Extended leaf phenology and the autumn niche in decid

Nature 485, 359-362 DOI: 10.1038/nature11056

Citation Report

#	Article	IF	CITATIONS
1	The influence of the invasive shrub, Lonicera maackii, on leaf decomposition and microbial community dynamics. Plant Ecology, 2012, 213, 1571-1582.	0.7	86
2	The plant phenological online database (PPODB): an online database for long-term phenological data. International Journal of Biometeorology, 2013, 57, 805-812.	1.3	14
3	High resource capture and use efficiency and prolonged growth season contribute to invasiveness of Eupatorium adenophorum. Plant Ecology, 2013, 214, 857-868.	0.7	26
4	Ecophysiology of invasive plants: osmotic adjustment and antioxidants. Trends in Plant Science, 2013, 18, 660-666.	4.3	74
5	Temperatureâ€dependent shifts in phenology contribute to the success of exotic species with climate change. American Journal of Botany, 2013, 100, 1407-1421.	0.8	140
6	Extended leaf phenology: a secret of successful invaders?. Journal of Vegetation Science, 2013, 24, 975-976.	1.1	8
7	Evidence of current impact of climate change on life: a walk from genes to the biosphere. Global Change Biology, 2013, 19, 2303-2338.	4.2	316
8	Responses of leafing phenology and photosynthesis to soil warming inÂforest-floor plants. Acta Oecologica, 2013, 51, 34-41.	0.5	16
9	Influence of leaf phenology and site nitrogen on invasive species establishment in temperate deciduous forest understories. Forest Ecology and Management, 2013, 296, 1-8.	1.4	28
10	Extended leaf phenology in deciduous forest invaders: mechanisms of impact on native communities. Journal of Vegetation Science, 2013, 24, 979-987.	1.1	38
11	Resourceâ€use strategies of native and invasive plants in Eastern North American forests. New Phytologist, 2013, 200, 523-533.	3.5	113
12	The physiology of invasive plants in low-resource environments. , 2013, 1, cot026-cot026.		182
13	Contrasting xylem vessel constraints on hydraulic conductivity between native and non-native woody understory species. Frontiers in Plant Science, 2013, 4, 486.	1.7	24
14	Gas exchange, growth, and defense responses of invasive <i>Alliaria petiolata</i> (Brassicaceae) and native <i>Geum vernum</i> (Rosaceae) to elevated atmospheric CO ₂ and warm spring temperatures. American Journal of Botany, 2013, 100, 1544-1554.	0.8	19
15	Plant invasions across the Northern Hemisphere: a deepâ€ŧime perspective. Annals of the New York Academy of Sciences, 2013, 1293, 8-17.	1.8	27
16	Can the Life-History Strategy Explain the Success of the Exotic Trees Ailanthus altissima and Robinia pseudoacacia in Iberian Floodplain Forests?. PLoS ONE, 2014, 9, e100254.	1.1	26
18	Habit and Ecology of the Petriellales, an Unusual Group of Seed Plants from the Triassic of Gondwana. International Journal of Plant Sciences, 2014, 175, 1062-1075.	0.6	38
19	Phenological niches and the future of invaded ecosystems with climate change. AoB PLANTS, 2014, 6, .	1.2	107

# 20	ARTICLE The early bud gets to warm. New Phytologist, 2014, 202, 7-9.	IF 3.5	CITATIONS
21	Drivers of leafâ€out phenology and their implications for species invasions: insights from <scp>T</scp> horeau's <scp>C</scp> oncord. New Phytologist, 2014, 202, 106-115.	3.5	130
22	Intraspecific functional differentiation suggests local adaptation to longâ€ŧerm climate change in a calcareous grassland. Journal of Ecology, 2014, 102, 65-73.	1.9	32
23	The spatial pattern of leaf phenology and its response to climate change in China. International Journal of Biometeorology, 2014, 58, 521-528.	1.3	83
24	Phenology research for natural resource management in the United States. International Journal of Biometeorology, 2014, 58, 579-589.	1.3	48
25	Light, allelopathy, and post-mortem invasive impact on native forest understory species. Biological Invasions, 2014, 16, 1131-1144.	1.2	21
26	Invasive trees and shrubs: where do they come from and what we should expect in the future?. Biological Invasions, 2014, 16, 483-498.	1.2	55
27	Experimental evidence for indirect facilitation among invasive plants. Journal of Ecology, 2014, 102, 12-18.	1.9	86
28	Biodiversity, photosynthetic mode, and ecosystem services differ between native and novel ecosystems. Oecologia, 2014, 175, 687-697.	0.9	35
29	Nitrogen translocation between clonal mother and daughter trees at a grassland–forest boundary. Plant Ecology, 2014, 215, 347-354.	0.7	15
30	Individual and interactive effects of Amur honeysuckle (Lonicera maackii) and white-tailed deer (Odocoileus virginianus) on herbs in a deciduous forest in the eastern United States. Biological Invasions, 2014, 16, 2247-2261.	1.2	30
31	Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications. International Journal of Biometeorology, 2014, 58, 591-601.	1.3	166
32	Relative effects of temperature vs. photoperiod on growth and cold acclimation of northern and southern ecotypes of the grass Arrhenatherum elatius. Environmental and Experimental Botany, 2014, 106, 189-196.	2.0	19
33	Chilling outweighs photoperiod in preventing precocious spring development. Global Change Biology, 2014, 20, 170-182.	4.2	304
34	Two coâ€occurring invasive woody shrubs alter soil properties and promote subdominant invasive species. Journal of Applied Ecology, 2014, 51, 124-133.	1.9	79
35	Seasonal Occurrence (Phenology) of Coprophilous Beetles (Coleoptera: Scarabaeidae and) Tj ETQq1 1 0.784314 Bulletin, 2014, 68, 603-618.	rgBT /Ove 0.1	erlock 10 Tf 5 8
36	Improving the representation of roots in terrestrial models. Ecological Modelling, 2014, 291, 193-204.	1.2	101
37	Phenology effects on invasion success: insights from coupling field experiments to coexistence theory. Ecology, 2014, 95, 726-736.	1.5	205

