Pharmacokinetic mAb–mAb Interaction: Anti-VEGF r Anti-CEA mAb into Colorectal Tumor Xenografts

AAPS Journal 14, 445-455 DOI: 10.1208/s12248-012-9357-2

Citation Report

#	Article	IF	CITATIONS
1	Application of PBPK modeling to predict monoclonal antibody disposition in plasma and tissues in mouse models of human colorectal cancer. Journal of Pharmacokinetics and Pharmacodynamics, 2012, 39, 683-710.	0.8	43
3	Antibody biodistribution coefficients. MAbs, 2013, 5, 297-305.	2.6	177
4	Dynamic Contrast-Enhanced Micro–Computed Tomography Correlates With 3-Dimensional Fluorescence Ultramicroscopy in Antiangiogenic Therapy of Breast Cancer Xenografts. Investigative Radiology, 2014, 49, 445-456.	3.5	18
5	Assessments of antibody biodistribution. Journal of Clinical Pharmacology, 2015, 55, S29-38.	1.0	32
6	Pharmacokinetic and pharmacodynamic considerations for the next generation protein therapeutics. Journal of Pharmacokinetics and Pharmacodynamics, 2015, 42, 553-571.	0.8	40
7	Therapeutic protein-drug interactions: plausible mechanisms and assessment strategies. Expert Opinion on Drug Metabolism and Toxicology, 2016, 12, 1323-1331.	1.5	9
8	Sorafenib Decreases Tumor Exposure to an Anti-carcinoembryonic Antigen Monoclonal Antibody in a Mouse Model of Colorectal Cancer. AAPS Journal, 2016, 18, 923-932.	2.2	12
9	Development and validation of an enzyme-linked immunosorbent assay for the quantification of gelonin in mouse plasma. Journal of Immunoassay and Immunochemistry, 2016, 37, 611-622.	0.5	3
10	Potential Sources of Inter-Subject Variability in Monoclonal Antibody Pharmacokinetics. Clinical Pharmacokinetics, 2016, 55, 789-805.	1.6	60
11	Pharmacokinetic Considerations for Antibody-Drug Conjugates against Cancer. Pharmaceutical Research, 2017, 34, 2579-2595.	1.7	30
12	Tumor-Specific Labeling of Pancreatic Cancer Using a Humanized Anti-CEA Antibody Conjugated to a Near-Infrared Fluorophore. Annals of Surgical Oncology, 2018, 25, 1079-1085.	0.7	40
13	Interacciones farmacológicas de los anticuerpos monoclonales. Medicina ClÃnica, 2018, 151, 148-155.	0.3	4
14	"Catch-and-Release―Anti-Carcinoembryonic Antigen Monoclonal Antibody Leads to Greater Plasma and Tumor Exposure in a Mouse Model of Colorectal Cancer. Journal of Pharmacology and Experimental Therapeutics, 2018, 366, 205-219.	1.3	12
15	Pharmacological interactions of monoclonal antibodies. Medicina ClÃnica (English Edition), 2018, 151, 148-155.	0.1	1
16	Understanding Inter-Individual Variability in Monoclonal Antibody Disposition. Antibodies, 2019, 8, 56.	1.2	46
17	Physiologically Based Modeling of the Pharmacokinetics of "Catch-and-Release― Anti-Carcinoembryonic Antigen Monoclonal Antibodies in Colorectal Cancer Xenograft Mouse Models. Journal of Pharmaceutical Sciences, 2019, 108, 674-691.	1.6	6
18	Protein drug-drug interactions for therapeutic modalities. , 2020, , 387-416.		1
19	Threshold Change in CEA as a Predictor ofÂNon-Progression to First-Line Systemic Therapy in Metastatic Colorectal Cancer Patients With Elevated CEA. Journal of the National Cancer Institute,	3.0	24

CITATION REPORT

#	Article	IF	CITATIONS
20	Transient Competitive Inhibition Bypasses the Binding Site Barrier to Improve Tumor Penetration of Trastuzumab and Enhance T-DM1 Efficacy. Cancer Research, 2021, 81, 4145-4154.	0.4	26
21	Strategies to enhance monoclonal antibody uptake and distribution in solid tumors. Cancer Biology and Medicine, 2021, 18, 649-664.	1.4	16
23	Dynamic Contrast-Enhanced Magnetic Resonance Imaging for the Prediction of Monoclonal Antibody Tumor Disposition. International Journal of Molecular Sciences, 2022, 23, 679.	1.8	0
24	IOLite: phase 1b trial of doublet/triplet combinations of dostarlimab with niraparib, carboplatin–paclitaxel, with or without bevacizumab in patients with advanced cancer. , 2022, 10, e003924.		8
25	A Non-radiometric Approach to Determine Tissue Vascular Blood Volume in Biodistribution Studies. AAPS Journal, 2022, 24, .	2.2	0