Dysfunction of the intestinal microbiome in inflammator

Genome Biology 13, R79

DOI: 10.1186/gb-2012-13-9-r79

Citation Report

#	Article	IF	CITATIONS
1	Functional predictions from inference and observation in sequence-based inflammatory bowel disease research. Genome Biology, 2012, 13, 169.	3.8	11
2	Rethinking mechanisms of autoimmune pathogenesis. Journal of Autoimmunity, 2013, 45, 97-103.	3.0	67
3	Colonisation by <i><scp>F</scp>aecalibacterium prausnitzii</i> and maintenance of clinical remission in patients with ulcerative colitis. Alimentary Pharmacology and Therapeutics, 2013, 38, 151-161.	1.9	181
4	Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 2013, 31, 814-821.	9.4	8,049
5	Diet, microbes, and host genetics: the perfect storm in inflammatory bowel diseases. Journal of Gastroenterology, 2013, 48, 315-321.	2.3	128
6	Functional profiling of the gut microbiome in disease-associated inflammation. Genome Medicine, 2013, 5, 65.	3.6	61
7	Two-stage microbial community experimental design. ISME Journal, 2013, 7, 2330-2339.	4.4	31
8	Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiome, 2013, 1, 17.	4.9	256
9	Towards a predictive systems-level model of the human microbiome: progress, challenges, and opportunities. Current Opinion in Biotechnology, 2013, 24, 810-820.	3.3	58
10	Bridging immunity and lipid metabolism by gut microbiota. Journal of Allergy and Clinical Immunology, 2013, 132, 253-262.	1.5	61
11	Intérêt et technique de la transplantation fécale. Journal Des Anti-infectieux, 2013, 15, 187-192.	0.1	0
12	Peripheral education of the immune system by the colonic microbiota. Seminars in Immunology, 2013, 25, 364-369.	2.7	82
13	The Human Microbiome and Probiotics: Implications for Pediatrics. Annals of Nutrition and Metabolism, 2013, 63, 42-52.	1.0	30
14	Fecal Microbiota Transfer May Increase Irritable Bowel Syndrome and Inflammatory Bowel Diseases–Associated Bacteria. Gastroenterology, 2013, 144, e19-e20.	0.6	15
15	Microbiota-mediated colonization resistance against intestinal pathogens. Nature Reviews Immunology, 2013, 13, 790-801.	10.6	1,138
16	The microbiome and cancer. Nature Reviews Cancer, 2013, 13, 800-812.	12.8	1,338
17	A Dried Yeast Fermentate Selectively Modulates both the Luminal and Mucosal Gut Microbiota and Protects against Inflammation, As Studied in an Integrated in Vitro Approach. Journal of Agricultural and Food Chemistry, 2013, 61, 9380-9392.	2.4	49
18	Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17059-17064.	3.3	237

#	Article	IF	CITATIONS
19	The Clostridium small RNome that responds to stress: the paradigm and importance of toxic metabolite stress in C. acetobutylicum. BMC Genomics, 2013, 14, 849.	1.2	49
20	HIV Infection is associated with compositional and functional shifts in the rectal mucosal microbiota. Microbiome, 2013, 1, 26.	4.9	184
21	Mechanisms of Tissue Remodeling in Inflammatory Bowel Disease. Digestive Diseases, 2013, 31, 186-193.	0.8	46
22	A Prospective Study of Long-term Intake of Dietary Fiber and Risk ofÂCrohn's Disease and Ulcerative Colitis. Gastroenterology, 2013, 145, 970-977.	0.6	494
23	Differential abundance analysis for microbial marker-gene surveys. Nature Methods, 2013, 10, 1200-1202.	9.0	1,921
24	Does Consuming the Recommend Daily Level of Fiber Prevent Crohn's Disease?. Gastroenterology, 2013, 145, 925-927.	0.6	7
25	Nutrigenetics, nutrigenomics and inflammatory bowel diseases. Expert Review of Clinical Immunology, 2013, 9, 717-726.	1.3	22
26	Role of diet and gut microbiota in management of inflammatory bowel disease in an Asian migrant. Journal of Allergy and Clinical Immunology, 2013, 132, 250-250.e5.	1.5	7
27	Host–microbiota interaction and intestinal stem cells in chronic inflammation and colorectal cancer. Expert Review of Clinical Immunology, 2013, 9, 409-422.	1.3	19
28	Computational meta'omics for microbial community studies. Molecular Systems Biology, 2013, 9, 666.	3.2	253
29	Intestinal microbiota: A source of novel biomarkers in inflammatory bowel diseases?. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2013, 27, 47-58.	1.0	127
30	The Role of the Environment in the Development of Pediatric Inflammatory Bowel Disease. Current Gastroenterology Reports, 2013, 15, 326.	1.1	64
31	Lactobacillus reuteri-Specific Immunoregulatory Gene <i>rsiR</i> Modulates Histamine Production and Immunomodulation by Lactobacillus reuteri. Journal of Bacteriology, 2013, 195, 5567-5576.	1.0	53
32	Diet, Microbiome, and the Intestinal Epithelium: An Essential Triumvirate?. BioMed Research International, 2013, 2013, 1-12.	0.9	43
33	Pfit Is a Structurally Novel Crohn's Disease-Associated Superantigen. PLoS Pathogens, 2013, 9, e1003837.	2.1	4
34	The human microbiome and autoimmunity. Current Opinion in Rheumatology, 2013, 25, 234-240.	2.0	78
35	Fecal transplantation. Current Opinion in Pediatrics, 2013, 25, 618-623.	1.0	3
36	Ecological Modeling from Time-Series Inference: Insight into Dynamics and Stability of Intestinal Microbiota. PLoS Computational Biology, 2013, 9, e1003388.	1.5	487

#	Article	IF	CITATIONS
38	Exploring host–microbiota interactions in animal models and humans. Genes and Development, 2013, 27, 701-718.	2.7	413
39	The complex interplay between inflammation, the microbiota and colorectal cancer. Gut Microbes, 2013, 4, 253-258.	4.3	75
40	Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therapeutic Advances in Gastroenterology, 2013, 6, 295-308.	1.4	642
41	Inflammatory bowel disease in Icelandic children 1951–2010. Population-based study involving one nation over six decades. Scandinavian Journal of Gastroenterology, 2013, 48, 1399-1404.	0.6	21
42	Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome. Gut, 2013, 62, 1505-1510.	6.1	387
43	Alteration of Intestinal Dysbiosis by Fecal Microbiota Transplantation Does not Induce Remission in Patients with Chronic Active Ulcerative Colitis. Inflammatory Bowel Diseases, 2013, 19, 2155-2165.	0.9	216
44	Safety, Tolerability, and Clinical Response After Fecal Transplantation in Children and Young Adults With Ulcerative Colitis. Journal of Pediatric Gastroenterology and Nutrition, 2013, 56, 597-601.	0.9	279
45	Impact of Ethnicity, Geography, and Disease on the Microbiota in Health and Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2013, 19, 2906-2918.	0.9	79
46	Bacterial Community Development in Experimental Gingivitis. PLoS ONE, 2013, 8, e71227.	1.1	174
47	Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. ELife, 2013, 2, e01202.	2.8	1,507
48	Fecal Microbial Composition of Ulcerative Colitis and Crohn's Disease Patients in Remission and Subsequent Exacerbation. PLoS ONE, 2014, 9, e90981.	1.1	100
49	Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis. World Journal of Gastroenterology, 2014, 20, 15163.	1.4	390
50	Bovine immunoglobulin protein isolates for the nutritional management of enteropathy. World Journal of Gastroenterology, 2014, 20, 11713.	1.4	32
51	Structural and functional changes in the gut microbiota associated to Clostridium difficile infection. Frontiers in Microbiology, 2014, 5, 335.	1.5	92
52	Microbiome Associations of Therapeutic Enteral Nutrition. Nutrients, 2014, 6, 5298-5311.	1.7	11
53	Perturbation of the Human Microbiome as a Contributor to Inflammatory Bowel Disease. Pathogens, 2014, 3, 510-527.	1.2	32
54	Current Status and Prospects of Intestinal Microbiome Studies. Intestinal Research, 2014, 12, 178.	1.0	16
55	IBD: Microbiota Manipulation through Diet and Modified Bacteria. Digestive Diseases, 2014, 32, 18-25.	0.8	19

#	Article	IF	CITATIONS
56	Metaâ€analyses of human gut microbes associated with obesity and IBD. FEBS Letters, 2014, 588, 4223-4233.	1.3	697
57	Early life environment and natural history of inflammatory bowel diseases. BMC Gastroenterology, 2014, 14, 216.	0.8	34
58	The Integrative Human Microbiome Project: Dynamic Analysis of Microbiome-Host Omics Profiles during Periods of Human Health and Disease. Cell Host and Microbe, 2014, 16, 276-289.	5.1	415
59	Use of animal models in elucidating disease pathogenesis in IBD. Seminars in Immunopathology, 2014, 36, 541-551.	2.8	23
60	Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Medicine, 2014, 6, 107.	3.6	322
61	Multivariate inference of pathway activity in host immunity and response to therapeutics. Nucleic Acids Research, 2014, 42, 10288-10306.	6.5	6
62	Reprograming of gut microbiome energy metabolism by the <i>FUT2</i> Crohn's disease risk polymorphism. ISME Journal, 2014, 8, 2193-2206.	4.4	182
63	Multi-omics analysis of inflammatory bowel disease. Immunology Letters, 2014, 162, 62-68.	1.1	42
64	Intestinal Dysbiosis Associated with Systemic Lupus Erythematosus. MBio, 2014, 5, e01548-14.	1.8	500
65	The Intestinal Microbiome in Early Life: Health and Disease. Frontiers in Immunology, 2014, 5, 427.	2.2	685
66	Applications of Next-Generation Sequencing Technologies to the Study of the Human Microbiome. Comprehensive Analytical Chemistry, 2014, , 75-106.	0.7	0
67	BiomeNet: A Bayesian Model for Inference of Metabolic Divergence among Microbial Communities. PLoS Computational Biology, 2014, 10, e1003918.	1.5	30
68	Helminth Colonization Is Associated with Increased Diversity of the Gut Microbiota. PLoS Neglected Tropical Diseases, 2014, 8, e2880.	1.3	353
69	Association of Levels of Antibodies from Patients with Inflammatory Bowel Disease with Extracellular Proteins of Food and Probiotic Bacteria. BioMed Research International, 2014, 2014, 1-8.	0.9	22
70	Genome-Wide Association Study of Metabolic Traits Reveals Novel Gene-Metabolite-Disease Links. PLoS Genetics, 2014, 10, e1004132.	1.5	86
71	Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Frontiers in Microbiology, 2014, 5, 207.	1.5	551
72	Bacterial Bile Metabolising Gene Abundance in Crohn's, Ulcerative Colitis and Type 2 Diabetes Metagenomes. PLoS ONE, 2014, 9, e115175.	1.1	118
73	A Physicians' Wish List for the Clinical Application of Intestinal Metagenomics. PLoS Medicine, 2014, 11, e1001627.	3.9	9

#	ARTICLE	IF	Citations
74	Lung Microbiome for Clinicians. New Discoveries about Bugs in Healthy and Diseased Lungs. Annals of the American Thoracic Society, 2014, 11, 108-116.	1.5	117
75	Rural and urban microbiota. Gut Microbes, 2014, 5, 351-356.	4.3	34
76	Deodorization of pig slurry and characterization of bacterial diversity using 16S rDNA sequence analysis. Journal of Microbiology, 2014, 52, 918-929.	1.3	8
77	Metabolic Fingerprint of Dimethyl Sulfone (DMSO ₂) in Microbial–Mammalian Co-metabolism. Journal of Proteome Research, 2014, 13, 5281-5292.	1.8	64
78	An introduction to the analysis of shotgun metagenomic data. Frontiers in Plant Science, 2014, 5, 209.	1.7	446
79	Comparison of assembly algorithms for improving rate of metatranscriptomic functional annotation. Microbiome, 2014, 2, 39.	4.9	67
80	Microbial imbalance and intestinal pathologies: connections and contributions. DMM Disease Models and Mechanisms, 2014, 7, 1131-1142.	1.2	83
81	The gut microbiome dysbiosis and its potential role in psoriatic arthritis. International Journal of Clinical Rheumatology, 2014, 9, 559-565.	0.3	4
82	Census-based rapid and accurate metagenome taxonomic profiling. BMC Genomics, 2014, 15, 918.	1.2	18
83	Altered microbiota associated with abnormal humoral immune responses to commensal organisms in enthesitis-related arthritis. Arthritis Research and Therapy, 2014, 16, 486.	1.6	176
84	The Role of Macrophages and Dendritic Cells in the Initiation of Inflammation in IBD. Inflammatory Bowel Diseases, 2014, 20, 166-175.	0.9	197
85	Irritable bowel syndrome, inflammatory bowel disease and the microbiome. Current Opinion in Endocrinology, Diabetes and Obesity, 2014, 21, 15-21.	1.2	73
86	Systems biology in inflammatory bowel diseases. Current Opinion in Gastroenterology, 2014, 30, 339-346.	1.0	33
87	Dysbiotic Events in Gut Microbiota: Impact on Human Health. Nutrients, 2014, 6, 5786-5805.	1.7	169
88	Exploring the influence of the gut microbiota and probiotics on health: a symposium report. British Journal of Nutrition, 2014, 112, S1-S18.	1.2	81
89	Metabolic Alterations to the Mucosal Microbiota in Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2014, 20, 723-731.	0.9	75
90	Gut Microbiota and Inflammatory Bowel Disease: The Role of Antibiotics in Disease Management. Postgraduate Medicine, 2014, 126, 7-19.	0.9	203
91	Characterization of bacterial community shift in human Ulcerative Colitis patients revealed by Illumina based 16S rRNA gene amplicon sequencing. Gut Pathogens, 2014, 6, 22.	1.6	84