#	Article	IF	CITATIONS
38	Competition for light and water play contrasting roles in driving diversity–productivity relationships in Iberian forests. Journal of Ecology, 2014, 102, 1202-1213.	1.9	174
39	Plant-soil feedbacks between invasive shrubs and native forest understory species lead to shifts in the abundance of mycorrhizal fungi. Plant and Soil, 2014, 382, 317-328.	1.8	30
40	Short-Term Impacts of Frangula alnus Litter on Forest Soil Properties. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	12
41	Leaf out times of temperate woody plants are related to phylogeny, deciduousness, growth habit and wood anatomy. New Phytologist, 2014, 203, 1208-1219.	3.5	122
42	Invaders do not require high resource levels to maintain physiological advantages in a temperate deciduous forest. Ecology, 2016, 97, 874-884.	1.5	38
43	Optical Remote Sensing of Tree and Stand Heights. , 2015, , 485-522.		3
44	Divergent responses of leaf phenology to changing temperature among plant species and geographical regions. Ecosphere, 2015, 6, 1-8.	1.0	29
45	Reproduction of invasive Amur honeysuckle (<i>Lonicera maackii</i>) and the arithmetic of an extermination strategy. Restoration Ecology, 2015, 23, 900-908.	1.4	6
46	Effect of <i>Lonicera maackii</i> on Soil Carbon and Nitrogen in Southwestern Ohio Forests. Invasive Plant Science and Management, 2015, 8, 375-384.	0.5	15
47	Recovery of native plant communities in southwest Ohio after <i>Lonicera maackii</i> removal ¹ . Journal of the Torrey Botanical Society, 2015, 142, 193-204.	0.1	17
48	Global change accelerates carbon assimilation by a wetland ecosystem engineer. Environmental Research Letters, 2015, 10, 115006.	2.2	57
50	Species coexistence in a changing world. Frontiers in Plant Science, 2015, 6, 866.	1.7	132
51	Changes in autumn senescence in northern hemisphere deciduous trees: a meta-analysis of autumn phenology studies. Annals of Botany, 2015, 116, 875-888.	1.4	221
52	Phenology and temporal niche overlap differ between novel, exotic- and native-dominated grasslands for plants, but not for pollinators. Biological Invasions, 2015, 17, 2633-2644.	1.2	3
53	Empirical evidence of El Niño–Southern Oscillation influence on land surface phenology and productivity in the western United States. Remote Sensing of Environment, 2015, 159, 167-180.	4.6	44
54	Cold truths: how winter drives responses of terrestrial organisms to climate change. Biological Reviews, 2015, 90, 214-235.	4.7	490
55	Autumn, the neglected season in climate change research. Trends in Ecology and Evolution, 2015, 30, 169-176.	4.2	376
56	Early season root production in relation to leaf production among six diverse temperate tree species. Plant and Soil, 2015, 389, 121-129.	1.8	42

#	ARTICLE	IF	CITATIONS
57	Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming. Global Change Biology, 2015, 21, 3138-3151.	4.2	66
58	Linking above- and belowground resource use strategies for native and invasive species of temperate deciduous forests. Biological Invasions, 2015, 17, 1545-1554.	1.2	74
59	Three decades of multi-dimensional change in global leaf phenology. Nature Climate Change, 2015, 5, 364-368.	8.1	245
60	Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada. Ecological Modelling, 2015, 313, 94-102.	1.2	10
61	Codominant water control on global interannual variability and trends in land surface phenology and greenness. Global Change Biology, 2015, 21, 3414-3435.	4.2	165
62	Extended leaf phenology, allelopathy, and inter-population variation influence invasion success of an understory forest herb. Biological Invasions, 2015, 17, 2299-2313.	1.2	12
63	Effects of urbanization on herbaceous forest vegetation: the relative impacts of soil, geography, forest composition, human access, and an invasive shrub. Urban Ecosystems, 2015, 18, 1051-1069.	1.1	20
64	Substantial variation in leaf senescence times among 1360 temperate woody plant species: implications for phenology and ecosystem processes. Annals of Botany, 2015, 116, 865-873.	1.4	74
65	Contrasting growth phenology of native and invasive forest shrubs mediated by genome size. New Phytologist, 2015, 207, 659-668.	3.5	34
66	From observations to experiments in phenology research: investigating climate change impacts on trees and shrubs using dormant twigs. Annals of Botany, 2015, 116, 889-897.	1.4	67
67	Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13585-13590.	3.3	175
68	The nonâ€native plant <i>Rosa multiflora</i> expresses shade avoidance traits under low light availability. American Journal of Botany, 2015, 102, 1323-1331.	0.8	24
69	Exotic invasive plants alter thermal regimes: implications for management using a case study of a native ectotherm. Functional Ecology, 2015, 29, 683-693.	1.7	18
70	Functional equivalence, competitive hierarchy and facilitation determine species coexistence in highly invaded grasslands. New Phytologist, 2015, 206, 175-186.	3.5	49
71	Understanding Forest Health with Remote Sensing -Part l—A Review of Spectral Traits, Processes and Remote-Sensing Characteristics. Remote Sensing, 2016, 8, 1029.	1.8	138
72	Xylem vessel traits predict the leaf phenology of native and nonâ€native understorey species of temperate deciduous forests. Functional Ecology, 2016, 30, 206-214.	1.7	14
73	Removal of invasive shrubs alters light but not leaf litter inputs in a deciduous forest understory. Restoration Ecology, 2016, 24, 617-625.	1.4	10
74	Plant functional shifts in the invaded range: a test with reciprocal forest invaders of Europe and North America. Functional Ecology, 2016, 30, 875-884.	1.7	23

