 72.	1.3	175
148	Computing rational border curves of melanoma and other skin lesions from medical images with bat algorithm. , 2019, , .		2
149	Skin Cancer Diagnostics with an All-Inclusive Smartphone Application. Symmetry, 2019, 11, 790.	1.1	28
150	Dense pooling layers in fully convolutional network for skin lesion segmentation. Computerized Medical Imaging and Graphics, 2019, 78, 101658.	3.5	35

~		<u> </u>	
CITAT	ION	REDU	RT
011/11			

#	Article	IF	CITATIONS
151	Computational texture features of dermoscopic images and their link to the descriptive terminology: A survey. Computer Methods and Programs in Biomedicine, 2019, 182, 105049.	2.6	11
152	Segmentation of Lesion in Dermoscopy Images Using Dense-Residual Network with Adversarial Learning. , 2019, , .		4
153	Hybrid Modified Firefly Algorithm for Border Detection of Skin Lesions in Medical Imaging. , 2019, , .		8
154	Kernel sparse representation based model for skin lesions segmentation and classification. Computer Methods and Programs in Biomedicine, 2019, 182, 105038.	2.6	35
155	Dermoscopy Image Analysis: Overview and Future Directions. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 474-478.	3.9	121
156	Hyperspectral imaging in automated digital dermoscopy screening for melanoma. Lasers in Surgery and Medicine, 2019, 51, 214-222.	1.1	27
157	Early Detection of Skin Cancer Using Melanoma SegmentationÂtechnique. Journal of Medical Systems, 2019, 43, 190.	2.2	56
158	Artificial Intelligence Approach in Melanoma. , 2019, , 1-31.		5
159	Naive Bayes Learning of Dermoscopy Images. Lecture Notes in Computer Science, 2019, , 294-304.	1.0	0
160	Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture. Computer Methods and Programs in Biomedicine, 2019, 177, 17-30.	2.6	25
161	Automated detection of nonmelanoma skin cancer using digital images: a systematic review. BMC Medical Imaging, 2019, 19, 21.	1.4	59
162	Highâ€resolution quantitative acoustic microscopy of cutaneous carcinoma and melanoma: Comparison with histology. Skin Research and Technology, 2019, 25, 662-671.	0.8	1
163	Decision tree-based methodology to select a proper approach for wart treatment. Computers in Biology and Medicine, 2019, 108, 400-409.	3.9	25
164	Neutrosophic set in medical image clustering. , 2019, , 167-187.		4
165	Firefly Algorithm Approach For Rational $B\tilde{A}$ $\!\!\!\!$ zier Border Reconstruction of Skin Lesions from Macroscopic Medical Images. , 2019, , .		1
166	RethNet: Object-by-Object Learning for Detecting Facial Skin Problems. , 2019, , .		2
167	Dangerousness of dysplastic nevi: a Multiple Instance Learning Solution for Early Diagnosis. , 2019, , .		21
168	Neutrosophic sets in dermoscopic medical image segmentation. , 2019, , 229-243.		14