#	Article	IF	Citations
92	Clinical pharmacology of <scp>AMG</scp> 181, a gutâ€specific human antiâ€i± ₄ î² ₇ monoclonal antibody, for treating inflammatory bowel diseases. British Journal of Clinical Pharmacology, 2014, 78, 1315-1333.	1.1	32
93	The dynamic microbiome. FEBS Letters, 2014, 588, 4131-4139.	1.3	173
94	The Microbiome in Inflammatory Bowel Disease: Current Status and the Future Ahead. Gastroenterology, 2014, 146, 1489-1499.	0.6	1,374
95	Genomic and systems approaches to translational biomarker discovery in immunological diseases. Drug Discovery Today, 2014, 19, 133-139.	3.2	3
96	When can we cure Crohn's?. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2014, 28, 519-529.	1.0	4
97	Skin Microbiome Imbalance in Patients with STAT1/STAT3 Defects Impairs Innate Host Defense Responses. Journal of Innate Immunity, 2014, 6, 253-262.	1.8	83
98	Role of "Western Diet―in Inflammatory Autoimmune Diseases. Current Allergy and Asthma Reports, 2014, 14, 404.	2.4	341
99	Model organism proteomics as a tool for the study of host–microbiome interactions. Proteomics - Clinical Applications, 2014, 8, 665-676.	0.8	5
100	Enhanced microbial diversity in the saliva microbiome induced by short-term probiotic intake revealed by 16S rRNA sequencing on the IonTorrent PGM platform. Journal of Biotechnology, 2014, 190, 30-39.	1.9	34
101	Compositional and Functional Features of the Gastrointestinal Microbiome and Their Effects on Human Health. Gastroenterology, 2014, 146, 1449-1458.	0.6	386
102	Meta'omic Analytic Techniques for Studying the Intestinal Microbiome. Gastroenterology, 2014, 146, 1437-1448.e1.	0.6	137
103	From promotion to management: The wide impact of bacteria on cancer and its treatment. BioEssays, 2014, 36, 658-664.	1.2	10
104	The Treatment-Naive Microbiome in New-Onset Crohn's Disease. Cell Host and Microbe, 2014, 15, 382-392.	5.1	2,582
105	Longitudinal study of murine microbiota activity and interactions with the host during acute inflammation and recovery. ISME Journal, 2014, 8, 1101-1114.	4.4	174
106	The Colon. Toxicologic Pathology, 2014, 42, 67-81.	0.9	30
107	Microbiota and radiation-induced bowel toxicity: lessons from inflammatory bowel disease for the radiation oncologist. Lancet Oncology, The, 2014, 15, e139-e147.	5.1	101
108	Human Genetics Shape the Gut Microbiome. Cell, 2014, 159, 789-799.	13.5	2,523
109	Determining Microbial Products and Identifying Molecular Targets in the Human Microbiome. Cell Metabolism, 2014, 20, 731-741.	7.2	82

#	Article	IF	CITATIONS
110	The Genetic Predisposition and the Interplay of Host Genetics and Gut Microbiome in Crohn Disease. Clinics in Laboratory Medicine, 2014, 34, 763-770.	0.7	10
111	Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission. ISME Journal, 2014, 8, 1403-1417.	4.4	352
112	Recovery of the Gut Microbiome following Fecal Microbiota Transplantation. MBio, 2014, 5, e00893-14.	1.8	267
113	Correlation Between Intraluminal Oxygen Gradient and Radial Partitioning of Intestinal Microbiota. Gastroenterology, 2014, 147, 1055-1063.e8.	0.6	658
114	Short-Chain Fructo-oligosaccharide and Inulin Modulate Inflammatory Responses and Microbial Communities in Caco2-bbe Cells and in a Mouse Model of Intestinal Injury. Journal of Nutrition, 2014, 144, 1725-1733.	1.3	42
115	Mucosal Immune Responses to Microbiota in the Development of Autoimmune Disease. Rheumatic Disease Clinics of North America, 2014, 40, 711-725.	0.8	32
116	Antibiotics Associated With Increased Risk of New-Onset Crohn's Disease But Not Ulcerative Colitis: A Meta-Analysis. American Journal of Gastroenterology, 2014, 109, 1728-1738.	0.2	292
117	Inflammatory Bowel Disease as a Model for Translating the Microbiome. Immunity, 2014, 40, 843-854.	6.6	284
118	Systematic review: the role of the gut microbiota in chemotherapy―or radiation―nduced gastrointestinal mucositis – current evidence and potential clinical applications. Alimentary Pharmacology and Therapeutics, 2014, 40, 409-421.	1.9	331
120	Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nature Communications, 2014, 5, 4724.	5.8	302
121	Accurate genome relative abundance estimation for closely related species in a metagenomic sample. BMC Bioinformatics, 2014, 15, 242.	1.2	23
122	Gut microbiota, the pharmabiotics they produce and host health. Proceedings of the Nutrition Society, 2014, 73, 477-489.	0.4	126
123	Host–microbe interactions shaping the gastrointestinal environment. Trends in Immunology, 2014, 35, 538-548.	2.9	138
124	Gene–gene and gene–environment interactions in ulcerative colitis. Human Genetics, 2014, 133, 547-558.	1.8	29
125	Species and genus level resolution analysis of gut microbiota in Clostridium difficile patients following fecal microbiota transplantation. Microbiome, 2014, 2, 13.	4.9	98
126	The intestinal microbiome of fish under starvation. BMC Genomics, 2014, 15, 266.	1.2	242
127	Fusobacterium and Enterobacteriaceae: Important players for CRC?. Immunology Letters, 2014, 162, 54-61.	1,1	119
128	The Microbiota, the Immune System and the Allograft. American Journal of Transplantation, 2014, 14, 1236-1248.	2.6	53

#	Article	IF	CITATIONS
129	Mapping the Inner Workings of the Microbiome: Genomic- and Metagenomic-Based Study of Metabolism and Metabolic Interactions in the Human Microbiome. Cell Metabolism, 2014, 20, 742-752.	7.2	76
130	Rethinking "Enterotypes― Cell Host and Microbe, 2014, 16, 433-437.	5.1	321
131	Diet, gut microbes, and genetics in immune function: can we leverage our current knowledge to achieve better outcomes in inflammatory bowel diseases?. Current Opinion in Immunology, 2014, 31, 16-23.	2.4	29
132	Analyzing the Human Microbiome: A "How To―guide for Physicians. American Journal of Gastroenterology, 2014, 109, 983-993.	0.2	69
133	Towards Predictive Models of the Human Gut Microbiome. Journal of Molecular Biology, 2014, 426, 3907-3916.	2.0	99
134	How will insights from genetics translate to clinical practice in inflammatory bowel disease?. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2014, 28, 387-397.	1.0	15
135	Rapidly expanding knowledge on the role of the gut microbiome in health and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1981-1992.	1.8	141
136	Activation of farnesoid X receptor (FXR) protects against fructose-induced liver steatosis via inflammatory inhibition and ADRP reduction. Biochemical and Biophysical Research Communications, 2014, 450, 117-123.	1.0	35
137	Arthritis susceptibility and the gut microbiome. FEBS Letters, 2014, 588, 4244-4249.	1.3	103
138	From genomes to societies: a holistic view of determinants of human health. Current Opinion in Biotechnology, 2014, 28, 134-142.	3.3	7
139	A metaproteomic pipeline to identify newborn mouse gut phylotypes. Journal of Proteomics, 2014, 97, 17-26.	1.2	14
140	Deciphering the tête-Ã-tête between the microbiota and the immune system. Journal of Clinical Investigation, 2014, 124, 4197-203.	3.9	89
141	The microbial basis of inflammatory bowel diseases. Journal of Clinical Investigation, 2014, 124, 4190-4196.	3.9	172
142	The role of antioxidants and pro-oxidants in colon cancer. World Journal of Gastrointestinal Oncology, 2014, 6, 55.	0.8	60
143	Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease. World Journal of Gastroenterology, 2014, 20, 14805.	1.4	97
144	Efficacy of Bifidobacterium breve NCC2950 against DSS-induced colitis is dependent on bacterial preparation and timing of administration. Beneficial Microbes, 2014, 5, 79-88.	1.0	17
146	The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood, 2014, 124, 1174-1182.	0.6	711
147	The Role of Probiotics in Prevention and Treatment of GI Infections. , 2014, , 173-186.		0

#	Article	IF	CITATIONS
149	Interrelatedness between dysbiosis in the gut microbiota due to immunodeficiency and disease penetrance of colitis. Immunology, 2015, 146, 359-368.	2.0	46
150	Impact of a wastewater treatment plant on microbial community composition and function in a hyporheic zone of a eutrophic river. Scientific Reports, 2015, 5, 17284.	1.6	70
151	Application of density gradient for the isolation of the fecal microbial stool component and the potential use thereof. Scientific Reports, 2015, 5, 16807.	1.6	44
153	Metagenomic sequencing of bile from gallstone patients to identify different microbial community patterns and novel biliary bacteria. Scientific Reports, 2015, 5, 17450.	1.6	70
154	Diversity of key players in the microbial ecosystems of the human body. Scientific Reports, 2015, 5, 15920.	1.6	30
155	Recent Advances in Characterizing the Gastrointestinal Microbiome in Crohnʽs Disease. Inflammatory Bowel Diseases, 2015, 21, 1.	0.9	157
156	The impact of oral consumption of Lactobacillus plantarum P-8 on faecal bacteria revealed by pyrosequencing. Beneficial Microbes, 2015, 6, 405-413.	1.0	26
157	Metagenomic Analysis of Microbiome in Colon Tissue from Subjects with Inflammatory Bowel Diseases Reveals Interplay of Viruses and Bacteria. Inflammatory Bowel Diseases, 2015, 21, 1.	0.9	100
158	Systematic review: bile acids and intestinal inflammationâ€luminal aggressors or regulators of mucosal defence?. Alimentary Pharmacology and Therapeutics, 2015, 42, 802-817.	1.9	106
159	A survey on the developmental intestinal microbiota research in <scp>C</scp> hina: The history, funding, and frontiers of gut bacteria. Journal of Digestive Diseases, 2015, 16, 421-430.	0.7	3
160	Chemotherapyâ€driven dysbiosis in the intestinal microbiome. Alimentary Pharmacology and Therapeutics, 2015, 42, 515-528.	1.9	334
161	SIVâ€infectionâ€driven changes of pattern recognition receptor expression in mesenteric lymph nodes and gut microbiota dysbiosis. Journal of Medical Primatology, 2015, 44, 241-252.	0.3	10
162	Fecal Microbial Transplant After Ileocolic Resection Reduces Ileitis but Restores Colitis in IL- $10\hat{a}$ '/ \hat{a} ' Mice. Inflammatory Bowel Diseases, 2015, 21, 1479-1490.	0.9	13
163	Towards large-cohort comparative studies to define the factors influencing the gut microbial community structure of ASD patients. Microbial Ecology in Health and Disease, 2015, 26, 26555.	3.8	16
164	Pathogenesis of Crohn's disease. F1000prime Reports, 2015, 7, 44.	5.9	73
165	Anti-Inflammatory and Regenerative Potential of Probiotics to Combat Inflammatory Bowel Disease (IBD). Journal of Biotechnology & Biomaterials, 2015, 05, .	0.3	1
166	The Gut Microbiota as a Therapeutic Target in IBD and Metabolic Disease: A Role for the Bile Acid Receptors FXR and TGR5. Microorganisms, 2015, 3, 641-666.	1.6	61
167	Changes in Composition of Caecal Microbiota Associated with Increased Colon Inflammation in Interleukin-10 Gene-Deficient Mice Inoculated with Enterococcus Species. Nutrients, 2015, 7, 1798-1816.	1.7	41