#	Article	IF	CITATIONS
75	Nonlinear vegetation phenology shifts over northern China during 1982-2006. , 2016, , .		0
76	Variation in responsiveness of woody plant leaf out phenology to anomalous spring onset. Ecosphere, 2016, 7, e01209.	1.0	11
77	Relationships between an invasive shrub Amur honeysuckle (Lonicera maackii, Caprifoliaceae) and environmental factors on recruitment of sugar maple trees (Acer saccharum, Aceraceae) in southwestern Ohio1,2. Journal of the Torrey Botanical Society, 2016, 143, 386.	0.1	6
78	Beyond the Bioclimatic Law. Progress in Physical Geography, 2016, 40, 811-834.	1.4	28
79	Timing is everything: does early and late germination favor invasions by herbaceous alien plants?. Journal of Plant Ecology, 0, , rtw105.	1.2	43
80	Tradeâ€off between early emergence and herbivore susceptibility mediates exotic success in an experimental California plant community. Ecology and Evolution, 2016, 6, 8942-8953.	0.8	12
81	Vegetation composition and structure changes following roller-chopping deforestation in central Argentina woodlands. Journal of Arid Environments, 2016, 133, 19-24.	1.2	33
82	Effects of an Invasive Grass (Phalaris Arundinacea) on Water Availability in Semi-Arid Riparian Zones. Wetlands, 2016, 36, 59-72.	0.7	4
83	Climbing vines and forest edges affect tree growth and mortality in temperate forests of the U.S. Mid-Atlantic States. Forest Ecology and Management, 2016, 374, 166-173.	1.4	17
84	Effects of Frangula alnus on soil microbial communities and biogeochemical processes in Wisconsin forests. Plant and Soil, 2016, 409, 65-75.	1.8	9
85	Extended leaf phenology may drive plant invasion through direct and apparent competition. Oikos, 2016, 125, 839-848.	1.2	13
86	Fast and Cheap in the Fall: Phylogenetic determinants of late flowering phenologies in Himalayan <i>Rhododendron</i> . American Journal of Botany, 2016, 103, 198-206.	0.8	17
87	The influence of the soil on spring and autumn phenology in European beech. Tree Physiology, 2016, 36, 78-85.	1.4	30
89	The gas exchange performance of the European blackberry (Rubus fruticosus agg.) and ecological traits for interpreting colonization in forest canopy gaps. Plant Biosystems, 2017, 151, 630-641.	0.8	0
90	Quantification of Changes in Light and Temperature Associated with Invasive Amur Honeysuckle (Lonicera maackii). American Midland Naturalist, 2017, 177, 143-152.	0.2	11
91	Invasive plants accelerate nitrogen cycling: evidence from experimental woody monocultures. Journal of Ecology, 2017, 105, 1105-1110.	1.9	59
92	Changes in Primary Production and Carbon Sequestration after Plant Invasions. , 2017, , 17-31.		6
93	Impacts of invasive biota in forest ecosystems in an aboveground–belowground context. Biological Invasions, 2017, 19, 3301-3316.	1.2	79

