Catalysis by metallic nanoparticles in aqueous solution:

Chemical Society Reviews 41, 5577 DOI: 10.1039/c2cs35029g

Citation Report

#	Article	IF	CITATIONS
1	Controllable synthesis of gold nanoparticles with ultrasmall size and high monodispersity via continuous supplement of precursor. Dalton Transactions, 2012, 41, 11725.	3.3	27
3	One-pot synthesis of responsive catalytic Au@PVP hybrid nanogels. Chemical Communications, 2012, 48, 11751.	4.1	57
4	A simple and sensitive sensor for rapid detection of sulfide anions using DNA-templated copper nanoparticles as fluorescent probes. Analyst, The, 2012, 137, 5502.	3.5	78
5	Tough and Catalytically Active Hybrid Biofibers Wet-Spun From Nanochitin Hydrogels. Biomacromolecules, 2012, 13, 4205-4212.	5.4	61
6	The structure of AuPd nanoalloys anchored on spherical polyelectrolyte brushes determined by X-ray absorption spectroscopy. Faraday Discussions, 2013, 162, 45.	3.2	12
7	Catalytic reduction of p-nitrophenol over precious metals/highly ordered mesoporous silica. New Journal of Chemistry, 2013, 37, 2399.	2.8	114
8	Identifying efficient natural bioreductants for the preparation of graphene and graphene-metal nanoparticle hybrids with enhanced catalytic activity from graphite oxide. Carbon, 2013, 63, 30-44.	10.3	42
9	Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energy and Environmental Science, 2013, 6, 3260.	30.8	390
10	Investigation into the Catalytic Activity of Porous Platinum Nanostructures. Langmuir, 2013, 29, 11431-11439.	3.5	63
11	How Theoretical Simulations Can Address the Structure and Activity of Nanoparticles. Topics in Catalysis, 2013, 56, 1262-1272.	2.8	16
12	Organized Surfaces of Highly Faceted Single-Crystal Palladium Structures Seeded by Sacrificial Templates. Crystal Growth and Design, 2013, 13, 3847-3851.	3.0	11
13	Development of novel catalytically active polymer-metal-nanocomposites based on activated foams and textile fibers. Nanoscale Research Letters, 2013, 8, 238.	5.7	5
14	Novel synthesis of Pd nanoparticles for hydrogenation of biomass-derived platform chemicals showing enhanced catalytic performance. RSC Advances, 2013, 3, 25865.	3.6	72
15	Natural reducing agents for electroless nanoparticle deposition: Mild synthesis of metal/carbon nanostructured microspheres. Materials Chemistry and Physics, 2013, 140, 343-349.	4.0	14
16	Intelligent Hydrogels. , 2013, , .		13
17	Size-Dependent Hydrogenation of <i>p-</i> Nitrophenol with Pd Nanoparticles Synthesized with Poly(amido)amine Dendrimer Templates. Journal of Physical Chemistry C, 2013, 117, 22644-22651.	3.1	166
18	Gold nanoparticles for cleaning contaminated water. Journal of Chemical Technology and Biotechnology, 2013, 88, 735-741.	3.2	54
19	Development of a multifunctional catalyst for a "relay―reaction. RSC Advances, 2013, 3, 2186.	3.6	25

#	Article	IF	CITATIONS
20	Electronic Structure of Individual Hybrid Colloid Particles Studied by Near-Edge X-ray Absorption Fine Structure (NEXAFS) Spectroscopy in the X-ray Microscope. Nano Letters, 2013, 13, 824-828.	9.1	13
21	Responsive hybrid nanosheets of hyperbranched poly(ether amine) as a 2D-platform for metal nanoparticles. Chemical Communications, 2013, 49, 603-605.	4.1	24
22	A Facile Approach to TiO ₂ Colloidal Spheres Decorated with Au Nanoparticles Displaying Well-Defined Sizes and Uniform Dispersion. Langmuir, 2013, 29, 1642-1649.	3.5	100
23	Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts. Nanotechnology, 2013, 24, 245601.	2.6	46
24	Super-Resolution Mapping of Reactive Sites on Titania-Based Nanoparticles with Water-Soluble Fluorogenic Probes. ACS Nano, 2013, 7, 263-275.	14.6	83
25	Multilayer Magnetic Composite Particles with Functional Polymer Brushes as Stabilizers for Gold Nanocolloids and Their Recyclable Catalysis. Journal of Physical Chemistry C, 2013, 117, 6363-6372.	3.1	49
26	Shape-controlled synthesis of metal nanocrystals. MRS Bulletin, 2013, 38, 335-344.	3.5	111
27	Anisotropic Seeded Growth of Cu–M (M = Au, Pt, or Pd) Bimetallic Nanorods with Tunable Optical and Catalytic Properties. Journal of Physical Chemistry C, 2013, 117, 8924-8932.	3.1	104
28	Surfactant-free solution-based synthesis of metallic nanoparticles toward efficient use of the nanoparticles' surfaces and their application in catalysis and chemo-/biosensing. Nanotechnology Reviews, 2013, 2, 5-25.	5.8	40
29	Bimetallic AuAg Nanoparticles: Enhancing the Catalytic Activity of Au for Reduction Reactions in the Liquid Phase by Addition of Ag. ChemPhysChem, 2013, 14, 1577-1581.	2.1	20
30	Ultrafast and stable hydrogen generation from sodium borohydride in methanol and water over Fe–B nanoparticles. Journal of Power Sources, 2013, 243, 444-450.	7.8	110
31	Preparation of yolk–shell FexOy/Pd@mesoporous SiO2 composites with high stability and their application in catalytic reduction of 4-nitrophenol. Nanoscale, 2013, 5, 5896.	5.6	101
32	Scalable Parallel Screening of Catalyst Activity at the Single-Particle Level and Subdiffraction Resolution. ACS Catalysis, 2013, 3, 1448-1453.	11.2	62
33	Effect of Ligand and Solvent Structure on Size-Selective Nanoparticle Dispersibility and Fractionation in Gas-Expanded Liquid (GXL) Systems. Journal of Physical Chemistry C, 2013, 117, 14362-14373.	3.1	8
34	Water―and Organoâ€Ðispersible Gold Nanoparticles Supported by Using Ammonium Salts of Hyperbranched Polystyrene: Preparation and Catalysis. Chemistry - an Asian Journal, 2013, 8, 3152-3163.	3.3	14
35	Block Copolymer Templated Assembly of Active Pd Nanocube Arrays. Macromolecular Rapid Communications, 2013, 34, 1687-1692.	3.9	5
36	Core-Shell Microgels as Nanoreactors. , 2013, , 113-130.		0
37	Hydrierung vonp-Nitrophenol zup-Aminophenol als Testreaktion für die katalytische Aktivitävon Pt-TrÃ g erkatalysatoren. Chemie-Ingenieur-Technik, 2013, 85, 1774-1778.	0.8	2

#	Article	IF	CITATIONS
39	Aerobic synthesis of biocompatible copper nanoparticles: promising antibacterial agent and catalyst for nitroaromatic reduction and C–N cross coupling reaction. RSC Advances, 2014, 4, 15003-15006.	3.6	41
41	Glucose-functionalized polystyrene particles designed for selective deposition of silver on the surface. RSC Advances, 2014, 4, 62878-62881.	3.6	19
42	Chemically Exfoliated MoS ₂ Nanosheets as an Efficient Catalyst for Reduction Reactions in the Aqueous Phase. ACS Applied Materials & amp; Interfaces, 2014, 6, 21702-21710.	8.0	126
43	Mask-Assisted Seeded Growth of Segmented Metallic Heteronanostructures. Journal of Physical Chemistry C, 2014, 118, 28134-28142.	3.1	23
44	Dyeâ€Mediated Growth of 2D Coppercarbodiimide (CuNCN) Nanostructures and their Metamorphosis into a 3D Cu@C _{<i>x</i>} N _y Hybrid. Particle and Particle Systems Characterization, 2014, 31, 557-560.	2.3	7
45	Facile Synthesis of AuPt Alloy Nanoparticles in Polyelectrolyte Multilayers with Enhanced Catalytic Activity for Reduction of 4-Nitrophenol. Langmuir, 2014, 30, 15345-15350.	3.5	60
46	Light-treated silica-coated gold nanorods having highly enhanced catalytic performances and reusability. Journal of Molecular Catalysis A, 2014, 385, 38-45.	4.8	19
47	Poly-thiosemicarbazide/gold nanoparticles catalytic membrane: In-situ growth of well-dispersed, uniform and stable gold nanoparticles in a polymeric membrane. Catalysis Today, 2014, 236, 92-97.	4.4	23
48	Core–Shell Palladium Nanoparticle@Metal–Organic Frameworks as Multifunctional Catalysts for Cascade Reactions. Journal of the American Chemical Society, 2014, 136, 1738-1741.	13.7	632
49	Doped graphene for metal-free catalysis. Chemical Society Reviews, 2014, 43, 2841-2857.	38.1	710
50	Bimetallic Au/Ag nanorods embedded in functionalized silicate sol–gel matrix as an efficient catalyst for nitrobenzene reduction. Applied Catalysis A: General, 2014, 470, 369-375.	4.3	52
51	Preparation of gold nanoparticles using Salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 130, 54-58.	3.9	105
52	Hydrogenation of <i>p</i> â€Nitrophenol to <i>p</i> â€Aminophenol as a Test Reaction for the Catalytic Activity of Supported Pt Catalysts. Chemical Engineering and Technology, 2014, 37, 551-554.	1.5	17
53	Synthesis of catalytically active silver nanoparticles using lipid derived signaling molecule, N-steroylethanolamine: Promising antibacterial agent and selective colorimetric sensor for mercury ion. Sensors and Actuators B: Chemical, 2014, 200, 92-100.	7.8	29
54	Mechanochemical Synthesis of Maghemite/Silica Nanocomposites: Advanced Materials for Aqueous Room‶emperature Catalysis. ChemSusChem, 2014, 7, 1876-1880.	6.8	23
55	Catalytic and SERS Activities of Tryptophan DTA Capped Silver Nanoparticles. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1095-1101.	1.2	5
56	Multifunctional Redox Polymers: Electrochrome, Polyelectrolyte, Sensor, Electrode Modifier, Nanoparticle Stabilizer, and Catalyst Template. Angewandte Chemie - International Edition, 2014, 53, 8445-8449.	13.8	51
57	Formation of a gold–carbon dot nanocomposite with superior catalytic ability for the reduction of aromatic nitro groups in water. RSC Advances, 2014, 4, 25863-25866.	3.6	28

#	Article	IF	CITATIONS
58	"Click―Chemistry Mildly Stabilizes Bifunctional Gold Nanoparticles for Sensing and Catalysis. Chemistry - A European Journal, 2014, 20, 8363-8369.	3.3	30
59	Probing the influence of different oxygenated groups on graphene oxide's catalytic performance. Journal of Materials Chemistry A, 2014, 2, 610-613.	10.3	68
60	Recent NMR developments applied to organic–inorganic materials. Progress in Nuclear Magnetic Resonance Spectroscopy, 2014, 77, 1-48.	7.5	78
61	Spectroscopy investigation on chemo-catalytic, free radical scavenging and bactericidal properties of biogenic silver nanoparticles synthesized using Salicornia brachiata aqueous extract. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 118, 349-355.	3.9	72
62	General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS ₂ nanosheets and the enhanced catalytic activity of Pd–MoS ₂ for methanol oxidation. Nanoscale, 2014, 6, 5762-5769.	5.6	311
63	Water-dispersible Fe ₃ O ₄ nanowires as efficient supports for noble-metal catalysed aqueous reactions. Journal of Materials Chemistry A, 2014, 2, 4779-4787.	10.3	22
64	Cr(iii)-containing Fe3O4/mercaptopropanoic acid–poly(2-hydroxyethyl acrylate) nanocomposite: a highly active magnetic catalyst in solvent-free aerobic oxidation of alcohols. Dalton Transactions, 2014, 43, 3618.	3.3	7
65	Synthesis of well-dispersed Ag nanoparticles on eggshell membrane for catalytic reduction of 4-nitrophenol. Journal of Materials Science, 2014, 49, 1639-1647.	3.7	100
66	Preparation of γ-Fe2O3@C@MoO3 core/shell nanocomposites as magnetically recyclable catalysts for efficient and selective epoxidation of olefins. Dalton Transactions, 2014, 43, 6041.	3.3	38
67	Upright or Flat Orientations of the Ethanol Molecules on a Surface with Charge Dipoles and the Implication for Wetting Behavior. Journal of Physical Chemistry C, 2014, 118, 1873-1878.	3.1	15
68	Graphene Oxide∫αâ€Bi ₂ O ₃ Composites for Visibleâ€Light Photocatalysis, Chemical Catalysis, and Solar Energy Conversion. ChemSusChem, 2014, 7, 854-865.	6.8	42
69	Stabilization of AuNPs by Monofunctional Triazole Linked to Ferrocene, Ferricenium, or Coumarin and Applications to Synthesis, Sensing, and Catalysis. Inorganic Chemistry, 2014, 53, 11802-11808.	4.0	28
70	Fe ₃ O ₄ /PANI/m-SiO ₂ as robust reactive catalyst supports for noble metal nanoparticles with improved stability and recyclability. Journal of Materials Chemistry A, 2014, 2, 13016-13023.	10.3	43
71	Application of Co/Ti film catalysts with different nanostructures in the reduction of p-nitrophenol to p-aminophenol. Catalysis Science and Technology, 2014, 4, 681-687.	4.1	15
72	β-Sitosterol- <scp>d</scp> -glucopyranoside isolated from Desmostachya bipinnata mediates photoinduced rapid green synthesis of silver nanoparticles. RSC Advances, 2014, 4, 59130-59136.	3.6	33
73	Hollow Microgel Based Ultrathin Thermoresponsive Membranes for Separation, Synthesis, and Catalytic Applications. ACS Applied Materials & amp; Interfaces, 2014, 6, 17702-17712.	8.0	43
74	Electrocatalytic properties of in situ-generated palladium nanoparticle assemblies towards oxidation of multi-carbon alcohols and polyalcohols. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 463, 44-54.	4.7	11
75	Synthesis, structure and catalytic applications of amidoterephthalate copper complexes in the diastereoselective Henry reaction in aqueous medium. New Journal of Chemistry, 2014, 38, 4837-4846.	2.8	46

#	Article	lF	CITATIONS
76	Relationship between Temperature-Induced Changes in Internal Microscopic Structures of Poly(<i>N</i> -isopropylacrylamide) Microgels and Organic Dye Uptake Behavior. Langmuir, 2014, 30, 8717-8725.	3.5	34
77	Controlled growth of Ag nanoparticles decorated onto the surface of SiO ₂ spheres: a nanohybrid system with combined SERS and catalytic properties. RSC Advances, 2014, 4, 17846-17855.	3.6	85
78	Synthesis and catalytic activity of pluronic stabilized silver–gold bimetallic nanoparticles. RSC Advances, 2014, 4, 52279-52288.	3.6	65
79	Electrochemical formation of Cu/Ag surfaces and their applicability as heterogeneous catalysts. RSC Advances, 2014, 4, 7207.	3.6	39
80	Threeâ€Dimensional Characterization of Nobleâ€Metal Nanoparticles and their Assemblies by Electron Tomography. Angewandte Chemie - International Edition, 2014, 53, 10600-10610.	13.8	59
81	Copper on responsive polymer microgels: a recyclable catalyst exhibiting tunable catalytic activity. Chemical Communications, 2014, 50, 14217-14220.	4.1	11
82	A novel structured catalyst: gold supported on thin bimetallic (Ni, Co) carbonate hydroxide nanosheet arrays. Journal of Materials Chemistry A, 2014, 2, 8230-8235.	10.3	9
83	Synthesis of ultrathin PtPdBi nanowire and its enhanced catalytic activity towards p-nitrophenol reduction. Journal of Materials Chemistry A, 2014, 2, 2977.	10.3	68
84	High performance Pd nanocrystals supported on SnO ₂ -decorated graphene for aromatic nitro compound reduction. Journal of Materials Chemistry A, 2014, 2, 3461-3467.	10.3	45
85	In situ formed metal nanoparticle systems for catalytic reduction of nitroaromatic compounds. RSC Advances, 2014, 4, 49287-49294.	3.6	22
86	Morphological modulation of bimetallic nanostructures for accelerated catalysis. Journal of Materials Chemistry A, 2014, 2, 7088-7098.	10.3	31
87	Decomposition synthesis of tuneable, macroporous carbon foams from crystalline precursors via in situ templating. Journal of Materials Chemistry A, 2014, 2, 18076-18081.	10.3	11
88	Nanoporosity-Enhanced Catalysis on Subwavelength Au Nanoparticles: a Plasmon-Enhanced Spectroscopic Study. Chemistry of Materials, 2014, 26, 5131-5142.	6.7	61
89	Polymer-Metal Nanocomposites Containing Dual-Function Metal Nanoparticles: Ion-Exchange Materials Modified with Catalytically-Active and Bactericide Silver Nanoparticles. Solvent Extraction and Ion Exchange, 2014, 32, 301-315.	2.0	6
90	Reduction of 4-nitrophenol catalyzed by silver nanoparticles supported on polymer micelles and vesicles. RSC Advances, 2014, 4, 16425-16428.	3.6	68
91	Facet-Dependent Catalytic Activities of Au Nanoparticles Enclosed by High-Index Facets. ACS Catalysis, 2014, 4, 4027-4033.	11.2	130
92	Synthesis of an amino-functionalized metal–organic framework at a nanoscale level for gold nanoparticle deposition and catalysis. Journal of Materials Chemistry A, 2014, 2, 20588-20596.	10.3	130
93	Laser-Induced Fabrication of Hollow Platinum Nanospheres for Enhanced Catalytic Performances. Journal of Physical Chemistry C, 2014, 118, 22792-22798.	3.1	9

#	Article	IF	CITATIONS
94	Synthesis of Novel Two-Phase Co@SiO ₂ Nanorattles with High Catalytic Activity. Inorganic Chemistry, 2014, 53, 9073-9079.	4.0	41
95	Increased silver activity as a result of controllable reaction-driven reconstruction for high-index facets. Journal of Catalysis, 2014, 317, 83-90.	6.2	3
96	Kinetic Analysis of the Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 18618-18625.	3.1	316
97	Dispersed Cu ₂ 0 Octahedrons on h-BN Nanosheets for <i>p</i> -Nitrophenol Reduction. ACS Applied Materials & Interfaces, 2014, 6, 14469-14476.	8.0	234
98	Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum. Carbohydrate Polymers, 2014, 113, 525-531.	10.2	233
99	Reversible State Transition in Nanoconfined Aqueous Solutions. Physical Review Letters, 2014, 112, 078301.	7.8	23
100	Facile synthesis of single crystal Fe ₃ O ₄ sub-microcubes free of any capping agent and their catalytic performance in p-nitrophenol reduction. Journal of Materials Chemistry A, 2014, 2, 17530-17535.	10.3	22
101	Metal Nanoparticles and Supramolecular Macrocycles: A Tale of Synergy. Chemistry - A European Journal, 2014, 20, 10874-10883.	3.3	123
102	Effect of crosslinker feed content on catalaytic activity of silver nanoparticles fabricated in multiresponsive microgels. Korean Journal of Chemical Engineering, 2014, 31, 1674-1680.	2.7	56
103	Responsive Au@polymer hybrid microgels for the simultaneous modulation and monitoring of Au-catalyzed chemical reaction. Journal of Materials Chemistry A, 2014, 2, 9514.	10.3	46
104	Sodium borohydride stabilizes very active gold nanoparticle catalysts. Chemical Communications, 2014, 50, 14194-14196.	4.1	228
105	Ag–Fe ₃ O ₄ nanocomposites@chitin microspheres constructed by in situ one-pot synthesis for rapid hydrogenation catalysis. Green Chemistry, 2014, 16, 2835-2845.	9.0	120
106	Probing the surface oxidation of chemically synthesised gold nanospheres and nanorods. Gold Bulletin, 2014, 47, 177-183.	2.4	8
107	Highly stable covalent organic framework–Au nanoparticles hybrids for enhanced activity for nitrophenol reduction. Chemical Communications, 2014, 50, 3169-3172.	4.1	307
108	Palladium Nanoparticles Stabilized by Glycodendrimers and Their Application in Catalysis. European Journal of Inorganic Chemistry, 2014, 2014, 4369-4375.	2.0	13
109	Mixed-Valent Click Intertwined Polymer Units Containing Biferrocenium Chloride Side Chains Form Nanosnakes that Encapsulate Gold Nanoparticles. Journal of the American Chemical Society, 2014, 136, 13995-13998.	13.7	44
110	Gold nanoparticles as electron reservoir redox catalysts for 4-nitrophenol reduction: a strong stereoelectronic ligand influence. Chemical Communications, 2014, 50, 10126-10129.	4.1	101
111	Highly efficient silver-assisted reduction of graphene oxide dispersions at room temperature: mechanism, and catalytic and electrochemical performance of the resulting hybrids. Journal of Materials Chemistry A, 2014, 2, 7295-7305.	10.3	29

#	Article	IF	CITATIONS
112	Activity of catalytic silver nanoparticles modulated by capping agent hydrophobicity. Colloids and Surfaces B: Biointerfaces, 2014, 117, 528-533.	5.0	26
113	Gold Nanoparticles Stabilized by Glycodendrimers: Synthesis and Application to the Catalytic Reduction of 4-Nitrophenol. European Journal of Inorganic Chemistry, 2014, 2014, 2671-2677.	2.0	23
114	Kinetic effects in the photomediated synthesis of silver nanodecahedra and nanoprisms: combined effect of wavelength and temperature. Nanoscale, 2014, 6, 7295-7302.	5.6	30
115	Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy. Chemical Society Reviews, 2014, 43, 1107-1117.	38.1	135
116	Tunable Plasmonic Nanoparticles with Catalytically Active High-Index Facets. Nano Letters, 2014, 14, 3674-3682.	9.1	153
117	An Efficient, One-Pot Synthesis of Polyfunctionalised Dihydropyridines Catalysed by Agl Nanoparticles. Journal of Chemical Research, 2014, 38, 313-316.	1.3	24
118	"Click―Synthesis of Nona-PEG-branched Triazole Dendrimers and Stabilization of Gold Nanoparticles That Efficiently Catalyze <i>p</i> -Nitrophenol Reduction. Inorganic Chemistry, 2014, 53, 6954-6961.	4.0	49
119	Facile fabrication of hollow hydridosilica nanoparticles with mesoporous shell and their dual effect in Pd nanoparticles immobilization. Chemical Engineering Journal, 2014, 240, 161-168.	12.7	21
120	Structural Evolution of AuPt and AuPd Nanoparticles Fabricated by Microwave Assisted Synthesis: A Comparative Study. Materials Research Society Symposia Proceedings, 2015, 1802, 13-18.	0.1	3
121	A highly robust and reusable polyimide-supported nanosilver catalyst for the reduction of 4-nitrophenol. Journal of Materials Research, 2015, 30, 2713-2721.	2.6	9
122	Enhanced catalytic activity with high thermal stability based on multiple Au cores in the interior of mesoporous Si–Al shells. RSC Advances, 2015, 5, 48187-48193.	3.6	18
123	Ultrathin Two-Dimensional Pd-Based Nanorings as Catalysts for Hydrogenation with High Activity and Stability. Small, 2015, 11, 4745-4752.	10.0	62
124	Functional Application of Noble Metal Nanoparticles In Situ Synthesized on Ramie Fibers. Nanoscale Research Letters, 2015, 10, 366.	5.7	28
125	Sequential Surface Modification of Au Nanoparticles: From Surfaceâ€Bound Ag ^I Complexes to Ag ⁰ Doping. Chemistry - A European Journal, 2015, 21, 4541-4545.	3.3	5
126	Redoxâ€Robust Pentamethylferrocene Polymers and Supramolecular Polymers, and Controlled Selfâ€Assembly of Pentamethylferricenium Polymerâ€Embedded Ag, AgI, and Au Nanoparticles. Chemistry - A European Journal, 2015, 21, 18177-18186.	3.3	32
127	Catalytic Reduction of pâ€Nitrophenol and Hexacyanoferrate (III) by Borohydride Using Green Synthesized Gold Nanoparticles. Journal of the Chinese Chemical Society, 2015, 62, 420-428.	1.4	26
128	Bifunctional Ag@Pd-Ag Nanocubes for Highly Sensitive Monitoring of Catalytic Reactions by Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2015, 137, 7039-7042.	13.7	184
129	Theory of Solvation-Controlled Reactions in Stimuli-Responsive Nanoreactors. Journal of Physical Chemistry C, 2015, 119, 15723-15730.	3.1	37