#	ARTICLE	IF	CITATIONS
168	Intestinal Microbiota and Celiac Disease: Cause, Consequence or Co-Evolution?. Nutrients, 2015, 7, 6900-6923.	1.7	151
169	Mechanisms of Microbe–Host Interaction in Crohn's Disease: Dysbiosis vs. Pathobiont Selection. Frontiers in Immunology, 2015, 6, 555.	2.2	83
170	Convergence of External Crohn's Disease Risk Factors on Intestinal Bacteria. Frontiers in Immunology, 2015, 6, 558.	2.2	14
171	Geriatric Respondents and Non-Respondents to Probiotic Intervention Can be Differentiated by Inherent Gut Microbiome Composition. Frontiers in Microbiology, 2015, 6, 944.	1.5	19
172	Intestinal Microbiota Signatures Associated with Inflammation History in Mice Experiencing Recurring Colitis. Frontiers in Microbiology, 2015, 6, 1408.	1.5	106
173	Ablation of Tumor Necrosis Factor Is Associated with Decreased Inflammation and Alterations of the Microbiota in a Mouse Model of Inflammatory Bowel Disease. PLoS ONE, 2015, 10, e0119441.	1.1	56
174	Genomic and Clinical Effects Associated with a Relaxation Response Mind-Body Intervention in Patients with Irritable Bowel Syndrome and Inflammatory Bowel Disease. PLoS ONE, 2015, 10, e0123861.	1.1	62
175	Neutral Models of Microbiome Evolution. PLoS Computational Biology, 2015, 11, e1004365.	1.5	47
176	Identification of Candidate Adherent-Invasive E. coli Signature Transcripts by Genomic/Transcriptomic Analysis. PLoS ONE, 2015, 10, e0130902.	1.1	40
177	A Preliminary Study Examining the Binding Capacity of Akkermansia muciniphila and Desulfovibrio spp., to Colonic Mucin in Health and Ulcerative Colitis. PLoS ONE, 2015, 10, e0135280.	1.1	55
178	Antepartum Antibiotic Treatment Increases Offspring Susceptibility to Experimental Colitis: A Role of the Gut Microbiota. PLoS ONE, 2015, 10, e0142536.	1.1	137
179	Serum Levels of Lipopolysaccharide and $1,3-\langle i\rangle \hat{l}^2\langle li\rangle$ -D-Glucan Refer to the Severity in Patients with Crohnâ \in ^M s Disease. Mediators of Inflammation, 2015, 2015, 1-9.	1.4	46
180	Excretion of Host DNA in Feces Is Associated with Risk of <i>Clostridium difficile </i> Infection. Journal of Immunology Research, 2015, 2015, 1-7.	0.9	22
181	Sex, Body Mass Index, and Dietary Fiber Intake Influence the Human Gut Microbiome. PLoS ONE, 2015, 10, e0124599.	1.1	330
182	Decreased Bacterial Diversity Characterizes the Altered Gut Microbiota in Patients With Psoriatic Arthritis, Resembling Dysbiosis in Inflammatory Bowel Disease. Arthritis and Rheumatology, 2015, 67, 128-139.	2.9	602
183	Human Colon-Derived Soluble Factors Modulate Gut Microbiota Composition. Frontiers in Oncology, 2015, 5, 86.	1.3	5
184	Histamine H2 Receptor-Mediated Suppression of Intestinal Inflammation by Probiotic Lactobacillus reuteri. MBio, 2015, 6, e01358-15.	1.8	121
185	Medical Therapy: The Future. , 2015, , 49-63.		0

#	Article	IF	CITATIONS
186	Classification methods for the analysis of LH-PCR data associated with inflammatory bowel disease patients. International Journal of Bioinformatics Research and Applications, 2015, 11, 111.	0.1	9
187	Stability of Gut Enterotypes in Korean Monozygotic Twins and Their Association with Biomarkers and Diet. Scientific Reports, 2014, 4, 7348.	1.6	124
188	Infection, Autoimmunity, and Vitamin D., 2015, , 163-182.		2
189	Pea (<i>Pisum sativum</i> L.) seed albumin extracts show antiâ€inflammatory effect in the DSS model of mouse colitis. Molecular Nutrition and Food Research, 2015, 59, 807-819.	1.5	66
190	Therapeutic Manipulation of the Microbiome in IBD: Current Results and Future Approaches. Current Treatment Options in Gastroenterology, 2015, 13, 105-120.	0.3	95
191	Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease. Gut Microbes, 2015, 6, 33-47.	4.3	275
192	Disease-Specific Alterations in the Enteric Virome in Inflammatory Bowel Disease. Cell, 2015, 160, 447-460.	13.5	1,036
193	The Dynamics of the Human Infant Gut Microbiome in Development and in Progression toward Type 1 Diabetes. Cell Host and Microbe, 2015, 17, 260-273.	5.1	1,008
194	The involvement of gut microbiota in inflammatory bowel disease pathogenesis: Potential for therapy. , 2015, 149, 191-212.		139
195	Inferred metagenomic comparison of mucosal and fecal microbiota from individuals undergoing routine screening colonoscopy reveals similar differences observed during active inflammation. Gut Microbes, 2015, 6, 48-56.	4.3	55
196	Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut, 2015, 64, 1553-1561.	6.1	226
197	Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiology Reviews, 2015, 39, 509-521.	3.9	439
198	Epidemiology and risk factors for IBD. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 205-217.	8.2	1,202
199	Biogeography of the Intestinal Mucosal and Lumenal Microbiome in the Rhesus Macaque. Cell Host and Microbe, 2015, 17, 385-391.	5.1	273
200	The gut microbiota and inflammatory bowel disease. Seminars in Immunopathology, 2015, 37, 47-55.	2.8	585
201	A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130376.	1.8	203
202	Dietary effects on human gut microbiome diversity. British Journal of Nutrition, 2015, 113, S1-S5.	1.2	350
203	Human Microbiome: When a Friend Becomes an Enemy. Archivum Immunologiae Et Therapiae Experimentalis, 2015, 63, 287-298.	1.0	53

#	Article	IF	CITATIONS
204	The gut microbiome: a clinically significant player in transplantation?. Expert Review of Clinical Immunology, 2015, 11, 781-783.	1.3	28
205	Trends in celiac disease research. Computers in Biology and Medicine, 2015, 65, 369-378.	3.9	6
206	Metabolic faecal fingerprinting of trans-resveratrol and quercetin following a high-fat sucrose dietary model using liquid chromatography coupled to high-resolution mass spectrometry. Food and Function, 2015, 6, 2758-2767.	2.1	23
207	Surgery in the era of the 'omics revolution. British Journal of Surgery, 2015, 102, e29-e40.	0.1	9
208	Changes in the composition of intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis. Scientific Reports, 2015, 5, 10416.	1.6	106
209	The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiology Reviews, 2015, 39, 567-591.	3.9	362
210	Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology, 2015, 33, 496-503.	4.9	2,453
211	Trimethylamine-N-oxide: A Novel Biomarker for the Identification of Inflammatory Bowel Disease. Digestive Diseases and Sciences, 2015, 60, 3620-3630.	1.1	66
212	Engineering the Microbiome: a Novel Approach to Immunotherapy for Allergic and Immune Diseases. Current Allergy and Asthma Reports, 2015, 15, 39.	2.4	13
213	Parallels Between Mammals and Flies in Inflammatory Bowel Disease. Healthy Ageing and Longevity, 2015, , 151-189.	0.2	1
214	New perspectives on probiotics in health and disease. Food Science and Human Wellness, 2015, 4, 56-65.	2.2	116
215	Sequencing and beyond: integrating molecular 'omics' for microbial community profiling. Nature Reviews Microbiology, 2015, 13, 360-372.	13.6	544
216	Probiotics. Disease-a-Month, 2015, 61, 259-290.	0.4	33
217	Down the line from genome-wide association studies in inflammatory bowel disease: the resulting clinical benefits and the outlook for the future. Expert Review of Clinical Immunology, 2015, 11, 33-44.	1.3	13
219	Combinatorial Intervention with Mesenchymal Stem Cells and Granulocyte Colony-Stimulating Factor in a Rat Model of Ulcerative Colitis. Digestive Diseases and Sciences, 2015, 60, 1948-1957.	1.1	22
220	IBD and the Gut Microbiota—from Bench to Personalized Medicine. Current Gastroenterology Reports, 2015, 17, 15.	1.1	54
221	MUSICC: a marker genes based framework for metagenomic normalization and accurate profiling of gene abundances in the microbiome. Genome Biology, 2015, 16, 53.	3.8	90
222	Role of the Gut Microbiota in Maintaining GI Health: Highlights on Inflammatory Bowel Disease. Molecular and Integrative Toxicology, 2015, , 261-310.	0.5	0

#	ARTICLE	IF	Citations
223	Associations between host gene expression, the mucosal microbiome, and clinical outcome in the pelvic pouch of patients with inflammatory bowel disease. Genome Biology, 2015, 16, 67.	3.8	166
224	The Perinatal Microbiome and Pregnancy: Moving Beyond the Vaginal Microbiome. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a023051-a023051.	2.9	101
225	Gut Fungal Microbiota. Inflammatory Bowel Diseases, 2015, 21, 656-665.	0.9	93
226	Functional Impacts of the Intestinal Microbiome in the Pathogenesis of Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2015, 21, 139-153.	0.9	112
227	Saccharomyces cerevisiae CNCM I-3856 Prevents Colitis Induced by AIEC Bacteria in the Transgenic Mouse Model Mimicking Crohn $\hat{E}\frac{1}{4}$ s Disease. Inflammatory Bowel Diseases, 2015, 21, 276-286.	0.9	65
228	Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends in Microbiology, 2015, 23, 354-366.	3.5	474
229	The microbiota in inflammatory bowel disease. Journal of Gastroenterology, 2015, 50, 495-507.	2.3	196
230	Next-Generation Sequencing for Infectious Disease Diagnosis and Management. Journal of Molecular Diagnostics, 2015, 17, 623-634.	1.2	151
231	Soluble Dextrin Fibers Alter the Intestinal Microbiota and Reduce Proinflammatory Cytokine Secretion in Male IL-10–Deficient Mice. Journal of Nutrition, 2015, 145, 2060-2066.	1.3	34
232	Host genetic variation impacts microbiome composition across human body sites. Genome Biology, 2015, 16, 191.	3.8	612
233	Structure and Inhibition of Microbiome \hat{l}^2 -Glucuronidases Essential to the Alleviation of Cancer Drug Toxicity. Chemistry and Biology, 2015, 22, 1238-1249.	6.2	203
234	Dysbiotic gut microbiome: A key element of Crohn's disease. Comparative Immunology, Microbiology and Infectious Diseases, 2015, 43, 36-49.	0.7	59
235	Host lysozyme-mediated lysis of <i>Lactococcus lactis</i> facilitates delivery of colitis-attenuating superoxide dismutase to inflamed colons. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7803-7808.	3.3	99
236	Microbiota in Inflammatory Bowel Disease Pathogenesis and Therapy. Nutrition in Clinical Practice, 2015, 30, 760-779.	1.1	60
237	What is known about the mechanisms of dietary influences in Crohn's disease?. Nutrition, 2015, 31, 1195-1203.	1.1	6
238	Diagnostic and Prognostic Microbial Biomarkers in Inflammatory Bowel Diseases. Gastroenterology, 2015, 149, 1265-1274.e3.	0.6	59
239	Functional metagenomic discovery of bacterial effectors in the human microbiome and isolation of commendamide, a GPCR G2A/132 agonist. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4825-34.	3.3	133
240	Gut Microbial Dysbiosis Due toHelicobacterDrives an Increase in Marginal Zone B Cells in the Absence of IL-10 Signaling in Macrophages. Journal of Immunology, 2015, 195, 3071-3085.	0.4	21

#	Article	IF	Citations
241	Intestinal colonization with phylogenetic group B2 <i>Escherichia coli</i> related to inflammatory bowel disease: a systematic review and meta-analysis. Scandinavian Journal of Gastroenterology, 2015, 50, 1199-1207.	0.6	24
242	Intestinal microbiota and ulcerative colitis. Journal of Infection and Chemotherapy, 2015, 21, 761-768.	0.8	97
243	Mucosa-Associated Faecalibacterium prausnitzii Phylotype Richness Is Reduced in Patients with Inflammatory Bowel Disease. Applied and Environmental Microbiology, 2015, 81, 7582-7592.	1.4	89
244	Investigation of Host–Gut Microbiota Modulation of Therapeutic Outcome. Drug Metabolism and Disposition, 2015, 43, 1619-1631.	1.7	38
245	ConStrains identifies microbial strains in metagenomic datasets. Nature Biotechnology, 2015, 33, 1045-1052.	9.4	235
246	The Intestinal Microbiota in Inflammatory Bowel Disease. ILAR Journal, 2015, 56, 192-204.	1.8	152
247	Arginine depletion increases susceptibility to serious infections in preterm newborns. Pediatric Research, 2015, 77, 290-297.	1.1	49
248	Environmental Risk Factors for Inflammatory Bowel Diseases: A Review. Digestive Diseases and Sciences, 2015, 60, 290-298.	1.1	136
249	Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals. Mucosal Immunology, 2015, 8, 760-772.	2.7	255
250	Molecular details of a starch utilization pathway in the human gut symbiont <scp><i>E</i></scp> <i>User in the symbion of the s</i>	1.2	104
251	Probiotics in Childhood Celiac Disease., 0,,.		0
252	Sociomicrobiology and Pathogenic Bacteria. , 2016, , 87-101.		0
253	Influence of environmental factors in the development of inflammatory bowel diseases. World Journal of Gastrointestinal Pharmacology and Therapeutics, 2016, 7, 112.	0.6	71
254	Importance of gut microbiota for the health and disease of dogs and cats. Animal Frontiers, 2016, 6, 37-42.	0.8	27
255	Nature vs. Nurture: The Gut Microbiome and Genetics in the Development of Gastrointestinal Disease. Journal of Hepatology and Gastrointestinal Disorders, 2016, 02, .	0.0	0
256	Involvement of Reduced Microbial Diversity in Inflammatory Bowel Disease. Gastroenterology Research and Practice, 2016, 2016, 1-7.	0.7	82
257	Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior. ELife, 2016, 5, .	2.8	226
258	Pathogenic role of the gut microbiota in gastrointestinal diseases. Intestinal Research, 2016, 14, 127.	1.0	108