#	Article	IF	CITATIONS
94	Spring predictability explains different leafâ€out strategies in the woody floras of North America, Europe and East Asia. Ecology Letters, 2017, 20, 452-460.	3.0	66
95	Nutrient foraging strategies are associated with productivity and population growth in forest shrubs. Annals of Botany, 2017, 119, mcw271.	1.4	12
96	Plant–microbial competition for nitrogen increases microbial activities and carbon loss in invaded soils. Oecologia, 2017, 184, 583-596.	0.9	17
97	Rainfall variability counteracts N addition by promoting invasive Lonicera maackii and extending phenology in prairie. Ecological Applications, 2017, 27, 1555-1563.	1.8	15
98	Does Removal of the Invasive Shrub <i>Lonicera maackii</i> Alter Arthropod Abundance and Diversity?. Natural Areas Journal, 2017, 37, 228-232.	0.2	2
99	Phenological behaviour of <scp> <i>Parthenium hysterophorus </i> </scp> in response to climatic variations according to the extended BBCH scale. Annals of Applied Biology, 2017, 171, 316-326.	1.3	15
100	Innately shorter vegetation periods in North American species explain native–non-native phenological asymmetries. Nature Ecology and Evolution, 2017, 1, 1655-1660.	3.4	31
101	A framework for understanding humanâ€driven vegetation change. Oikos, 2017, 126, 1687-1698.	1.2	12
102	Asymmetric Responses of the End of Growing Season to Daily Maximum and Minimum Temperatures on the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2017, 122, 13,278.	1.2	45
103	Autumn olive (Elaeagnus umbellata) presence and proliferation on former surface coal mines in Eastern USA. Biological Invasions, 2017, 19, 179-195.	1.2	29
104	Global Change and Terrestrial Ecosystems. Springer Geography, 2017, , 205-232.	0.3	0
105	Global warming increases the interspecific competitiveness of the invasive plant alligator weed, Alternanthera philoxeroides. Science of the Total Environment, 2017, 575, 1415-1422.	3.9	52
106	Geographic variation in apparent competition between native and invasive <i>Phragmites australis</i> . Ecology, 2017, 98, 349-358.	1.5	41
107	Increased exposure to chilling advances the time to budburst in North American tree species. Tree Physiology, 2017, 37, 1727-1738.	1.4	37
108	White-tailed deer browse on an invasive shrub with extended leaf phenology meets assumptions of an apparent competition hypothesis. AoB PLANTS, 2017, 9, plx006.	1.2	20
109	Timing Is Important: Unmanned Aircraft vs. Satellite Imagery in Plant Invasion Monitoring. Frontiers in Plant Science, 2017, 8, 887.	1.7	127
110	Acclimation of leaf traits in seasonal light environments: Are nonâ€native species more plastic?. Journal of Ecology, 2018, 106, 2019-2030.	1.9	37
111	Strong fitness differences impede coexistence between an alien water fern (Azolla pinnata R. Br.) and its native congener (Azolla rubra R. Br.) in New Zealand. Biological Invasions, 2018, 20, 2889-2897.	1.2	11

ARTICLE

IF CITATIONS

Lethal effects of leaf leachate from the non-native invasive shrub Amur honeysuckle ($\langle i \rangle$ Lonicera) Tj ETQq0 0 0 rgBT [Overlock 10 Tf 50 13]

113	Soil respiration and extracellular enzyme production respond differently across seasons to elevated temperatures. Plant and Soil, 2018, 425, 351-361.	1.8	11
114	Beneath it all: Size, not origin, predicts belowground competitive ability in exotic and native shrubs1,2. Journal of the Torrey Botanical Society, 2018, 145, 30.	0.1	5
115	Herbarium specimens show patterns of fruiting phenology in native and invasive plant species across New England. American Journal of Botany, 2018, 105, 31-41.	0.8	33
116	Promoting and maintaining diversity in contemporary hardwood forests: Confronting contemporary drivers of change and the loss of ecological memory. Forest Ecology and Management, 2018, 421, 98-108.	1.4	83
117	A tale of two studies: Detection and attribution of the impacts of invasive plants in observational surveys. Journal of Applied Ecology, 2018, 55, 1780-1789.	1.9	6
118	Predicting autumn phenology: How deciduous tree species respond to weather stressors. Agricultural and Forest Meteorology, 2018, 250-251, 127-137.	1.9	95
119	Biodiversity bottleneck: seedling establishment under changing climatic conditions at the boreal–temperate ecotone. Plant Ecology, 2018, 219, 691-704.	0.7	11
120	Leaf phenology paradox: Why warming matters most where it is already warm. Remote Sensing of Environment, 2018, 209, 446-455.	4.6	34
121	Short-term responses to warming vary between native vs. exotic species and with latitude in an early successional plant community. Oecologia, 2018, 187, 333-342.	0.9	7
122	Linking above- and belowground phenology of hybrid walnut growing along a climatic gradient in temperate agroforestry systems. Plant and Soil, 2018, 424, 103-122.	1.8	11
123	Vegetation phenology on the Qinghai-Tibetan Plateau and its response to climate change (1982–2013). Agricultural and Forest Meteorology, 2018, 248, 408-417.	1.9	134
124	Shortâ€ŧerm efficacy and nontarget effects of aerial glyphosate applications for controlling <scp><i>Lonicera maackii</i></scp> (Amur honeysuckle) in oakâ€hickory forests of Eastern Missouri, U.S.A Restoration Ecology, 2018, 26, 686-693.	1.4	5
125	Phenology differences between native and novel exoticâ€dominated grasslands rival the effects of climate change. Journal of Applied Ecology, 2018, 55, 863-873.	1.9	24
126	Short-Term Vegetation Responses to Invasive Shrub Control Techniques for Amur Honeysuckle (Lonicera maackii [Rupr.] Herder). Forests, 2018, 9, 607.	0.9	9
127	Nedestruktivna procjena koncentracije fotosintetskih pigmenata u liÅ _j ću hrasta lužnjaka (<i>Quercus) Tj ETQ</i>	291.1 0.78	4314 rgBT /0
128	Land surface greening suggests vigorous woody regrowth throughout European semiâ€natural vegetation. Global Change Biology, 2018, 24, 5789-5801.	4.2	48
129	Ecosystem scale trade-off in nitrogen acquisition pathways. Nature Ecology and Evolution, 2018, 2, 1724-1734.	3.4	66