#	Article	IF	CITATIONS
169	Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding. Computer Methods and Programs in Biomedicine, 2019, 168, 11-19.	2.6	63
170	U-Net Based Segmentation and Multiple Feature Extraction of Dermascopic Images for Efficient Diagnosis of Melanoma. Lecture Notes in Computational Vision and Biomechanics, 2019, , 81-101.	0.5	2
171	Sampling with level set for pigmented skin lesion segmentation. Signal, Image and Video Processing, 2019, 13, 813-821.	1.7	8
172	Improving the performance of convolutional neural network for skin image classification using the response of image analysis filters. Neural Computing and Applications, 2019, 31, 1805-1822.	3.2	11
173	Improving Dermoscopic Image Segmentation With Enhanced Convolutional-Deconvolutional Networks. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 519-526.	3.9	156
174	Automated skin lesion division utilizing Gabor filters based on shark smell optimizing method. Evolving Systems, 2020, 11, 589-598.	2.4	5
175	Recent advances in hyperspectral imaging for melanoma detection. Wiley Interdisciplinary Reviews: Computational Statistics, 2020, 12, e1465.	2.1	31
176	Real-Time Mobile-Phone-Aided Melanoma Skin Lesion Detection Using Triangulation Technique. International Journal of E-Health and Medical Communications, 2020, 11, 9-31.	1.4	1
177	Computer-aided classification of suspicious pigmented lesions using wide-field images. Computer Methods and Programs in Biomedicine, 2020, 195, 105631.	2.6	31
178	Skin Lesion Segmentation Based on Multi-Scale Attention Convolutional Neural Network. IEEE Access, 2020, 8, 122811-122825.	2.6	22
179	A review ABCDE Evaluated the Model for Decision by Dermatologists for Skin Lesions using Bee Colony. IOP Conference Series: Materials Science and Engineering, 2020, 745, 012098.	0.3	2
180	A Measurement Software for Professional Training in Early Detection of Melanoma. Applied Sciences (Switzerland), 2020, 10, 4351.	1.3	1
181	A multi-class skin Cancer classification using deep convolutional neural networks. Multimedia Tools and Applications, 2020, 79, 28477-28498.	2.6	122
182	Deep Semantic Segmentation and Multi-Class Skin Lesion Classification Based on Convolutional Neural Network. IEEE Access, 2020, 8, 129668-129678.	2.6	42
183	Microbotulinum: A Quantitative Evaluation of Aesthetic Skin Improvement in 62 Patients. Plastic and Reconstructive Surgery, 2020, 146, 987-994.	0.7	9
184	An effective approach for the diagnosis of melanoma using the sparse auto-encoder for features detection and the SVM for classification. , 2020, , .		8
185	Melanoma Diagnosis Using Deep Learning and Fuzzy Logic. Diagnostics, 2020, 10, 577.	1.3	60
186	Feature Selection of Non-Dermoscopic Skin Lesion Images for Nevus and Melanoma Classification. Computation, 2020, 8, 41.	1.0	17

#	Article	IF	CITATIONS
187	Skin Lesion Segmentation from Dermoscopic Images Using Convolutional Neural Network. Sensors, 2020, 20, 1601.	2.1	77
188	Fully Automated Approach for Early Detection of Pigmented Skin Lesion Diagnosis Using ABCD. Journal of Healthcare Informatics Research, 2020, 4, 151-173.	5.3	10
189	Skin Lesion Segmentation in Dermoscopic Images With Ensemble Deep Learning Methods. IEEE Access, 2020, 8, 4171-4181.	2.6	177
190	Convolutional descriptors aggregation via cross-net for skin lesion recognition. Applied Soft Computing Journal, 2020, 92, 106281.	4.1	37
191	DSNet: Automatic dermoscopic skin lesion segmentation. Computers in Biology and Medicine, 2020, 120, 103738.	3.9	105
192	Hyperspectral imaging as a diagnostic tool to differentiate between amalgam tattoos and other dark pigmented intraoral lesions. Journal of Biophotonics, 2021, 14, e202000424.	1.1	4
193	Wavelet-based logistic discriminator of dermoscopy images. Expert Systems With Applications, 2021, 167, 113760.	4.4	6
194	Melanoma Detection Using Spatial and Spectral Analysis on Superpixel Graphs. Journal of Digital Imaging, 2021, 34, 162-181.	1.6	11
195	Unsupervised Feature Elimination via Generative Adversarial Networks: Application to Hair Removal in Melanoma Classification. IEEE Access, 2021, 9, 42610-42620.	2.6	15
196	An Integrated Platform for Skin Cancer Heterogenous and Multilayered Data Management. Journal of Medical Systems, 2021, 45, 10.	2.2	4
197	Detection, Analysis and Classification of Skin Lesions: Challenges and Opportunities. Advances in Intelligent Systems and Computing, 2021, , 197-214.	0.5	2
198	Skin Lesion Classification using Bag-of-3D-Features. , 2021, , .		1
199	ASCU-Net: Attention Gate, Spatial and Channel Attention U-Net for Skin Lesion Segmentation. Diagnostics, 2021, 11, 501.	1.3	67
201	The development of skin lesion detection application in smart handheld devices using deep neural networks. Multimedia Tools and Applications, 2022, 81, 41579-41610.	2.6	5
202	Artificial intelligence in dermatology and healthcare: An overview. Indian Journal of Dermatology, Venereology and Leprology, 2021, 87, 1-11.	0.2	16
203	A Simplified Approach for Melanoma Skin Disease Identification. , 2021, , .		0
204	Fast fully automatic detection, classification and 3D reconstruction of pulmonary nodules in CT images by local image feature analysis. Biomedical Signal Processing and Control, 2021, 68, 102790.	3.5	13
205	Polymeric micelle mediated follicular delivery of spironolactone: Targeting the mineralocorticoid receptor to prevent glucocorticoid-induced activation and delayed cutaneous wound healing. International Journal of Pharmaceutics, 2021, 604, 120773.	2.6	9