#	Article	IF	CITATIONS
259	Can probiotics benefit children with autism spectrum disorders?. World Journal of Gastroenterology, 2016, 22, 10093.	1.4	113
260	Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Frontiers in Microbiology, 2016, 7, 979.	1.5	1,109
261	The Gut Microbiota in Immune-Mediated Inflammatory Diseases. Frontiers in Microbiology, 2016, 7, 1081.	1.5	315
262	Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Frontiers in Immunology, 2016, 7, 290.	2.2	93
263	Local Treatment with Lactate Prevents Intestinal Inflammation in the TNBS-Induced Colitis Model. Frontiers in Immunology, 2016, 7, 651.	2.2	63
264	The Features of Fecal and Ileal Mucosa-Associated Microbiota in Dairy Calves during Early Infection with Mycobacterium avium Subspecies paratuberculosis. Frontiers in Microbiology, 2016, 7, 426.	1.5	44
265	Mycobacterium avium Subspecies paratuberculosis Infection Modifies Gut Microbiota under Different Dietary Conditions in a Rabbit Model. Frontiers in Microbiology, 2016, 7, 446.	1.5	56
266	Carrageenan Gum and Adherent Invasive Escherichia coli in a Piglet Model of Inflammatory Bowel Disease: Impact on Intestinal Mucosa-associated Microbiota. Frontiers in Microbiology, 2016, 7, 462.	1.5	48
267	Enterocyte-Associated Microbiome of the Hadza Hunter-Gatherers. Frontiers in Microbiology, 2016, 7, 865.	1.5	17
268	Beyond 16S rRNA Community Profiling: Intra-Species Diversity in the Gut Microbiota. Frontiers in Microbiology, 2016, 7, 1475.	1.5	117
269	Alteration of Fecal Microbiota Profiles in Juvenile Idiopathic Arthritis. Associations with HLA-B27 Allele and Disease Status. Frontiers in Microbiology, 2016, 7, 1703.	1.5	65
270	Comparative In silico Analysis of Butyrate Production Pathways in Gut Commensals and Pathogens. Frontiers in Microbiology, 2016, 7, 1945.	1.5	171
271	Impact of Prematurity and Perinatal Antibiotics on the Developing Intestinal Microbiota: A Functional Inference Study. International Journal of Molecular Sciences, 2016, 17, 649.	1.8	109
272	Therapeutic Potential to Modify the Mucus Barrier in Inflammatory Bowel Disease. Nutrients, 2016, 8, 44.	1.7	65
273	Dietary Gluten-Induced Gut Dysbiosis Is Accompanied by Selective Upregulation of microRNAs with Intestinal Tight Junction and Bacteria-Binding Motifs in Rhesus Macaque Model of Celiac Disease. Nutrients, 2016, 8, 684.	1.7	57
274	Sodium Butyrate Reduces Colitogenic Immunoglobulin A-Coated Bacteria and Modifies the Composition of Microbiota in IL-10 Deficient Mice. Nutrients, 2016, 8, 728.	1.7	30
275	Acute Infectious Gastroenteritis Potentiates a Crohn's Disease Pathobiont to Fuel Ongoing Inflammation in the Post-Infectious Period. PLoS Pathogens, 2016, 12, e1005907.	2.1	32
276	Distinct Microbiotas are Associated with Ileum-Restricted and Colon-Involving Crohnʽs Disease. Inflammatory Bowel Diseases, 2016, 22, 293-302.	0.9	45

#	Article	IF	CITATIONS
277	Novel Strategies for Applied Metagenomics. Inflammatory Bowel Diseases, 2016, 22, 709-718.	0.9	25
278	Reply. Inflammatory Bowel Diseases, 2016, 22, E15-E16.	0.9	0
279	The features of mucosaâ€associated microbiota in primary sclerosing cholangitis. Alimentary Pharmacology and Therapeutics, 2016, 43, 790-801.	1.9	112
280	Microbiota as Therapeutic Targets. Digestive Diseases, 2016, 34, 558-565.	0.8	14
281	Microbiome Heterogeneity Characterizing Intestinal Tissue and Inflammatory Bowel Disease Phenotype. Inflammatory Bowel Diseases, 2016, 22, 807-816.	0.9	23
282	Association of Systemic Sclerosis With a Unique Colonic Microbial Consortium. Arthritis and Rheumatology, 2016, 68, 1483-1492.	2.9	90
283	Acute dextran sulfate sodium (DSS)â€induced colitis promotes gut microbial dysbiosis in mice. Journal of Basic Microbiology, 2016, 56, 986-998.	1.8	208
284	The molecular biology of matrix metalloproteinases and tissue inhibitors of metalloproteinases in inflammatory bowel diseases. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 295-358.	2.3	62
285	"WHAT'S BUGGING THE GUT IN OCD?―A REVIEW OF THE GUT MICROBIOME IN OBSESSIVE-COMPULSIVE DISORDER. Depression and Anxiety, 2016, 33, 171-178.	2.0	60
286	Mucosa-Associated Ileal Microbiota in New-Onset Pediatric Crohn's Disease. Inflammatory Bowel Diseases, 2016, 22, 1533-1539.	0.9	43
287	HORSE SPECIES SYMPOSIUM: Canine intestinal microbiology and metagenomics: From phylogeny to function1. Journal of Animal Science, 2016, 94, 2247-2261.	0.2	24
288	Using machine learning to identify major shifts in human gut microbiome protein family abundance in disease. , 2016 , , .		21
289	Sociomicrobiology and Pathogenic Bacteria. Microbiology Spectrum, 2016, 4, .	1.2	20
290	Urban Transit System Microbial Communities Differ by Surface Type and Interaction with Humans and the Environment. MSystems, $2016,1,.$	1.7	107
291	The Gut Microbiome. , 2016, , 799-808.		2
292	Dysbiosis, inflammation, and response to treatment: a longitudinal study of pediatric subjects with newly diagnosed inflammatory bowel disease. Genome Medicine, 2016, 8, 75.	3.6	211
293	Analysis of the association between host genetics, smoking, and sputum microbiota in healthy humans. Scientific Reports, 2016, 6, 23745.	1.6	58
294	Modulation of gut microbiota dysbioses in type 2 diabetic patients by macrobiotic Ma-Pi 2 diet. British Journal of Nutrition, 2016, 116, 80-93.	1.2	181

#	Article	IF	CITATIONS
295	Structural and immunomodulatory differences among lactobacilli exopolysaccharides isolated from intestines of mice with experimentally induced inflammatory bowel disease. Scientific Reports, 2016, 6, 37613.	1.6	31
296	Dissecting the interplay between intestinal microbiota and host immunity in health and disease: Lessons learned from germfree and gnotobiotic animal models. European Journal of Microbiology and Immunology, 2016, 6, 253-271.	1.5	142
297	European Crohn's and Colitis Organisation Topical Review on environmental factors in IBD. Journal of Crohn's and Colitis, 2017, 11, jjw223.	0.6	27
298	COMPUTATIONAL APPROACHES TO STUDY MICROBES AND MICROBIOMES., 2016, , .		7
299	Fecal Microbiota and Metabolome in a Mouse Model of Spontaneous Chronic Colitis. Inflammatory Bowel Diseases, 2016, 22, 2767-2787.	0.9	41
300	Topological distortion and reorganized modular structure of gut microbial co-occurrence networks in inflammatory bowel disease. Scientific Reports, 2016, 6, 26087.	1.6	79
301	Analysis and Interpretation of the Human Microbiome. Inflammatory Bowel Diseases, 2016, 22, 1713-1722.	0.9	12
302	Fecal Microbiota Transplantation is Safe and Efficacious for Recurrent or Refractory Clostridium difficile Infection in Patients with Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2016, 22, 2402-2409.	0.9	143
303	The developing hypopharyngeal microbiota in early life. Microbiome, 2016, 4, 70.	4.9	46
304	Comparison of human gut microbiota in control subjects and patients with colorectal carcinoma in adenoma: Terminal restriction fragment length polymorphism and next-generation sequencing analyses. Oncology Reports, 2016, 35, 325-333.	1.2	102
305	Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation. MSystems, 2016, 1 , .	1.7	167
306	Metagenomic Profiling, Interaction of Genomics with Meta-genomics. Translational Bioinformatics, 2016, , 241-267.	0.0	0
307	Inflammatory Bowel Disease: Pathobiology. , 2016, , 749-769.		1
308	Probiotic approach to prevent antibiotic resistance. Annals of Medicine, 2016, 48, 246-255.	1.5	119
309	The bovine milk microbiota: insights and perspectives from -omics studies. Molecular BioSystems, 2016, 12, 2359-2372.	2.9	181
310	Functional Characterization of Inflammatory Bowel Disease–Associated Gut Dysbiosis in Gnotobiotic Mice. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 468-481.	2.3	189
311	Composition and function of the pediatric colonic mucosal microbiome in untreated patients with ulcerative colitis. Gut Microbes, 2016, 7, 384-396.	4.3	84
312	Bronchiectasis: Current Concepts in Pathogenesis, Immunology, and Microbiology. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 523-554.	9.6	84

#	Article	IF	CITATIONS
313	Graph mining for next generation sequencing: leveraging the assembly graph for biological insights. BMC Genomics, 2016, 17, 340.	1.2	2
314	Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans. Cell, 2016, 165, 842-853.	13.5	968
315	Population-level analysis of gut microbiome variation. Science, 2016, 352, 560-564.	6.0	1,716
316	An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Medicine, 2016, 8, 43.	3.6	596
317	Nasopharyngeal Microbiota, Host Transcriptome, and Disease Severity in Children with Respiratory Syncytial Virus Infection. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1104-1115.	2.5	337
318	Microbiome therapeutics â€" Advances and challenges. Advanced Drug Delivery Reviews, 2016, 105, 44-54.	6.6	198
319	Efficacy and Mechanisms of Action of Fecal Microbiota Transplantation in Ulcerative Colitis: Pitfalls and Promises From a First Meta-Analysis. Transplantation Proceedings, 2016, 48, 402-407.	0.3	26
320	Mechanisms of Pediatric Inflammatory Bowel Disease. Annual Review of Immunology, 2016, 34, 31-64.	9.5	124
321	The Human Gut Microbiota. Advances in Experimental Medicine and Biology, 2016, 902, 95-108.	0.8	72
322	Present and foreseeable future of metabolomics in forensic analysis. Analytica Chimica Acta, 2016, 925, 1-15.	2.6	54
323	Elucidating the gut microbiome of ulcerative colitis: bifidobacteria as novel microbial biomarkers. FEMS Microbiology Ecology, 2016, 92, fiw191.	1.3	102
324	Microbiome Changes during Tuberculosis and Antituberculous Therapy. Clinical Microbiology Reviews, 2016, 29, 915-926.	5.7	71
325	A Disease-Associated Microbial and Metabolomics State in Relatives of Pediatric Inflammatory Bowel Disease Patients. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 750-766.	2.3	163
326	Zooming in on Inflammatory Bowel Disease: Microbial andÂProteomic Features Associated With IBD in Colonic Microenvironments. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 540-541.	2.3	5
327	The effect of host genetics on the gut microbiome. Nature Genetics, 2016, 48, 1407-1412.	9.4	672
328	The effects of konjac oligosaccharide on TNBS-induced colitis in rats. International Immunopharmacology, 2016, 40, 385-391.	1.7	45
329	Engineering Human Microbiota: Influencing Cellular and Community Dynamics for Therapeutic Applications. International Review of Cell and Molecular Biology, 2016, 324, 67-124.	1.6	12
330	Microbiome in Transplantation. , 2016, , 939-949.		0

#	Article	IF	CITATIONS
331	Colonic biogeography in health and ulcerative colitis. Gut Microbes, 2016, 7, 435-442.	4.3	10
332	A Pleiotropic Missense Variant in SLC39A8 Is Associated With Crohn's Disease and Human Gut Microbiome Composition. Gastroenterology, 2016, 151, 724-732.	0.6	109
333	Gut microbiome predictors of treatment response and recurrence in primary <i>Clostridium difficile</i> infection. Alimentary Pharmacology and Therapeutics, 2016, 44, 715-727.	1.9	94
335	Review: Microbiome in Inflammatory Arthritis and Human Rheumatic Diseases. Arthritis and Rheumatology, 2016, 68, 35-45.	2.9	187
336	Fecal microbiota transplantation in inflammatory bowel disease: the quest for the holy grail. Mucosal Immunology, 2016, 9, 1360-1365.	2.7	64
337	The microbiome–systemic diseases connection. Oral Diseases, 2016, 22, 719-734.	1.5	96
338	The Core and Seasonal Microbiota of Raw Bovine Milk in Tanker Trucks and the Impact of Transfer to a Milk Processing Facility. MBio, $2016, 7, .$	1.8	105
339	Disease Severity and Immune Activity Relate to Distinct Interkingdom Gut Microbiome States in Ethnically Distinct Ulcerative Colitis Patients. MBio, 2016, 7, .	1.8	90
340	Consumption of a Bifidobacterium bifidum Strain for 4 Weeks Modulates Dominant Intestinal Bacterial Taxa and Fecal Butyrate in Healthy Adults. Applied and Environmental Microbiology, 2016, 82, 5850-5859.	1.4	50
341	Bisphenol A alters gut microbiome: Comparative metagenomics analysis. Environmental Pollution, 2016, 218, 923-930.	3.7	122
342	The Role of the Intestinal Microbiome in Type 1 Diabetes Pathogenesis. Current Diabetes Reports, 2016, 16, 89.	1.7	47
343	Increased Systolic and Diastolic Blood Pressure Is Associated With Altered Gut Microbiota Composition and Butyrate Production in Early Pregnancy. Hypertension, 2016, 68, 974-981.	1.3	293
344	Sasa quelpaertensis leaf extract regulates microbial dysbiosis by modulating the composition and diversity of the microbiota in dextran sulfate sodium-induced colitis mice. BMC Complementary and Alternative Medicine, 2016, 16, 481.	3.7	37
345	Altered intestinal microbiota–host mitochondria crosstalk in new onset Crohn's disease. Nature Communications, 2016, 7, 13419.	5.8	326
346	Transitioning From Descriptive to Mechanistic Understanding of the Microbiome: The Need for a Prospective Longitudinal Approach to Predicting Disease. Journal of Pediatrics, 2016, 179, 240-248.	0.9	13
347	Microbiome–Epigenome Interactions and the Environmental Origins of Inflammatory Bowel Diseases. Journal of Pediatric Gastroenterology and Nutrition, 2016, 62, 208-219.	0.9	50
348	The Microbiota and Its Modulation in Immune-Mediated Disorders. , 2016, , 191-227.		1
349	Therapeutic modulation of gut microbiota in inflammatory bowel disease: More questions to be answered. Journal of Digestive Diseases, 2016, 17, 800-810.	0.7	33