#	Article	IF	CITATIONS
130	Are endemics functionally distinct? Leaf traits of native and exotic woody species in a New Zealand forest. PLoS ONE, 2018, 13, e0196746.	1.1	7
131	Rapid establishment of a flowering cline in <i>Medicago polymorpha</i> after invasion of North America. Molecular Ecology, 2018, 27, 4758-4774.	2.0	17
132	Vulnerability of phenological progressions over season and elevation to climate change: Rhododendrons of Mt. Yulong. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 34, 129-139.	1.1	10
133	Soil chemistry and microbial community functional responses to invasive shrub removal in mixed hardwood forests. Applied Soil Ecology, 2018, 131, 75-88.	2.1	8
134	Dynamics of vegetation autumn phenology and its response to multiple environmental factors from 1982 to 2012 on Qinghai-Tibetan Plateau in China. Science of the Total Environment, 2018, 637-638, 855-864.	3.9	76
135	Warming delays the phenological sequences of an autumnâ€flowering invader. Ecology and Evolution, 2018, 8, 6299-6307.	0.8	6
136	Native and Invasive Woody Species Differentially Respond to Forest Edges and Forest Successional Age. Forests, 2018, 9, 381.	0.9	10
137	Climate and Spring Phenology Effects on Autumn Phenology in the Greater Khingan Mountains, Northeastern China. Remote Sensing, 2018, 10, 449.	1.8	53
138	Amur maple (Acer ginnala): an emerging invasive plant in North America. Biological Invasions, 2018, 20, 2997-3007.	1.2	5
139	Extended leaf phenology presents an opportunity for herbicidal control of invasive forest shrubs. Weed Research, 2018, 58, 244-249.	0.8	7
140	To spend or to save? Assessing energetic growth-storage tradeoffs in native and invasive woody plants. Oecologia, 2018, 188, 659-669.	0.9	13
141	Invasive plants in Minnesota are "joining the locals†A traitâ€based analysis. Journal of Vegetation Science, 2018, 29, 746-755.	1.1	6
142	Using revegetation to suppress invasive plants in grasslands and forests. Journal of Applied Ecology, 2018, 55, 2362-2373.	1.9	47
143	An invasive population of Solidago canadensis is less sensitive to warming and nitrogen-addition than its native population in an invaded range. Biological Invasions, 2019, 21, 151-162.	1.2	20
144	Ongoing seasonally uneven climate warming leads to earlier autumn growth cessation in deciduous trees. Oecologia, 2019, 189, 549-561.	0.9	39
145	Functional shifts in leaves of woody invaders of deciduous forests between their home and away ranges. Tree Physiology, 2019, 39, 1551-1560.	1.4	3
146	Invasion and drought alter phenological sensitivity and synergistically lower ecosystem production. Ecology, 2019, 100, e02802.	1.5	14
147	Deer browsing overwhelms extended leaf phenology benefits: A test case with Rubus allegheniensis and a recalcitrant hay-scented fern layer. Forest Ecology and Management, 2019, 448, 294-299.	1.4	5

#	Article	IF	CITATIONS
148	Phenology in a warming world: differences between native and nonâ€native plant species. Ecology Letters, 2019, 22, 1253-1263.	3.0	62
149	White-tailed deer browse preference for an invasive shrub, Amur honeysuckle (<i>Lonicera) Tj ETQq1 1 0.784314 11-21.</i>	rgBT /Ove 0.5	erlock 10 T ^{E 5} 7
150	Do longer growing seasons give introduced plants an advantage over native plants in Interior Alaska?. Botany, 2019, 97, 347-362.	0.5	9
151	The effects of deer and an invasive shrub, <i>Lonicera maackii</i> , on forest understory plant composition. Ecoscience, 2019, 26, 237-247.	0.6	9
152	Invasive shrubs modify rodent activity timing, revealing a consistent behavioral rule governing diel activity. Behavioral Ecology, 2019, 30, 1069-1075.	1.0	16
153	Carbon gain phenologies of springâ€flowering perennials in a deciduous forest indicate a novel niche for a widespread invader. New Phytologist, 2019, 221, 778-788.	3.5	39
154	Tracking seasonal rhythms of plants in diverse ecosystems with digital camera imagery. New Phytologist, 2019, 222, 1742-1750.	3.5	77
155	Plant defense against generalist herbivores in the forest understory: a phylogenetic comparison of native and invasive species. Biological Invasions, 2019, 21, 1269-1281.	1.2	10
156	Does phenology play a role in the feedbacks underlying shrub encroachment?. Science of the Total Environment, 2019, 657, 1064-1073.	3.9	17
157	Tracking forest changes: Canadian Forest Service indicators of climate change. Climatic Change, 2020, 163, 1839-1853.	1.7	5
158	Why does Daphne pseudomezereum drop its leaves in the summer? An adaptive alternative to surviving forest shade. Physiologia Plantarum, 2020, 168, 77-87.	2.6	2
159	How can the shade intolerant Korean pine survive under dense deciduous canopy?. Forest Ecology and Management, 2020, 457, 117735.	1.4	24
160	Can invasive species replace native species as a resource for birds under climate change? A case study on bird-fruit interactions. Biological Conservation, 2020, 241, 108268.	1.9	13
161	Evaluating the role of phenology in managing urban invasions: A case study of Broussonetia papyrifera. Urban Forestry and Urban Greening, 2020, 48, 126583.	2.3	8
162	Citizen scientists record novel leaf phenology of invasive shrubs in eastern U.S. forests. Biological Invasions, 2020, 22, 3325-3337.	1.2	10
163	Assessing the influence of riparian invasion by the shrub Lonicera maackii on terrestrial subsidies to headwater streams. Acta Oecologica, 2020, 105, 103580.	0.5	2
164	Nonnative oldâ€field species inhabit early season phenological niches and exhibit unique sensitivity to climate. Ecosphere, 2020, 11, e03217.	1.0	12
165	Water Addition Prolonged the Length of the Growing Season of the Desert Shrub Nitraria tangutorum in a Temperate Desert. Frontiers in Plant Science, 2020, 11, 1099.	1.7	11