#	Article	IF	CITATIONS
206	Machine Learning and Deep Learning Methods for Skin Lesion Classification and Diagnosis: A Systematic Review. Diagnostics, 2021, 11, 1390.	1.3	117
207	ANN-based diagnosis method for skin cancers using dermoscopic images. Highlights in BioScience, 0, , bs202108.	0.0	0
208	The Study of Usefulness of a Set of Fractal Parameters to Build Classes of Disease Units Based on Images of Pigmented Skin Lesions. Diagnostics, 2021, 11, 1773.	1.3	2
209	Incorporating clinical knowledge with constrained classifier chain into a multimodal deep network for melanoma detection. Computers in Biology and Medicine, 2021, 137, 104812.	3.9	22
210	Robust Skin Disease Classification by Distilling Deep Neural Network Ensemble for the Mobile Diagnosis of Herpes Zoster. IEEE Access, 2021, 9, 20156-20169.	2.6	24
211	Computer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in adults. The Cochrane Library, 2018, 2018, CD013186.	1.5	65
212	Melasma Image Segmentation Using Extreme Learning Machine. Proceedings in Adaptation, Learning and Optimization, 2015, , 369-377.	1.5	5
213	Principal Axes-Based Asymmetry Assessment Methodology for Skin Lesion Image Analysis. Lecture Notes in Computer Science, 2014, , 21-31.	1.0	11
214	Automated Detection of Streaks in Dermoscopy Images. IFIP Advances in Information and Communication Technology, 2015, , 45-60.	0.5	5
215	Multi-resolution-Tract CNN with Hybrid Pretrained and Skin-Lesion Trained Layers. Lecture Notes in Computer Science, 2016, , 164-171.	1.0	89
216	Local Features Applied to Dermoscopy Images: Bag-of-Features versus Sparse Coding. Lecture Notes in Computer Science, 2017, , 528-536.	1.0	3
217	Binary Decision Trees for Melanoma Diagnosis. Lecture Notes in Computer Science, 2013, , 374-385.	1.0	4
218	Pigment Network Detection and Analysis. Series in Bioengineering, 2014, , 1-22.	0.3	2
220	Pattern Analysis in Dermoscopic Images. Series in Bioengineering, 2014, , 23-48.	0.3	25
221	A Bag-of-Features Approach for the Classification of Melanomas in Dermoscopy Images: The Role of Color and Texture Descriptors. Series in Bioengineering, 2014, , 49-69.	0.3	23
222	Automatic Diagnosis of Melanoma Based on the 7-Point Checklist. Series in Bioengineering, 2014, , 71-107.	0.3	13
223	Dermoscopy Image Processing for Chinese. Series in Bioengineering, 2014, , 109-137.	0.3	3
224	Automatic Detection of Blue-White Veil by Discrete Colour Matching in Dermoscopy Images. Lecture Notes in Computer Science, 2013, 16, 453-460.	1.0	21