#	Article	IF	CITATIONS
130	Amphiphilic polymer-Ag composite microgels with tunable catalytic activity and selectivity. Colloid and Polymer Science, 2015, 293, 2405-2417.	2.1	30
131	Hybrid Amyloid Membranes for Continuous Flow Catalysis. Langmuir, 2015, 31, 13867-13873.	3.5	76
132	Synthesis of Au and Pt Hollow Capsules with Single Holes via Pickering Emulsion Strategy. Journal of Physical Chemistry C, 2015, 119, 28055-28060.	3.1	33
133	Engineering microencapsulation of highly catalytic gold nanoclusters for an extreme thermal stability. Nanoscale, 2015, 7, 20584-20592.	5.6	8
134	The assembly of polyethyleneimine-entrapped gold nanoparticles onto filter paper for catalytic applications. RSC Advances, 2015, 5, 104239-104244.	3.6	14
135	Facile synthesis of silver submicrospheres and their applications. RSC Advances, 2015, 5, 98293-98298.	3.6	6
136	Mechanistic study on reduction reaction of nitro compounds catalyzed by gold nanoparticles using in situ SERS monitoring. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470, 108-113.	4.7	24
137	In situ assembly of monodispersed Ag nanoparticles in the channels of ordered mesopolymers as a highly active and reusable hydrogenation catalyst. Journal of Materials Chemistry A, 2015, 3, 4307-4313.	10.3	46
138	Synthesis and Redox Activity of "Clicked―Triazolylbiferrocenyl Polymers, Network Encapsulation of Gold and Silver Nanoparticles and Anion Sensing. Inorganic Chemistry, 2015, 54, 2284-2299.	4.0	16
139	Sulfonated Schiff base dinuclear and polymeric copper(<scp>ii</scp>) complexes: crystal structures, magnetic properties and catalytic application in Henry reaction. New Journal of Chemistry, 2015, 39, 3424-3434.	2.8	50
140	Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coordination Chemistry Reviews, 2015, 287, 114-136.	18.8	657
141	Catalytic activity of palladium and gold dendrimer-encapsulated nanoparticles for methylene blue reduction: A kinetic analysis. Applied Catalysis A: General, 2015, 495, 63-71.	4.3	42
142	Cyclodextrin modified microgels as "nanoreactor―for the generation of Au nanoparticles with enhanced catalytic activity. Journal of Materials Chemistry A, 2015, 3, 6187-6195.	10.3	52
143	A thermosensitive hydrogel carrier for nickel nanoparticles. Colloids and Interface Science Communications, 2015, 4, 1-4.	4.1	19
144	Nanoporous Ionic Organic Networks: Stabilizing and Supporting Gold Nanoparticles for Catalysis. Nano Letters, 2015, 15, 823-828.	9.1	132
145	In situ synthesized gold nanoparticles in hydrogels for catalytic reduction of nitroaromatic compounds. Applied Surface Science, 2015, 331, 210-218.	6.1	85
146	Brawny Silver-Hydrogel Based Nanocatalyst for Reduction of Nitrophenols: Studies on Kinetics and Mechanism. Industrial & Engineering Chemistry Research, 2015, 54, 1197-1203.	3.7	77
147	Fabrication of Hierarchical Fe ₃ O ₄ @SiO ₂ @P(4VPâ€DVB)@Au Nanostructures and Their Enhanced Catalytic Properties. Chemistry - an Asian Journal, 2015, 10, 701-708.	3.3	25

# 148	ARTICLE Heterogeneous Catalytic Oxidation of As(III) on Nonferrous Metal Oxides in the Presence of H ₂ O ₂ . Environmental Science & Technology, 2015, 49, 3506-3513.	IF 10.0	CITATIONS
149	Features of gold nanoparticle formation in matrices of humic substances of different origin. Doklady Chemistry, 2015, 460, 13-16.	0.9	7
150	Doped Nanostructured Carbon Materials as Catalysts. RSC Catalysis Series, 2015, , 268-311.	0.1	3
151	Facile synthesis of magnetically separable reduced graphene oxide/magnetite/silver nanocomposites with enhanced catalytic activity. Journal of Colloid and Interface Science, 2015, 459, 79-85.	9.4	41
152	Ag–SiO2 nanocomposites with plum-pudding structure as catalyst for hydrogenation of 4-nitrophenol. Ceramics International, 2015, 41, 14660-14667.	4.8	37
153	Catalytic Behavior of Different Sizes of Dendrimer-Encapsulated Au _{<i>n</i>} Nanoparticles in the Oxidative Degradation of Morin with H ₂ O ₂ . Langmuir, 2015, 31, 9041-9053.	3.5	34
154	Enhanced enzymatic hydrolysis of cellulose in microgels. Chemical Communications, 2015, 51, 10502-10505.	4.1	6
155	Generation of catalytically active materials from a liquid metal precursor. Chemical Communications, 2015, 51, 14026-14029.	4.1	44
156	Cobalt Oxide Encapsulated in C ₂ N- <i>h</i> 2D Network Polymer as a Catalyst for Hydrogen Evolution. Chemistry of Materials, 2015, 27, 4860-4864.	6.7	131
157	Photocatalytic Enhancements to the Reduction of 4-Nitrophenol by Resonantly Excited Triangular Gold–Copper Nanostructures. Journal of Physical Chemistry C, 2015, 119, 17308-17315.	3.1	71
158	Soft landing of bare PtRu nanoparticles for electrochemical reduction of oxygen. Nanoscale, 2015, 7, 12379-12391.	5.6	32
159	Facile in situ synthesis of silver nanoparticles on boron nitride nanosheets with enhanced catalytic performance. Journal of Materials Chemistry A, 2015, 3, 16663-16669.	10.3	110
160	Synthesis of a hierarchical SiO ₂ /Au/CeO ₂ rod-like nanostructure for high catalytic activity and recyclability. RSC Advances, 2015, 5, 34549-34556.	3.6	16
161	Sunlight mediated synthesis of silver nanoparticles using redox phytoprotein and their application in catalysis and colorimetric mercury sensing. Journal of Photochemistry and Photobiology B: Biology, 2015, 151, 39-45.	3.8	63
162	Synergetic Catalytic Effect of Cu2–xSe Nanoparticles and Reduced Graphene Oxide Coembedded in Electrospun Nanofibers for the Reduction of a Typical Refractory Organic Compound. ACS Applied Materials & Interfaces, 2015, 7, 15447-15457.	8.0	29
163	High catalytic activity of palladium nanoparticle clusters supported on a spherical polymer network. Chemical Communications, 2015, 51, 13317-13320.	4.1	26
164	Effect of acrylic acid feed contents of microgels on catalytic activity of silver nanoparticles fabricated hybrid microgels. Turkish Journal of Chemistry, 2015, 39, 96-107.	1.2	37
165	Single step synthesis of a â€~silver–polymer hybrid material' and its catalytic application. RSC Advances, 2015, 5, 58625-58632.	3.6	14

#	Article	IF	CITATIONS
166	Porous cubic bismuth oxide nanospheres: A facile synthesis and their conversion to bismuth during the reduction of nitrobenzenes. Chemical Engineering Science, 2015, 131, 155-161.	3.8	28
167	Synthesis and characterization of gold complexes with pyridine-based SNS ligands and as homogeneous catalysts for reduction of 4-nitrophenol. RSC Advances, 2015, 5, 29491-29496.	3.6	33
168	Controllable assembly of two types of metal nanoparticles onto block copolymer nanospheres with ordered spatial distribution. Journal of Materials Chemistry A, 2015, 3, 3382-3389.	10.3	16
169	Structural Evolution of Ag–Pd Bimetallic Nanoparticles through Controlled Galvanic Replacement: Effects of Mild Reducing Agents. Chemistry of Materials, 2015, 27, 2172-2180.	6.7	102
170	Kinetic analysis of the reduction of 4-nitrophenol catalyzed by Au/Pd nanoalloys immobilized in spherical polyelectrolyte brushes. Physical Chemistry Chemical Physics, 2015, 17, 28137-28143.	2.8	83
171	Metal Hybrid Nanoparticles for Catalytic Organic and Photochemical Transformations. Accounts of Chemical Research, 2015, 48, 491-499.	15.6	83
172	Development of gold nanoparticle-fungal hybrid based heterogeneous interface for catalytic applications. Process Biochemistry, 2015, 50, 1293-1300.	3.7	33
173	Achieving Extremely Concentrated Aqueous Dispersions of Graphene Flakes and Catalytically Efficient Graphene-Metal Nanoparticle Hybrids with Flavin Mononucleotide as a High-Performance Stabilizer. ACS Applied Materials & Interfaces, 2015, 7, 10293-10307.	8.0	101
174	Recent Development of Metal Nanoparticles Catalysts and Their Use for Efficient Hydrogenation of Biomass-Derived Levulinic Acid. , 2015, , 75-98.		2
175	An efficient one pot three-component nanocatalyzed synthesis of spiroheterocycles using TiO2 nanoparticles as a heterogeneous catalyst. RSC Advances, 2015, 5, 46415-46422.	3.6	28
176	Gold–copper alloyed nanorods for metal-catalyzed organic reactions: implication of surface ligands on nanoparticle-based heterogeneous catalysis. Tetrahedron Letters, 2015, 56, 3368-3372.	1.4	21
177	Green Processes for Nanotechnology. , 2015, , .		34
178	Ligand-free Gold Nanoparticles as a Reference Material for Kinetic Modelling of Catalytic Reduction of 4-Nitrophenol. Catalysis Letters, 2015, 145, 1105-1112.	2.6	75
179	Facile preparation of reduced graphene oxide supported PtNi alloyed nanosnowflakes with high catalytic activity. RSC Advances, 2015, 5, 35551-35557.	3.6	21
180	Well-dispersed graphene-polydopamine-Pd hybrid with enhanced catalytic performance. RSC Advances, 2015, 5, 97520-97527.	3.6	58
181	X-Ray crystal structure, and optical and electrochemical properties of the Au ₁₅ Ag ₃ (SC ₆ H ₁₁) ₁₄ nanocluster with a core–shell structure. Nanoscale, 2015, 7, 18278-18283.	5.6	62
182	Ligand-promoted, copper nanoparticles catalyzed one-pot synthesis of substituted benzoxazoles from 2-bromoanilines and acyl chlorides. Tetrahedron Letters, 2015, 56, 6827-6832.	1.4	27
183	Core–Corona Functionalization of Diblock Copolymer Micelles by Heterogeneous Metal Nanoparticles for Dual Modality in Chemical Reactions. ACS Applied Materials & Interfaces, 2015, 7, 18778-18785.	8.0	15

#	Article	IF	CITATIONS
184	Highly facile and efficient assembly of palladium nanoparticles on polystyrene microspheres and their application in catalysis. New Journal of Chemistry, 2015, 39, 8108-8113.	2.8	18
185	Self-assembled material of palladium nanoparticles and a thiacalix[4]arene Cd(<scp>ii</scp>) complex as an efficient catalyst for nitro-phenol reduction. New Journal of Chemistry, 2015, 39, 8130-8135.	2.8	19
186	Total structure determination of surface doping [Ag ₄₆ Au ₂₄ (SR) ₃₂](BPh ₄) ₂ nanocluster and its structure-related catalytic property. Science Advances, 2015, 1, e1500441.	10.3	146
187	Kinetics of p-Nitrophenol Reduction Catalyzed by PVP Stabilized Copper Nanoparticles. Catalysis Letters, 2015, 145, 1885-1892.	2.6	35
188	Antitumour, antimicrobial and catalytic activity of gold nanoparticles synthesized by different pH propolis extracts. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	18
189	Glucose-mediated catalysis of Au nanoparticles in microgels. Chemical Communications, 2015, 51, 16068-16071.	4.1	15
190	Polyacid microgels with adaptive hydrophobic pockets and ampholytic character: synthesis, solution properties and insights into internal nanostructure by cryogenic-TEM. Soft Matter, 2015, 11, 8342-8353.	2.7	28
191	Near-Infrared- and Visible-Light-Enhanced Metal-Free Catalytic Degradation of Organic Pollutants over Carbon-Dot-Based Carbocatalysts Synthesized from Biomass. ACS Applied Materials & Interfaces, 2015, 7, 27703-27712.	8.0	70
192	Proof of Concept: Magnetic Fixation of Dendron-Functionalized Iron Oxide Nanoparticles Containing Palladium Nanoparticles for Continuous-Flow Suzuki Coupling Reactions. ACS Applied Materials & Interfaces, 2015, 7, 27254-27261.	8.0	32
193	Palladium Nanoparticle-Loaded Cellulose Paper: A Highly Efficient, Robust, and Recyclable Self-Assembled Composite Catalytic System. Journal of Physical Chemistry Letters, 2015, 6, 230-238.	4.6	82
194	Metal dependent catalytic hydrogenation of nitroarenes over water-soluble glutathione capped metal nanoparticles. Journal of Colloid and Interface Science, 2015, 441, 25-29.	9.4	30
195	Interfacial nanodroplets guided construction of hierarchical Au, Au-Pt and Au-Pd particles as excellent catalysts. Scientific Reports, 2014, 4, 4849.	3.3	43
196	Gold-supported magnetically recyclable nanocatalysts: a sustainable solution for the reduction of 4-nitrophenol in water. RSC Advances, 2015, 5, 5131-5141.	3.6	60
197	Tweaking anisotropic gold nanostars: covariant control of a polymer–solvent mixture complex. RSC Advances, 2015, 5, 5205-5212.	3.6	9
198	Highly active Au-CeO2@ZrO2 yolk–shell nanoreactors for the reduction of 4-nitrophenol to 4-aminophenol. Applied Catalysis B: Environmental, 2015, 166-167, 518-528.	20.2	109
199	Synthesis of thermo- and pH-responsive Ag nanoparticle-embedded hybrid microgels and their catalytic activity in methylene blue reduction. Materials Chemistry and Physics, 2015, 149-150, 460-466.	4.0	72
200	Preparation of gold nanoparticles using hydroquinone derivatives. Materials Letters, 2015, 140, 180-183.	2.6	4
201	Hierarchical supramolecules and organization using boronic acid building blocks. Chemical Communications, 2015, 51, 2005-2020.	4.1	131

#	Article	IF	CITATIONS
202	Branched Au Nanostructures Enriched with a Uniform Facet: Facile Synthesis and Catalytic Performances. Scientific Reports, 2015, 4, 5259.	3.3	34
203	Agroforestry waste Moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. Journal of Industrial and Engineering Chemistry, 2015, 21, 1105-1111.	5.8	194
204	Microwave-assisted optimization of platinum-nickel nanoalloys for catalytic water treatment. Applied Catalysis B: Environmental, 2015, 163, 198-204.	20.2	63
205	Facile solid-state synthesis of Ag/graphene oxide nanocomposites as highly active and stable catalyst for the reduction of 4-nitrophenol. Catalysis Communications, 2015, 58, 21-25.	3.3	130
206	Magnetically separable core–shell iron oxide@nickel nanoparticles as high-performance recyclable catalysts for chemoselective reduction of nitroaromatics. Catalysis Science and Technology, 2015, 5, 286-295.	4.1	55
207	Mechanochemical preparation of advanced catalytically active bifunctional Pd-containing nanomaterials for aqueous phase hydrogenation. Catalysis Science and Technology, 2015, 5, 2085-2091.	4.1	12
209	RESPONSIVE POLYMER HYBRID GEL CROSS-LINKED BY N,N-(1,2-DIHYDROXYETHYLENE) BISACRYLAMIDE FOR CATALYTIC APPLICATION. Journal of the Chilean Chemical Society, 2016, 61, 3061-3065.	1.2	1
211	AuCu@Pt Nanoalloys for Catalytic Application in Reduction of 4-Nitrophenol. Journal of Spectroscopy, 2016, 2016, 1-8.	1.3	18
212	SILVER NANOPARTICLES-DISK DIFFUSION TEST AGAINST Escherichia coli ISOLATES. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2016, 58, 73.	1.1	18
213	A Dual Catalyst with SERS Activity for Probing Stepwise Reduction and Oxidation Reactions. ChemNanoMat, 2016, 2, 786-790.	2.8	22
214	Pd Nanocubes@ZIFâ€8: Integration of Plasmonâ€Driven Photothermal Conversion with a Metal–Organic Framework for Efficient and Selective Catalysis. Angewandte Chemie - International Edition, 2016, 55, 3685-3689.	13.8	426
215	Polypyrroleâ€wrapped Pd nanoparticles hollow capsules as a catalyst for reduction of 4â€nitroaniline. Journal of Applied Polymer Science, 2016, 133, .	2.6	6
216	Highly Efficient Transition Metal Nanoparticle Catalysts in Aqueous Solutions. Angewandte Chemie - International Edition, 2016, 55, 3091-3095.	13.8	130
217	Polymer and Membrane Design for Low Temperature Catalytic Reactions. Macromolecular Rapid Communications, 2016, 37, 700-704.	3.9	14
218	<i>Inâ€situ</i> Synthesis of Stabilizerâ€Free Gold Nanocrystals with Controllable Shape on Substrates as Highly Active Catalysts for Multiple Use. Advanced Synthesis and Catalysis, 2016, 358, 1440-1448.	4.3	10
219	Hydrazine assisted catalytic hydrogenation of PNP to PAP by NixPd100â^'x nanocatalyst. RSC Advances, 2016, 6, 64364-64373.	3.6	9
220	The preparation of a recyclable catalyst of silver nanoparticles dispersed in a mesoporous silica nanofiber matrix. RSC Advances, 2016, 6, 65613-65618.	3.6	11
221	Metal–Organic Frameworkâ€Templated Porous Carbon for Highly Efficient Catalysis: The Critical Role of Pyrrolic Nitrogen Species. Chemistry - A European Journal, 2016, 22, 3470-3477.	3.3	79

#	Article	IF	CITATIONS
222	Highly Efficient Transition Metal Nanoparticle Catalysts in Aqueous Solutions. Angewandte Chemie, 2016, 128, 3143-3147.	2.0	23
223	Plasmonic Au@Pd Nanorods with Boosted Refractive Index Susceptibility and SERS Efficiency: A Multifunctional Platform for Hydrogen Sensing and Monitoring of Catalytic Reactions. Chemistry of Materials, 2016, 28, 9169-9180.	6.7	85
224	Catalytic Reduction of 4-Nitrophenol: A Quantitative Assessment of the Role of Dissolved Oxygen in Determining the Induction Time. Nano Letters, 2016, 16, 7791-7797.	9.1	150
225	Electroless synthesis of cellulose-metal aerogel composites. Applied Physics Letters, 2016, 108, .	3.3	16
226	Surface-Engineered Polydopamine Particles as an Efficient Support for Catalytic Applications. Langmuir, 2016, 32, 13675-13686.	3.5	29
227	Comparisons of Criteria for Analyzing the Dynamical Association of Solutes in Aqueous Solutions. Chinese Physics Letters, 2016, 33, 038201.	3.3	2
228	Preparation of supported AuPd nanoalloys mediated by ionic liquid-like functionalized SBA-15: structural correlations concerning its catalytic activity. New Journal of Chemistry, 2016, 40, 6636-6642.	2.8	20
229	Influence of gold nanoparticles applied to catalytic hydrogenation of acetophenone with cationic complexes containing ruthenium. RSC Advances, 2016, 6, 53130-53139.	3.6	4
230	Spherical polyelectrolyte brushes as nanoreactors for the generation of metallic and oxidic nanoparticles: Synthesis and application in catalysis. Progress in Polymer Science, 2016, 59, 86-104.	24.7	65
231	Ag-Au alloy nanoparticles: Synthesis and in situ monitoring SERS of plasmonic catalysis. Sensors and Actuators B: Chemical, 2016, 231, 609-614.	7.8	107
232	Activation Energies of Plasmonic Catalysts. Nano Letters, 2016, 16, 3399-3407.	9.1	190
233	Plastically deformed Cu-based alloys as high-performance catalysts for the reduction of 4-nitrophenol. Catalysis Science and Technology, 2016, 6, 5737-5745.	4.1	15
234	Synthesis and catalytic application of palladium nanoparticles supported on kaolinite-based nanohybrid materials. Dalton Transactions, 2016, 45, 9065-9072.	3.3	45
235	Dealloying-based facile synthesis and highly catalytic properties of Au core/porous shell nanoparticles. Nanoscale, 2016, 8, 11707-11717.	5.6	38
236	Morphological transformations of silver nanoparticles in seedless photochemical synthesis. Materials Research Express, 2016, 3, 055014.	1.6	9
237	Morphology-Directed Catalysis with Branched Gold Nanoantennas. Journal of Physical Chemistry C, 2016, 120, 10320-10327.	3.1	20
238	Core–shell structured nanocomposites Ag@CeO ₂ as catalysts for hydrogenation of 4-nitrophenol and 2-nitroaniline. RSC Advances, 2016, 6, 47966-47973.	3.6	45
239	Spontaneous Electroless Deposition of Ultrafine Pd Nanoparticles on Poly(phenylene butadiynylene)s for the Hydroxycarbonylation of Aryl Iodides. ChemistrySelect, 2016, 1, 1832-1836.	1.5	3

		CITATION REPORT		
# 240	ARTICLE Development of Imide-Type Polymer Fibers Containing Metal Nanoparticles. , 2016, , 29	97-314.	IF	Citations
241	Identification of the First Elementary Step in the Photocatalytic Reduction of Nitrobenz Metallic Surface. Journal of Physical Chemistry Letters, 2016, 7, 4099-4104.	enethiols on a	4.6	30
243	Biosynthesis of palladium nanoparticles by using Moringa oleifera flower extract and th and biological properties. Journal of Photochemistry and Photobiology B: Biology, 2016	ieir catalytic 5, 165, 87-95.	3.8	102
244	Amorphous NiB/carbon nanohybrids: synthesis and catalytic enhancement induced by transfer. RSC Advances, 2016, 6, 94451-94458.	electron	3.6	13
245	Room temperature ionic liquid assisted synthesis of ultra-stable Au nanoparticles via a Brust–Schiffrin method. RSC Advances, 2016, 6, 82394-82400.	modified	3.6	2
246	A Hexagonal Covalent Porphyrin Framework as an Efficient Support for Gold Nanoparti Catalytic Reduction of 4â€Nitrophenol. Chemistry - A European Journal, 2016, 22, 1702	cles toward 29-17036.	3.3	32
247	A Surfactantâ€Encapsulating Polyoxometalate Nanowire Assembly as a New Carrier for Nobleâ€Metal Catalysts. Chemistry - an Asian Journal, 2016, 11, 3107-3112.	[.] Nanoscale	3.3	14
248	AuNP–Polymeric Ionic Liquid Composite Multicatalytic Nanoreactors for One-Pot Cas ACS Catalysis, 2016, 6, 7230-7237.	scade Reactions.	11.2	25
249	Synthesis of Ag/g ₃ N ₄ Composite as Highly Efficient Visib Photocatalyst for Oxidative Amidation of Aromatic Aldehydes. Advanced Synthesis and 358, 2631-2641.		4.3	53
250	Liquid–Liquid Interfacial Electron Transfer from Ferrocene to Gold(III): An Ultrasimple Gold Nanoparticle Synthesis in Water under Ambient Conditions. Inorganic Chemistry, 6361-6363.		4.0	25
251	Strategy for Synthesizing Porous Cellulose Nanocrystal Supported Metal Nanocatalyst Sustainable Chemistry and Engineering, 2016, 4, 5929-5935.	s. ACS	6.7	62
252	A Novel Trihybrid Material Based on Renewables: An Efficient Recyclable Heterogeneou Câ^'C Coupling and Reduction Reactions. Chemistry - an Asian Journal, 2016, 11, 2406		3.3	18
253	Physical chemistry of catalytic reduction of nitroarenes using various nanocatalytic sys present, and future. Journal of Nanoparticle Research, 2016, 18, 1.	tems: past,	1.9	78
254	Catalytic reduction of 4-nitrophenol over Ni-Pd nanodimers supported on nitrogen-dop graphene oxide. Journal of Hazardous Materials, 2016, 320, 96-104.	ed reduced	12.4	121
255	Manipulating ligand–nanoparticle interactions and catalytic activity through organic tunable solvent recovery. RSC Advances, 2016, 6, 78496-78504.	-aqueous	3.6	8
256	Hairy Hybrid Nanorattles of Platinum Nanoclusters with Dual-Responsive Polymer Shell Confined Nanocatalysis. Macromolecules, 2016, 49, 5649-5659.	s for	4.8	23
257	Gold Nanoparticle@Polyhedral Oligomeric Silsesquioxane Hybrid Scaffolds in Microfluid Highly Efficient and Green Catalytic Platforms. European Journal of Inorganic Chemistry 951-955.	dic Format –), 2016, 2016,	2.0	9
258	Morphology-selective synthesis of active and durable gold catalysts with high catalytic in the reduction of 4-nitrophenol. Nano Research, 2016, 9, 3099-3115.	performance	10.4	52