#	Article	IF	CITATIONS
166	Niche Breadth: Causes and Consequences for Ecology, Evolution, and Conservation. Quarterly Review of Biology, 2020, 95, 179-214.	0.0	114
167	Sentinel-2 time series based optimal features and time window for mapping invasive Australian native Acacia species in KwaZulu Natal, South Africa. International Journal of Applied Earth Observation and Geoinformation, 2020, 93, 102207.	1.4	18
168	Woody invaders do not alter rhizosphere microbial activity in a temperate deciduous forest. Biological Invasions, 2020, 22, 2599-2608.	1.2	1
169	Fosamine ammonium impacts on the targeted invasive shrub Rhamnus cathartica and non-target herbs. Invasive Plant Science and Management, 2020, 13, 210-215.	0.5	3
170	The summer-deciduous habit of Daphne pseudomezereum is a response to warm summer as cooling converts it to an evergreen. Plant Ecology, 2020, 221, 431-440.	0.7	2
171	Phenology-Based Mapping of an Alien Invasive Species Using Time Series of Multispectral Satellite Data: A Case-Study with Glossy Buckthorn in Québec, Canada. Remote Sensing, 2020, 12, 922.	1.8	13
172	Monitoring Phenology in the Temperate Grasslands of China from 1982 to 2015 and Its Relation to Net Primary Productivity. Sustainability, 2020, 12, 12.	1.6	14
173	Leaf chlorophyll estimates of temperate deciduous shrubs during autumn senescence using a SPAD-502 meter and calibration with extracted chlorophyll. Annals of Forest Science, 2020, 77, 1.	0.8	22
174	Extended leaf phenology has limited benefits for invasive species growing at northern latitudes. Biological Invasions, 2020, 22, 2957-2974.	1.2	12
175	Evaluating autumn phenology derived from field observations, satellite data, and carbon flux measurements in a northern mixed forest, USA. International Journal of Biometeorology, 2020, 64, 713-727.	1.3	15
176	Evolutionary genomics can improve prediction of species' responses to climate change. Evolution Letters, 2020, 4, 4-18.	1.6	190
177	Lowâ€cost observations and experiments return a high value in plant phenology research. Applications in Plant Sciences, 2020, 8, e11338.	0.8	30
178	Phenology matters: Extended spring and autumn canopy cover increases biotic resistance of forests to invasion by common buckthorn (Rhamnus cathartica). Forest Ecology and Management, 2020, 464, 118067.	1.4	14
179	Impacts of experimental defoliation on native and invasive saplings: are native species more resilient to canopy disturbance?. Tree Physiology, 2020, 40, 969-979.	1.4	5
180	The important role of soil moisture in controlling autumn phenology of herbaceous plants in the Inner Mongolian steppe. Land Degradation and Development, 2021, 32, 3698-3710.	1.8	7
181	Temperate deciduous shrub phenology: the overlooked forest layer. International Journal of Biometeorology, 2021, 65, 343-355.	1.3	13
182	Variance in withinâ€pair reproductive success influences the opportunity for selection annually and over the lifetimes of males in a multibrooded songbird*. Evolution; International Journal of Organic Evolution, 2021, 75, 915-930.	1.1	5
185	An Alternative Splicing Variant of PtRD26 Delays Leaf Senescence by Regulating Multiple NAC Transcription Factors in <i>Populus</i> . Plant Cell, 2021, 33, 1594-1614.	3.1	74