#	Article	IF	CITATIONS
227	Accurate and Scalable System for Automatic Detection of Malignant Melanoma. , 2015, , 309-360.		20
228	Spectral indexes obtained by implementation of the fractional Fourier and Hermite transform for the diagnosis of malignant melanoma. Biomedical Optics Express, 2019, 10, 6043.	1.5	3
229	Automatic skin lesion segmentation with optimal colour channel from dermoscopic images. ScienceAsia, 2014, 40S, 1.	0.2	6
230	Data Augmentation Using Adversarial Image-to-Image Translation for the Segmentation of Mobile-Acquired Dermatological Images. Journal of Imaging, 2021, 7, 2.	1.7	6
231	Automatic Detection of Malignant Melanoma using Macroscopic Images. Journal of Medical Signals and Sensors, 2014, 4, 281.	0.5	44
232	Pigmented Skin Lesion Diagnosis by Automated Imaging System. Journal of Bioengineering & Biomedical Science, 2015, 06, .	0.2	2
233	Organizational Learning for Intelligence Amplification Adoption: Lessons from a Clinical Decision Support System Adoption Project. Information Systems Frontiers, 2022, 24, 731-744.	4.1	11
234	Melanocytic Lesions Screening through Particle Swarm Optimization. Advances in Computational Intelligence and Robotics Book Series, 2014, , 355-384.	0.4	3
235	Automated Detection of New or Evolving Melanocytic Lesions Using a 3D Body Model. Lecture Notes in Computer Science, 2014, 17, 593-600.	1.0	4
236	Automated Imaging System for Pigmented Skin Lesion Diagnosis. International Journal of Advanced Computer Science and Applications, 2016, 7, .	0.5	6
237	Resolution Invariant Neural Classifiers for Dermoscopy Images of Melanoma. Lecture Notes in Computer Science, 2017, , 175-186.	1.0	0
238	Graph Geodesics to Find Progressively Similar Skin Lesion Images. Lecture Notes in Computer Science, 2017, , 31-41.	1.0	1
239	Skin lesion boundary segmentation with fully automated deep extreme cut methods. , 2019, , .		2
241	Segmentation and classification of consumer-grade and dermoscopic skin cancer images using hybrid textural analysis. Journal of Medical Imaging, 2019, 6, 1.	0.8	3
242	Deep Learning Models for Segmentation of Mobile-Acquired Dermatological Images. Lecture Notes in Computer Science, 2020, , 228-237.	1.0	2
244	ANALYSES OF SKIN LESION AREAS AFTER THRESHOLDING. Informatyka Automatyka Pomiary W Gospodarce I Ochronie Åšrodowiska, 2020, 10, 9-12.	0.2	0
245	An Efficient Detection Framework for Linear Skin Lesions with Pigmentary Disorders. , 2020, , .		0
246	Weakly and Semi-supervised Deep Level Set Network for Automated Skin Lesion Segmentation. Smart Innovation, Systems and Technologies, 2020, , 145-155.	0.5	2

#	Article	IF	CITATIONS
247	Classification of Ten Skin Lesion Classes: Hierarchical KNN versus Deep Net. Communications in Computer and Information Science, 2020, , 86-98.	0.4	2
248	Fairness of Classifiers Across Skin Tones in Dermatology. Lecture Notes in Computer Science, 2020, , 320-329.	1.0	37
249	A Review on State-of-the-Art Computer-Based Approaches for the Early Recognition of Malignant Melanoma. Studies in Computational Intelligence, 2020, , 81-101.	0.7	2
250	Use of imaging techniques for melanocytic naevi and basal cell carcinoma in integrative analysis (Review). Experimental and Therapeutic Medicine, 2020, 20, 78-86.	0.8	13
251	Automated CAD System for Skin Lesion Diagnosis: A Review. Lecture Notes in Bioengineering, 2021, , 295-320.	0.3	2
252	Automatic Detection of Malignant Melanoma using Macroscopic Images. Journal of Medical Signals and Sensors, 2014, 4, 281-90.	0.5	11
253	System for neural network recognition of malignant pigmented skin neoplasms with image pre-processing. Journal of Physics: Conference Series, 2021, 2052, 012023.	0.3	0
254	Effectiveness of Data Augmentation for classification of Melanoma using Deep Convolutional Neural Network. , 2021, , .		0
255	A Convolutional Neural Network for Skin Lesion Segmentation Using Double U-Net Architecture. Intelligent Automation and Soft Computing, 2022, 33, 1407-1421.	1.6	4
256	A novel approach for skin lesion symmetry classification with a deep learning model. Computers in Biology and Medicine, 2022, 145, 105450.	3.9	13
257	Efficacy of Deep Learning Approach for Automated Melanoma Detection. , 2021, , .		1
258	Saliency-based segmentation of dermoscopic images using colour information. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2022, 10, 172-186.	1.3	5
260	DermaGenics - Early Detection of Melanoma using YOLOv5 Deep Convolutional Neural Networks. , 2022, , .		4
261	Machine Learning Algorithm for Detection of Deadliest Forms of Skin Cancer. International Journal of Advanced Research in Science, Communication and Technology, 0, , 764-768.	0.0	0
263	Comparison of convolutional neural network architectures for robustness against common artefacts in dermatoscopic images. Dermatology Practical and Conceptual, 0, , e2022126.	0.5	1
264	Dermoscopy and skin imaging light sources: a comparison and review of spectral power distribution and color consistency. Journal of Biomedical Optics, 2022, 27, .	1.4	0
265	An interpretable CNN-based CAD system for skin lesion diagnosis. Artificial Intelligence in Medicine, 2022, 132, 102370.	3.8	3
266	Skin Lesion Segmentation Using Recurrent Attentional Convolutional Networks. IEEE Access, 2022, 10, 94007-94018.	2.6	13