#	Article	IF	CITATIONS
259	Ag–Fe2O3nanocomposites with enhanced catalytic activity for reduction of 4-nitrophenol. Materials Research Express, 2016, 3, 075024.	1.6	4
260	Catalysis by multifunctional polyelectrolyte capsules. RSC Advances, 2016, 6, 81569-81577.	3.6	17
261	Hierarchical Cu@MnO ₂ Core–shell Nanowires: A Nonpreciousâ€Metal Catalyst with an Excellent Catalytic Activity Toward the Reduction of 4â€Nitrophenol. ChemCatChem, 2016, 8, 2885-2889.	3.7	46
262	Cucurbit[7]uril-stabilized gold nanoparticles as catalysts of the nitro compound reduction reaction. RSC Advances, 2016, 6, 86309-86315.	3.6	15
263	A Catalytic Deposition Method of Silver Nanoparticles on TiO ₂ via Low-temperature Decomposition of Silver Oxalates. Chemistry Letters, 2016, 45, 1195-1197.	1.3	1
264	Application of ferrocene-resorcinarene in silver nanoparticle synthesis. RSC Advances, 2016, 6, 87128-87133.	3.6	9
265	Reaction rate of a composite core–shell nanoreactor with multiple nanocatalysts. Physical Chemistry Chemical Physics, 2016, 18, 20758-20767.	2.8	18
266	NiCo nanotubes plated on Pd seeds as a designed magnetically recollectable catalyst with high noble metal utilisation. RSC Advances, 2016, 6, 70033-70039.	3.6	24
267	Self-assembly of hollow spherical nanocatalysts with encapsulated Pt NPs and the effect of Ce-dipping on catalytic activity. RSC Advances, 2016, 6, 70303-70310.	3.6	9
268	An ethylene glycol intercalated monometallic layered double hydroxide based on iron as an efficient bifunctional catalyst. Dalton Transactions, 2016, 45, 17508-17520.	3.3	17
269	Synthesis of catalytically active gold clusters on the surface of Fe ₃ O ₄ @SiO ₂ nanoparticles. RSC Advances, 2016, 6, 100614-100622.	3.6	11
270	Facile Preparation of Uniform Nanocomposite Spheres with Loading Silver Nanoparticles on Polystyrene-methyl Acrylic Acid Spheres for Catalytic Reduction of 4-Nitrophenol. Journal of Physical Chemistry C, 2016, 120, 25935-25944.	3.1	128
271	Precise localization of metal nanoparticles in dendrimer nanosnakes or inner periphery and consequences in catalysis. Nature Communications, 2016, 7, 13152.	12.8	99
272	Green synthesis and catalytic application of curcumin stabilized silver nanoparticles. Journal of Chemical Sciences, 2016, 128, 1871-1878.	1.5	36
273	Facile assembly of nanosheet array-like CuMgAl-layered double hydroxide/rGO nanohybrids for highly efficient reduction of 4-nitrophenol. Journal of Materials Chemistry A, 2016, 4, 18990-19002.	10.3	99
275	Preparation of the Ag/RGO nanocomposite by use of Abutilon hirtum leaf extract: A recoverable catalyst for the reduction of organic dyes in aqueous medium at room temperature. International Journal of Hydrogen Energy, 2016, 41, 21236-21245.	7.1	103
276	An easily accessible and recyclable copper nanoparticle catalyst for the solvent-free synthesis of dipyrromethanes and aromatic amines. RSC Advances, 2016, 6, 103065-103071.	3.6	12
277	Gold nanoparticles supported on nanoscale amine-functionalized MIL-101(Cr) as a highly active catalyst for epoxidation of styrene. RSC Advances, 2016, 6, 106856-106865.	3.6	22

#	Article	IF	CITATIONS
278	Soft, Oxidative Stripping of Alkyl Thiolate Ligands from Hydroxyapatite‧upported Gold Nanoclusters for Oxidation Reactions. Chemistry - an Asian Journal, 2016, 11, 532-539.	3.3	55
279	Multifunctional Fe ₂ O ₃ –Au Nanoparticles with Different Shapes: Enhanced Catalysis, Photothermal Effects, and Magnetic Recyclability. Journal of Physical Chemistry C, 2016, 120, 15162-15172.	3.1	78
280	Synthesis of Water-Dispersible Pd Nanoparticles Using a Novel Oxacalixarene Derivative and their Catalytic Application in C–C Coupling Reactions. Catalysis Letters, 2016, 146, 1581-1590.	2.6	10
281	Robust Polymer-Coated Diamond Supports for Noble-Metal Nanoparticle Catalysts. ACS Catalysis, 2016, 6, 4729-4738.	11.2	24
282	Impact of Gold Nanoparticle Stabilizing Ligands on the Colloidal Catalytic Reduction of 4-Nitrophenol. ACS Catalysis, 2016, 6, 5553-5560.	11.2	214
283	One-step synthesis of poly(ethyleneglycol dimethacrylate)-microspheres-supported nano-Au catalyst in methanol–water solution under l³-ray radiation. RSC Advances, 2016, 6, 55878-55883.	3.6	11
284	Hydrogenation of nitroarenes into aromatic amines over Ag@BCN colloidal catalysts. Journal of Colloid and Interface Science, 2016, 477, 131-137.	9.4	25
285	From Mono to Tris-1,2,3-triazole-Stabilized Gold Nanoparticles and Their Compared Catalytic Efficiency in 4-Nitrophenol Reduction. Inorganic Chemistry, 2016, 55, 6776-6780.	4.0	33
286	Robust Nanostructured Silver and Copper Fabrics with Localized Surface Plasmon Resonance Property for Effective Visible Light Induced Reductive Catalysis. Advanced Materials Interfaces, 2016, 3, 1500632.	3.7	46
287	Pd Nanocubes@ZIFâ€8: Integration of Plasmonâ€Driven Photothermal Conversion with a Metal–Organic Framework for Efficient and Selective Catalysis. Angewandte Chemie, 2016, 128, 3749-3753.	2.0	124
288	Catalytic activity of bare and porous palladium nanostructures in the reduction of 4-nitrophenol. RSC Advances, 2016, 6, 11911-11920.	3.6	35
289	Kinetics and mechanism of reduction of nitrobenzene catalyzed by silver-poly(N-isopropylacryl) Tj ETQq1 1 0.784	314 rgBT 4.0	Oyerlock 10
290	Phenylacetylene hydrogenation on Au@Ni bimetallic core–shell nanoparticles synthesized under mild conditions. Catalysis Science and Technology, 2016, 6, 708-712.	4.1	19
291	Gold over Ceria–Titania Mixed Oxides: Solar Light Induced Catalytic Activity for Nitrophenol Reduction. Catalysis Letters, 2016, 146, 291-303.	2.6	25
292	Surface cavities of Ni(OH) ₂ nanowires can host Au nanoparticles as supported catalysts with high catalytic activity and stability. Journal of Materials Chemistry A, 2016, 4, 2590-2596.	10.3	15
293	Spectrophotometric evaluation of surface morphology dependent catalytic activity of biosynthesized silver and gold nanoparticles using UV–vis spectra: A comparative kinetic study. Applied Surface Science, 2016, 366, 275-283.	6.1	30
294	Nanoporous lanthanide metal–organic frameworks as efficient heterogeneous catalysts for the Henry reaction. CrystEngComm, 2016, 18, 1337-1349.	2.6	43
295	A simple route to diverse noble metal-decorated iron oxide nanoparticles for catalysis. Nanoscale, 2016, 8, 1535-1544.	5.6	63

#	Article	IF	CITATIONS
296	Graphene stabilized ultra-small CuNi nanocomposite with high activity and recyclability toward catalysing the reduction of aromatic nitro-compounds. Nanoscale, 2016, 8, 536-542.	5.6	65
297	In situ synthesized Au–Ag nanocages on graphene oxide nanosheets: a highly active and recyclable catalyst for the reduction of 4-nitrophenol. New Journal of Chemistry, 2016, 40, 1685-1692.	2.8	37
298	ZnO nanoparticles as reusable heterogeneous catalyst for efficient one pot three component synthesis of imidazo-fused polyheterocycles. Tetrahedron Letters, 2016, 57, 1346-1350.	1.4	32
299	Highly Efficient Catalytic Performances of Eco-Friendly Grown Silver Nanoshells. Journal of Physical Chemistry C, 2016, 120, 4130-4138.	3.1	14
300	One-step synthesis of hollow porous gold nanoparticles with tunable particle size for the reduction of 4-nitrophenol. Journal of Hazardous Materials, 2016, 310, 89-97.	12.4	148
301	A turn-on fluorescent probe for Hg2+ detection by using gold nanoparticle-based hybrid microgels. Sensors and Actuators B: Chemical, 2016, 228, 767-773.	7.8	35
302	Ultrasensitive electrochemical immunoassay for surface array protein, a Bacillus anthracis biomarker using Au–Pd nanocrystals loaded on boron-nitride nanosheets as catalytic labels. Biosensors and Bioelectronics, 2016, 80, 442-449.	10.1	32
303	PdNP Decoration of Halloysite Lumen via Selective Grafting of Ionic Liquid onto the Aluminol Surfaces and Catalytic Application. ACS Applied Materials & Interfaces, 2016, 8, 4862-4869.	8.0	58
304	Shape-controlled synthesis of 3D copper nicotinate hollow microstructures and their catalytic properties. RSC Advances, 2016, 6, 18033-18039.	3.6	9
305	Enhanced Catalytic Activity of Ag/Rh Bimetallic Nanomaterial: Evidence of an Ensemble Effect. Journal of Physical Chemistry C, 2016, 120, 5457-5467.	3.1	37
306	Green synthesis and characterization of gold nanoparticles embedded into magnetic carbon nanocages and their highly efficient degradation of methylene blue. RSC Advances, 2016, 6, 28774-28780.	3.6	16
307	In situ formation of gold nanoparticles on magnetic halloysite nanotubes via polydopamine chemistry for highly effective and recyclable catalysis. RSC Advances, 2016, 6, 29245-29253.	3.6	32
308	Phytoproteins in green leaves as building blocks for photosynthesis of gold nanoparticles: An efficient electrocatalyst towards the oxidation of ascorbic acid and the reduction of hydrogen peroxide. Journal of Photochemistry and Photobiology B: Biology, 2016, 155, 7-12.	3.8	19
309	Green synthesis of Pd@graphene nanocomposite: Catalyst for the selective oxidation of alcohols. Arabian Journal of Chemistry, 2016, 9, 835-845.	4.9	50
310	A ternary Cu ₂ O–Cu–CuO nanocomposite: a catalyst with intriguing activity. Dalton Transactions, 2016, 45, 3139-3150.	3.3	178
311	Catalytic performance of the in situ synthesized palladium–polymer nanocomposite. New Journal of Chemistry, 2016, 40, 2296-2303.	2.8	14
312	Improving gold catalysis of nitroarene reduction with surface Pd. Catalysis Today, 2016, 264, 31-36.	4.4	23
313	Template-based synthesis of metallic Pd nanotubes by electroless deposition and their use as catalysts in the 4-nitrophenol model reaction. Green Chemistry, 2016, 18, 558-564.	9.0	28

#	Article	IF	CITATIONS
314	Synthesis of a hierarchical structured NiO/NiS composite catalyst for reduction of 4-nitrophenol and organic dyes. RSC Advances, 2017, 7, 4353-4362.	3.6	51
315	"Naked―Iridium(IV) Oxide Nanoparticles as Expedient and Robust Catalysts for Hydrogenation of Nitrogen Heterocycles: Remarkable Vicinal Substitution Effect and Recyclability. Advanced Synthesis and Catalysis, 2017, 359, 933-940.	4.3	45
316	Kinetic Analysis of the Reduction of 4-Nitrophenol Catalyzed by CeO ₂ Nanorods-Supported CuNi Nanoparticles. Industrial & Engineering Chemistry Research, 2017, 56, 1159-1167.	3.7	115
317	Selective solute adsorption and partitioning around single PNIPAM chains. Physical Chemistry Chemical Physics, 2017, 19, 5906-5916.	2.8	32
318	Hydrogenation of 4-nitrophenol to 4-aminophenol at room temperature: Boosting palladium nanocrystals efficiency by coupling with copper via liquid phase pulsed laser ablation. Applied Surface Science, 2017, 401, 314-322.	6.1	56
319	Silver/graphene nanocomposites as catalysts for the reduction of <i>p</i> â€nitrophenol to <i>p</i> â€aminophenol: Materials preparation and reaction kinetics studies. Canadian Journal of Chemical Engineering, 2017, 95, 1297-1304.	1.7	16
320	Palladium Nanocubes Assembled Electrospun Nanofiber Membrane: Facile Preparation and Catalytic Properties. Macromolecular Materials and Engineering, 2017, 302, 1600432.	3.6	2
321	Synthesis of Ibuprofen intermediate using alcoholic silver nanoparticles and its kinetics: A greener approach towards drug synthesis. Chemical Physics Letters, 2017, 671, 147-153.	2.6	1
322	Magnetic Cube‧haped NiFe ₂ O ₄ Nanoparticles: An Effective Model Catalyst for Nitro Compound Reduction. ChemCatChem, 2017, 9, 1953-1959.	3.7	26
323	Silver–Copper Hollow Nanoshells as Phaseâ€Transfer Reagents and Catalysts in the Reduction of 4â€Nitroaniline. Particle and Particle Systems Characterization, 2017, 34, 1600358.	2.3	Ο
324	Multifaceted Gold–Palladium Bimetallic Nanorods and Their Geometric, Compositional, and Catalytic Tunabilities. ACS Nano, 2017, 11, 3213-3228.	14.6	60
325	Facile preparation of a silver nanoparticles-containing membrane with an enhanced catalysis and separation. Applied Catalysis A: General, 2017, 536, 35-44.	4.3	21
326	Electrostatic Assembly of Functional and Macromolecular Ferricinium Chloride-Stabilized Gold Nanoparticles. Inorganic Chemistry, 2017, 56, 2784-2791.	4.0	17
327	Pd nanospheres decorated reduced graphene oxide with multi-functions: Highly efficient catalytic reduction and ultrasensitive sensing of hazardous 4-nitrophenol pollutant. Journal of Hazardous Materials, 2017, 333, 54-62.	12.4	145
328	A general strategy toward the large-scale synthesis of the noble metal-oxide nanocrystal hybrids with intimate interfacial contact for the catalytic reduction of p-nitrophenol and photocatalytic degradation of pollutants. Research on Chemical Intermediates, 2017, 43, 4759-4779.	2.7	4
329	Morphology evolution of Ag/Au nanocomposites via temperature-controlled galvanic exchange to enhance catalytic activity. RSC Advances, 2017, 7, 7718-7724.	3.6	14
330	Pd–ZnO nanowire arrays as recyclable catalysts for 4-nitrophenol reduction and Suzuki coupling reactions. RSC Advances, 2017, 7, 7964-7972.	3.6	29
331	Imparting Catalytic Activity to a Covalent Organic Framework Material by Nanoparticle Encapsulation. ACS Applied Materials & Interfaces, 2017, 9, 7481-7488.	8.0	157

#	Article	IF	CITATIONS
332	Conducting polymer-noble metal nanoparticle hybrids: Synthesis mechanism application. Progress in Polymer Science, 2017, 70, 52-91.	24.7	97
333	Compound Copper Chalcogenide Nanocrystals. Chemical Reviews, 2017, 117, 5865-6109.	47.7	670
334	Fe ₃ O ₄ /FeNi Embedded Nanostructure and Its Kinetic Law for Selective Catalytic Reduction of <i>p</i> -Nitrophenyl Compounds. Inorganic Chemistry, 2017, 56, 5152-5157.	4.0	24
335	A Multifunctional Tb-MOF for Highly Discriminative Sensing of Eu ³⁺ /Dy ³⁺ and as a Catalyst Support of Ag Nanoparticles. Small, 2017, 13, 1602996.	10.0	227
336	Insight into the mechanism of gold-catalyzed reduction of nitroarenes based on the substituent effect and in situ IR. New Journal of Chemistry, 2017, 41, 3865-3871.	2.8	25
337	Probing the surface reactivity of nanocrystals by the catalytic degradation of organic dyes: the effect of size, surface chemistry and composition. Journal of Materials Chemistry A, 2017, 5, 11917-11929.	10.3	49
338	Morphological effects on the selectivity of intramolecular versus intermolecular catalytic reaction on Au nanoparticles. Nanoscale, 2017, 9, 7727-7733.	5.6	17
339	RhAg/rGO nanocatalyst: ligand-controlled synthesis and superior catalytic performances for the reduction of 4-nitrophenol. Journal of Materials Science, 2017, 52, 9465-9476.	3.7	19
340	Remarkable Facet Selective Reduction of 4-Nitrophenol by Morphologically Tailored (111) Faceted Cu ₂ O Nanocatalyst. ACS Omega, 2017, 2, 1968-1984.	3.5	101
341	Controllable synthesis of P(NIPAM-co-MPTMS)/PAA–Au composite materials with tunable LSPR performance. Journal of Materials Science, 2017, 52, 9584-9601.	3.7	14
342	Insights into the catalytic reduction of organic dyes and antibacterial activity of graphene oxide supported mono and bimetallic nanocomposites. New Journal of Chemistry, 2017, 41, 4348-4359.	2.8	13
343	A nanohybrid of organoplatinum(II) complex and graphene oxide as catalyst for reduction of p-nitrophenol. Journal of Organometallic Chemistry, 2017, 842, 1-8.	1.8	17
344	Copper and silver nanoparticles stabilized by bistriazole-based dendritic amphiphile micelles for 4-nitrophenol reduction. New Journal of Chemistry, 2017, 41, 4546-4554.	2.8	9
345	Bottomâ€up trifft auf Topâ€down: Patchâ€artig strukturierte Hybridfasermatten als effiziente Katalyseplattform. Angewandte Chemie, 2017, 129, 416-419.	2.0	10
346	Facile fabrication of polystyrene microsphere supported gold-palladium alloy nanoparticles with superior catalytic performance for the reduction of 4-nitrophenol in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 417-424.	4.7	18
347	Nanoscale Surface Curvature Effects on Ligand–Nanoparticle Interactions: A Plasmon-Enhanced Spectroscopic Study of Thiolated Ligand Adsorption, Desorption, and Exchange on Gold Nanoparticles. Nano Letters, 2017, 17, 4443-4452.	9.1	81
349	Ag@SrTiO ₃ nanocomposite for super photocatalytic degradation of organic dye and catalytic reduction of 4-nitrophenol. New Journal of Chemistry, 2017, 41, 5678-5687.	2.8	49
350	Enhanced stability and catalytic activity of bismuth nanoparticles by modified with porous silica. Journal of Physics and Chemistry of Solids, 2017, 110, 9-14.	4.0	22

#	Article	IF	CITATIONS
351	Catalytic Materials Based on Surface Coating with Poly(ethyleneimine) tabilized Gold Nanoparticles. ChemCatChem, 2017, 9, 3965-3973.	3.7	14
352	Au and Ag nanoparticles encapsulated within silica nanospheres using dendrimers as dual templating agent and their catalytic activity. Molecular Catalysis, 2017, 438, 184-196.	2.0	24
353	Surfactant free synthesis of gold nanoparticles within meso-channels of non-functionalized SBA-15 for its promising catalytic activity. Powder Technology, 2017, 315, 147-156.	4.2	27
354	Shape and Size Regulation of Gold Nanoparticles by Poly(<i>N</i> , <i>N</i> -diethylacrylamide) Microgels. Chemistry Letters, 2017, 46, 760-763.	1.3	6
355	One-step catalytic reduction of 4-nitrophenol through the direct injection of metal salts into oxygen-depleted reactants. Catalysis Science and Technology, 2017, 7, 1460-1464.	4.1	32
356	Bottomâ€Up Meets Topâ€Down: Patchy Hybrid Nonwovens as an Efficient Catalysis Platform. Angewandte Chemie - International Edition, 2017, 56, 405-408.	13.8	67
357	Cross-Linked Biopolymer Stabilized Exfoliated Titanate Nanosheet-Supported AgNPs: A Green Sustainable Ternary Nanocomposite Hydrogel for Catalytic and Antimicrobial Activity. ACS Sustainable Chemistry and Engineering, 2017, 5, 1881-1891.	6.7	46
358	Aqueous Exfoliation of Transition Metal Dichalcogenides Assisted by DNA/RNA Nucleotides: Catalytically Active and Biocompatible Nanosheets Stabilized by Acid–Base Interactions. ACS Applied Materials & Interfaces, 2017, 9, 2835-2845.	8.0	33
359	Morphology tuning of assembled Au–Cu nicotinate rings by ligand coordination and their use as efficient catalysts. New Journal of Chemistry, 2017, 41, 1509-1517.	2.8	14
360	One-step preparation of magnetic recyclable quinary graphene hydrogels with high catalytic activity. Journal of Colloid and Interface Science, 2017, 491, 72-79.	9.4	15
361	An efficient parts-per-million α-Fe ₂ O ₃ nanocluster/graphene oxide catalyst for Suzuki–Miyaura coupling reactions and 4-nitrophenol reduction in aqueous solution. Chemical Communications, 2017, 53, 644-646.	4.1	46
362	Biosynthesis of the CuO nanoparticles using <i>Euphorbia Chamaesyce</i> leaf extract and investigation of their catalytic activity for the reduction of 4â€nitrophenol. IET Nanobiotechnology, 2017, 11, 766-772.	3.8	22
363	Cellulose nanocrystal-derived hollow mesoporous carbon spheres and their application as a metal-free catalyst. Nanotechnology, 2017, 28, 505606.	2.6	9
364	An antibacterial composite system based on multi-responsive microgels hosting monodisperse gold nanoparticles. Journal of Polymer Research, 2017, 24, 1.	2.4	10
365	Synthesis of late transition-metal nanoparticles by Na naphthalenide reduction of salts and their catalytic efficiency. Inorganic Chemistry Frontiers, 2017, 4, 2037-2044.	6.0	5
366	Interactions of Native Cyclodextrins with Metal Ions and Inorganic Nanoparticles: Fertile Landscape for Chemistry and Materials Science. Chemical Reviews, 2017, 117, 13461-13501.	47.7	238
367	New Features and Uncovered Benefits of Polycrystalline Magnetite as Reusable Catalyst in Reductive Chemical Conversion. Journal of Physical Chemistry C, 2017, 121, 25195-25205.	3.1	15
368	Novel core–shell-like nanocomposites <i>x</i> Cu@Cu ₂ O/MgAlO-rGO through an <i>in situ</i> self-reduction strategy for highly efficient reduction of 4-nitrophenol. Dalton Transactions, 2017, 46, 15836-15847.	3.3	43