~		~	
(Repo	DT
\sim	плп	KLFU	

#	Article	IF	CITATIONS
186	Divergent responses of phenology and growth to summer and autumnal warming. Global Change Biology, 2021, 27, 2905-2913.	4.2	14
187	Maps, trends, and temperature sensitivities—phenological information from and for decreasing numbers of volunteer observers. International Journal of Biometeorology, 2021, 65, 1377-1390.	1.3	4
188	Plasticity and selection drive humpâ€shaped latitudinal patterns of flowering phenology in an invasive intertidal plant. Ecology, 2021, 102, e03311.	1.5	10
189	Phenological sensitivity to temperature mediates herbivory. Global Change Biology, 2021, 27, 2315-2327.	4.2	23
191	The growing and vital role of botanical gardens in climate change research. New Phytologist, 2021, 231, 917-932.	3.5	23
192	How changes in spring and autumn phenology translate into growthâ€experimental evidence of asymmetric effects. Journal of Ecology, 2021, 109, 2717-2728.	1.9	10
193	Competitive drivers of interspecific deviations of crown morphology from theoretical predictions measured with Terrestrial Laser Scanning. Journal of Ecology, 2021, 109, 2612-2628.	1.9	14
194	Soil texture and other site-level factors differentially affect growth of Scotch broom (Cytisus) Tj ETQq1 1 0.78431 Canadian Journal of Forest Research, 0, , .	L4 rgBT 0.8	/Overlock 10 1
195	Measuring the Contribution of Leaves to the Structural Complexity of Urban Tree Crowns with Terrestrial Laser Scanning. Remote Sensing, 2021, 13, 2773.	1.8	11
196	Comparison of the distribution and phenology of Arctic Mountain plants between the early 20th and 21st centuries. Global Change Biology, 2021, 27, 5070-5083.	4.2	9
197	Effects of the Simulated Enhancement of Precipitation on the Phenology of Nitraria tangutorum under Extremely Dry and Wet Years. Plants, 2021, 10, 1474.	1.6	6
198	The Seasonal Influence of Invasive Shrubs on Light and Temperature in an Eastern Deciduous Forest Understory. Natural Areas Journal, 2021, 41, .	0.2	0
199	Premature leaf discoloration of European deciduous trees is caused by drought and heat in late spring and cold spells in early fall. Agricultural and Forest Meteorology, 2021, 307, 108492.	1.9	35
200	Shifting seasonal patterns of water availability: ecosystem responses to an unappreciated dimension of climate change. New Phytologist, 2022, 233, 119-125.	3.5	32
201	Warming during maternal generations delays offspring germination in native and nonnative species. Oikos, 2021, 130, 1880-1891.	1.2	1
202	Phenological niche overlap between invasive buckthorn (Rhamnus cathartica) and native woody species. Forest Ecology and Management, 2021, 498, 119568.	1.4	5
203	Differences in leaf phenological traits between trees and shrubs are closely related to functional traits in a temperate forest. Acta Oecologica, 2021, 112, 103760.	0.5	1
204	Impacts of Invasive Species on Forest and Grassland Ecosystem Processes in the United States. , 2021, , 41-55.		3

#	Article	IF	CITATIONS
205	Indigenous Knowledge and Dynamics Among Himalayan Peoples, Vegetation, and Climate Change. Ethnobiology, 2020, , 55-69.	0.4	5
206	Environmental structuring of marine plankton phenology. Nature Ecology and Evolution, 2017, 1, 1484-1494.	3.4	20
208	Analysis of the MODIS-Based Vegetation Phenology Using the HANTS Algorithm. Journal of the Korean Association of Geographic Information Studies, 2014, 17, 20-38.	0.1	3
209	Phenological mismatch with trees reduces wildflower carbon budgets. Ecology Letters, 2019, 22, 616-623.	3.0	73
210	Predicting Climate Change Impacts on the Amount and Duration of Autumn Colors in a New England Forest. PLoS ONE, 2013, 8, e57373.	1.1	125
211	Links between Belowground and Aboveground Resource-Related Traits Reveal Species Growth Strategies that Promote Invasive Advantages. PLoS ONE, 2014, 9, e104189.	1.1	21
212	Comparative Analyses of Herbivory Rates and Leaf Phenology in Invasive and Native Shrubs in an East-Central Indiana Forest1. Journal of the Torrey Botanical Society, 2019, 146, 48.	0.1	3
213	Leaf out phenology in temperate forests. Biodiversity Science, 2013, 21, 111-116.	0.2	13
214	A General Algorithm of Leaf Chlorophyll Content Estimation for a Wide Range of Plant Species. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	2.7	2
216	Aspects of the vegetation dynamics of a coastal environment of the Rio de la Plata: phenological patterns and evolution of chlorophyll content. Revista Del Museo Argentino De Ciencias Naturales, Nueva Serie, 2013, 15, 29-38.	0.1	0
217	Impact of invasive plants on food webs and pathways. Biodiversity Science, 2013, 21, 249-259.	0.2	0
218	Quantifying latitudinal variation in land surface phenology of Spartina alterniflora saltmarshes across coastal wetlands in China by Landsat 7/8 and Sentinel-2 images. Remote Sensing of Environment, 2022, 269, 112810.	4.6	30
219	Macrophenology: insights into the broadâ€scale patterns, drivers, and consequences of phenology. American Journal of Botany, 2021, 108, 2112-2126.	0.8	20
220	A perennial invader's seed and rhizome differ in cold tolerance and apparent local adaptation. NeoBiota, 0, 70, 1-21.	1.0	1
221	Fast but steady: An integrated leafâ€stemâ€root trait syndrome for woody forest invaders. Ecology Letters, 2022, 25, 900-912.	3.0	12
222	Effects of global climate change on regeneration of invasive plant species from seeds. , 2022, , 243-257.		2
223	Human activities modulate greening patterns: a case study for southern Xinjiang in China based on long time series analysis. Environmental Research Letters, 2022, 17, 044012.	2.2	8
224	Delayed autumnal leaf senescence following nutrient fertilization results in altered nitrogen resorption. Tree Physiology, 2022, 42, 1549-1559.	1.4	5