#	Article	IF	CITATIONS
350	Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Science Translational Medicine, 2016, 8, 343ra81.	5.8	763
351	Oral exposure to environmental pollutant benzo[a]pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model. Scientific Reports, 2016, 6, 31027.	1.6	99
352	Response of gut microbiota and inflammatory status to bitter melon (Momordica charantia L.) in high fat diet induced obese rats. Journal of Ethnopharmacology, 2016, 194, 717-726.	2.0	86
353	A microfluidics-based in vitro model of the gastrointestinal human–microbe interface. Nature Communications, 2016, 7, 11535.	5.8	466
355	The Gut Microbiome of Pediatric Crohn's Disease Patients Differs from Healthy Controls in Genes That Can Influence the Balance Between a Healthy and Dysregulated Immune Response. Inflammatory Bowel Diseases, 2016, 22, 2607-2618.	0.9	33
356	Altered gut microbiota in Rett syndrome. Microbiome, 2016, 4, 41.	4.9	120
357	The human gut microbiome of Latin America populations: a landscape to be discovered. Current Opinion in Infectious Diseases, 2016, 29, 528-537.	1.3	20
358	A method for automated pathogenic content estimation with application to rheumatoid arthritis. BMC Systems Biology, 2016, 10, 107.	3.0	9
359	Increased Enterococcus faecalis infection is associated with clinically active Crohn disease. Medicine (United States), 2016, 95, e5019.	0.4	83
360	Gut Microbial Diversity Is Reduced in Smokers with Crohnʽs Disease. Inflammatory Bowel Diseases, 2016, 22, 2070-2077.	0.9	83
361	Increased Intestinal Microbial Diversity Following Fecal Microbiota Transplant for Active Crohn $\hat{E}\frac{1}{4}$ s Disease. Inflammatory Bowel Diseases, 2016, 22, 2182-2190.	0.9	175
362	The genetic burden of inflammatory bowel diseases: implications for the clinic?. Expert Review of Gastroenterology and Hepatology, 2016, 10, 1109-1117.	1.4	3
363	@MInter: automated text-mining of microbial interactions. Bioinformatics, 2016, 32, 2981-2987.	1.8	30
364	Potential applications of metagenomics to assess the biological effects of food structure and function. Food and Function, 2016, 7, 4160-4169.	2.1	7
365	Structural modulation of gut microbiota by chondroitin sulfate and its oligosaccharide. International Journal of Biological Macromolecules, 2016, 89, 489-498.	3.6	68
366	Microbiota-Inducible Innate Immune Siderophore Binding Protein Lipocalin 2 Is Critical for Intestinal Homeostasis. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 482-498.e6.	2.3	84
367	Caenorhabditis elegans susceptibility to gut Enterococcus faecalis infection is associated with fat metabolism and epithelial junction integrity. BMC Microbiology, 2016, 16, 6.	1.3	43
368	Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes, 2016, 7, 313-322.	4.3	564

#	Article	IF	CITATIONS
369	Fecal microbiota transplantation: in perspective. Therapeutic Advances in Gastroenterology, 2016, 9, 229-239.	1.4	302
370	Proton pump inhibitors affect the gut microbiome. Gut, 2016, 65, 740-748.	6.1	885
371	Mucosal Barrier Depletion and Loss of Bacterial Diversity are Primary Abnormalities in Paediatric Ulcerative Colitis. Journal of Crohn's and Colitis, 2016, 10, 462-471.	0.6	178
372	metaModules identifies key functional subnetworks in microbiome-related disease. Bioinformatics, 2016, 32, 1678-1685.	1.8	21
373	Gut microbiome diversity in acute infective and chronic inflammatory gastrointestinal diseases in North India. Journal of Gastroenterology, 2016, 51, 660-671.	2.3	40
374	Optimization of metabolomics of defined in vitro gut microbial ecosystems. International Journal of Medical Microbiology, 2016, 306, 280-289.	1.5	28
375	Functional Redundancy-Induced Stability of Gut Microbiota Subjected to Disturbance. Trends in Microbiology, 2016, 24, 402-413.	3.5	451
376	Characterisation and therapeutic manipulation of the gut microbiome in inflammatory bowel disease. Internal Medicine Journal, 2016, 46, 266-273.	0.5	22
377	Defining the microbial transcriptional response to colitis through integrated host and microbiome profiling. ISME Journal, 2016, 10, 2389-2404.	4.4	40
378	Dysbiosis in gastrointestinal disorders. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2016, 30, 3-15.	1.0	86
379	Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes. Genome Medicine, 2016, 8, 17.	3.6	219
380	Meta-omics in Inflammatory Bowel Disease Research: Applications, Challenges, and Guidelines. Journal of Crohn's and Colitis, 2016, 10, 735-746.	0.6	37
381	The microbiome of the oral mucosa in irritable bowel syndrome. Gut Microbes, 2016, 7, 286-301.	4.3	34
382	Does the intestinal microbial community of Korean Crohn's disease patients differ from that of western patients?. BMC Gastroenterology, 2016, 16, 28.	0.8	36
383	The Intersection of TNF, IBD and the Microbiome. Gut Microbes, 2016, 7, 58-62.	4.3	48
384	Diet and Microbiome in Inflammatory Bowel Diseases. , 2016, , 3-16.		2
385	Zero-Inflated Beta Regression for Differential Abundance Analysis with Metagenomics Data. Journal of Computational Biology, 2016, 23, 102-110.	0.8	64
386	The challenge of metaproteomic analysis in human samples. Expert Review of Proteomics, 2016, 13, 135-138.	1.3	20

#	Article	IF	CITATIONS
387	HPMCD: the database of human microbial communities from metagenomic datasets and microbial reference genomes. Nucleic Acids Research, 2016, 44, D604-D609.	6.5	60
388	Immunomodulation properties of multi-species fermented milks. Food Microbiology, 2016, 53, 60-69.	2.1	48
389	Gut microbiome in health and disease: Linking the microbiome–gut–brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. , 2016, 158, 52-62.		394
390	Faecalibacterium prausnitzii subspecies–level dysbiosis in the human gut microbiome underlying atopic dermatitis. Journal of Allergy and Clinical Immunology, 2016, 137, 852-860.	1.5	292
391	Potential application of emerging diagnostic techniques to the diagnosis of bovine Johne's disease (paratuberculosis). Veterinary Journal, 2016, 209, 32-39.	0.6	24
392	Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study. Lancet, The, 2016, 387, 156-167.	6.3	607
393	The gut microbiota and host health: a new clinical frontier. Gut, 2016, 65, 330-339.	6.1	1,719
394	Dysbiotic gut microbiota causes transmissible Crohn's disease-like ileitis independent of failure in antimicrobial defence. Gut, 2016, 65, 225-237.	6.1	317
395	The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls. Gut, 2017, 66, 611-619.	6.1	308
396	Fungal microbiota dysbiosis in IBD. Gut, 2017, 66, 1039-1048.	6.1	939
397	The gut microbiota and inflammatory bowel diseases. Translational Research, 2017, 179, 38-48.	2.2	124
398	Diet, gut microbes, and the pathogenesis of inflammatory bowel diseases. Molecular Nutrition and Food Research, 2017, 61, 1600129.	1.5	110
399	Assessing the Colonic Microbiota in Children. Journal of Pediatric Gastroenterology and Nutrition, 2017, 64, 230-237.	0.9	8
400	Mori Cortex regulates P-glycoprotein in Caco-2 cells and colons from rats with experimental colitis via direct and gut microbiota-mediated mechanisms. RSC Advances, 2017, 7, 2594-2605.	1.7	13
401	Systematic Characterization and Analysis of the Taxonomic Drivers of Functional Shifts in the Human Microbiome. Cell Host and Microbe, 2017, 21, 254-267.	5.1	110
402	Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nature Medicine, 2017, 23, 314-326.	15.2	751
403	The gut microbiota of siblings offers insights into microbial pathogenesis of inflammatory bowel disease. Gut Microbes, 2017, 8, 359-365.	4.3	33
404	The Gut Microbiota in Inflammatory Bowel Disease. Gastroenterology Clinics of North America, 2017, 46, 143-154.	1.0	68

#	Article	IF	CITATIONS
405	Lactobacillus-Deficient Cervicovaginal Bacterial Communities Are Associated with Increased HIV Acquisition in Young South African Women. Immunity, 2017, 46, 29-37.	6.6	488
406	Embracing the gut microbiota: the new frontier for inflammatory and infectious diseases. Clinical and Translational Immunology, 2017, 6, e125.	1.7	90
407	Microbes and Cancer. Annual Review of Immunology, 2017, 35, 199-228.	9.5	202
408	Gut Microbiome of the Canadian Arctic Inuit. MSphere, 2017, 2, .	1.3	40
409	Gut microbiota differs between children with Inflammatory Bowel Disease and healthy siblings in taxonomic and functional composition: a metagenomic analysis. American Journal of Physiology - Renal Physiology, 2017, 312, G327-G339.	1.6	69
410	Carcinogenesis and therapeutics: the microbiota perspective. Nature Microbiology, 2017, 2, 17008.	5.9	108
411	Microbiome, autoimmunity, allergy, and helminth infection: The importance of the pregnancy period. American Journal of Reproductive Immunology, 2017, 78, e12654.	1.2	10
412	New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome, 2017, 5, 24.	4.9	668
413	Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease. Gut Microbes, 2017, 8, 238-252.	4.3	295
414	The effect of heritability and host genetics on the gut microbiota and metabolic syndrome. Gut, 2017, 66, 1031-1038.	6.1	283
415	Pharmacokinetic alterations of rhubarb anthraquinones in experimental colitis induced by dextran sulfate sodium in the rat. Journal of Ethnopharmacology, 2017, 198, 600-607.	2.0	24
416	Comparative genomics of Crohn's disease-associated adherent-invasive <i>Escherichia coli</i> . Gut, 2017, 66, 1382-1389.	6.1	114
417	Genetic risk variants as therapeutic targets for Crohn's disease. Expert Opinion on Therapeutic Targets, 2017, 21, 381-390.	1.5	2
419	Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Scientific Reports, 2017, 7, 43412.	1.6	249
420	Inflammatory disease caused by intestinal pathobionts. Current Opinion in Microbiology, 2017, 35, 64-69.	2.3	60
421	Salivary microbiome of an urban Indian cohort and patterns linked to subclinical inflammation. Oral Diseases, 2017, 23, 926-940.	1.5	26
422	Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutrition Reviews, 2017, 75, 286-305.	2.6	245
423	Understanding the Gut Microbiota in Inflammatory and Functional Gastrointestinal Diseases. Psychosomatic Medicine, 2017, 79, 857-867.	1.3	43