#	Article	IF	CITATIONS
369	Enantioselective hydrogenation of N-heteroaromatics catalyzed by chiral diphosphine modified binaphthyl palladium nanoparticles. Catalysis Science and Technology, 2017, 7, 5515-5520.	4.1	21
370	Core–Shell–Corona Silica Hybrid Nanoparticles Templated by Spherical Polyelectrolyte Brushes: A Study by Small Angle X-ray Scattering. Langmuir, 2017, 33, 9857-9865.	3.5	17
371	Synthesis of bifunctional non-noble monolithic catalyst Co-W-P/carbon cloth for sodium borohydride hydrolysis and reduction of 4-nitrophenol. International Journal of Hydrogen Energy, 2017, 42, 25860-25868.	7.1	30
372	Revealing the Role of Electrostatics in Gold-Nanoparticle-Catalyzed Reduction of Charged Substrates. ACS Catalysis, 2017, 7, 7141-7145.	11.2	46
373	Morphology evolution of nanorods decorated on electrospun nanofibers and their applications in SERS and catalysis. Materials and Design, 2017, 135, 9-15.	7.0	9
374	DNA-based materials as chemical reactors for synthesis of metal nanoparticles. Polymer Science - Series C, 2017, 59, 18-28.	1.7	4
375	Yolk shell nanocomposite particles as bioactive bone fillers and growth factor carriers. Nanoscale, 2017, 9, 14520-14532.	5.6	6
376	In Situ Synthesis of Core–Shell Pt–Cu Frame@Metal–Organic Frameworks as Multifunctional Catalysts for Hydrogenation Reaction. Chemistry of Materials, 2017, 29, 6336-6345.	6.7	42
377	Catalyzed Bimolecular Reactions in Responsive Nanoreactors. ACS Catalysis, 2017, 7, 5604-5611.	11.2	53
378	Diversityâ€Oriented Synthesis of Spirooxindoles Using Surfaceâ€Modified TiO ₂ Nanoparticles as Heterogeneous Acid Catalyst. ChemistrySelect, 2017, 2, 5933-5941.	1.5	16
379	In situ synthesis of gold nanoparticles on cotton fabric for multifunctional applications. Cellulose, 2017, 24, 4547-4560.	4.9	36
380	In Situ Growth of Clean Pd Nanoparticles on Polystyrene Microspheres Assisted by Functional Reduced Graphene Oxide and Their Excellent Catalytic Properties. Langmuir, 2017, 33, 8157-8164.	3.5	19
381	Facile obtaining of Iridium(0), Platinum(0) and Platinum(0)-Iridium(0) alloy nanoparticles and the catalytic reduction of 4-nitrophenol. Materials Chemistry and Physics, 2017, 201, 289-296.	4.0	12
382	Low-temperature ortho–para hydrogen conversion catalyzed by gold nanoparticles: Particle size does not affect the rate. International Journal of Hydrogen Energy, 2017, 42, 22897-22902.	7.1	16
383	A simple and general approach for the decoration of interior surfaces of silica hollow microspheres with noble metal nanoparticles and their application in catalysis. Inorganic Chemistry Frontiers, 2017, 4, 1634-1641.	6.0	16
384	Role of Water in the Dynamic Crystallization of CuTCNQ for Enhanced Redox Catalysis (TCNQ =) Tj ETQq1 1 0.78	84314 rgB ⁻	T /Qverlock 1
385	Ag-loaded thermo-sensitive composite microgels for enhanced catalytic reduction of methylene blue. Nanotechnology for Environmental Engineering, 2017, 2, 1.	3.3	35
386	Porous Co2P nanowires as high efficient bifunctional catalysts for 4-nitrophenol reduction and sodium borohydride hydrolysis. Journal of Colloid and Interface Science, 2017, 507, 429-436.	9.4	51

#	Article	IF	CITATIONS
387	Fabrication of Ag and Au nanoparticles in cross-linked polymer microgels for their comparative catalytic study. Materials Science-Poland, 2017, 35, 651-659.	1.0	15
388	Ag-Cu bimetallic nanocatalysts for p-nitrophenol reduction using a green hydrogen source. Journal of Environmental Chemical Engineering, 2017, 5, 6148-6155.	6.7	35
389	Highly Efficient Regeneration of Deactivated Au/C Catalyst for 4-Nitrophenol Reduction. Journal of Physical Chemistry C, 2017, 121, 25882-25887.	3.1	23
390	Sheetlike gold nanostructures/graphene oxide composites via a one-pot green fabrication protocol and their interesting two-stage catalytic behaviors. RSC Advances, 2017, 7, 51838-51846.	3.6	46
391	Synthesis of Au nanoparticles supported on mesoporous N-doped carbon and its high catalytic activity towards hydrogenation of 4-nitrophenol to 4-aminophenol. International Journal of Hydrogen Energy, 2017, 42, 29236-29243.	7.1	26
392	Fe 3 O 4 @SiO 2 core shell particles as platforms for the decoration of Ag nanoparticles. Materials Today: Proceedings, 2017, 4, 7076-7082.	1.8	15
393	2-Aminothiazole-functionalized triazine-modified polystyrene decorated with gold nanoparticles as composite catalyst for the reduction of 4-nitrophenol. Reactive and Functional Polymers, 2017, 121, 58-66.	4.1	35
394	Synergistic Effects of Gold–Palladium Nanoalloys and Reducible Supports on the Catalytic Reduction of 4-Nitrophenol. Langmuir, 2017, 33, 7086-7095.	3.5	46
395	The Langmuir–Hinshelwood approach for kinetic evaluation of cucurbit[7]uril-capped gold nanoparticles in the reduction of the antimicrobial nitrofurantoin. Physical Chemistry Chemical Physics, 2017, 19, 18913-18923.	2.8	15
396	Magnetic polyaniline-chitosan nanocomposite decorated with palladium nanoparticles for enhanced catalytic reduction of 4-nitrophenol. Molecular Catalysis, 2017, 439, 72-80.	2.0	82
397	Long-Range Plasmon Field and Plasmoelectric Effect on Catalysis Revealed by Shell-Thickness-Tunable Pinhole-Free Au@SiO ₂ Core–Shell Nanoparticles: A Case Study of <i>p</i> -Nitrophenol Reduction. ACS Catalysis, 2017, 7, 5391-5398.	11.2	73
398	Asymmetric nanoparticle may go "active―at room temperature. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	5.1	1
399	Tailoring the nickel nanoparticles anchored on the surface of Fe ₃ O ₄ @SiO ₂ spheres for nanocatalysis. Nanotechnology, 2017, 28, 345601.	2.6	19
400	Encapsulation of Ag nanoparticles in magnetically modified silica nanostructures for reduction of 4-nitrophenol. Monatshefte Für Chemie, 2017, 148, 1423-1431.	1.8	3
401	Cobalt doped CuO nanoparticles as a highly efficient heterogeneous catalyst for reduction of 4-nitrophenol to 4-aminophenol. Applied Catalysis A: General, 2017, 543, 257-265.	4.3	99
402	Copper nanoparticles catalyzed economical synthesis of 3-substituted isocoumarins from 2-chlorobenzoic acids/amides and 1,3-diketones. Tetrahedron Letters, 2017, 58, 3164-3167.	1.4	10
403	Catalytic Properties of Cryogelated Noble Metal Aerogels. Zeitschrift Fur Physikalische Chemie, 2017, 231, 63-75.	2.8	19
404	Development of highly efficient Cu versus Pd catalysts supported on graphitic carbon materials for the reduction of 4-nitrophenol to 4-aminophenol at room temperature. Carbon, 2017, 111, 150-161.	10.3	54

#	Article	IF	CITATIONS
405	Tuning Colloidal Stability of Layered Double Hydroxides: From Monovalent Ions to Polyelectrolytes. ChemPlusChem, 2017, 82, 121-131.	2.8	57
406	Controllable magnetic 3D nitrogen-doped graphene gel: Synthesis, characterization, and catalytic performance. Applied Catalysis B: Environmental, 2017, 204, 316-323.	20.2	47
407	In Situ Synthesis of Gold Nanoparticles on Wool Powder and Their Catalytic Application. Materials, 2017, 10, 295.	2.9	15
408	Halide-Enhanced Catalytic Activity of Palladium Nanoparticles Comes at the Expense of Catalyst Recovery. Catalysts, 2017, 7, 280.	3.5	10
409	Silver Nanoprism-Loaded Eggshell Membrane: A Facile Platform for In Situ SERS Monitoring of Catalytic Reactions. Crystals, 2017, 7, 45.	2.2	13
410	Catalyst System for Hydrogenation Catalysis Based on Multiarm Hyperbranched Polymer Templated Metal (Au, Pt, Pd, Cu) Nanoparticles. Polymers, 2017, 9, 459.	4.5	12
411	Anti-bacterial chitosan/zinc phthalocyanine fibers supported metallic and bimetallic nanoparticles for the removal of organic pollutants. Carbohydrate Polymers, 2017, 173, 676-689.	10.2	109
412	Facile solid-state synthesis of highly dispersed Cu nanospheres anchored on coal-based activated carbons as an efficient heterogeneous catalyst for the reduction of 4-nitrophenol. Journal of Solid State Chemistry, 2018, 260, 117-123.	2.9	30
413	Catalytically Active Bacterial Nanocelluloseâ€Based Ultrafiltration Membrane. Small, 2018, 14, e1704006.	10.0	59
414	CO ₂ -Triggered Recoverable Metal Catalyst Nanoreactors using Unimolecular Core–Shell Star Copolymers as Carriers. ACS Applied Nano Materials, 2018, 1, 1280-1290.	5.0	12
415	Simple surface-assisted formation of palladium nanoparticles on polystyrene microspheres and their application in catalysis. Inorganic Chemistry Frontiers, 2018, 5, 1133-1138.	6.0	12
416	Electron―and Hydrideâ€Reservoir Organometallics as Precursors of Catalytically Efficient Transition Metal Nanoparticles in Water. Chemistry - A European Journal, 2018, 24, 6645-6653.	3.3	10
417	Platinized spherical supramolecular nanoassemblies of a porphyrin: facile synthesis and excellent catalytic recyclability. Physical Chemistry Chemical Physics, 2018, 20, 8488-8497.	2.8	10
418	Ionic structure around polarizable metal nanoparticles in aqueous electrolytes. Soft Matter, 2018, 14, 4053-4063.	2.7	19
419	A single nanoparticle-based real-time monitoring of biocatalytic progress and detection of hydrogen peroxide. Talanta, 2018, 185, 581-585.	5.5	6
420	DNA metallization: principles, methods, structures, and applications. Chemical Society Reviews, 2018, 47, 4017-4072.	38.1	156
421	Ag–Au bimetallic nanocomposites stabilized with organic–inorganic hybrid microgels: synthesis and their regulated optical and catalytic properties. RSC Advances, 2018, 8, 12428-12438.	3.6	44
422	In situstudy of the kinetics of growth of Pb nanoparticles embedded in a PbO–B2O3glass. Journal of Applied Crystallography, 2018, 51, 395-405.	4.5	0

#	Article	IF	CITATIONS
423	Effect of alkali and alkaline earth metal dopants on catalytic activity of mesoporous cobalt oxide evaluated using a model reaction. Applied Catalysis A: General, 2018, 555, 189-195.	4.3	15
424	Mussel inspired green synthesis of silver nanoparticles-decorated halloysite nanotube using dopamine: characterization and evaluation of its catalytic activity. Applied Nanoscience (Switzerland), 2018, 8, 173-186.	3.1	61
425	Room-Temperature Turkevich Method: Formation of Gold Nanoparticles at the Speed of Mixing Using Cyclic Oxocarbon Reducing Agents. Journal of Physical Chemistry C, 2018, 122, 5105-5118.	3.1	44
426	Nanoalloy Materials for Chemical Catalysis. Advanced Materials, 2018, 30, e1705698.	21.0	139
427	Novel synthesis of Fe 2 O 3 –Pt ellipsoids coated by doubleâ€shelled La 2 O 3 as a catalyst for the reduction of 4â€nitrophenol. Applied Organometallic Chemistry, 2018, 32, e4208.	3.5	5
428	Green synthesis of Fe ₃ O ₄ @SiO ₂ â€Ag magnetic nanocatalyst using safflower extract and its application as recoverable catalyst for reduction of dye pollutants in water. Applied Organometallic Chemistry, 2018, 32, e4249.	3.5	47
429	Fabrication of tunable hierarchical MXene@AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. Science China Materials, 2018, 61, 728-736.	6.3	203
430	Preparation and recyclable catalysis performance of functional macroporous polyHIPE immobilized with gold nanoparticles on its surface. RSC Advances, 2018, 8, 5912-5919.	3.6	23
431	Solid-State Synthesis of Metal Nanoparticles Supported on Cellulose Nanocrystals and Their Catalytic Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 3974-3983.	6.7	106
432	A palladium complex immobilized onto a magnetic GO-MnFe ₂ O ₄ surface as an effective and recyclable catalyst for the reduction of <i>p</i> -nitrophenol. Dalton Transactions, 2018, 47, 4175-4182.	3.3	31
433	Heteroatomâ€Doped Carbon Nanomaterials as Metalâ€Free Catalysts for the Reduction of 4â€Nitrophenol. ChemistrySelect, 2018, 3, 1737-1748.	1.5	31
434	An insight into the effect of composition for enhance catalytic performance of biogenic Au/Ag bimetallic nanoparticles. Journal of Physical Organic Chemistry, 2018, 31, e3815.	1.9	11
435	Correlating structural dynamics and catalytic activity of AgAu nanoparticles with ultrafast spectroscopy and all-atom molecular dynamics simulations. Faraday Discussions, 2018, 208, 269-286.	3.2	5
436	Reaction Pathway Dependence in Plasmonic Catalysis: Hydrogenation as a Model Molecular Transformation. Chemistry - A European Journal, 2018, 24, 12330-12339.	3.3	33
437	Electron transfer-induced catalytic enhancement over bismuth nanoparticles supported by N-doped graphene. Chemical Engineering Journal, 2018, 334, 1691-1698.	12.7	50
438	Engineering of responsive polymer based nano-reactors for facile mass transport and enhanced catalytic degradation of 4-nitrophenol. Journal of Environmental Sciences, 2018, 72, 43-52.	6.1	34
439	Natural α-Fe 2 O 3 as an efficient catalyst for the p-nitrophenol reduction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 229, 126-134.	3.5	46
440	Catalytic efficiency of macrocyclic-capped gold nanoparticles: cucurbit[n]urils versus cyclodextrins. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	10

#	Article	IF	CITATIONS
441	Synthesis of shape and size-dependent CuAg bimetallic dumbbell structures for organic pollutant hydrogenation. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 102, 44-49.	2.7	7
442	Catalysis by Metallic Nanoparticles in Solution: Thermosensitive Microgels as Nanoreactors. Zeitschrift Fur Physikalische Chemie, 2018, 232, 773-803.	2.8	42
443	Cooperative communication within and between single nanocatalysts. Nature Chemistry, 2018, 10, 607-614.	13.6	95
444	l-serine-functionalized montmorillonite decorated with Au nanoparticles: A new highly efficient catalyst for the reduction of 4-nitrophenol. Journal of Catalysis, 2018, 361, 143-155.	6.2	31
445	Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity. Scientific Reports, 2018, 8, 4589.	3.3	281
446	Agâ€Nanoparticlesâ€Embedded Filter Paper: An Efficient Dip Catalyst for Aromatic Nitrophenol Reduction, Intramolecular Cascade Reaction, and Methyl Orange Degradation. ChemistrySelect, 2018, 3, 2882-2887.	1.5	32
447	Synthesis and characterization of ureido-derivatized UCST-type poly(ionic liquid) microgels. Polymer Chemistry, 2018, 9, 1439-1447.	3.9	12
448	Facile one-pot synthesis of MOF supported gold pseudo-single-atom catalysts for hydrogenation reactions. Materials Chemistry Frontiers, 2018, 2, 1024-1030.	5.9	46
449	Electrospun nanofiber templated assembly of hybrid nanoparticles. RSC Advances, 2018, 8, 9344-9352.	3.6	10
450	A novel poly(vinylidene fluoride) composite membrane for catalysis and separation. Polymer Engineering and Science, 2018, 58, 150-159.	3.1	15
451	Strongly coupled Ag/TiO2 heterojunctions for effective and stable photothermal catalytic reduction of 4-nitrophenol. Nano Research, 2018, 11, 126-141.	10.4	87
452	Pd@MIL-100(Fe) composite nanoparticles as efficient catalyst for reduction of 2/3/4-nitrophenol: Synergistic effect between Pd and MIL-100(Fe). Microporous and Mesoporous Materials, 2018, 255, 1-6.	4.4	66
453	Flow fabrication of a highly efficient Pd/UiO-66-NH2 film capillary microreactor for 4-nitrophenol reduction. Chemical Engineering Journal, 2018, 333, 146-152.	12.7	56
454	Combination of hollow fluorescent carbon and gold nanoparticles: A super-catalyst. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 191, 221-225.	3.9	4
455	Compared Catalytic Efficiency of Click-Dendrimer-Stabilized Late Transition Metal Nanoparticles in 4-Nitrophenol Reduction. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 399-406.	3.7	18
456	Facile synthesis of bimetallic Ag-Cu nanoparticles for colorimetric detection of mercury ion and catalysis. Sensors and Actuators B: Chemical, 2018, 255, 1471-1481.	7.8	70
457	Multi-metal nanomaterials obtained from oil/water interface as effective catalysts in reduction of 4-nitrophenol. Journal of Colloid and Interface Science, 2018, 513, 602-616.	9.4	31
458	Preparation of Crossâ€Linked Micelles from Glycidyl Methacrylate Based Block Copolymers and Their Usages as Nanoreactors in the Preparation of Gold Nanoparticles. Journal of Polymer Science Part A, 2018, 56, 514-526.	2.3	13

(

#	Article	IF	CITATIONS
459	Nitrosoreductase-Like Nanocatalyst for Ultrasensitive and Stable Biosensing. Analytical Chemistry, 2018, 90, 807-813.	6.5	25
460	Fabrication of hierarchical MXene-based AuNPs-containing core–shell nanocomposites for high efficient catalysts. Green Energy and Environment, 2018, 3, 147-155.	8.7	60
461	Isothermic adsorption of morin onto the reducible mesoporous manganese oxide materials surface. Applied Catalysis B: Environmental, 2018, 224, 928-939.	20.2	14
462	Facile synthesis of PtSnZn nanosheet thin film at oil–water interface by use of organometallic complexes: An efficient catalyst for methanol oxidation and <i>p</i> â€nitrophenol reduction reactions. Applied Organometallic Chemistry, 2018, 32, e3979.	3.5	16
463	Mediated electrochemical synthesis of metal nanoparticles. Russian Chemical Reviews, 2018, 87, 1080-1110.	6.5	32
464	Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS ₂ . Journal of Materials Chemistry A, 2018, 6, 23932-23977.	10.3	250
465	One-step green synthesis of composition-tunable Pt–Cu alloy nanowire networks with high catalytic activity for 4-nitrophenol reduction. Dalton Transactions, 2018, 47, 17461-17468.	3.3	25
466	Evaluation of 3D gold nanodendrite layers obtained by templated galvanic displacement reactions for SERS sensing and heterogeneous catalysis. Nanoscale, 2018, 10, 20671-20680.	5.6	14
467	pH-Dependent growth of atomic Pd layers on trisoctahedral gold nanoparticles to realize enhanced performance in electrocatalysis and chemical catalysis. Nanoscale, 2018, 10, 22302-22311.	5.6	12
468	Transformation of Single Ag Nanowires into Superâ€Large AgAu Elliptic Rings via a Water/Oil Interfaceâ€Oriented Asymmetrical Etching. ChemNanoMat, 2019, 5, 208-214.	2.8	5
469	Modification with ultrasonication for enhanced properties of cobalt-based zeolitic imidazolate framework. MRS Communications, 2018, 8, 1363-1370.	1.8	2
470	Gold Nanoparticle-Stabilized, Tyrosine-Rich Peptide Self-Assemblies and Their Catalytic Activities in the Reduction of 4-Nitrophenol. Biomacromolecules, 2018, 19, 4534-4541.	5.4	20
471	Controllable Synthesis and Catalytic Performance of Gold Nanoparticles with Cucurbit[n]urils (n =) Tj ETQq0 0 0	rgBT /Ove 4.1	rlock 10 Tf ! 18
472	Multifunctional Ferrite Nanoparticles: From Current Trends Toward the Future. , 2018, , 59-116.		34
473	Carbonâ€Dotâ€Based Heterojunction for Engineering Bandâ€Edge Position and Photocatalytic Performance. Small, 2018, 14, e1803447.	10.0	53
474	Electroreduction as a facile method for one-pot synthesis of CuZSM-5 nanostructures. Nano Structures Nano Objects, 2018, 16, 354-362.	3.5	0
475	Fabrication of Pd and Pt Nanotubes and Their Catalytic Study on p-Nitrophenol Reduction. IOP Conference Series: Materials Science and Engineering, 2018, 322, 042016.	0.6	0
476	Dry Powder Assay Rapidly Detects Metallic Nanoparticles in Water by Measuring Surface Catalytic Reactivity. Environmental Science & Technology, 2018, 52, 13289-13297.	10.0	15