#	Article	IF	CITATIONS
225	Competition for water and species coexistence in phenologically structured annual plant communities. Ecology Letters, 2022, 25, 1110-1125.	3.0	7
226	Patterns of belowground overyielding and fineâ€root biomass in native and exotic angiosperms and gymnosperms. Oikos, 0, , .	1.2	1
227	Shoot senescence in herbaceous perennials of the temperate zone: Identifying drivers of senescence pace and shape. Journal of Ecology, 2022, 110, 1296-1311.	1.9	2
228	Woody invaders are more highly colonized by arbuscular mycorrhizal fungi than congeneric native species. American Journal of Botany, 2022, 109, 655-663.	0.8	8
229	Effects of warming and nutrient fluctuation on invader Chromolaena odorata and natives in artificial communities. Plant Ecology, 2022, 223, 315-322.	0.7	5
230	Widespread Mismatch Between Phenology and Climate in Humanâ€Đominated Landscapes. AGU Advances, 2021, 2, .	2.3	10
234	Stimulation, Reduction and Compensation Growth, and Variable Phenological Responses to Spring and/or Summer–Autumn Warming in Corylus Taxa and Cornus sanguinea L Forests, 2022, 13, 654.	0.9	2
235	The effect of a novel herbicide adjuvant in treating Amur honeysuckle (<i>Lonicera maackii</i>). Invasive Plant Science and Management, 2022, 15, 81-88.	0.5	1
236	Woody species do not differ in dormancy progression: Differences in time to budbreak due to forcing and cold hardiness. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2112250119.	3.3	13
237	Arid and semiarid rangeland responses to non-stationary temporal dynamics of environmental drivers. Remote Sensing Applications: Society and Environment, 2022, 27, 100796.	0.8	1
238	Invasive grass indirectly alters seasonal patterns in seed predation. Biology Letters, 2022, 18, .	1.0	0
239	Climate warming–driven phenological shifts are species-specific in woody plants: evidence from twig experiment in Kashmir Himalaya. International Journal of Biometeorology, 2022, 66, 1771-1785.	1.3	4
240	Air or soil temperature matters the responses of alpine plants in biomass accumulation to climate warming. Science of the Total Environment, 2022, 844, 157141.	3.9	8
241	Using plants to control buckthorn (Rhamnus cathartica): Improved biotic resistance of forests through revegetation. Ecological Engineering, 2022, 182, 106730.	1.6	2
242	Improving Remote Estimation of Vegetation Phenology Using GCOM-C/SGLI Land Surface Reflectance Data. Remote Sensing, 2022, 14, 4027.	1.8	0
243	Identification of the Spring Green-Up Date Derived from Satellite-Based Vegetation Index over a Heterogeneous Ecoregion. Remote Sensing, 2022, 14, 4349.	1.8	0
244	Limited evidence for phenological differences between non-native and native species. Frontiers in Ecology and Evolution, 0, 10, .	1.1	1
245	A general hypothesis of forest invasions by woody plants based on wholeâ€plant carbon economics. Journal of Ecology, 2023, 111, 4-22.	1.9	12

#	Article	IF	CITATIONS
246	Phenological heterogeneities of invasive Spartina alterniflora salt marshes revealed by high-spatial-resolution satellite imagery. Ecological Indicators, 2022, 144, 109492.	2.6	5
247	Study on the change monitoring of typical estuarine wetland and its effect on ecological factors in Bohai Rim region, China. Frontiers in Ecology and Evolution, 0, 10, .	1.1	0
248	Global change drivers synergize with the negative impacts of non-native invasive ants on native seed-dispersing ants. Biological Invasions, 2023, 25, 773-786.	1.2	3
249	Warmer temperatures are linked to widespread phenological mismatch among native and nonâ€native forest plants. Journal of Ecology, 2023, 111, 356-371.	1.9	9
250	Leaf phenology and freeze tolerance of the invasive tree Pyrus calleryana (Roseaceae) and potential native competitors1. Journal of the Torrey Botanical Society, 2022, 149, .	0.1	1
251	Classification and mapping of low-statured shrubland cover types in post-agricultural landscapes of the US Northeast. International Journal of Remote Sensing, 2022, 43, 7117-7138.	1.3	2
253	Plant community dynamics following nonâ€native shrub removal depend on invasion intensity and forest site characteristics. Ecosphere, 2023, 14, .	1.0	4
254	Retrieval of Leaf Chlorophyll Contents (LCCs) in Litchi Based on Fractional Order Derivatives and VCPA-GA-ML Algorithms. Plants, 2023, 12, 501.	1.6	6
255	Public Health Implications of Invasive Plants: A Scientometric Study. Plants, 2023, 12, 661.	1.6	1
256	Combining local, landscape, and regional geographies to assess plant community vulnerability to invasion impact. Ecological Applications, 2023, 33, .	1.8	3
257	Effects of eastern vs. central Pacific El Niño on Northern Hemisphere photosynthetic seasonality. , 0, ,		0
267	Ten best practices for effective phenological research. International Journal of Biometeorology, 2023, 67, 1509-1522.	1.3	1