#	Article	IF	CITATIONS
424	Intestinal Microbiology and Ecology in Crohn's Disease and Ulcerative Colitis. , 2017, , 67-74.		1
425	Bayesian Nonparametric Ordination for the Analysis of Microbial Communities. Journal of the American Statistical Association, 2017, 112, 1430-1442.	1.8	30
426	Compositional Changes in the Gut Mucus Microbiota Precede the Onset of Colitis-Induced Inflammation. Inflammatory Bowel Diseases, 2017, 23, 912-922.	0.9	47
427	Microbiota abnormalities and the therapeutic potential of probiotics in the treatment of mood disorders. Reviews in the Neurosciences, 2017, 28, 739-749.	1.4	34
428	Bacterial communities and metabolic activity of faecal cultures from equol producer and non-producer menopausal women under treatment with soy isoflavones. BMC Microbiology, 2017, 17, 93.	1.3	60
429	Infliximab Optimization Based on Therapeutic Drug Monitoring in Pediatric Inflammatory Bowel Disease. Journal of Pediatric Gastroenterology and Nutrition, 2017, 64, 580-585.	0.9	28
430	Gut Homeostasis, Microbial Dysbiosis, and Opioids. Toxicologic Pathology, 2017, 45, 150-156.	0.9	86
431	The Microbiome in Neurogastroenterology. , 2017, , 53-70.		O
432	Disentangling Interactions in the Microbiome: A Network Perspective. Trends in Microbiology, 2017, 25, 217-228.	3.5	559
433	How should we treat mild and moderate-severe Crohn's disease in 2017? A brief overview of available therapies. Expert Review of Gastroenterology and Hepatology, 2017, 11, 95-97.	1.4	0
434	Human Microbiome: Implications on Health and Disease. , 2017, , 153-168.		1
435	Colorectal cancer-inflammatory bowel disease nexus and felony of Escherichia coli. Life Sciences, 2017, 180, 60-67.	2.0	42
436	Pro-resolving mediators in the regulation of periodontal disease. Molecular Aspects of Medicine, 2017, 58, 21-36.	2.7	116
437	Compositionally and functionally distinct sinus microbiota in chronic rhinosinusitis patients have immunological and clinically divergent consequences. Microbiome, 2017, 5, 53.	4.9	151
438	Changes in Intestinal Microbiota Following Combination Therapy with Fecal Microbial Transplantation and Antibiotics for Ulcerative Colitis. Inflammatory Bowel Diseases, 2017, 23, 116-125.	0.9	106
439	Dysbiosis in chronic periodontitis: Key microbial players and interactions with the human host. Scientific Reports, 2017, 7, 3703.	1.6	174
440	Preparing the Bowel for Surgery: Learning from the Past and Planning for the Future. Journal of the American College of Surgeons, 2017, 225, 324-332.	0.2	17
441	The immune response to <i>Prevotella</i> bacteria in chronic inflammatory disease. Immunology, 2017, 151, 363-374.	2.0	789

#	Article	IF	Citations
442	Do Aging Factors Influence the Clinical Presentation and Management of Chronic Rhinosinusitis?. Otolaryngology - Head and Neck Surgery, 2017, 156, 598-605.	1.1	19
443	Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Annals of the Rheumatic Diseases, 2017, 76, 1614-1622.	0.5	266
444	Iron Supplements Modulate Colon Microbiota Composition and Potentiate the Protective Effects of Probiotics in Dextran Sodium Sulfate-induced Colitis. Inflammatory Bowel Diseases, 2017, 23, 753-766.	0.9	82
445	Methods for Microbiome Analysis. Translational Medicine Research, 2017, , 269-298.	0.0	1
446	The Microbiome and Human Biology. Annual Review of Genomics and Human Genetics, 2017, 18, 65-86.	2.5	266
447	Metabolic adaptation to the aqueous leaf extract of Moringa oleifera Lamsupplemented diet is related to the modulation of gut microbiota in mice. Applied Microbiology and Biotechnology, 2017, 101, 5115-5130.	1.7	24
448	Ethnic and diet-related differences in the healthy infant microbiome. Genome Medicine, 2017, 9, 32.	3.6	93
450	The ecology of human microbiota: dynamics and diversity in health and disease. Annals of the New York Academy of Sciences, 2017, 1399, 78-92.	1.8	88
451	The intestinal microbiota in allogeneic hematopoietic cell transplant and graft-versus-host disease. Blood, 2017, 129, 927-933.	0.6	153
452	Microbiome and chronic inflammatory bowel diseases. Journal of Molecular Medicine, 2017, 95, 21-28.	1.7	14
453	Dietary Therapies in Pediatric Inflammatory Bowel Disease. Gastroenterology Clinics of North America, 2017, 46, 731-744.	1.0	18
454	Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9105-E9114.	3.3	198
455	The gut microbiome in atherosclerotic cardiovascular disease. Nature Communications, 2017, 8, 845.	5.8	1,029
456	Lactobacillus plantarum LP-Onlly alters the gut flora and attenuates colitis by inducing microbiome alteration in interleukin-10 knockout mice. Molecular Medicine Reports, 2017, 16, 5979-5985.	1.1	24
457	Fecal bacteria from treatment-naive Crohn's disease patients can skew helper T cell responses. Experimental Cell Research, 2017, 361, 135-140.	1.2	4
458	Ectopic colonization of oral bacteria in the intestine drives T _H 1 cell induction and inflammation. Science, 2017, 358, 359-365.	6.0	612
459	Proteomics dataset: The colon mucosa from inflammatory bowel disease patients, gastrointestinal asymptomic rheumatoid arthritis patients, and controls. Data in Brief, 2017, 15, 511-516.	0.5	5
460	Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease. Microbiome, 2017, 5, 141.	4.9	296

#	Article	IF	CITATIONS
461	Is there a relationship between intestinal microbiota, dietary compounds, and obesity?. Trends in Food Science and Technology, 2017, 70, 105-113.	7.8	53
462	Fecal transplantation for treatment of inflammatory bowel disease. The Cochrane Library, 0, , .	1.5	57
463	Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunological Reviews, 2017, 279, 70-89.	2.8	1,015
464	Butyrate-producing bacteria supplemented in vitro to Crohn's disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Scientific Reports, 2017, 7, 11450.	1.6	324
465	Development of Inflammatory Bowel Disease Is Linked to a Longitudinal Restructuring of the Gut Metagenome in Mice. MSystems, 2017, 2, .	1.7	48
466	Culture independent assessment of human milk microbial community in lactational mastitis. Scientific Reports, 2017, 7, 7804.	1.6	133
467	Strains, functions and dynamics in the expanded Human Microbiome Project. Nature, 2017, 550, 61-66.	13.7	929
468	Guanylate Cyclase C Activation Shapes the Intestinal Microbiota in Patients with Familial Diarrhea and Increased Susceptibility for Crohn's Disease. Inflammatory Bowel Diseases, 2017, 23, 1752-1761.	0.9	13
469	The Microbial Ecosystem Distinguishes Chronically Diseased Tissue from Adjacent Tissue in the Sigmoid Colon of Chronic, Recurrent Diverticulitis Patients. Scientific Reports, 2017, 7, 8467.	1.6	41
470	The Role of the Indigenous Gut Microbiota in Human Health and Disease. Advances in Environmental Microbiology, 2017, , 75-104.	0.1	1
471	The potential role of gut microbiota in pancreatic disease: A systematic review. Pancreatology, 2017, 17, 867-874.	0.5	63
472	Stability in metabolic phenotypes and inferred metagenome profiles before the onset of colitis-induced inflammation. Scientific Reports, 2017, 7, 8836.	1.6	11
473	Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Scientific Reports, 2017, 7, 9523.	1.6	298
474	Gut microbiota and IBD: causation or correlation?. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 573-584.	8.2	1,099
475	The Microbiome in Crohn's Disease. Gastroenterology Clinics of North America, 2017, 46, 481-492.	1.0	45
476	Patterns of seasonality and group membership characterize the gut microbiota in a longitudinal study of wild Verreaux's sifakas (<i>Propithecus verreauxi</i>). Ecology and Evolution, 2017, 7, 5732-5745.	0.8	90
477	The potential of FimH as a novel therapeutic target for the treatment of Crohn's disease. Expert Opinion on Therapeutic Targets, 2017, 21, 837-847.	1.5	31
478	Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Current Opinion in Microbiology, 2017, 39, 1-6.	2.3	420

#	Article	IF	CITATIONS
479	Fluoride Depletes Acidogenic Taxa in Oral but Not Gut Microbial Communities in Mice. MSystems, 2017, 2, .	1.7	18
480	Nlrp6- and ASC-Dependent Inflammasomes Do Not Shape the Commensal Gut Microbiota Composition. Immunity, 2017, 47, 339-348.e4.	6.6	141
481	Route Connection: Mouth to Intestine in Colitis. Cell Host and Microbe, 2017, 22, 730-731.	5.1	5
482	Probiotics in Newborns and Children. Pediatric Clinics of North America, 2017, 64, 1271-1289.	0.9	16
483	Age, sex, and TNF associated differences in the gut microbiota of mice and their impact on acute TNBS colitis. Experimental and Molecular Pathology, 2017, 103, 311-319.	0.9	60
484	Persistence of Supplemented Bifidobacterium longum subsp. <i>infantis</i> EVC001 in Breastfed Infants. MSphere, 2017, 2, .	1.3	158
485	Total Lipopolysaccharide from the Human Gut Microbiome Silences Toll-Like Receptor Signaling. MSystems, 2017, 2, .	1.7	202
486	Cohort profile: design and first results of the Dutch IBD Biobank: a prospective, nationwide biobank of patients with inflammatory bowel disease. BMJ Open, 2017, 7, e016695.	0.8	33
487	Gut microbiota profile in systemic sclerosis patients with and without clinical evidence of gastrointestinal involvement. Scientific Reports, 2017, 7, 14874.	1.6	65
488	Microbiome measurement: Possibilities and pitfalls. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2017, 31, 619-623.	1.0	7
489	NOD2 and bacterial recognition as therapeutic targets for Crohn's disease. Expert Opinion on Therapeutic Targets, 2017, 21, 1123-1139.	1.5	33
490	Fecal microbial characterization of hospitalized patients with suspected infectious diarrhea shows significant dysbiosis. Scientific Reports, 2017, 7, 1088.	1.6	30
491	Unexplored diversity and strain-level structure of the skin microbiome associated with psoriasis. Npj Biofilms and Microbiomes, 2017, 3, 14.	2.9	159
492	Inferring microbial interaction networks from metagenomic data using SgLV-EKF algorithm. BMC Genomics, 2017, 18, 228.	1.2	17
493	Consistent metagenomic biomarker detection via robust PCA. Biology Direct, 2017, 12, 4.	1.9	15
494	Revised computational metagenomic processing uncovers hidden and biologically meaningful functional variation in the human microbiome. Microbiome, 2017, 5, 19.	4.9	21
495	Two distinct metacommunities characterize the gut microbiota in Crohn's disease patients. GigaScience, 2017, 6, 1-11.	3.3	75
496	16S sequencing and functional analysis of the fecal microbiome during treatment of newly diagnosed pediatric inflammatory bowel disease. Medicine (United States), 2017, 96, e7347.	0.4	30

#	Article	IF	CITATIONS
497	Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiology Reviews, 2017, 41, 453-478.	3.9	117
498	The Microbiome in Visceral Medicine: Inflammatory Bowel Disease, Obesity and Beyond. Visceral Medicine, 2017, 33, 153-162.	0.5	6
499	Impact of cystic fibrosis disease on archaea and bacteria composition of gut microbiota. FEMS Microbiology Ecology, 2017, 93, fiw230.	1.3	40
500	Environmental spread of microbes impacts the development of metabolic phenotypes in mice transplanted with microbial communities from humans. ISME Journal, 2017, 11, 676-690.	4.4	63
501	Factors influencing the infant gut microbiome at age 3-6Âmonths: Findings from the ethnically diverse Vitamin D Antenatal Asthma Reduction Trial (VDAART). Journal of Allergy and Clinical Immunology, 2017, 139, 482-491.e14.	1.5	125
502	Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radical Biology and Medicine, 2017, 105, 68-78.	1.3	110
503	Microbial Factors Associated with Postoperative Crohn's Disease Recurrence. Journal of Crohn's and Colitis, 2017, 11, 191-203.	0.6	86
504	Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition and Food Research, 2017, 61, 1600240.	1.5	678
505	"We are what our bacteria eatâ€. The role of bacteria in personalizing nutrition therapy in gastrointestinal conditions. Journal of Gastroenterology and Hepatology (Australia), 2017, 32, 352-357.	1.4	7
506	Associations between micronutrient intakes and gut microbiota in a group of adults with cystic fibrosis. Clinical Nutrition, 2017, 36, 1097-1104.	2.3	46
507	The human gastrointestinal tract and oral microbiota in inflammatory bowel disease: a state of the science review. Apmis, 2017, 125, 3-10.	0.9	87
508	Pterostilbeneâ€induced changes in gut microbiota composition in relation to obesity. Molecular Nutrition and Food Research, 2017, 61, 1500906.	1.5	88
509	Microbial, metabolomic, and immunologic dynamics in a relapsing genetic mouse model of colitis induced by T-synthase deficiency. Gut Microbes, 2017, 8, 1-16.	4.3	43
510	Antibiotic use and microbiome function. Biochemical Pharmacology, 2017, 134, 114-126.	2.0	240
511	Alterations in oral bacterial communities are associated with risk factors for oral and oropharyngeal cancer. Scientific Reports, 2017, 7, 17686.	1.6	97
512	Complementary and Alternative Medicine Strategies for Therapeutic Gut Microbiota Modulation in Inflammatory Bowel Disease and their Next-Generation Approaches. Gastroenterology Clinics of North America, 2017, 46, 689-729.	1.0	27
513	Bioinformatics in Microbiome Analysis. Methods in Microbiology, 2017, 44, 1-18.	0.4	4
514	Sparse-low rank matrix decomposition framework for identifying potential biomarkers for inflammatory bowel disease. , 2017, , .		1