#	Article	IF	CITATIONS
477	A facile green synthesis of silver nanoparticles decorated silica nanocomposites using mussel inspired polydopamine chemistry and assessment its catalytic activity. Journal of Environmental Chemical Engineering, 2018, 6, 6989-7001.	6.7	38
478	Functionalization of Silk with In-Situ Synthesized Platinum Nanoparticles. Materials, 2018, 11, 1929.	2.9	21
479	Metastable Bi ₂ Zr ₂ O ₇ with Pyrochlore-like Structure: Stabilization, Oxygen Ion Conductivity, and Catalytic Properties. Inorganic Chemistry, 2018, 57, 13667-13678.	4.0	46
480	Simultaneous Etching–Galvanic Replacementâ€mediated Synthesis of 4â€Nitrophenol Reduction Efficiencyâ€enhanced Au–Ag Nanoframes. Bulletin of the Korean Chemical Society, 2018, 39, 1231-1234.	1.9	3
481	Jahn-Teller distortions in molybdenum oxides: An achievement in exploring high rate supercapacitor applications and robust photocatalytic potential. Nano Energy, 2018, 53, 982-992.	16.0	57
482	Light-Mediated Growth of Noble Metal Nanostructures (Au, Ag, Cu, Pt, Pd, Ru, Ir, Rh) From Micro- and Nanoscale ZnO Tetrapodal Backbones. Frontiers in Chemistry, 2018, 6, 411.	3.6	26
483	Plasmonic Au-Loaded Hierarchical Hollow Porous TiO ₂ Spheres: Synergistic Catalysts for Nitroaromatic Reduction. Journal of Physical Chemistry Letters, 2018, 9, 5317-5326.	4.6	56
484	Synthesis of Ru Icosahedral Nanocages with a Face-Centered-Cubic Structure and Evaluation of Their Catalytic Properties. ACS Catalysis, 2018, 8, 6948-6960.	11.2	66
485	Selective Molecular Transport in Thermoresponsive Polymer Membranes: Role of Nanoscale Hydration and Fluctuations. Macromolecules, 2018, 51, 4853-4864.	4.8	28
486	Biogenic synthesis of multifunctional silver nanoparticles from Rhodotorula glutinis and Rhodotorula mucilaginosa: antifungal, catalytic and cytotoxicity activities. World Journal of Microbiology and Biotechnology, 2018, 34, 127.	3.6	54
487	Cobaltocene Reduction of Cu and Ag Salts and Catalytic Behavior of the Nanoparticles Formed. ACS Catalysis, 2018, 8, 8100-8106.	11.2	25
488	Effect of Phenolic Compounds on the Synthesis of Gold Nanoparticles and its Catalytic Activity in the Reduction of Nitro Compounds. Nanomaterials, 2018, 8, 320.	4.1	66
489	Methylviologen mediated electrochemical synthesis of catalytically active ultrasmall bimetallic PdAg nanoparticles stabilized by CTAC. Electrochimica Acta, 2018, 285, 149-163.	5.2	24
490	Metal–Organicâ€Frameworkâ€Derived Co ₃ S ₄ Hollow Nanoboxes for the Selective Reduction of Nitroarenes. ChemSusChem, 2018, 11, 3131-3138.	6.8	40
491	Catalytic Application of Oxygen Vacancies Induced by Bi ³⁺ Incorporation in ThO ₂ Samples Obtained by Solution Combustion Synthesis. ACS Omega, 2018, 3, 7171-7181.	3.5	26
492	Enhancement of water self-diffusion at super-hydrophilic surface with ordered water. Chinese Physics B, 2018, 27, 060101.	1.4	7
493	Cross-Flow Catalysis Behavior of a PVDF/SiO2@Ag Nanoparticles Composite Membrane. Polymers, 2018, 10, 59.	4.5	9
494	Defective Pt nanoparticles encapsulated in mesoporous metal–organic frameworks for enhanced catalysis. Chemical Communications, 2018, 54, 8822-8825.	4.1	19

#	Article	IF	CITATIONS
495	Product interactions and feedback in diffusion-controlled reactions. Journal of Chemical Physics, 2018, 148, 064705.	3.0	9
496	Molecular Oxygen as Mediator in the Metal Nanoparticles' Electrosynthesis in N,N-Dimethylformamide. Russian Journal of Electrochemistry, 2018, 54, 265-282.	0.9	13
498	A freestanding SiO ₂ ultrathin membrane with NiCu nanoparticles embedded on its double surfaces for catalyzing nitro-amination. Dalton Transactions, 2018, 47, 7083-7089.	3.3	7
499	Copper mesoporous materials as highly efficient recyclable catalysts for the reduction of 4-nitrophenol in aqueous media. Polyhedron, 2018, 150, 69-76.	2.2	20
500	Rationally designed hierarchical nickel nanoparticles-based magnetic yolk-like nanospindles for enhanced catalysis and protein adsorption. CrystEngComm, 2018, 20, 5377-5386.	2.6	24
501	Monodisperse Cu/Cu ₂ O@C core–shell nanocomposite supported on rGO layers as an efficient catalyst derived from a Cu-based MOF/GO structure. Nanoscale, 2018, 10, 17647-17655.	5.6	83
502	Identifying the True Catalyst in the Reduction of 4-Nitrophenol: A Case Study Showing the Effect of Leaching and Oxidative Etching Using Ag Catalysts. ACS Catalysis, 2018, 8, 8879-8888.	11.2	43
503	Ni2B@Cu2O and Ni2B@CuCl2: two new simple and efficient nanocatalysts forÂthe green one-pot reductive acetylation of nitroarenes and direct N-acetylation of arylamines using solvent-free mechanochemical grinding. Research on Chemical Intermediates, 2018, 44, 7331-7352.	2.7	23
504	Facile synthesis of gold nanoparticles using carbon dots for electrochemical detection of neurotransmitter, dopamine in human serum and as a chemocatalyst for nitroaromatic reduction. IET Nanobiotechnology, 2018, 12, 909-914.	3.8	6
505	Loading across the Periodic Table: Introducing 14 Different Metal Ions To Enhance Metal–Organic Framework Performance. ACS Applied Materials & Interfaces, 2018, 10, 30296-30305.	8.0	20
506	Fabrication of Smart Hybrid Nanoreactors from Platinum Nanodendrites Encapsulating in Hyperbranched Polyglycerol Hollow Shells. ACS Applied Nano Materials, 2018, 1, 2559-2566.	5.0	11
507	Tailored Macroporous Hydrogels with Nanoparticles Display Enhanced and Tunable Catalytic Activity. ACS Applied Materials & Interfaces, 2018, 10, 21073-21078.	8.0	26
508	Silver nanoparticle embedded copper oxide as an efficient core–shell for the catalytic reduction of 4-nitrophenol and antibacterial activity improvement. Dalton Transactions, 2018, 47, 9143-9155.	3.3	53
509	High Reusability of Catalytically Active Gold Nanoparticles Immobilized in Core–Shell Hydrogel Microspheres. ACS Omega, 2018, 3, 6158-6165.	3.5	40
510	Direct generation of Ag nanoclusters on reduced graphene oxide nanosheets for efficient catalysis, antibacteria and photothermal anticancer applications. Journal of Colloid and Interface Science, 2018, 529, 444-451.	9.4	40
511	Encapsulation of Silver Nanoparticles in an Amineâ€Functionalized Porphyrin Metal–Organic Framework and Its Use as a Heterogeneous Catalyst for CO ₂ Fixation under Atmospheric Pressure. Chemistry - an Asian Journal, 2018, 13, 2677-2684.	3.3	40
512	Functionalization of Hollow Nanomaterials for Catalytic Applications: Nanoreactor Construction. Advanced Materials, 2019, 31, e1800426.	21.0	239
513	Dendronized triazolyl-containing ferrocenyl polymers as stabilizers of gold nanoparticles for recyclable two-phase reduction of 4-nitrophenol. Journal of Colloid and Interface Science, 2019, 533, 161-170	9.4	85

			0
#	ARTICLE	IF	CITATIONS
514	Hybrid surfaces active in catalysis based on gold nanoparticles modified with redox-active pendants and polymer brushes. Applied Surface Science, 2019, 496, 143598.	6.1	9
515	Effect of relative-stoichiometry on the shape and catalytic properties of cobalt antimonide (CoSb). Solid State Sciences, 2019, 97, 105976.	3.2	1
516	Kinetic Control of [AuCl ₄] ^{â^'} Photochemical Reduction and Gold Nanoparticle Size with Hydroxyl Radical Scavengers. Journal of Physical Chemistry B, 2019, 123, 7204-7213.	2.6	45
517	Subâ€Nanometer Thick Gold Nanosheets as Highly Efficient Catalysts. Advanced Science, 2019, 6, 1900911.	11.2	56
518	Ferrocene-containing amphiphilic dendronized random copolymer as efficient stabilizer for reusable gold nanoparticles in catalysis. Reactive and Functional Polymers, 2019, 143, 104325.	4.1	15
519	Confinement of silver nanoparticles in polystyrenes through molecular entanglements and their application for catalytic reduction of 4-nitrophenol. Journal of Materials Chemistry A, 2019, 7, 20919-20925.	10.3	18
520	Carbon Supported Gold Nanoparticles for the Catalytic Reduction of 4-Nitrophenol. Frontiers in Chemistry, 2019, 7, 548.	3.6	30
521	Hybrid hydrogels containing one-step biosynthesized silver nanoparticles: Preparation, characterization and catalytic application. Journal of Industrial and Engineering Chemistry, 2019, 79, 326-337.	5.8	25
522	Phoenix dactylifera L. extract: antioxidant activity and its application for green biosynthesis of Ag nanoparticles as a recyclable nanocatalyst for 4-nitrophenol reduction. SN Applied Sciences, 2019, 1, 1.	2.9	10
523	Synthesis of graphene quantum dot-stabilized gold nanoparticles and their application. RSC Advances, 2019, 9, 21215-21219.	3.6	27
524	Temperature-Controlled Catalysis by Core–Shell–Satellite AuAg@pNIPAM@Ag Hybrid Microgels: A Highly Efficient Catalytic Thermoresponsive Nanoreactor. ACS Applied Materials & Interfaces, 2019, 11, 29360-29372.	8.0	63
525	A facile preparation method for new two-component supramolecular hydrogels and their performances in adsorption, catalysis, and stimuli-response. RSC Advances, 2019, 9, 22551-22558.	3.6	88
526	Palladium nanoparticles supported on mesoporous natural phosphate: An efficient recyclable catalyst for nitroarene reduction. Applied Organometallic Chemistry, 2019, 33, e5117.	3.5	13
527	Preparation of monometallic and bimetallic alloy nanoparticles stabilized with sulfobetaine-based block copolymer and their catalytic activities. Colloid and Polymer Science, 2019, 297, 1067-1078.	2.1	7
528	Polysiloxanes Modified by Thiolâ€Ene Reaction and Their Interaction with Gold Nanoparticles. Helvetica Chimica Acta, 2019, 102, e1900180.	1.6	4
529	Synthesis of graphene quantum dots stabilized CuNPs and their applications in CuAAC reaction and 4-nitrophenol reduction. Inorganic Chemistry Communication, 2019, 110, 107588.	3.9	12
530	Cyclodextrin polymer networks decorated with subnanometer metal nanoparticles for high-performance low-temperature catalysis. Science Advances, 2019, 5, eaax6976.	10.3	35
531	In-situ synthesis of magnetic nanoparticle immobilized heterogeneous catalyst through mussel mimetic approach for the efficient removal of water pollutants. Colloids and Interface Science Communications, 2019, 33, 100218.	4.1	52

#	Article	IF	CITATIONS
532	Conversion of the Nitro Group to the Nitroso in Aromatic Compounds: Case of p â€Nitrophenol Using the Catalytic Effect of Palladium. ChemistrySelect, 2019, 4, 12320-12327.	1.5	3
533	Diffusion-influenced reaction rates in the presence of pair interactions. Journal of Chemical Physics, 2019, 151, 164105.	3.0	14
534	Nitrogen-Doped Graphene Quantum Dots as Metal-Free Photocatalysts for Near-Infrared Enhanced Reduction of 4-Nitrophenol. ACS Applied Nano Materials, 2019, 2, 7043-7050.	5.0	30
535	Synthesis of Platinum Nanoparticles with High Catalytic Activity Supported on Magnetic Carbon Nanospheres. Russian Journal of Physical Chemistry A, 2019, 93, 1762-1768.	0.6	0
536	Clean production of powdery silver nanoparticles using Zingiber officinale: The structural and catalytic properties. Journal of Cleaner Production, 2019, 241, 118398.	9.3	85
537	Tris functionalized Cu-centered cyclohexamolybdate molecular armor as a bimetallic catalyst for rapid p-nitrophenol hydrogenation. New Journal of Chemistry, 2019, 43, 28-36.	2.8	6
538	Gas-induced selective re-orientation of Au–Cu nanoparticles on TiO ₂ (110). Nanoscale, 2019, 11, 752-761.	5.6	4
539	Facile Preparation of Hierarchical AgNP-Loaded MXene/Fe ₃ O ₄ /Polymer Nanocomposites by Electrospinning with Enhanced Catalytic Performance for Wastewater Treatment. ACS Omega, 2019, 4, 1897-1906.	3.5	234
541	Colorimetric determination of p-nitrophenol by using ELISA microwells modified with an adhesive polydopamine nanofilm containing catalytically active gold nanoparticles. Mikrochimica Acta, 2019, 186, 146.	5.0	25
542	The role of palladium nanoparticles in catalytic C–C cross-coupling reactions. Coordination Chemistry Reviews, 2019, 384, 1-20.	18.8	142
543	Cellulose: A ubiquitous platform for ecofriendly metal nanoparticles preparation. Coordination Chemistry Reviews, 2019, 383, 155-173.	18.8	57
544	Ultrafine PtRu nanoparticles confined in hierarchically porous carbon derived from micro-mesoporous zeolite for enhanced nitroarenes reduction performance. Journal of Catalysis, 2019, 370, 385-403.	6.2	28
545	The Effect of Poly(vinylpyrrolidone) (PVP) on the Au Catalyzed Reduction of p–nitrophenol: The Fundamental Role of NaBH ₄ ChemistrySelect, 2019, 4, 608-616.	1.5	16
546	Facile solvothermal preparation of Fe ₃ O ₄ –Ag nanocomposite with excellent catalytic performance. RSC Advances, 2019, 9, 878-883.	3.6	64
547	Synthesis of structured hollow microspheres with sandwich-like hybrid shell of RGO/Pd/m-SiO2 for highly efficient catalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 129-137.	4.7	5
548	A soluble porous organic polymer for highly efficient organic-aqueous biphasic catalysis and convenient reuse of catalysts. Journal of Materials Chemistry A, 2019, 7, 15048-15053.	10.3	31
549	Reduction of nitroarenes catalyzed by microgel-stabilized silver nanoparticles. Journal of Hazardous Materials, 2019, 377, 399-408.	12.4	67
550	Unlocking the door to highly efficient Ag-based nanoparticles catalysts for NaBH4-assisted nitrophenol reduction. Nano Research, 2019, 12, 2407-2436.	10.4	113

#	Article	IF	CITATIONS
551	Production of Biogenic Nanoparticles for the Reduction of 4-Nitrophenol and Oxidative Laccase-Like Reactions. Frontiers in Microbiology, 2019, 10, 997.	3.5	41
552	Confinement of Cu nanoparticles in the nanocages of large pore SBA-16 functionalized with carboxylic acid: enhanced activity and improved durability for 4-nitrophenol reduction. Dalton Transactions, 2019, 48, 8227-8237.	3.3	14
553	Nanoparticle Reinforced Polymers. Polymers, 2019, 11, 625.	4.5	22
554	Planet–Satellite Nanostructures Based on Block Copolymerâ€5urfactant Nanoparticles Surfaceâ€Decorated with Gold and Silver: A New Strategy for Interfacial Catalysis. Advanced Materials Interfaces, 2019, 6, 1900348.	3.7	7
555	Silver nanoparticles-decorated-Co3O4 porous sheets as efficient catalysts for the liquid-phase hydrogenation reduction of p-Nitrophenol. Journal of Colloid and Interface Science, 2019, 551, 261-269.	9.4	58
556	Catalytic Reduction of 4-Nitrophenol by Gold Catalysts: The Influence of Borohydride Concentration on the Induction Time. Journal of Physical Chemistry C, 2019, 123, 12894-12901.	3.1	70
557	Buckling of Two-Dimensional Colloidal Nanoplatelets in Confined Space To Design Heterogeneous Catalysts. Chemistry of Materials, 2019, 31, 3812-3817.	6.7	8
558	N-myristoyltaurine capped copper nanoparticles for selective colorimetric detection of Hg2+ in wastewater and as effective chemocatalyst for organic dye degradation. Microchemical Journal, 2019, 148, 1-9.	4.5	21
559	Fabrication of carboxymethylated cellulose fibers supporting Ag NPs@MOFâ€199s nanocatalysts for catalytic reduction of 4â€nitrophenol. Applied Organometallic Chemistry, 2019, 33, e4865.	3.5	44
560	Catalytic activity and facile recovery of a cyclometalated Nâ€heterocyclic carbene palladium(II) complex immobilized by nonâ€covalent interactions on reduced graphene oxide. Applied Organometallic Chemistry, 2019, 33, e4907.	3.5	10
561	Silver nanoparticle-decorated on tannic acid-modified magnetite nanoparticles (Fe3O4@TA/Ag) for highly active catalytic reduction of 4-nitrophenol, Rhodamine B and Methylene blue. Materials Science and Engineering C, 2019, 100, 445-452.	7.3	142
562	Hydrothermal Galvanic-Replacement-Tethered Synthesis of Ir–Ag–IrO ₂ Nanoplates for Computed Tomography-Guided Multiwavelength Potent Thermodynamic Cancer Therapy. ACS Nano, 2019, 13, 3434-3447.	14.6	34
563	Cross-linker effect on solute adsorption in swollen thermoresponsive polymer networks. Physical Chemistry Chemical Physics, 2019, 21, 6588-6599.	2.8	14
564	Rapid Self-Assembly of Metal/Polymer Nanocomposite Particles as Nanoreactors and Their Kinetic Characterization. Nanomaterials, 2019, 9, 318.	4.1	9
565	Photoactive nanoparticles capped with macrocycles as platforms and hosts. , 2019, , 139-167.		1
566	Highly sensitive SERS monitoring of catalytic reaction by bifunctional Ag-Pd triangular nanoplates. Journal of Saudi Chemical Society, 2019, 23, 887-895.	5.2	24
567	A Broaderâ€scope Analysis of the Catalytic Reduction of Nitrophenols and Azo Dyes with Noble Metal Nanoparticles. ChemCatChem, 2019, 11, 2590-2595.	3.7	32
568	Hydrogen adsorption-induced catalytic enhancement over Cu nanoparticles immobilized by layered Ti3C2 MXene. Applied Catalysis B: Environmental, 2019, 252, 198-204.	20.2	119

#	Article	IF	CITATIONS
569	The Decoration of Gold Core in Au@ZrO2 Nanoreactors with Trace Amounts of Pd for the Effective Reduction of 4-Nitrophenol to 4-Aminophenol. Catalysis Letters, 2019, 149, 1621-1632.	2.6	16
570	Highly-branched amphiphilic organometallic dendronized diblock copolymer: ROMP synthesis, self-assembly and long-term Au and Ag nanoparticle stabilizer for high-efficiency catalysis. Polymer, 2019, 173, 1-10.	3.8	35
571	Carrier Diffusion—The Main Contribution to Size-Dependent Photocatalytic Activity of Colloidal Gold Nanoparticles. ACS Catalysis, 2019, 9, 4211-4217.	11.2	25
572	Temperatureâ€Dependent Study of Catalytic Ag Nanoparticles Entrapped Resin Nanocomposite towards Reduction of 4â€Nitrophenol. ChemistrySelect, 2019, 4, 3665-3671.	1.5	32
573	Activated carbon supported bimetallic catalysts with combined catalytic effects for aromatic nitro compounds hydrogenation under mild conditions. Applied Catalysis A: General, 2019, 577, 76-85.	4.3	60
574	Cu _{3–<i>x</i>} Ni _{<i>x</i>} Al-Layered Double Hydroxide-Reduced Graphene Oxide Nanosheet Array for the Reduction of 4-Nitrophenol. ACS Applied Nano Materials, 2019, 2, 2383-2396.	5.0	38
575	Eco-compatible sonochemical synthesis of 8-aryl-7,8-dihydro-[1,3]-dioxolo[4,5-g]quinolin-6(5H)-ones using green TiO2. Heliyon, 2019, 5, e01256.	3.2	13
576	Highly efficient and magnetically recyclable Pd catalyst supported by iron-rich fly ash@fly ash-derived SiO2 for reduction of p-nitrophenol. Journal of Hazardous Materials, 2019, 371, 72-82.	12.4	38
577	Highly porous palladium nanodendrites: wet-chemical synthesis, electron tomography and catalytic activity. Dalton Transactions, 2019, 48, 3758-3767.	3.3	25
578	Gallolâ€Tethered Injectable AuNP Hydrogel with Desirable Selfâ€Healing and Catalytic Properties. Macromolecular Chemistry and Physics, 2019, 220, 1800427.	2.2	17
579	A facile synthesis of CuAg nanoparticles on highly porous ZnO/carbon black-cellulose acetate sheets for nitroarene and azo dyes reduction/degradation. International Journal of Biological Macromolecules, 2019, 130, 288-299.	7.5	80
580	Integration of Metal Nanoparticles into Metal–Organic Frameworks for Composite Catalysts: Design and Synthetic Strategy. Small, 2019, 15, e1804849.	10.0	67
581	Best practices for reporting nanocatalytic performance: lessons learned from nitroarene reduction as a model reaction. New Journal of Chemistry, 2019, 43, 17932-17936.	2.8	12
582	Effect of capping methods on the morphology of silver nanoparticles: study on the media-induced release of silver from the nanocomposite β-cyclodextrin/alginate. New Journal of Chemistry, 2019, 43, 16841-16852.	2.8	11
583	Nanocrystal Encapsulation, Release and Application Based on pH-Sensitive Covalent Dynamic Hyperbranched Polymers. Polymers, 2019, 11, 1926.	4.5	3
584	Synthesis of water-soluble gold–aryl nanoparticles with distinct catalytic performance in the reduction of the environmental pollutant 4-nitrophenol. Catalysis Science and Technology, 2019, 9, 6059-6071.	4.1	29
585	Synergetic effect of polydopamine particles and in-situ fabricated gold nanoparticles on charge-dependent catalytic behaviors. Particuology, 2019, 44, 63-70.	3.6	10
586	Catalytic reduction of toxic dyes in the presence of silver nanoparticles impregnated core-shell composite microgels. Journal of Cleaner Production, 2019, 211, 855-864.	9.3	101

#	Article	IF	CITATIONS
587	A Review of Dendrimer-Encapsulated Metal Nanocatalysts Applied in the Fine Chemical Transformations. Catalysis Letters, 2019, 149, 84-99.	2.6	16
588	Inhibition of catalytic activity of fibrinogen-stabilized gold nanoparticles via thrombin-induced inclusion of nanoparticle into fibrin: Application for thrombin sensing with more than 104-fold selectivity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 210, 59-65.	3.9	8
589	Controlled synthesis of metal-organic frameworks coated with noble metal nanoparticles and conducting polymer for enhanced catalysis. Journal of Colloid and Interface Science, 2019, 537, 262-268.	9.4	30
590	A convenient green method to synthesize luminescent carbon dots from edible carrot and its application in bioimaging and preparation of nanocatalyst. Journal of Molecular Liquids, 2019, 278, 175-182.	4.9	31
591	Catalytic Hydrogenation of Nitrophenols by Cubic and Hexagonal Phase Unsupported Ni Nanocrystals. ChemistrySelect, 2019, 4, 42-48.	1.5	10
592	Insight into the Catalytic Behavior in Nitroarenes Reduction over Nonâ€Noble Metals Modified Polymer Carbon Nitride. ChemistrySelect, 2019, 4, 190-195.	1.5	4
593	One-step femtosecond laser ablation synthesis of sub-3â€ [−] nm gold nanoparticles stabilized by silica. Applied Surface Science, 2019, 475, 1048-1057.	6.1	41
594	Enhanced catalysis of gold nanoparticles in microgels upon on site altering the gold–polymer interface interaction. Journal of Catalysis, 2019, 369, 462-468.	6.2	33
595	Recent Advances in the Nanocatalyst-Assisted NaBH ₄ Reduction of Nitroaromatics in Water. ACS Omega, 2019, 4, 483-495.	3.5	180
596	Redispersible Gold Nanoparticle/Polymer Composite Powders Ready for Ligand Exchange Reactions. ChemNanoMat, 2019, 5, 181-186.	2.8	3
597	In Situ Formation of Gold Nanoparticles within a Polymer Particle and Their Catalytic Activities in Various Chemical Reactions. ChemPhysChem, 2019, 20, 70-77.	2.1	17
598	Pd/DNA as a highly active and recyclable catalyst for aminocarbonylation and hydroxycarbonylation in water: The effect of Mo(CO)6 on the reaction course. Molecular Catalysis, 2019, 462, 28-36.	2.0	19
599	Electrochemistry at Deep‧ea Hydrothermal Vents: Utilization of the Thermodynamic Driving Force towards the Autotrophic Origin of Life. ChemElectroChem, 2019, 6, 1316-1323.	3.4	22
600	Reduction of Nitro Compounds Using 3d-Non-Noble Metal Catalysts. Chemical Reviews, 2019, 119, 2611-2680.	47.7	525
601	Poly(amic acid) saltâ€mediated palladium and platinum nanoparticles as highly active and recyclable catalysts for hydrogenation of nitroarenes in water under ambient conditions. Applied Organometallic Chemistry, 2019, 33, e4717.	3.5	9
602	Surface functionalization of wafer-scale two-dimensional WO3 nanofilms by NM electrodeposition (NMÂ= Ag, Pt, Pd) for electrochemical H2O2 reduction improvement. Electrochimica Acta, 2019, 297, 417-426.	5.2	19
603	Active cobalt induced high catalytic performances of cobalt ferrite nanobrushes for the reduction of p-nitrophenol. Journal of Colloid and Interface Science, 2019, 535, 499-504.	9.4	36
604	Performing a catalysis reaction on filter paper: development of a metal palladium nanoparticle-based catalyst. Nanoscale Advances, 2019, 1, 342-346.	4.6	12