ARTICLE IF CITATIONS # Multiple Instance Learning Using 3D Features for Melanoma Detection. IEEE Access, 2022, 10, 2.6 6 267 76296-76309. Registration of polarimetric images for in vivo skin diagnostics. Journal of Biomedical Optics, 2022, 27, 268 1.4 Skin lesion classification using multi-resolution empirical mode decomposition and local binary 269 2 1.1 pattern. PLoS ONE, 2022, 17, e0274896. Early Diagnosis of Melanoma by Augmenting Feature Extraction of Epidermis using Faster Region-Based 270 Convolutional Neural Networks., 2022,,. Malignant melanoma diagnosis applying a machine learning method based on the combination of 2713.5 4 nonlinear and texture features. Biomedical Signal Processing and Control, 2023, 80, 104300. Genomic and proteomic findings in early melanoma and opportunities for early diagnosis. Experimental Dermatology, 2023, 32, 104-116. 1.4 Designing a new deep convolutional neural network for skin lesion recognition. Multimedia Tools 273 2.6 5 and Applications, 2023, 82, 18907-18923. Machine Learning Approaches for Skin Cancer Classification from Dermoscopic Images: A Systematic 274 1.2 16 Review. Algorithms, 2022, 15, 438. Deep neural networks and advanced computer vision algorithms in the early diagnosis of skin 275 1 diseases., 2023, , 47-81. Skin lesion analysis using generative adversarial networks: a review. Multimedia Tools and Applications, 2023, 82, 30065-30106. 2.6 Skin Cancer Classification Using Deep Spiking Neural Network. Journal of Digital Imaging, 2023, 36, 277 19 1.6 1137-1147. iU-Net: a hybrid structured network with a novel feature fusion approach for medical image 278 2.2 segmentation. BioData Mining, 2023, 16, . AMCC-Net: An asymmetric multi-cross convolution for skin lesion segmentation on dermoscopic 279 4.3 7 images. Engineering Applications of Artificial Intelligence, 2023, 122, 106154. Multi-class Skin Cancer Classification Architecture Based on Deep Convolutional Neural Network., 280 2022,,. A survey, review, and future trends of skin lesion segmentation and classification. Computers in 281 3.9 24 Biology and Medicine, 2023, 155, 106624. Deep Learning Techniques Applied to Skin Lesion Classification: A Review., 2022,,. The application of artificial intelligence in the detection of basal cell carcinoma: A systematic review. 283 1.33 Journal of the European Academy of Dermatology and Venereology, 2023, 37, 1160-1167. 284 Skin Cancer Segmentation Based on Triangular Intuitionistic Fuzzy Sets. SN Computer Science, 2023, 4, . 2.3

#	Article	IF	CITATIONS
285	Revisited Otsu Algorithm for Skin Cancer Segmentation. WSEAS Transactions on Information Science and Applications, 2023, 20, 50-58.	0.2	0
286	True digital hair removal with real value inpainting for improved dermoscopy based on image fusion. , 2023, , .		0
287	Automated Skin Lesion Segmentation using VGG-UNet. , 2022, , .		1
288	A Multi-Feature Fusion Framework for Automatic Skin Cancer Diagnostics. Diagnostics, 2023, 13, 1474.	1.3	7
289	Empirical wavelet transform-based fast deep convolutional neural network for detection and classification of melanoma. , 2023, , 237-250.		0
291	Cloud-Based Service for Recognizing Pigmented Skin Lesions Using a Multimodal Neural Network System. Lecture Notes in Networks and Systems, 2023, , 401-409.	0.5	0
301	An Evaluation ofÂlmage Preprocessing inÂSkin Lesions Detection. Communications in Computer and Information Science, 2024, , 35-49.	0.4	0
302	Skin Cancer Diagnosis and Detection Using Deep Learning. , 2023, , .		0