#	ARTICLE	IF	CITATIONS
515	HIV-associated changes in the enteric microbial community: potential role in loss of homeostasis and development of systemic inflammation. Current Opinion in Infectious Diseases, 2017, 30, 31-43.	1.3	78
516	Vitamin D Axis in Inflammatory Bowel Diseases: Role, Current Uses and Future Perspectives. International Journal of Molecular Sciences, 2017, 18, 2360.	1.8	54
517	The Human Mucosal Mycobiome and Fungal Community Interactions. Journal of Fungi (Basel,) Tj ETQq0 0 0 rg	BT /Qverloc	k 10 Tf 50 66
518	Characterizing and Functionally Defining the Gut Microbiota: Methodology and Implications. , 2017, , 15-25.		3
519	Microbiota, Inflammation and Colorectal Cancer. International Journal of Molecular Sciences, 2017, 18, 1310.	1.8	237
520	Sampling Strategies for Three-Dimensional Spatial Community Structures in IBD Microbiota Research. Frontiers in Cellular and Infection Microbiology, 2017, 7, 51.	1.8	23
521	Upregulation of Intestinal Barrier Function in Mice with DSS-Induced Colitis by a Defined Bacterial Consortium Is Associated with Expansion of IL-17A Producing Gamma Delta T Cells. Frontiers in Immunology, 2017, 8, 824.	2.2	28
522	Influence of Microbiota on Intestinal Immune System in Ulcerative Colitis and Its Intervention. Frontiers in Immunology, 2017, 8, 1674.	2.2	105
523	Gut Microbial Diversity Assessment of Indian Type-2-Diabetics Reveals Alterations in Eubacteria, Archaea, and Eukaryotes. Frontiers in Microbiology, 2017, 8, 214.	1.5	81
524	Structure and Function of the Fecal Microbiota in Diarrheic Neonatal Piglets. Frontiers in Microbiology, 2017, 8, 502.	1.5	103
525	Inbred Mouse Populations Exhibit Intergenerational Changes in Intestinal Microbiota Composition and Function Following Introduction to a Facility. Frontiers in Microbiology, 2017, 8, 608.	1.5	21
526	Comprehensive Diagnosis of Bacterial Infection Associated with Acute Cholecystitis Using Metagenomic Approach. Frontiers in Microbiology, 2017, 8, 685.	1.5	45
527	Modulation of Gut Microbiome Composition and Function in Experimental Colitis Treated with Sulfasalazine. Frontiers in Microbiology, 2017, 8, 1703.	1.5	89
528	Dietary Heme Induces Gut Dysbiosis, Aggravates Colitis, and Potentiates the Development of Adenomas in Mice. Frontiers in Microbiology, 2017, 8, 1809.	1.5	117
529	Diet, Environments, and Gut Microbiota. A Preliminary Investigation in Children Living in Rural and Urban Burkina Faso and Italy. Frontiers in Microbiology, 2017, 8, 1979.	1.5	222
530	Reduction of Salmonella Shedding by Sows during Gestation in Relation to Its Fecal Microbiome. Frontiers in Microbiology, 2017, 8, 2219.	1.5	17
531	Bacterial Diversity of the Gastric Content of Preterm Infants during Their First Month of Life at the Hospital. Frontiers in Nutrition, 2017, 4, 12.	1.6	15
532	Role of the Gastrointestinal Tract Microbiome in the Pathophysiology of Diabetes Mellitus. Journal of Diabetes Research, 2017, 2017, 1-9.	1.0	66

#	ARTICLE	IF	Citations
533	Exclusive Enteral Nutrition Induces Remission in Pediatric Crohn's Disease via Modulation of the Gut Microbiota. BioMed Research International, 2017, 2017, 1-6.	0.9	11
534	New Frontiers in Genetics, Gut Microbiota, and Immunity: A Rosetta Stone for the Pathogenesis of Inflammatory Bowel Disease. BioMed Research International, 2017, 2017, 1-17.	0.9	64
535	Host-microbial Cross-talk in Inflammatory Bowel Disease. Immune Network, 2017, 17, 1.	1.6	147
536	The microbiota in inflammatory bowel disease: current and therapeutic insights. Journal of Inflammation Research, 2017, Volume 10, 63-73.	1.6	168
537	Effects of dietary nutrient levels on microbial community composition and diversity in the ileal contents of pregnant Huanjiang mini-pigs. PLoS ONE, 2017, 12, e0172086.	1.1	28
538	16S rRNA gene sequencing and healthy reference ranges for 28 clinically relevant microbial taxa from the human gut microbiome. PLoS ONE, 2017, 12, e0176555.	1.1	96
539	Comprehensive benchmarking and ensemble approaches for metagenomic classifiers. Genome Biology, 2017, 18, 182.	3.8	260
540	Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nature Communications, 2017, 8, 1784.	5.8	714
541	Experimental design and quantitative analysis of microbial community multiomics. Genome Biology, 2017, 18, 228.	3.8	143
542	A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Medicine, 2017, 9, 103.	3.6	478
543	Recent urbanization in China is correlated with a Westernized microbiome encoding increased virulence and antibiotic resistance genes. Microbiome, 2017, 5, 121.	4.9	70
544	Models of microbiome evolution incorporating host and microbial selection. Microbiome, 2017, 5, 127.	4.9	43
545	Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels. Microbiome, 2017, 5, 163.	4.9	148
546	Impact of prematurity and nutrition on the developing gut microbiome and preterm infant growth. Microbiome, 2017, 5, 158.	4.9	115
547	Reliable Biomarker discovery from Metagenomic data via RegLRSD algorithm. BMC Bioinformatics, 2017, 18, 328.	1.2	7
548	Uveitis in the Spondyloarthopathies. Best Practice and Research in Clinical Rheumatology, 2017, 31, 846-862.	1.4	57
549	Butyric acid – a well-known molecule revisited. Przeglad Gastroenterologiczny, 2017, 2, 83-89.	0.3	19
550	The ecological community of commensal, symbiotic, and pathogenic gastrointestinal microorganisms & amp; ndash; an appraisal. Clinical and Experimental Gastroenterology, 2017, Volume 10, 91-103.	1.0	38

#	Article	IF	CITATIONS
551	A comparison of sampling methods for examining the laryngeal microbiome. PLoS ONE, 2017, 12, e0174765.	1.1	7
552	Gut Microbiome, a Potent Modulator of Epigenetics in Human Diseases. Journal of Bacteriology and Virology, 2017, 47, 75.	0.0	12
553	The Impact of Exclusive Enteral Nutrition (EEN) on the Gut Microbiome in Crohn's Disease: A Review. Nutrients, 2017, 9, 0447.	1.7	84
554	Beyond metagenomics, metatranscriptomics illuminates microbiome functionality in IBD. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 193-194.	8.2	30
555	A Cross-Talk Between Microbiota-Derived Short-Chain Fatty Acids and the Host Mucosal Immune System Regulates Intestinal Homeostasis and Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2018, 24, 558-572.	0.9	276
556	Fragile skin microbiomes in megacities are assembled by a predominantly niche-based process. Science Advances, 2018, 4, e1701581.	4.7	70
557	Influence of gemcitabine chemotherapy on the microbiota of pancreatic cancer xenografted mice. Cancer Chemotherapy and Pharmacology, 2018, 81, 773-782.	1.1	76
558	Integrative omics for health and disease. Nature Reviews Genetics, 2018, 19, 299-310.	7.7	676
559	Mice with Inflammatory Bowel Disease are Susceptible to <i>Clostridium difficile</i> Infection With Severe Disease Outcomes. Inflammatory Bowel Diseases, 2018, 24, 573-582.	0.9	29
560	Blueberry Supplementation Influences the Gut Microbiota, Inflammation, and Insulin Resistance in High-Fat-Diet–Fed Rats. Journal of Nutrition, 2018, 148, 209-219.	1.3	161
561	The gastrointestinal tract microbiota of northern white-cheeked gibbons (Nomascus leucogenys) varies with age and captive condition. Scientific Reports, 2018, 8, 3214.	1.6	12
562	Fecal microbiota transplantation reverses antibiotic and chemotherapy-induced gut dysbiosis in mice. Scientific Reports, 2018, 8, 6219.	1.6	99
563	Microbial Signatures as a Predictive Tool in IBDâ€"Pearls and Pitfalls. Inflammatory Bowel Diseases, 2018, 24, 1123-1132.	0.9	10
564	The effect of fecal microbiota transplantation on psychiatric symptoms among patients with irritable bowel syndrome, functional diarrhea and functional constipation: An open-label observational study. Journal of Affective Disorders, 2018, 235, 506-512.	2.0	134
565	Current State of Knowledge on Implications of Gut Microbiome for Surgical Conditions. Journal of Gastrointestinal Surgery, 2018, 22, 1112-1123.	0.9	8
566	Smoking and the intestinal microbiome. Archives of Microbiology, 2018, 200, 677-684.	1.0	167
567	Gut microbiota and Crohn's disease. Mediterranean Journal of Nutrition and Metabolism, 2018, 11, 65-72.	0.2	0
568	Pretreatment with probiotic Bifico ameliorates colitisâ€associated cancer in mice: Transcriptome and gut flora profiling. Cancer Science, 2018, 109, 666-677.	1.7	87

#	Article	IF	CITATIONS
569	Ginseng polysaccharides enhanced ginsenoside Rb1 and microbial metabolites exposure through enhancing intestinal absorption and affecting gut microbial metabolism. Journal of Ethnopharmacology, 2018, 216, 47-56.	2.0	70
570	Association of gut microbial communities with plasma lipopolysaccharide-binding protein (LBP) in premenopausal women. ISME Journal, 2018, 12, 1631-1641.	4.4	49
571	Gut Microbial Diversity in Women With Polycystic Ovary Syndrome Correlates With Hyperandrogenism. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 1502-1511.	1.8	224
572	Fecal Microbiota Transplants: Current Knowledge and Future Directions. , 2018, , 279-302.		0
573	bioBakery: a meta'omic analysis environment. Bioinformatics, 2018, 34, 1235-1237.	1.8	241
574	Genetic risk, dysbiosis, and treatment stratification using host genome and gut microbiome in inflammatory bowel disease. Clinical and Translational Gastroenterology, 2018, 9, e132.	1.3	97
575	Metaâ€analysis generates and prioritizes hypotheses for translational microbiome research. Microbial Biotechnology, 2018, 11, 273-276.	2.0	17
576	The role of the gut microbiome in systemic inflammatory disease. BMJ: British Medical Journal, 2018, 360, j5145.	2.4	367
577	Diet and microbiota linked in health and disease. Food and Function, 2018, 9, 688-704.	2.1	148
578	Correlation between gut microbiota and personality in adults: A cross-sectional study. Brain, Behavior, and Immunity, 2018, 69, 374-385.	2.0	69
579	Exposure to traffic-related air pollution and the composition of the gut microbiota in overweight and obese adolescents. Environmental Research, 2018, 161, 472-478.	3.7	82
580	Zebrafish Axenic Larvae Colonization with Human Intestinal Microbiota. Zebrafish, 2018, 15, 96-106.	0.5	10
581	Specific changes of enteric mycobiota and virome in inflammatory bowel disease. Journal of Digestive Diseases, 2018, 19, 2-7.	0.7	14
582	Metatranscriptome of human faecal microbial communities in a cohort of adult men. Nature Microbiology, 2018, 3, 356-366.	5.9	168
583	Comparison of DNA extraction methods for human gut microbial community profiling. Systematic and Applied Microbiology, 2018, 41, 151-157.	1.2	133
584	The germ-organ theory of non-communicable diseases. Nature Reviews Microbiology, 2018, 16, 103-110.	13.6	117
585	Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nature Microbiology, 2018, 3, 337-346.	5.9	408
586	Functional sequencing read annotation for high precision microbiome analysis. Nucleic Acids Research, 2018, 46, e23-e23.	6.5	33

#	Article	IF	CITATIONS
587	Characteristics of Faecal Microbiota in Paediatric Crohn's Disease and Their Dynamic Changes During Infliximab Therapy. Journal of Crohn's and Colitis, 2018, 12, 337-346.	0.6	129
588	De-novo Inflammatory Bowel Disease After Bariatric Surgery: A Large Case Series. Journal of Crohn's and Colitis, 2018, 12, 452-457.	0.6	29
589	Differences in Clinical Course, Genetics, and the Microbiome Between Familial and Sporadic Inflammatory Bowel Diseases. Journal of Crohn's and Colitis, 2018, 12, 525-531.	0.6	22
590	A highly adaptive microbiome-based association test for survival traits. BMC Genomics, 2018, 19, 210.	1.2	34
591	Comparison of the fecal microbiota of domestic commercial meat, laboratory, companion, and shelter rabbits (Oryctolagus cuniculi). BMC Veterinary Research, 2018, 14, 143.	0.7	22
592	A modified method for genomic DNA extraction from the fish intestinal microflora. AMB Express, 2018, 8, 52.	1.4	8
593	Multi-omics differentially classify disease state and treatment outcome in pediatric Crohn's disease. Microbiome, 2018, 6, 13.	4.9	94
594	Emerging concepts in non-invasive monitoring of Crohn's disease. Therapeutic Advances in Gastroenterology, 2018, 11, 175628481876907.	1.4	23
595	Mass spectrometry approaches to metabolic profiling of microbial communities within the human gastrointestinal tract. Methods, 2018, 149, 13-24.	1.9	21
596	Loss of MicroRNA-21 Influences the Gut Microbiota, Causing Reduced Susceptibility in a Murine Model of Colitis. Journal of Crohn's and Colitis, 2018, 12, 835-848.	0.6	48
597	Effect of live yeast Saccharomyces cerevisiae (Actisaf Sc 47) supplementation on the performance and hindgut microbiota composition of weanling pigs. Scientific Reports, 2018, 8, 5315.	1.6	44
598	Of genes and microbes: solving the intricacies in host genomes. Protein and Cell, 2018, 9, 446-461.	4.8	34
599	The Microbiome Regulates Pulmonary Responses to Ozone in Mice. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 346-354.	1.4	49
600	The classroom microbiome and asthma morbidity in children attending 3 inner-city schools. Journal of Allergy and Clinical Immunology, 2018, 141, 2311-2313.	1.5	24
601	Abiotic Stresses Shift Belowground <i>Populus</i> -Associated Bacteria Toward a Core Stress Microbiome. MSystems, 2018, 3, .	1.7	89
602	Carotenoid supplementation and retinoic acid in immunoglobulin A regulation of the gut microbiota dysbiosis. Experimental Biology and Medicine, 2018, 243, 613-620.	1.1	86
603	Reduced salivary secretion contributes more to changes in the oral microbiome of patients with primary Sjögren's syndrome than underlying disease. Annals of the Rheumatic Diseases, 2018, 77, 1542-1544.	0.5	35
604	Fecal Microbiota Transplantation in Inflammatory Bowel Disease: A Primer for Internists. American Journal of Medicine, 2018, 131, 1017-1024.	0.6	12