#	Article	IF	CITATIONS
605	Facile synthesis of silver nanoparticles in a crosslinked polymeric system by in situ reduction method for catalytic reduction of 4-nitroaniline. Environmental Technology (United Kingdom), 2019, 40, 2027-2036.	2.2	68
606	State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 2020, 120, 1438-1511.	47.7	1,505
607	A high performance recyclable magnetic CuFe2O4 nanocatalyst for facile reduction of 4-nitrophenol. Materials Chemistry and Physics, 2020, 242, 122237.	4.0	29
608	Enhanced catalytic activity of CuO/Cu2O hybrid nanowires for reduction of 4-nitrophenol in water. Journal of Physics and Chemistry of Solids, 2020, 136, 109143.	4.0	37
609	Modeling of stimuli-responsive nanoreactors: rational rate control towards the design of colloidal enzymes. Molecular Systems Design and Engineering, 2020, 5, 602-619.	3.4	21
610	Influence of patch size and chemistry on the catalytic activity of patchy hybrid nonwovens. Nanoscale Advances, 2020, 2, 438-452.	4.6	9
611	On the mechanism of reduction of M(H ₂ O) _m ⁿ⁺ by borohydride: the case of Ag(H ₂ O) ₂ ⁺ . Nanoscale, 2020, 12, 1657-1672.	5.6	13
612	Mechanism of the Oxidation of 3,3′,5,5′â€Tetramethylbenzidine Catalyzed by Peroxidaseâ€Like Pt Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes: A Kinetic Study. ChemPhysChem, 2020, 21, 450-458.	2.1	25
613	Design and Functions of Macromolecular Electron-Reservoir Complexes and Devices. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 111-120.	3.7	4
614	Modus Operandi of Simultaneous Covering Synthesis from Precursor Heterogeneity for Shelled Nanorods for Multipotent Cancer Theranostics. Advanced Functional Materials, 2020, 30, 1907203.	14.9	7
615	Covalent organic framework-supported platinum nanoparticles as efficient electrocatalysts for water reduction. Nanoscale, 2020, 12, 2596-2602.	5.6	41
616	Construction of a thermo-responsive copolymer-stabilized Fe ₃ O ₄ @CD@PdNP hybrid and its application in catalytic reduction. Polymer Chemistry, 2020, 11, 1177-1187.	3.9	8
617	Optimization of Cu catalysts for nitrophenol reduction, click reaction and alkyne coupling. Inorganic Chemistry Frontiers, 2020, 7, 939-945.	6.0	52
618	A Combined Mechanochemical and Calcination Route to Mixed Cobalt Oxides for the Selective Catalytic Reduction of Nitrophenols. Molecules, 2020, 25, 89.	3.8	12
619	Atomic-level insights into strain effect on p-nitrophenol reduction via Au@Pd core–shell nanocubes as an ideal platform. Journal of Catalysis, 2020, 381, 427-433.	6.2	30
620	Synthesis of free-standing silver nanoparticles coated filter paper for recyclable catalytic reduction of 4-nitrophenol and organic dyes. Cellulose, 2020, 27, 2279-2292.	4.9	21
621	Green, energy-efficient preparation of CDs-embedded BiPO4 heterostructure for better light harvesting and conversion. Chemical Engineering Journal, 2020, 391, 123551.	12.7	7
622	Synthesis of Ag/ZIF-7 by immobilization of Ag nanoparticles onto ZIF-7 microcrystals: A heterogeneous catalyst for the reduction of nitroaromatic compounds and organic dyes. Journal of Environmental Chemical Engineering, 2020, 8, 104547.	6.7	40

#	Article	IF	CITATIONS
623	Benzimidazo[1',2':1,2]Quinolino[4,3-b][1,2,5]Oxodiazolo[3,4-f]Quinoxaline—New Mediator for Electrosynthesizing Metal Nanoparticles. Russian Journal of Electrochemistry, 2020, 56, 646-659.	0.9	8
624	Highly selective reduction of nitroarenes with gold nano-catalysts immobilized in porous aromatic frameworks. Microporous and Mesoporous Materials, 2020, 306, 110393.	4.4	11
625	Recoverable and Reusable Polymer Microbead-Supported Metal Nanocatalysts for Redox Chemical Transformations. ACS Applied Nano Materials, 2020, 3, 1722-1730.	5.0	3
626	Magnetically recoverable Ir/IrO2@Fe3O4 core/ SiO2 shell catalyst for the reduction of organic pollutants in water. Chemical Physics Letters, 2020, 742, 137147.	2.6	11
627	Energetic decomposition yields efficient bimetallic Cu MOF-derived catalysts. Journal of Materials Chemistry A, 2020, 8, 15066-15073.	10.3	17
628	Ion-Specific Adsorption on Bare Gold (Au) Nanoparticles in Aqueous Solutions: Double-Layer Structure and Surface Potentials. Langmuir, 2020, 36, 13457-13468.	3.5	15
629	Waste Banana Stem Utilized for Biosynthesis of Silver and Gold Nanoparticles and Their Antibacterial and Catalytic Properties. Journal of Cluster Science, 2020, , 1.	3.3	9
630	Influencing the Electron Density of Nanosized Au Colloids via Immobilization on MgO to Stimulate Surface Reaction Activities. Langmuir, 2020, 36, 14203-14213.	3.5	1
631	Single Particle Approaches to Plasmon-Driven Catalysis. Nanomaterials, 2020, 10, 2377.	4.1	19
632	Aluminum Metal–Organic Framework–Silver Nanoparticle Composites for Catalytic Reduction of Nitrophenols. ACS Applied Nano Materials, 2020, 3, 11426-11433.	5.0	27
633	Plasmonic Metallic Heteromeric Nanostructures. Small, 2020, 16, e2002588.	10.0	33
634	Effect of Nanoparticle Ligands on 4-Nitrophenol Reduction: Reaction Rate, Induction Time, and Ligand Desorption. ACS Catalysis, 2020, 10, 10040-10050.	11.2	78
635	Photochromic organic cage-encapsulated Au nanoparticles: light-regulated cavities for catalytic reduction of 4-nitrophenol. Dalton Transactions, 2020, 49, 12145-12149.	3.3	11
636	Temperature-responsive mesoporous silica nanoreactor with polymer gatings immobilized surface via a †grafting-to' approach as peroxidase-like catalyst. Microporous and Mesoporous Materials, 2020, 306, 110472.	4.4	5
637	In-situ fabrication of porous-silica-microsphere-supported platinum nanocluster catalyst by γ-ray radiation. Applied Surface Science, 2020, 531, 147333.	6.1	7
638	Tantalum network nanoparticles from a Ta2O5+kMg system by liquid magnesium controlled combustion. Combustion and Flame, 2020, 219, 136-146.	5.2	8
639	Accelerated Reduction of 4-Nitrophenol: Bridging Interaction Outplays Reducing Power in the Model Nanoparticle-Catalyzed Reaction. Journal of Physical Chemistry C, 2020, 124, 19157-19165.	3.1	18
640	Versatile Yolk–Shell Encapsulation: Catalytic, Photothermal, and Sensing Demonstration. Small, 2020, 16, e2002311.	10.0	19

#	Article	IF	CITATIONS
641	Accelerated Reaction Rates within Self-Assembled Polymer Nanoreactors with Tunable Hydrophobic Microenvironments. Polymers, 2020, 12, 1774.	4.5	6
642	Coverage Fluctuations and Correlations in Nanoparticle-Catalyzed Diffusion-Influenced Bimolecular Reactions. Journal of Physical Chemistry C, 2020, 124, 24204-24214.	3.1	6
643	Controlling the distribution of nanoparticles in hydrogels <i>via</i> interfacial synthesis. Nanoscale Advances, 2020, 2, 5263-5270.	4.6	2
644	The emergence of bifunctional catalytic properties by the introduction of Bi ³⁺ in defect fluorite-structured PrO _{1.833} . Dalton Transactions, 2020, 49, 12707-12715.	3.3	6
645	Role of dissolved oxygen in nitroarene reduction by a heterogeneous silver textile catalyst in water. New Journal of Chemistry, 2020, 44, 17780-17790.	2.8	7
646	Nanoparticles for Undergraduates: Creation, Characterization, and Catalysis. Journal of Chemical Education, 2020, 97, 4166-4172.	2.3	11
647	Metal–Organic Charge Transfer Complexes of Pb(TCNQ) 2 and Pb(TCNQF 4) 2 as New Catalysts for Electron Transfer Reactions. Advanced Materials Interfaces, 2020, 7, 2001111.	3.7	8
648	Sulfite modification of platinum nanoparticles modulates electrocatalytic formic acid oxidation activity. Green Chemistry, 2020, 22, 5838-5844.	9.0	7
649	Tuning the selective permeability of polydisperse polymer networks. Soft Matter, 2020, 16, 8144-8154.	2.7	26
650	Electroless Nanoplating of Iridium: Templateâ€Assisted Nanotube Deposition for the Continuous Flow Reduction of 4â€Nitrophenol. ChemElectroChem, 2020, 7, 3496-3507.	3.4	5
651	On the Differences in the Mechanisms of Reduction of AuCl ₂ [–] and Ag(H ₂ O) ₂ ⁺ with BH ₄ [–] . Journal of Physical Chemistry A, 2020, 124, 10765-10776.	2.5	6
652	A new Laâ€Doped CuBi 2 O 4 Catalysts for the Reduction of Nitroaromatic Compounds and Toxic Organic Dyes. ChemistrySelect, 2020, 5, 14935-14942.	1.5	8
653	Interaction between Charge-Regulated Metal Nanoparticles in an Electrolyte Solution. Journal of Physical Chemistry B, 2020, 124, 11762-11770.	2.6	10
654	Application of MOF-based materials in electrochemical sensing. Dalton Transactions, 2020, 49, 17121-17129.	3.3	66
655	Metal Nanoparticles Supported on Mesoporous Polymers: Realizing the Synergetic Effect to Achieve Superior Catalytic Performance. ACS Symposium Series, 2020, , 483-511.	0.5	1
656	Integration of ion-tuned oligonucleotide structural motifs and DNA-templated copper nanoclusters as a manipulable logic device. Sensors and Actuators B: Chemical, 2020, 325, 128769.	7.8	3
657	Synergy Derived from Bimetal Coâ~'Cu in Phosphate to Enables Ultrafast Catalytic Hydrogenated Activity in Nitrophenol Reduction. ChemistrySelect, 2020, 5, 3405-3412.	1.5	6
658	Controlled-Phase Synthesis of Bi2Fe4O9 & BiFeO3 by Flame Spray Pyrolysis and their evaluation as non-noble metal catalysts for efficient reduction of 4-nitrophenol. Powder Technology, 2020, 368, 268-277.	4.2	25

#	Article	IF	CITATIONS
659	Ultralow Crosslinked Microgel Brings Ultrahigh Catalytic Efficiency. Macromolecular Rapid Communications, 2020, 41, 2000135.	3.9	5
660	Size-Tunable Synthesis of Palladium Nanoparticles Confined within Topologically Distinct Metal–Organic Frameworks for Catalytic Dehydrogenation of Methanol. Journal of Physical Chemistry C, 2020, 124, 12521-12530.	3.1	22
661	Photoinduced electron transfer dynamics of AuNPs and Au@PdNPs supported on graphene oxide probed by dark-field hyperspectral microscopy. Dalton Transactions, 2020, 49, 16296-16304.	3.3	7
662	Core–shell microgels as thermoresponsive carriers for catalytic palladium nanoparticles. Soft Matter, 2020, 16, 5422-5430.	2.7	30
663	A Simple Method to Determine Critical Coagulation Concentration from Electrophoretic Mobility. Colloids and Interfaces, 2020, 4, 20.	2.1	23
664	Novel covalent organic nanosheets for the construction of ultrafine and well-dispersed metal nanoparticles. New Journal of Chemistry, 2020, 44, 15354-15361.	2.8	8
665	Structural Evolution of Cu ₂ O-Derived Hybrids Comprised of Copper Cores, a Silica Interlayer, and Carbon as the Outlayer. Inorganic Chemistry, 2020, 59, 9356-9363.	4.0	22
666	Kinetic Analysis of 4-Nitrophenol Reduction by "Water-Soluble―Palladium Nanoparticles. Nanomaterials, 2020, 10, 1169.	4.1	71
667	Palladium nanoparticle colored cotton fabric as a highly efficient catalyst for colorimetric sensing of H2O2. Cellulose, 2020, 27, 7791-7803.	4.9	9
668	Efficient and green electrochemical synthesis of 4-aminophenol using porous Au micropillars. Applied Catalysis A: General, 2020, 602, 117698.	4.3	15
669	Cobalt Oxides with Various 3D Nanostructured Morphologies for Catalytic Reduction of 4-Nitrophenol: A Comparative Study. Journal of Water Process Engineering, 2020, 37, 101379.	5.6	24
670	On the Remarkable Performance of Silverâ€based Alloy Nanoparticles in 4â€Nitrophenol Catalytic Reduction. ChemCatChem, 2020, 12, 4680-4688.	3.7	21
671	Using a Nitrophenol Cocktail Screen to Improve Catalyst Downâ€selection. ChemPhysChem, 2020, 21, 1627-1631.	2.1	6
672	Revealing Facet Effects of Palladium Nanocrystals on Electrochemical Biosensing. ACS Applied Materials & Interfaces, 2020, 12, 15622-15630.	8.0	16
673	Biogenic scale up synthesis of ZnO nano-flowers with superior nano-photocatalytic performance. Inorganic and Nano-Metal Chemistry, 2020, 50, 613-619.	1.6	18
674	Preparation of Ag/C fiber with nanostructure through in situ thermally induced redox reaction between PVA and AgNO 3 and its catalysis for 4â€nitrophenol reduction. Polymers for Advanced Technologies, 2020, 31, 1312-1320.	3.2	2
675	Biosynthesis of silver nanoparticles as catalyst by spent coffee ground/recycled poly(ethylene) Tj ETQq0 0 0 rg	BT /Overloc	k 10 Tf 50 10

676Immobilization of physicochemically stable Pd nanocatalysts inside uniform hydrogel microparticles.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 593, 124607.4.7

#	Article	IF	CITATIONS
677	Polyoxometalate functionalized matrix material: synthesis, characterization, reductive and thermal degradation kinetics. SN Applied Sciences, 2020, 2, 1.	2.9	7
678	Cu-anchored CNTs for effectively catalytic reduction of 4-nitrophenol. Chemical Physics, 2020, 533, 110738.	1.9	21
679	Photochemically Synthesized Ruthenium Nanoparticle-Decorated Carbon-Dot Nanochains: An Efficient Catalyst for Synergistic Redox Reactions. ACS Applied Materials & Interfaces, 2020, 12, 13759-13769.	8.0	17
680	Synthesis of ZnO/CdO thin film for catalytic degradation of 4-nitrophenol. Journal of Molecular Structure, 2020, 1221, 128872.	3.6	53
681	Superfast flow reactor derived from the used cigarette filter for the degradation of pollutants in water. Journal of Hazardous Materials, 2020, 400, 123303.	12.4	15
682	Amphiphilic Pd ^{II} â€NHC Complexes on <i>1,3â€Alternate pâ€tert</i> â€Butylthiacalix[4]arene Platform: Synthesis and Catalytic Activities in Coupling and Hydrogenation Reactions. European Journal of Organic Chemistry, 2020, 2020, 2180-2189.	2.4	7
683	Stable Mn-Doped CsPbCl ₃ Nanocrystals inside Mesoporous Alumina Films for Display and Catalytic Applications. ACS Applied Nano Materials, 2020, 3, 2941-2951.	5.0	7
684	An exclusive deposition method of silver nanoparticles on TiO2 particles via low-temperature decomposition of silver-alkyldiamine complexes in aqueous media. RSC Advances, 2020, 10, 4545-4553.	3.6	0
685	Beyond biotemplating: multiscale porous inorganic materials with high catalytic efficiency. Chemical Communications, 2020, 56, 3389-3392.	4.1	4
686	Yolk–shell or yolk-in-shell nanocatalysts? A proof-of-concept study. Journal of Materials Chemistry A, 2020, 8, 10217-10225.	10.3	14
687	Continuous-flow purification of silver nanoparticles and its integration with flow synthesis. Journal of Flow Chemistry, 2020, 10, 353-362.	1.9	10
688	A simple way to prepare palladium nanoparticles decorated with cyclodextrins and ionic liquid. The effects of coating on the catalytic activity and colloidal stability. Journal of Molecular Liquids, 2020, 304, 112725.	4.9	8
689	Poly(p-xylylene) Nanotubes Decorated with Nonagglomerated Gold Nanoparticles for the Alcoholysis of Dimethylphenylsilane. ACS Applied Nano Materials, 2020, 3, 2766-2773.	5.0	4
690	Hierarchically porous graphitic carbon membrane with homogeneously encapsulated metallic nanoparticles as monolith electrodes for high-performance electrocatalysis and sensing. Journal of Colloid and Interface Science, 2020, 570, 223-231.	9.4	4
691	Organic solar cells based on cellulose nanopaper from agroforestry residues with an efficiency of over 16% and effectively wide-angle light capturing. Journal of Materials Chemistry A, 2020, 8, 5442-5448.	10.3	44
692	Design and Remarkable Efficiency of the Robust Sandwich Cluster Composite Nanocatalysts ZIF-8@Au ₂₅ @ZIF-67. Journal of the American Chemical Society, 2020, 142, 4126-4130.	13.7	141
693	Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts. Journal of Materials Science, 2020, 55, 6195-6241.	3.7	248
694	Controlling the morphology of copper-silica nanocomposites from laser ablation in liquid. Applied Surface Science, 2020, 510, 145037.	6.1	15

#	Article	IF	CITATIONS
695	Synthesis of Silver Nanoparticles Using Chitosan as Stabilizer Agent: Application towards Electrocatalytical Reduction of pâ€Nitrophenol. ChemistrySelect, 2020, 5, 1220-1227.	1.5	11
696	Development of Copper Nanoclusters for In Vitro and In Vivo Theranostic Applications. Advanced Materials, 2020, 32, e1906872.	21.0	88
697	In situ immobilization of ultra-fine Ag NPs onto magnetic Ag@RF@Fe3O4 core-satellite nanocomposites for the rapid catalytic reduction of nitrophenols. Water Research, 2020, 179, 115882.	11.3	87
698	Two-step one-pot electrosynthesis and catalytic activity of xCoO–yCo(OH)2-supported silver nanoparticles. Journal of Solid State Electrochemistry, 2020, 24, 829-842.	2.5	14
699	Two-step electrosynthesis and catalytic activity of CoOâ^'CoO • xH2O-supported Ag, Au, and Pd nanoparticles. Russian Chemical Bulletin, 2020, 69, 241-254.	1.5	12
700	Ir(0) and Pt(0) nanoparticle-triazine dendrimer composites. Journal of Coordination Chemistry, 2020, 73, 544-557.	2.2	2
701	Stabilization of Various Zero-Valent Metal Nanoparticles on a Superabsorbent Polymer for the Removal of Dyes, Nitrophenol, and Pathogenic Bacteria. ACS Omega, 2020, 5, 7379-7391.	3.5	47
702	Preparation and catalytic evaluation of Au/γ-Al2O3nanoparticles for the conversion of 4-nitrophenol to 4-aminophenol by spectrophotometric method. Turkish Journal of Chemistry, 2020, 44, 448-460.	1.2	8
703	Novel g-C ₃ N ₄ /Fe-ZnO/RGO nanocomposites with boosting visible light photocatalytic activity for MB, Cr (VI), and outstanding catalytic activity toward para-nitrophenol reduction. Nanotechnology, 2020, 31, 325603.	2.6	38
704	Porous polyurea microspheres with Pd immobilized on surface and their catalytic activity in 4-nitrophenol reduction and organic dyes degradation. European Polymer Journal, 2020, 129, 109652.	5.4	49
705	4-Nitrophenol Reduction: Probing the Putative Mechanism of the Model Reaction. ACS Catalysis, 2020, 10, 5516-5521.	11.2	178
706	Water-soluble gold nanoparticles: recyclable catalysts for the reduction of aromatic nitro compounds in water. RSC Advances, 2020, 10, 15065-15071.	3.6	11
707	The preparation of Ag/ZIF-8@ZIF-67 core-shell composites as excellent catalyst for degradation of the nitroaromatic compounds. Applied Surface Science, 2020, 516, 146160.	6.1	61
708	Hydrothermal assisted synthesis and structural characterization of Zn doped SnO2 nanoparticles for catalytic reduction of 4-nitrophenol. Materials Today: Proceedings, 2021, 36, 717-723.	1.8	11
709	Cucurbiturilsâ€Mediated Noble Metal Nanoparticles for Applications in Sensing, SERS, Theranostics, and Catalysis. Advanced Functional Materials, 2021, 31, .	14.9	79
710	Nickel hydroxide nanoparticles decorated napthalene sulfonic acid-doped polyaniline nanotubes as efficient catalysts for nitroarene reduction. Journal of Colloid and Interface Science, 2021, 581, 979-989.	9.4	19
711	Ag nanoparticles in A4 zeolite as efficient catalysts for the 4-nitrophenol reduction. Microporous and Mesoporous Materials, 2021, 312, 110707.	4.4	30
712	β-Cyclodextrin polymer networks stabilized gold nanoparticle with superior catalytic activities. Nano Research, 2021, 14, 1018-1025.	10.4	15

#	Article	IF	CITATIONS
713	In Situ Preparation of Gold–Silica Particles from a Mixture of Oil Palm Leaves and Chloroauric Acid for Reduction of Nitroaromatic Compounds in Water. Waste and Biomass Valorization, 2021, 12, 3773-3780.	3.4	3
714	Single source precursor synthesized CuS nanoparticles for NIR phototherapy of cancer and photodegradation of organic carcinogen. Journal of Photochemistry and Photobiology B: Biology, 2021, 214, 112084.	3.8	22
715	An environment friendly free-standing cellulose membrane derived for catalytic reduction of 4-nitrophenol: A sustainable approach. Journal of Environmental Chemical Engineering, 2021, 9, 104596.	6.7	36
716	UiO-66/btb/Pd as a stable catalyst reduction of 4-nitrophenol into 4-aminophenol. Inorganic Chemistry Communication, 2021, 124, 108382.	3.9	9
717	Electrocatalytic and photocatalytic applications of atomically precise gold-based nanoclusters. Science China Chemistry, 2021, 64, 1065-1075.	8.2	18
718	Cyclodextrins and inorganic nanoparticles: Another tale of synergy. Advances in Colloid and Interface Science, 2021, 288, 102338.	14.7	22
719	Stabilization of silver nanoparticles in crosslinked polymer colloids through chelation for catalytic degradation of p-nitroaniline in aqueous medium. Chemical Physics Letters, 2021, 763, 138263.	2.6	25
720	Correlations between the fundamentals and applications of ultrasmall metal nanoclusters: Recent advances in catalysis and biomedical applications. Nano Today, 2021, 36, 101053.	11.9	86
721	Hollow 1D copper oxide nanostructures with enhanced activity for catalytic reduction and photocatalytic degradation of organic pollutants. Surfaces and Interfaces, 2021, 22, 100876.	3.0	6
722	Uniform Supported Metal Nanocrystal Catalysts Prepared by Slurry Freeze-Drying. Chemistry of Materials, 2021, 33, 256-265.	6.7	5
723	Mechanistic insights into the catalytic reduction of nitrophenols on noble metal nanoparticles/N-doped carbon black composites. Composites Communications, 2021, 23, 100580.	6.3	17
724	Microporous Organic Polymers: A Synthetic Platform for Engineering Heterogeneous Carbocatalysts. ChemSusChem, 2021, 14, 624-631.	6.8	6
725	Continuous Segmented-Flow Synthesis of Ag and Au Nanoparticles Using a Low Cost Microfluidic PTFE Tubing Reactor. IEEE Transactions on Nanobioscience, 2022, 21, 135-140.	3.3	7
726	Ultrafine Platinum Nanoparticles Derived from Supramolecular Crystal for Catalytic Hydrogenation of Nitroarenes. Acta Chimica Sinica, 2021, 79, 180.	1.4	4
727	Discrete metal nanoparticles with plasmonic chirality. Chemical Society Reviews, 2021, 50, 3738-3754.	38.1	99
728	Applications of MAX phases and MXenes as catalysts. Journal of Materials Chemistry A, 2021, 9, 19589-19612.	10.3	59
729	Hairy silica nanosphere supported metal nanoparticles for reductive degradation of dye pollutants. Nanoscale Advances, 2021, 3, 2879-2886.	4.6	13
730	Surface electronic states mediate concerted electron and proton transfer at metal nanoscale interfaces for catalytic hydride reduction of –NO ₂ to –NH ₂ . Physical Chemistry Chemical Physics, 2021, 23, 12950-12957.	2.8	15

#	Article	IF	CITATIONS
731	Autonomous optimisation of a nanoparticle catalysed reduction reaction in continuous flow. Chemical Communications, 2021, 57, 4926-4929.	4.1	16
732	Green fabrication of hydrogel-immobilized Au@Ag nanoparticles using tannic acid and their application in catalysis. New Journal of Chemistry, 2021, 45, 6914-6927.	2.8	14
733	When water becomes an integral part of carbon – combining theory and experiment to understand the zeolite-like water adsorption properties of porous C ₂ N materials. Journal of Materials Chemistry A, 2021, 9, 22563-22572.	10.3	8
734	Ultrasensitive Determination of Microcystin-Leucine-Arginine (MCLR) by an Electrochemiluminescence (ECL) Immunosensor with Graphene Nanosheets as a Scaffold for Cadmium-Selenide Quantum Dots (QDs). Analytical Letters, 2021, 54, 2523-2536.	1.8	7
735	An efficient nano titania-supported sulfonic acid (n-TSA) catalyzed solvent-free synthesis of isoxazolyl-thiazolidinones. Materials Today: Proceedings, 2021, 43, 3231-3235.	1.8	4
736	Metal nanoparticles entrapped in metal matrices. Nanoscale Advances, 2021, 3, 4597-4612.	4.6	7
737	Spectrophotometric analysis of stability of gold nanoparticles during catalytic reduction of 4-nitrophenol. Turkish Journal of Chemistry, 2021, 45, 82-91.	1.2	5
738	One Pot Synthesis of Large Gold Nanoparticles with Triple Functional Ferrocene Ligands. International Journal of Molecular Sciences, 2021, 22, 2328.	4.1	1
739	Continuous-Flow Catalytic Degradation of Hexacyanoferrate Ion through Electron Transfer Induction in a 3D-Printed Flow Reactor. Journal of Materials Engineering and Performance, 2021, 30, 4891-4901.	2.5	5
740	Activated Carbon Supported Non-noble Bimetallic Ni-Based Catalysts for Nitrocyclohexane Hydrogenation to Cyclohexanone Oxime under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 3300-3315.	6.7	15
741	3D Porous Polymeric-Foam-Supported Pd Nanocrystal as a Highly Efficient and Recyclable Catalyst for Organic Transformations. ACS Applied Materials & Interfaces, 2021, 13, 10120-10130.	8.0	14
742	An Effective Producing Method of Nanocomposites of Ag, Au, and Pd Nanoparticles with Poly(N-vinylpyrrolidone) and Nanocellulose. Electrocatalysis, 2021, 12, 225-237.	3.0	8
743	Magnetic rod-based metal-organic framework metal composite as multifunctional nanostirrer with adsorptive, peroxidase-like and catalytic properties. Chinese Chemical Letters, 2021, 32, 3245-3251.	9.0	10
744	Catalytic Reduction of 4-Nitrophenol to 4-Aminophenol using Chitosan Ag-TiO2 Nanocomposite and its Applications in the Removal of Malachite Green by Photodegradation Technique. Asian Journal of Chemistry, 2021, 33, 752-756.	0.3	0
745	Synthesis of Nanopowders of the Fe–Cu System by the Gas Condensation Method and Their Structure and Magnetic Properties. Physics of Metals and Metallography, 2021, 122, 293-300.	1.0	0
746	Water–ethanol CuOx nanoparticle colloids prepared by laser ablation: Colloid stability and catalytic properties in nitrophenol hydrogenation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126115.	4.7	16
747	ROMP synthesis of gallol-containing polymer hydrogels for in situ fabrication of AuNPs and AgNPs composites as recyclable catalysts for the degradation of 4-nitrophenol. Polymer, 2021, 219, 123539.	3.8	18
748	Photocatalytic Surface Restructuring in Individual Silver Nanoparticles. ACS Catalysis, 2021, 11, 3478-3486.	11.2	19

#	ARTICLE	IF	CITATIONS
749	Facilitating target search in polymer networks: Effects of target size and mixed one-dimensional and three-dimensional diffusion. Physical Review E, 2021, 103, 032502.	2.1	0
750	Extinction Effect of Gold Nanocatalysts on Photocatalytic Activities under Plasmonic Excitation. Catalysts, 2021, 11, 413.	3.5	5
751	Kinetics of the Reduction of 4-Nitrophenol by Silver Nanoparticles Immobilized in Thermoresponsive Core–Shell Nanoreactors. Industrial & Engineering Chemistry Research, 2021, 60, 3922-3935.	3.7	17
752	Tuning the permeability of regular polymeric networks by the cross-link ratio. Journal of Chemical Physics, 2021, 154, 154902.	3.0	15
753	Study of Ag2O/TiO2 nanowires synthesis and characterization for heterogeneous reduction reaction cation catalysis of 4-nitrophenol. Nano Structures Nano Objects, 2021, 26, 100719.	3.5	11
754	Tailoring the structure and energy level over transition-metal doped MoS2 towards enhancing 4-nitrophenol reduction reaction. Journal of Environmental Chemical Engineering, 2021, 9, 105101.	6.7	27
755	Cu–Ag Alloy Nanoparticles in Hydrogel Nanofibers for the Catalytic Reduction of Organic Compounds. ACS Applied Nano Materials, 2021, 4, 6045-6056.	5.0	21
756	Electrostatic Reaction Inhibition in Nanoparticle Catalysis. Langmuir, 2021, 37, 6800-6810.	3.5	1
757	Enhanced reduction of p-nitrophenol by zerovalent iron modified with carbon quantum dots. Applied Catalysis B: Environmental, 2021, 285, 119829.	20.2	46
758	Mechanism of Producing Metallic Nanoparticles, with an Emphasis on Silver and Gold Nanoparticles, Using Bottom-Up Methods. Molecules, 2021, 26, 2968.	3.8	19
759	Synthesis and characterization of the ternary graphene oxide, MnFe ₂ O ₄ nanoparticles, and Polyamidoamine dendrons nanocomposite decorated with palladium as a heterogeneous catalyst for nitroaromatics reduction. Applied Organometallic Chemistry, 2021, 35, e6329.	3.5	4
760	Amphiphilic Polymer Nanoreactors for Multiple Step, One-Pot Reactions and Spontaneous Product Separation. Polymers, 2021, 13, 1992.	4.5	6
761	Generation of Catalytically Active Gold Nanocrystals in Water Induced with Ferrocene Carboxylate. European Journal of Inorganic Chemistry, 2021, 2021, 2471-2479.	2.0	1
762	Silver Nanoparticles for Colorimetric Detection and Discrimination of Mercury Ions in Lake Water. ChemistrySelect, 2021, 6, 6077-6082.	1.5	6
763	A Facile Synthetic Approach for Cu(OH) ₂ -Cu ₂ O Heterostructure: A Stable Catalyst for Pollutant Degradation. Transactions of the Indian Ceramic Society, 2021, 80, 118-126.	1.0	0
764	Entangled nanofibrous copper: an efficient and high performance nanostructured catalyst in azide-alkyne cycloaddition reaction and reduction of nitroarenes and aromatic aldehydes. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 897.	1.7	3
765	Nanofibrous Photocatalytic Membranes Based on Tailored Anisotropic Gold/Ceria Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 37578-37588.	8.0	12
766	Analysis of the Reduction of 4-Nitrophenol Catalyzed by Para-Mercaptobenzoic Acid Capped Magic Number Gold Clusters. Catalysis Letters, 2022, 152, 1257-1263.	2.6	1

#	Article	IF	Citations
	Molecular Functionalization of 2H-Phase MoS ₂ Nanosheets via an Electrolytic Route for		
767	Enhanced Catalytic Performance. ACS Applied Materials & amp; Interfaces, 2021, 13, 33157-33171.	8.0	11
768	Highly Heterogeneous Polarization and Solvation of Gold Nanoparticles in Aqueous Electrolytes. ACS Nano, 2021, 15, 13155-13165.	14.6	9
769	Assembly of Nanoâ€Biocatalyst for the Tandem Hydrolysis and Reduction of pâ€Nitrophenol Esters. Particle and Particle Systems Characterization, 2021, 38, 2100136.	2.3	3
770	Size-Dependent Catalytic Activity of PVA-Stabilized Palladium Nanoparticles in <i>p</i> -Nitrophenol Reduction: Using a Thermoresponsive Nanoreactor. ACS Omega, 2021, 6, 20746-20757.	3.5	22
771	On the Roles of Electron Transfer in Catalysis by Nanoclusters and Nanoparticles. Chemistry - A European Journal, 2021, 27, 16291-16308.	3.3	8
772	Maghemite/ZnO nanocomposites: A highly efficient, reusable and non-noble metal catalyst for reduction of 4-nitrophenol. Advanced Powder Technology, 2021, 32, 2905-2915.	4.1	14
773	Current status of Aloe-based nanoparticle fabrication, characterization and their application in some cutting-edge areas. South African Journal of Botany, 2022, 147, 1058-1069.	2.5	13
774	Kinetics and Langmuir–Hinshelwood mechanism for the catalytic reduction of para-nitrophenol over Cu catalysts supported on chitin and chitosan biopolymers. Reaction Kinetics, Mechanisms and Catalysis, 2021, 134, 285-302.	1.7	9
775	A catalytic strategy for rapid cleavage of C-Cl bond under mild conditions: Effects of active hydrogen induced by Pd nanoparticles on the complete dechlorination of chlorobenzenes. Chemical Engineering Journal, 2021, 419, 129510.	12.7	18
776	Carbon Microsphere-Supported Metallic Nickel Nanoparticles as Novel Heterogeneous Catalysts and Their Application for the Reduction of Nitrophenol. Molecules, 2021, 26, 5680.	3.8	5
777	Continuous flow reduction of 4-nitrophenol by "water soluble―palladium nanoparticles: from batch to continuous flow system. Journal of Flow Chemistry, 2022, 12, 101-111.	1.9	1
778	Fabrication of a new heterostructure Au/Pt/SnO2: An excellent catalyst for fast reduction of para-nitrophenol and visible light assisted photodegradation of dyes. Materials Research Bulletin, 2021, 141, 111351.	5.2	21
779	Exploration of Dynamic Structure–Activity Relationship of a Platinum Nanoparticle in the CO Oxidation Reaction. Journal of Physical Chemistry C, 2021, 125, 19756-19762.	3.1	9
780	Synthesis of multi-walled carbon nanotubes decorated with silver metallic nanoparticles as a catalytic degradable material via pulsed laser ablation in liquid media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 126992.	4.7	47
781	Hyperporous magnetic catalyst foam for highly efficient and stable adsorption and reduction of aqueous organic contaminants. Journal of Hazardous Materials, 2021, 420, 126622.	12.4	7
782	Development of SERS platform based on ZnO multipods decorated with Ag nanospheres for detection of 4-nitrophenol and rhodamine 6G in real samples. Microchemical Journal, 2021, 170, 106660.	4.5	25
783	Ultralow Loading Ruthenium on Alumina Monoliths for Facile, Highly Recyclable Reduction of p-Nitrophenol. Catalysts, 2021, 11, 165.	3.5	6
784	Efficient reduction of nitro compounds and domino preparation of 1-substituted-1 <i>H</i> -1,2,3,4-tetrazoles by Pd(<scp>ii</scp>)-polysalophen coated magnetite NPs as a robust versatile nanocomposite. RSC Advances, 2021, 11, 12484-12499.	3.6	19

	Ci	TATION REP	ORT	
#	Article		IF	CITATIONS
785	Nanometal Thermocatalysts: Transformations, Deactivation, and Mitigation. Small, 2021, 17, e20057	71.	10.0	6
786	Ferrocenyl-terminated polyphenylene-type "click―dendrimers as supports for efficient gold and palladium nanocatalysis. Dalton Transactions, 2021, 50, 11852-11860.		3.3	8
787	Applications of Nanoparticles in the Treatment of Wastewater. , 2017, , 1-25.			4
788	Applications of Nanoparticles in the Treatment of Wastewater. , 2019, , 275-299.			1
789	Activation of two-dimensional MoS2 nanosheets by wet-chemical sulfur vacancy engineering for the catalytic reduction of nitroarenes and organic dyes. Applied Materials Today, 2020, 20, 100678.		4.3	15
790	Strategy to improve gold nanoparticles loading efficiency on defect-free high silica ZSM-5 zeolite for the reduction of nitrophenols. Chemosphere, 2020, 256, 127083.		8.2	57
791	Covalent Organic Frameworks for Catalysis. EnergyChem, 2020, 2, 100035.		19.1	129
792	Green synthesis of time-stable palladium nanoparticles using microfluidic devices. Journal of Environmental Chemical Engineering, 2020, 8, 104096.		6.7	29
793	How the Shape and Chemistry of Molecular Penetrants Control Responsive Hydrogel Permeability. AC Nano, 2021, 15, 614-624.	S	14.6	30
794	lodine activation: a general method for catalytic enhancement of thiolate monolayer-protected metal clusters. Nanoscale, 2020, 12, 12027-12037.		5.6	4
795	Two-Step Mediated Electrosynthesis and Catalytic Activity of Au/Cu ₂ O@poly(N-vinylpyrrolidone) Nanocomposite. ECS Journal of Solid State Science and Technology, 2020, 9, 061007.		1.8	9
796	The supramolecular redox functions of metallomacromolecules. Journal of Leather Science and Engineering, 2020, 2, .		6.0	8
797	A Facile synthesis of ultra-small cerium oxide nanoparticles for enhanced Electrochemical Detection of Nitrobenzene in water samples. International Journal of Electrochemical Science, 2018, 13, 6135-6	143.	1.3	6
798	Concerted Catalysis on Tanghulu-like Cu@Zeolitic Imidazolate Framework-8 (ZIF-8) Nanowires with Tuning Catalytic Performances for 4-nitrophenol Reduction. Engineered Science, 2018, , .		2.3	10
799	Calculating the adsorption energy of a charged adsorbent in a periodic metallic system – the case o BH ₄ ^{â^'} hydrolysis on the Ag(111) surface. Physical Chemistry Chemical Phys 2021, 23, 25667-25678.	f sics,	2.8	12
800	Nanocatalysis under Nanoconfinement: A Metal-Free Hybrid Coacervate Nanodroplet as a Catalytic Nanoreactor for Efficient Redox and Photocatalytic Reactions. ACS Applied Materials & amp; Interfaces 2021, 13, 51117-51131.	5,	8.0	19
801	Ultrafast catalytic reduction of toxic nitroaromatics and organic colouring dyes by using Au/ZIF-11: Efficient wastewater treatment. Journal of Water Process Engineering, 2021, 44, 102362.		5.6	12
802	In-situ Generation of Gold, Platinum and Palladium Nanoparticles in N-isopropylacrylamide-surfmer Copolymer Hydrogels and Catalytic Activity of the Gels. , 2013, , 101-111.			0

#	Article	IF	CITATIONS
803	Metallic Nanostructures for Catalytic Applications. , 2015, , 243-269.		3
805	Facile Synthesis of Au/Pd Nano-dumbells for Catalytic Reduction of p-Nitrophenol. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2018, 33, 19.	1.3	1
806	SYNTHESIS AND CATALYTIC ACTIVITY OF BRANCHED GOLD NANOPARTICLES IN AQUEOUS MEDIUM. Science and Technology, 2018, 55, 227.	0.2	0
807	Smart microgel-metal hybrid particles of PNIPAM-co-PAA@AgAu: synthesis, characterizations and modulated catalytic activity. Journal of Physics Condensed Matter, 2020, 33, 084002.	1.8	12
809	Electrochemical method for producing globules of ultrasmall rhodium nanoparticles with poly(N-vinylpyrrolidone) bound to the surface of nanocellulose fibers. Russian Chemical Bulletin, 2021, 70, 1908-1916.	1.5	2
810	Different Confined Noble-Metal Nanoparticles Catalysts on Porous g-C ₃ N ₄ and Enhanced Catalytic Activity. Material Sciences, 2020, 10, 495-505.	0.0	0
812	Facile in situ redox synthesis of Au@Fe2O3 nanocomposites with multifunctional catalytic activity. Zeitschrift Fur Physikalische Chemie, 2020, .	2.8	0
813	Cu-cuprous/cupric oxide nanoparticles towards dual application for nitrophenol conversion and electrochemical hydrogen evolution. Applied Surface Science, 2022, 578, 151795.	6.1	15
814	Automated synthesis and data accumulation for fast production of high-performance Ni nanocatalysts. Journal of Industrial and Engineering Chemistry, 2022, 106, 449-459.	5.8	6
815	NHC Polymeric Particles Obtained by Self-Assembly and Click Approach of Calix[4]Arene Amphiphiles as Support for Catalytically Active Pd Nanoclusters. Molecules, 2021, 26, 6864.	3.8	4
816	Highly efficient and simultaneous catalytic reduction of multiple toxic dyes and nitrophenols waste water using highly active bimetallic PdO–NiO nanocomposite. Scientific Reports, 2021, 11, 22699.	3.3	21
817	Efficient Electrocatalytic Oxidation of 5-Hydroxymethylfurfural Coupled with 4-Nitrophenol Hydrogenation in a Water System. ACS Catalysis, 2022, 12, 1545-1557.	11.2	113
818	Three novel Co(II)-MOFs with a conjugated tetrabenzoic acid supported noble metal nanoparticles for efficient catalytic reduction of 4-nitrophenol. Journal of Solid State Chemistry, 2022, 307, 122867.	2.9	4
819	Catalytic reduction of 4-nitrophenol using CuO@Na ₂ Ti(PO ₄) ₂ â <h<sub>2O. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2022, 57, 65-79.</h<sub>	1.7	3
820	Active interaction switching controls the dynamic heterogeneity of soft colloidal dispersions. Soft Matter, 2022, 18, 397-411.	2.7	12
821	A new 2D layered aluminophosphate Hada 6[Al6(PO4)8](H2O)11 supported highly uniform Ag nanoparticles for 4-nitrophenol reduction. Inorganic Chemistry Frontiers, 2022, 9, 343-349.	6.0	1
822	Advances on catalytic reduction of 4-nitrophenol by nanostructured materials as benchmark reaction. International Nano Letters, 2022, 12, 223-242.	5.0	46
823	Characterization of Nanoparticles in Diverse Mixtures Using Localized Surface Plasmon Resonance and Nanoparticle Tracking by Dark-Field Microscopy with Redox Magnetohydrodynamics Microfluidics, ACS Physical Chemistry Au. 2022, 2, 289-298,	4.0	11

#	Article	IF	CITATIONS
824	Operando electrochemical SERS monitors nanoparticle reactions by capping agent fingerprints. Nano Research, 2022, 15, 4517-4524.	10.4	7
825	Mechanochemical Strategies for the Preparation of SiO2-Supported AgAu Nanoalloy Catalysts. Frontiers in Chemistry, 2022, 10, 836597.	3.6	5
826	In situ synthesis of selfsupported Ag NPs on AgZr2(PO4)3 NASICON type phosphate: Application in catalytic reduction of 4-nitrophenol. Materials Research Bulletin, 2022, 150, 111764.	5.2	8
827	Pd, Rh and Ru nanohybrid-catalyzed tetramethyldisiloxane hydrolysis for H ₂ generation, nitrophenol reduction and Suzuki–Miyaura cross-coupling. Inorganic Chemistry Frontiers, 2022, 9, 1416-1422.	6.0	12
828	<i>Inâ€situ</i> ATRâ€IR Spectroscopy Reveals Complex Absorptionâ€Diffusion Dynamics in Model Polymerâ€Membraneâ€Catalyst Assemblies (PCMA). ChemCatChem, 2022, 14, .	3.7	3
829	Recent advances in the application of different electrode materials for the determination of 4-hydroxy-nitrobenzene: Review. Inorganic Chemistry Communication, 2022, 138, 109216.	3.9	1
830	Complexes of metals with organotellurium compounds and nanosized metal tellurides for catalysis, electrocatalysis and photocatalysis. Coordination Chemistry Reviews, 2022, 459, 214406.	18.8	27
831	Reversible Regulating the Substrate Specificity of Enzymes in Microgels by a Phase Transition in Polymer Networks. ACS Macro Letters, 2022, 11, 26-32.	4.8	6
832	Template synthesis of dual-functional porous MoS ₂ nanoparticles with photothermal conversion and catalytic properties. Nanoscale, 2022, 14, 6888-6901.	5.6	13
833	Ligand-free sub-5 nm platinum nanocatalysts on polydopamine supports: size-controlled synthesis and size-dictated reaction pathway selection. Nanoscale, 2022, 14, 5743-5750.	5.6	8
834	Nickel foam supported porous copper oxide catalysts with noble metal-like activity for aqueous phase reactions. Catalysis Science and Technology, 2022, 12, 3804-3816.	4.1	7
835	Anchoring Copper Single Atoms on Porous Boron Nitride Nanofiber to Boost Selective Reduction of Nitroaromatics. ACS Nano, 2022, 16, 4152-4161.	14.6	47
836	Exploiting the Fracture in Metalâ€Organic Frameworks: A General Strategy for Bifunctional Atomâ€Precise Nanocluster/ZIFâ€8(300°C) Composites. Small, 2022, 18, e2107459.	10.0	11
837	Ag, Co3O4, Ag–Co3O4, and Ag/Co3O4 Nanoparticles Decorated Mesoporous Natural Phosphate: Effect of Metal Synergy and Preparation Method on the Catalytic Reduction Reaction. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 2192-2208.	3.7	7
838	Toward Totally Defined Nanocatalysis: Deep Learning Reveals the Extraordinary Activity of Single Pd/C Particles. Journal of the American Chemical Society, 2022, 144, 6071-6079.	13.7	13
839	C-Heterogenized Re Nanoparticles as Effective Catalysts for the Reduction of 4-Nitrophenol and Oxidation of 1-Phenylethanol. Catalysts, 2022, 12, 285.	3.5	2
840	Photochemical Freeze Synthesis of Ultrafine Platinum Nanocatalysts. Catalysis Letters, 2023, 153, 338-347.	2.6	3
841	Ferrocene-based dendritic macromolecules as efficient supports in nanocatalysis. Polymer, 2022, 246, 124714.	3.8	7

#	Article	IF	CITATIONS
842	Surface-Functionalized Au–Pd Nanorods with Enhanced Photothermal Conversion and Catalytic Performance. ACS Applied Materials & Interfaces, 2022, 14, 17259-17272.	8.0	11
843	Facile nitrogen doping in fungal hyphae-derived biochars via cooperation of microbial culture and pyrolysis for efficient catalytic reduction of 4-nitrophenol. Chemosphere, 2022, 300, 134526.	8.2	4
844	An atomistic study on the structural and thermodynamic properties of Al–Fe bimetallic nanoparticles during melting and solidification: The role of size and composition. Materials Chemistry and Physics, 2022, 282, 125936.	4.0	5
845	Functional Mesostructured Electrospun Polymer Nonwovens with Supramolecular Nanofibers. Macromolecular Rapid Communications, 2022, 43, e2200052.	3.9	4
846	Using supercritical carbon dioxide to synthesize polymer nanospheres with an open hole on the surface and the application of spatially structured PS/P(DVB-co-MAA)@Fe3O4/TA@Ag nanocomposites. Journal of Supercritical Fluids, 2022, 184, 105561.	3.2	4
847	Highly efficient and recoverable Ag-Cu bimetallic catalyst supported on taro-rhizomeÂpowder applied for nitroarenes and dyes reduction. Journal of Materials Research and Technology, 2022, 18, 769-787.	5.8	16
848	A bio-inspired dynamic filter with unidirectional channels based on cross-linked cellulose loading palladium nanoparticles for catalytic reduction of 4-nitrophenol. Industrial Crops and Products, 2022, 179, 114690.	5.2	4
849	Ag/biochar nanocomposites demonstrate remarkable catalytic activity towards reduction of p-nitrophenol via restricted agglomeration and leaching characteristics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128616.	4.7	14
850	Synthesis of N-myristoyltaurine stabilized gold and silver nanoparticles: Assessment of their catalytic activity, antimicrobial effectiveness and toxicity in zebrafish. Environmental Research, 2022, 212, 113159.	7.5	47
851	Sizeâ€Dependent Catalytic Behavior of Gold Nanoparticles. Advanced Materials Interfaces, 2022, 9, .	3.7	17
852	Effect of Photocharging on Catalysis of Metallic Nanoparticles. Journal of Physical Chemistry Letters, 2021, 12, 12173-12179.	4.6	3
853	Al2O3 anchored silver and gold nanoparticles as accessible, stable, and re-usable catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646, 128972.	4.7	9
856	Rice extract assisted green synthesis of Au nanoparticles: Catalytic and SERS activities. Surface Review and Letters, 0, , .	1.1	1
857	Green synthesis, characterization, and catalytic application of a supported and magnetically isolable copper-iron oxide-sodium alginate. Green Synthesis and Catalysis, 2022, 3, 179-184.	6.8	3
859	The identification of byproducts from the catalytic reduction reaction of 4-nitrophenol to 4-aminophenol: A systematic spectroscopic study. Journal of Environmental Management, 2022, 316, 115292.	7.8	17
860	Morphologically Tailored Facet Dependent Silver Nanoparticles Supported Îʿ-Al2o3 Catalysts for Chemoselective Reduction of Aromatic Nitro Compounds. SSRN Electronic Journal, 0, , .	0.4	0
861	Multifunctional Core-Shell Microgels as Pd-Nanoparticle Containing Nanoreactors With Enhanced Catalytic Turnover. Frontiers in Chemistry, 2022, 10, .	3.6	8
862	Permeability of Polymer Membranes beyond Linear Response. Macromolecules, 2022, 55, 7327-7339.	4.8	7

#	Article	IF	CITATIONS
863	Silverâ€mediated Squaric Acid Reduction as a Facile, Ambientâ€ŧemperature and Seedless Route to Tunable Bimetallic Au/Ag Nanostars and Nanosnowflakes. ChemNanoMat, 0, , .	2.8	0
864	Polydimethylsiloxane Sponge-Supported Metal Nanoparticles as Reusable Catalyst for Continuous Flow Reactions. Nanomaterials, 2022, 12, 2081.	4.1	2
865	Hierarchical-Structured Pd Nanoclusters Catalysts <i>x</i> -PdNCs/CoAl(O)/rGO- <i>T</i> by the Captopril-Capped Pd Cluster Precursor Method for the Highly Efficient 4-Nitrophenol Reduction. ACS Applied Materials & Interfaces, 2022, 14, 27775-27790.	8.0	12
866	Porous carbonâ€supported CoPd nanoparticles: Highâ€performance reduction reaction of nitrophenol. Applied Organometallic Chemistry, 2022, 36, .	3.5	4
867	Cobalt sandwich-stabilized rhodium nanocatalysts for ammonia borane and tetrahydroxydiboron hydrolysis. Inorganic Chemistry Frontiers, 2022, 9, 4651-4660.	6.0	7
868	Mesoporous silica dispersed Co ₃ O ₄ -CuO nanocomposite and its catalytic reduction of 4-nitrophenol. Materials Research Express, 2022, 9, 075006.	1.6	2
869	Nanomaterials and Nanostructures Hand-In-Hand with Biology. Nanomaterials, 2022, 12, 2317.	4.1	0
870	Synthesis and Characterization of High Viscosity Cationic Poly(Proline-Epichlorohydrin) Composite Polymer with Antibacterial Functionalities. Polymers, 2022, 14, 2797.	4.5	0
871	Carboxymethyl cellulose nanocolloids anchored Pd(0) nanoparticles (CMC@Pd NPs): synthesis, characterization, and catalytic application in transfer hydrogenation. Environmental Science and Pollution Research, 2023, 30, 81619-81634.	5.3	6
872	Studies of surface plasmon resonance of silver nanoparticles reduced by aqueous extract of shortleaf spikesedge and their catalytic activity. International Journal of Phytoremediation, 2023, 25, 658-669.	3.1	4
873	Recent developments in hydrogels containing copper and palladium for the catalytic reduction/degradation of organic pollutants. RSC Advances, 2022, 12, 23481-23502.	3.6	9
874	Pt, Pd, and Rh Nanoparticles Supported on Polydopamine Nanospheres as Catalysts for Transfer Hydrogenolysis. ACS Applied Nano Materials, 2022, 5, 11797-11808.	5.0	4
875	Effect of Ligands and Their Removal on the Au Nanoparticle-Catalyzed Reduction of 4-Nitrophenol. Journal of Physical Chemistry C, 2022, 126, 13705-13713.	3.1	7
876	Morphology controlled biogenic fabrication of Metal/Metal oxide nanostructures using plant extract and their application in organic transformations. Inorganic Chemistry Communication, 2022, 144, 109855.	3.9	4
877	Recent advances in metal-based nanoporous materials for sensing environmentally-related biomolecules. Chemosphere, 2022, 307, 135999.	8.2	2
878	Morphologically tailored facet dependent silver nanoparticles supported α-Al2O3 catalysts for chemoselective reduction of aromatic nitro compounds. Chemical Engineering Journal, 2023, 451, 138507.	12.7	15
879	In-situ synthesis of ultra-small Ni nanoparticles anchored on palygorskite for efficient reduction of 4-nitrophenol. Separation and Purification Technology, 2022, 301, 122015.	7.9	5
880	Green Synthesis of Cu-Mn Co-Doped Zno Nanoparticles for Antimicrobial and Photocatalytic Applications. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
881	Green Synthesis of Cu-Mn Co-Doped Zno Nanoparticles for Antimicrobial and Photocatalytic Applications. SSRN Electronic Journal, 0, , .	0.4	0
882	Selective Nitro Reduction of Ester Substituted Nitroarenes by NaBH4-FeCl2. Pharmaceutical Fronts, 2022, 04, e151-e156.	0.8	2
883	PANI/Bi2O3 polymeric nanocomposite for the reduction of 4-nitrophenol. Polymer Bulletin, 2023, 80, 8467-8481.	3.3	2
884	Carbon-Aerogel-Supported Noble-Metal Nanoparticles as Hydrogenation Catalysts. ACS Applied Nano Materials, 2022, 5, 14227-14234.	5.0	4
885	Probing the Catalytic Reduction on the Surface of Au Nanoparticles by Second Harmonic Generation and Two-photon Luminescence. Physical Chemistry Chemical Physics, 0, , .	2.8	0
886	Controlled electropositive catalytic sites on zeolites for achieving high CH ₃ Cl selectivity <i>via</i> electrophilic CH ₄ chlorination using Cl ₂ . Journal of Materials Chemistry A, 2022, 10, 24475-24486.	10.3	4
887	Pd Nanoparticle-Loaded Smart Microgel-Based Membranes as Reusable Catalysts. ACS Applied Materials & Interfaces, 2022, 14, 49181-49188.	8.0	10
888	Beyond single-crystal surfaces: The GAL21 water/metal force field. Journal of Chemical Physics, 2022, 157, .	3.0	2
889	Optical Properties of Ag Nanoparticle Arrays: Near-Field Enhancement and Photo-Thermal Temperature Distribution. Nanomaterials, 2022, 12, 3924.	4.1	2
890	Metallic Nanoparticles Adsorbed at the Pore Surface of Polymers with Various Porous Morphologies: Toward Hybrid Materials Meant for Heterogeneous Supported Catalysis. Polymers, 2022, 14, 4706.	4.5	1
891	Anchoring Pd Nanoparticles with Low Loading on Co,Nâ€Đoped Carbon Framework for the Synergistic Reduction of Nitrophenols. ChemCatChem, 2022, 14, .	3.7	3
892	Pt nanoparticles anchored on bifunctional CuFe2O4 submicrospheres with improved catalytic properties for the reduction of [Fe(CN)6]3â^' by S2O32â^'. Journal of Sol-Gel Science and Technology, 2023, 105, 758-767.	2.4	1
893	New Waterâ€Soluble Au(III) Complexes with Xylosideâ€based Ligands: Synthesis, Structural Characterization, Solution Studies and Catalytic Evaluation. European Journal of Inorganic Chemistry, 0, , .	2.0	0
894	The onset of mass transport limitations triggers the stimulus responsiveness of polymer coated catalysts. Chemical Engineering Journal, 2023, 455, 140809.	12.7	4
895	Synthesis of novel hybrid mesoporous gold iron oxide nanoconstructs for enhanced catalytic reduction and remediation of toxic organic pollutants. RSC Advances, 2022, 12, 35989-36001.	3.6	0
896	Yolk–Shell Nanoparticles with CO ₂ -Responsive Outer Shells for Gas-Controlled Catalysis. ACS Applied Nano Materials, 2022, 5, 18237-18246.	5.0	3
897	Gold Nanostar Characterization by Nanoparticle Tracking Analysis. ACS Omega, 2022, 7, 44677-44688.	3.5	4
898	Novel PEPPSI-Type NHC Pd(II) Metallosurfactants on the Base of 1H-Imidazole-4,5-dicarboxylic Acid: Synthesis and Catalysis in Water–Organic Media. Nanomaterials, 2022, 12, 4100.	4.1	4

#	Article	IF	CITATIONS
899	Porous silica derived from sago waste and its application for the preparation of SiO2/C composites as air cathodes for primary aluminum-air batteries. International Journal of Electrochemical Science, 2022, 17, 221221.	1.3	0
900	Chiral Au Nanorods: Synthesis, Chirality Origin, and Applications. ACS Nano, 2022, 16, 19789-19809.	14.6	26
901	Bimetal–Organic Frameworks for High Efficiency Catalytic Reduction. , 2023, 5, 473-479.		2
902	Recent advances in immobilized noble metal catalysts in aqueous media for organic reactions. Current Opinion in Green and Sustainable Chemistry, 2023, 40, 100753.	5.9	2
903	Electron transfer in heterojunction catalysts. Physical Chemistry Chemical Physics, 2023, 25, 7106-7119.	2.8	6
904	Dual-plasmon-enhanced nitrophenol hydrogenation over W ₁₈ O ₄₉ –Au heterostructures studied at the single-particle level. Catalysis Science and Technology, 0, , .	4.1	1
905	Synthesis of Nitrogen and Phosphorus/Sulfur Co-Doped Carbon Xerogels for the Efficient Electrocatalytic Reduction of p-Nitrophenol. International Journal of Molecular Sciences, 2023, 24, 2432.	4.1	3
906	Molecular manipulation of the microenvironment of Au active sites on mesoporous silica for the enhanced catalytic reduction of 4-nitrophenol. Catalysis Science and Technology, 2023, 13, 2001-2009.	4.1	3
907	Multiâ€layer 3D Chirality and Doubleâ€Helical Assembly in a Copper Nanocluster with a Tripleâ€Helical Cu ₁₅ Core. Angewandte Chemie, 2023, 135, .	2.0	0
908	Plasma synthesis of graphite oxide supported PdNi catalysts with enhanced catalytic activity and stability for 4-nitrophenol reduction. Catalysis Today, 2023, 418, 114069.	4.4	2
909	Synthesis of SnO2-Ag nanocomposites via thermal decomposition method and their application for catalytic reduction of 4-nitrophenol and photocatalytic degradation of congo red. Journal of Molecular Structure, 2023, 1285, 135423.	3.6	3
910	Full Control of Plasmonic Nanocavities Using Gold Decahedraâ€onâ€Mirror Constructs with Monodisperse Facets. Advanced Science, 2023, 10, .	11.2	7
911	A Xylosideâ€Based Ligand to Stabilize Gold Nanoparticles: Preparation and Application. European Journal of Inorganic Chemistry, 2023, 26, .	2.0	0
912	Plate-Like Colloidal Metal Nanoparticles. Chemical Reviews, 2023, 123, 3493-3542.	47.7	24
913	Pd-Nanoparticles-Catalyzed C(sp2)–H Arylation for the Synthesis of Functionalized Heterocycles: Recent Progress and Prospects. Synthesis, 2024, 56, 611-638.	2.3	2
914	Time-Resolved Formation and Operation Maps of Pd Catalysts Suggest a Key Role of Single Atom Centers in Cross-Coupling. Journal of the American Chemical Society, 2023, 145, 9092-9103.	13.7	13
915	Multiâ€layer 3D Chirality and Doubleâ€Helical Assembly in a Copper Nanocluster with a Tripleâ€Helical Cu ₁₅ Core. Angewandte Chemie - International Edition, 2023, 62, .	13.8	19
916	Synthesis of platinum group metal nanoparticles assisted by CO ₂ reduction and H ₂ cogeneration at gas-diffusion electrodes. , 2023, 1, 454-458.		5

#	Article	IF	CITATIONS
917	Machine learning algorithms to predict the catalytic reduction performance of eco-toxic nitrophenols and azo dyes contaminants (Invited Article). AEJ - Alexandria Engineering Journal, 2023, 72, 673-693.	6.4	5
918	Towards multicomponent intermetallic nanoparticles as efficient and low-cost catalysts. Journal of Alloys and Compounds, 2023, 956, 170254.	5.5	0
919	Use of Metallic Nanostructures in Electrochemical Biosensing of SARS-CoV-2. , 2023, , 61-70.		0
920	Chiral metal nanostructures: synthesis, properties and applications. Rare Metals, 2023, 42, 2489-2515.	7.1	10
921	Cationic Polymer Coating Increases the Catalytic Activity of Gold Nanoparticles toward Anionic Substrates. ACS Applied Materials & Interfaces, 2023, 15, 29160-29169.	8.0	1
922	Effect of Capping Ligands for the Synthesis of Gold Nanoparticles and on the Catalytic Performance for the Oxidation of 5-Hydroxymethyl-2-furfural. Catalysts, 2023, 13, 990.	3.5	0
923	Covalent Organic Frameworks (COFs) for heterogeneous catalysis: Recent trends in design and synthesis with structure-activity relationship. Materials Today, 2023, 67, 229-255.	14.2	13
924	Formation of one-dimensional hierarchical MoO ₂ @C–Ni/CoNi hybrids as highly efficient catalysts and protein adsorbents. CrystEngComm, 2023, 25, 4427-4434.	2.6	2
925	Reversible ligand exchange of triphenylphosphine with thiols on gold nanoparticles for Janus modification and catalyst recycling. Separation and Purification Technology, 2023, 322, 124154.	7.9	3
926	Green synthesized nano-silver/cellulose aerogel as a robust active and recyclable catalyst towards nitrophenol hydrogenation. Chemical Engineering Journal, 2023, 471, 144604.	12.7	4
927	A Highly Active and Reusable Multicomponent high Entropy Metal Oxide Catalyst for Nitroarenes Hydrogenation. Topics in Catalysis, 0, , .	2.8	0
928	Green synthesis of <scp>Cuâ€Mn</scp> coâ€incorporated <scp>ZnO</scp> nanoparticles for antibacterial and photocatalytic applications. Microscopy Research and Technique, 2023, 86, 1132-1143.	2.2	2
929	Phase-Controlled Ruthenium Nanocrystals on Colloidal Polydopamine Supports and Their Catalytic Behaviors in Aerobic Oxidation Reactions. ACS Applied Materials & Interfaces, 0, , .	8.0	0
930	Enhancing catalytic activity of gold nanoparticles in a standard redox reaction by investigating the impact of AuNPs size, temperature and reductant concentrations. Scientific Reports, 2023, 13, .	3.3	14
931	Ethylenediamine Mediated, Environmentally Benign Synthesis of Copper Nanowires and their Catalytic Activity Towards 4â€Nitrophenol Reduction. ChemistrySelect, 2023, 8, .	1.5	0
933	Amine-functionalized reduced graphene oxide-supported silver nanoparticles for superior catalytic reduction of organic pollutants. Environmental Science and Pollution Research, 2023, 30, 96114-96124.	5.3	1
934	Two-dimensional transition metal dichalcogenides beyond MoS2 for the catalytic reduction of nitroarenes: MoSe2 exhibits enhanced performance. Applied Catalysis B: Environmental, 2023, 339, 123174.	20.2	1
935	Understanding the role of dominant crystal facets on heterogeneous catalytic activity of BiOBr nanomaterials: Boosting catalytic efficiency through Fe (III)/Fe(II) incorporation. Journal of Alloys and Compounds, 2023, 967, 171814	5.5	1

#	ARTICLE	IF	CITATIONS
936	Multi-functionalized carbon nanotubes towards green fabrication of heterogeneous catalyst platforms with enhanced catalytic properties under NIR light irradiation. Nanoscale, 0, , .	5.6	0
937	Facile fabrication of Pluronic-mediated copper nanoparticles using microwave techniques and their application as the photocatalysts for various organic dyes degradation. Materials Today Communications, 2023, 37, 106990.	1.9	0
938	A new two-dimensional luminescent Ag ₁₂ cluster-assembled material and its catalytic activity for reduction of hexacyanoferrate(<scp>iii</scp>). Nanoscale, 2023, 15, 16299-16306.	5.6	1
939	Au@C/Pt core@shell/satellite supra-nanostructures: plasmonic antenna–reactor hybrid nanocatalysts. Nanoscale Advances, 2023, 5, 5435-5448.	4.6	0
940	Gallic acid-based dendrimers with a thiacalix[4]arene core: synthesis, aggregation and use for stabilization of Pd nanoparticles. New Journal of Chemistry, 2023, 47, 19223-19234.	2.8	0
941	PEPPSI-Type Pd(II)—NHC Complexes on the Base of p-tert-Butylthiacalix[4]arene: Synthesis and Catalytic Activities. Inorganics, 2023, 11, 326.	2.7	2
942	The Competition between 4-Nitrophenol Reduction and BH4â [~] ' Hydrolysis on Metal Nanoparticle Catalysts. Molecules, 2023, 28, 6530.	3.8	1
943	Chitosan supported silver nanostructures as surface-enhanced Raman scattering sensor: Spectroscopic and density functional theory insights. International Journal of Biological Macromolecules, 2023, 253, 127444.	7.5	0
944	Total Structure, Electronic Structure and Catalytic Hydrogenation Activity of Metalâ€Đeficient Chiral Polyhydride Cu ₅₇ Nanoclusters. Angewandte Chemie, 2023, 135, .	2.0	0
945	Total Structure, Electronic Structure and Catalytic Hydrogenation Activity of Metalâ€Deficient Chiral Polyhydride Cu ₅₇ Nanoclusters. Angewandte Chemie - International Edition, 2023, 62, .	13.8	12
947	Platinum nanoparticle-decorated reduced graphene oxide nanosheets: A recyclable and highly efficient catalyst towards the reduction of para-nitrophenol and methylene blue. Results in Engineering, 2023, 20, 101444.	5.1	2
948	Stable and efficient planar Cu/Cu ₂ O film catalysts. New Journal of Chemistry, 2023, 47, 18896-18899.	2.8	0
949	Gas–droplet–liquid transitions and fluctuations in soft nano-confinement. AIP Advances, 2023, 13, .	1.3	0
950	Recent developments of nanocatalysts for Stille coupling reaction. Synthetic Communications, 2023, 53, 2061-2087.	2.1	0
951	Fabrication of core–shell beads, hollow capsules, and AuNP-embedded catalytic beads from an ultrasmall peptide hydrogel. Chemical Engineering Journal, 2023, 477, 147105.	12.7	1
952	CuO/TiO ₂ /ZnO NPs Anchored Hydrogen Exfoliated Graphene: To Comprehend the Role of Graphene in Catalytic Reduction of p-Nitrophenol. ACS Omega, 2023, 8, 42164-42176.	3.5	0
953	Phospholipid-derived Au and Au–Cu suspensions as efficient peroxide and borohydride activators for organic molecules degradation: Performance and sustainable catalytic mechanism. Chemosphere, 2024, 346, 140567.	8.2	0
954	Recent Progress on Phase Engineering of Nanomaterials. Chemical Reviews, 2023, 123, 13489-13692.	47.7	3

#	Article	IF	CITATIONS
956	Catalytic Activity of Nonaggregating Cu Nanoparticles Supported in Pores of Zeolite for Aerobic Oxidation of Benzyl Alcohol. ACS Omega, 0, , .	3.5	0
957	Amphiphilic Janus dendrimer-stabilized Au, Ag and Pd nanoparticles for the reduction of 4-nitrophenol and Suzuki-Miyaura cross-coupling reactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 685, 133225.	4.7	0
958	Cold nanoparticle morphology adjusted as high-performance catalyses in supergiant dispersant. Surfaces and Interfaces, 2024, 45, 103904.	3.0	0
959	Unveiling the Borohydride Ion through Force-Field Development. Journal of Chemical Theory and Computation, 2024, 20, 1263-1273.	5.3	0
960	Au-loaded ZIF-8 derived porous carbon with improved photothermal catalysis ability from interfacial heating instead of hot-electrons. Chemical Engineering Journal, 2024, 482, 148963.	12.7	0
961	Transition metal modified Al2O3 mesoporous nanospheres for catalysis of organic reactions. Applied Surface Science, 2024, 653, 159355.	6.1	0
962	Radiation-assisted synthesis of water soluble starch encapsulated copper nanoparticles and its applicability toward photocatalytic reduction of p-nitrophenol. Applied Nanoscience (Switzerland), 2024, 14, 507-518.	3.1	0
963	Green Synthesis of Highly Monodisperse and Spherical Ag Nanoparticles by a Combination of <i>Teucrium ramosissimum</i> Desf. (Lamiaceae) Extracts with Emphasis on the Stabilizing and Capping Biomolecules. ACS Sustainable Chemistry and Engineering, 2024, 12, 4132-4145.	6.7	0
964	Polymerized stimuli-responsive microgel hybrids of silver nanoparticles as efficient reusable catalyst for reduction reaction. Heliyon, 2024, 10, e26244.	3.2	0
966	Highly active CeO2-CuCo nanoparticles supported on hollow N-doped carbon spheres for boosting ammonia borane hydrolysis and tandem 4-nitrophenol reduction reactions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2024, 303, 117330.	3.5	0