#	Article	IF	CITATIONS
605	Characterization of intestinal microbiota in alcoholic patients with and without alcoholic hepatitis or chronic alcoholic pancreatitis. Scientific Reports, 2018, 8, 4822.	1.6	71
606	Gut Microbiota Offers Universal Biomarkers across Ethnicity in Inflammatory Bowel Disease Diagnosis and Infliximab Response Prediction. MSystems, 2018, 3, .	1.7	204
607	Microscopic colitis in patients with ulcerative colitis or Crohn's disease: a retrospective observational study and review of the literature. Scandinavian Journal of Gastroenterology, 2018, 53, 410-416.	0.6	21
608	Festschrift for Ronan O'Connell: pouchitis, ulcerative colitis and the microbiome. Irish Journal of Medical Science, 2018, 187, 1133-1137.	0.8	0
609	The microbiota: an underestimated actor in radiation-induced lesions?. Gut, 2018, 67, 1-2.	6.1	54
610	Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut, 2018, 67, 108-119.	6.1	590
611	Probiotics are a good choice in remission of inflammatory bowel diseases: A meta analysis and systematic review. Journal of Cellular Physiology, 2018, 233, 2091-2103.	2.0	238
612	Helminth-induced alterations of the gut microbiota exacerbate bacterial colitis. Mucosal Immunology, 2018, 11, 144-157.	2.7	121
613	Do checkpoint inhibitors rely on gut microbiota to fight cancer?. Journal of Oncology Pharmacy Practice, 2018, 24, 468-472.	0.5	3
614	TREM-1 Inhibition Restores Impaired Autophagy Activity and Reduces Colitis in Mice. Journal of Crohn's and Colitis, 2018, 12, 230-244.	0.6	55
615	Determinants of Reduced Genetic Capacity for Butyrate Synthesis by the Gut Microbiome in Crohn's Disease and Ulcerative Colitis. Journal of Crohn's and Colitis, 2018, 12, 204-216.	0.6	93
616	An omnibus test for differential distribution analysis of microbiome sequencing data. Bioinformatics, 2018, 34, 643-651.	1.8	69
617	The role of the intestinal microbiota in the pathogenesis and treatment of inflammatory bowel diseases. Seminars in Colon and Rectal Surgery, 2018, 29, 21-27.	0.2	0
618	Implications of butyrate and its derivatives for gut health and animal production. Animal Nutrition, 2018, 4, 151-159.	2.1	280
619	Review article: the gut microbiome in inflammatory bowel disease—avenues for microbial management. Alimentary Pharmacology and Therapeutics, 2018, 47, 26-42.	1.9	147
620	Complementary Methodologies To Investigate Human Gut Microbiota in Host Health, Working towards Integrative Systems Biology. Journal of Bacteriology, 2018, 200, .	1.0	9
621	A comprehensive review and update on Crohn's disease. Disease-a-Month, 2018, 64, 20-57.	0.4	318
622	A polymicrobial view of disease potential in Crohn's-associated adherent-invasive <i>E. coli</i> . Gut Microbes, 2018, 9, 166-174.	4.3	25

#	ARTICLE	IF	CITATIONS
623	Gut colonization with extended-spectrum \hat{l}^2 -lactamase-producing Enterobacteriaceae may increase disease activity in biologic-naive outpatients with ulcerative colitis: an interim analysis. European Journal of Gastroenterology and Hepatology, 2018, 30, 92-100.	0.8	10
624	The gut microbiome, symptoms, and targeted interventions in children with cancer: a systematic review. Supportive Care in Cancer, 2018, 26, 427-439.	1.0	37
625	The microbiome in PTEN hamartoma tumor syndrome. Endocrine-Related Cancer, 2018, 25, 233-243.	1.6	5
626	Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. Journal of Allergy and Clinical Immunology, 2018, 142, 424-434.e10.	1.5	181
627	MPA Portable: A Stand-Alone Software Package for Analyzing Metaproteome Samples on the Go. Analytical Chemistry, 2018, 90, 685-689.	3.2	65
628	Evaluating in Vitro Culture Medium of Gut Microbiome with Orthogonal Experimental Design and a Metaproteomics Approach. Journal of Proteome Research, 2018, 17, 154-163.	1.8	41
629	Assessing gut microbiota perturbations during the early phase of infectious diarrhea in Vietnamese children. Gut Microbes, 2018, 9, 38-54.	4.3	66
630	Card9 mediates susceptibility to intestinal pathogens through microbiota modulation and control of bacterial virulence. Gut, 2018, 67, 1836-1844.	6.1	38
631	Specificities of the intestinal microbiota in patients with inflammatory bowel disease and <i>Clostridium difficile</i> infection. Gut Microbes, 2018, 9, 55-60.	4.3	85
632	Fecal microbial dysbiosis in Chinese patients with inflammatory bowel disease. World Journal of Gastroenterology, 2018, 24, 1464-1477.	1.4	49
633	The influence of in vitro pectin fermentation on the human fecal microbiome. AMB Express, 2018, 8, 98.	1.4	79
634	Low-dosage antibiotic intake can disturb gut microbiota in mice. CYTA - Journal of Food, 2018, 16, 672-678.	0.9	11
635	deSPI: efficient classification of metagenomics reads with lightweight de Bruijn graph-based reference indexing. , 2018, , .		3
636	Metagenomic Approaches for Investigating the Role of the Microbiome in Gut Health and Inflammatory Diseases. , 2018, , .		1
637	A Graph-Theoretic Approach for Identifying Bacterial Inter-correlations and Functional Pathways in Microbiome Data. , $2018, \ldots$		2
638	Dietary Exposure to the Environmental Chemical, PFOS on the Diversity of Gut Microbiota, Associated With the Development of Metabolic Syndrome. Frontiers in Microbiology, 2018, 9, 2552.	1.5	63
639	Microbiota of Inflammatory Bowel Disease Models. , 2018, 2018, 2374-2377.		4
640	The prevalence and transcriptional activity of the mucosal microbiota of ulcerative colitis patients. Scientific Reports, 2018, 8, 17278.	1.6	17

#	Article	IF	Citations
641	Differential clustering of fecal and mucosaâ€associated microbiota in †healthy†individuals. Journal of Digestive Diseases, 2018, 19, 745-752.	0.7	23
642	Metagenomics-Based, Strain-Level Analysis of Escherichia coli From a Time-Series of Microbiome Samples From a Crohn's Disease Patient. Frontiers in Microbiology, 2018, 9, 2559.	1.5	37
643	An improved statistical model for taxonomic assignment of metagenomics. BMC Genetics, 2018, 19, 98.	2.7	2
644	Role of gut microbiota in intestinal wound healing and barrier function. Tissue Barriers, 2018, 6, 1539595.	1.6	94
645	Genetic diversity of Escherichia coli in gut microbiota of patients with Crohn's disease discovered using metagenomic and genomic analyses. BMC Genomics, 2018, 19, 968.	1.2	26
646	Modeling the Role of the Microbiome in Evolution. Frontiers in Physiology, 2018, 9, 1836.	1.3	39
647	Finer-Scale Phylosymbiosis: Insights from Insect Viromes. MSystems, 2018, 3, .	1.7	27
648	Modulation of faecal metagenome in Crohn's disease: Role of microRNAs as biomarkers. World Journal of Gastroenterology, 2018, 24, 5223-5233.	1.4	26
649	Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Science Translational Medicine, 2018, 10, .	5.8	351
650	Serine Alleviates Dextran Sulfate Sodium-Induced Colitis and Regulates the Gut Microbiota in Mice. Frontiers in Microbiology, 2018, 9, 3062.	1.5	48
651	Use of Probiotics to Prevent Celiac Disease and IBD in Pediatrics. Advances in Experimental Medicine and Biology, 2018, 1125, 69-81.	0.8	7
652	Gut Microbiota and Endothelial Dysfunction Markers in Obese Mexican Children and Adolescents. Nutrients, 2018, 10, 2009.	1.7	82
653	Antibiotics may increase triazine herbicide exposure risk via disturbing gut microbiota. Microbiome, 2018, 6, 224.	4.9	43
654	A Pilot Study: Changes of Gut Microbiota in Post-surgery Colorectal Cancer Patients. Frontiers in Microbiology, 2018, 9, 2777.	1.5	41
655	Microbiota profile in new-onset pediatric Crohn's disease: data from a non-Western population. Gut Pathogens, 2018, 10, 49.	1.6	35
656	Colonocyte metabolism shapes the gut microbiota. Science, 2018, 362, .	6.0	411
657	Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nature Communications, 2018, 9, 5091.	5.8	190
658	Gut microbiota diversity across ethnicities in the United States. PLoS Biology, 2018, 16, e2006842.	2.6	216

#	Article	IF	Citations
659	Intestinal bacteria detected in cancer and adjacent tissue from patients with colorectal cancer. Oncology Letters, 2018, 17, 1115-1127.	0.8	15
660	A Systematic Overview of Type II and III Toxin-Antitoxin Systems with a Focus on Druggability. Toxins, 2018, 10, 515.	1.5	47
661	Marginal Zinc Deficiency and Environmentally Relevant Concentrations of Arsenic Elicit Combined Effects on the Gut Microbiome. MSphere, 2018, 3, .	1.3	34
662	The impact of epidermal growth factor supernatant on pig performance and ileal microbiotal. Translational Animal Science, 2018, 2, 184-194.	0.4	7
663	Goji Berry Modulates Gut Microbiota and Alleviates Colitis in ILâ€10â€Deficient Mice. Molecular Nutrition and Food Research, 2018, 62, e1800535.	1.5	63
664	The "Gut Feeling― Breaking Down the Role of Gut Microbiome in Multiple Sclerosis. Neurotherapeutics, 2018, 15, 109-125.	2.1	117
665	Management of inflammatory bowel disease. Medical Journal of Australia, 2018, 209, 318-323.	0.8	58
666	Alterations in gut bacterial and fungal microbiomes are associated with bacterial Keratitis, an inflammatory disease of the human eye. Journal of Biosciences, 2018, 43, 835-856.	0.5	47
667	Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis. Microbiome, 2018, 6, 172.	4.9	131
668	Diversity-Function Relationships in Natural, Applied, and Engineered Microbial Ecosystems. Advances in Applied Microbiology, 2018, 105, 131-189.	1.3	13
669	Nod2 Deficiency in mice is Associated with Microbiota Variation Favouring the Expansion of mucosal CD4+ LAP+ Regulatory Cells. Scientific Reports, 2018, 8, 14241.	1.6	25
670	Gut Microbiota and Iron: The Crucial Actors in Health and Disease. Pharmaceuticals, 2018, 11, 98.	1.7	186
671	Introductory Overview of Statistical Analysis of Microbiome Data. ICSA Book Series in Statistics, 2018, , 43-75.	0.0	7
672	Compositional and Temporal Changes in the Gut Microbiome of Pediatric Ulcerative Colitis Patients Are Linked to Disease Course. Cell Host and Microbe, 2018, 24, 600-610.e4.	5.1	193
673	Quinoa whole grain diet compromises the changes of gut microbiota and colonic colitis induced by dextran Sulfate sodium in C57BL/6 mice. Scientific Reports, 2018, 8, 14916.	1.6	48
674	Human Dendritic Cells: Ontogeny and Their Subsets in Health and Disease. Medical Sciences (Basel,) Tj ETQq $1\ 1$	0.784314 1.3	rgBT Overlo
675	Orally administered gold nanoparticles protect against colitis by attenuating Toll-like receptor 4- and reactive oxygen/nitrogen species-mediated inflammatory responses but could induce gut dysbiosis in mice. Journal of Nanobiotechnology, 2018, 16, 86.	4.2	48
676	Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature, 2018, 562, 583-588.	13.7	1,220

#	Article	IF	CITATIONS
677	The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature, 2018, 562, 589-594.	13.7	623
678	Profiling the airway in the macaque model of tuberculosis reveals variable microbial dysbiosis and alteration of community structure. Microbiome, $2018, 6, 180$.	4.9	23
679	Gut microbiome modulation during treatment of mucositis with the dairy bacterium Lactococcus lactis and recombinant strain secreting human antimicrobial PAP. Scientific Reports, 2018, 8, 15072.	1.6	36
680	Metagenome Analysis as a Tool to Study Bacterial Infection Associated with Acute Surgical Abdomen. Journal of Clinical Medicine, 2018, 7, 346.	1.0	6
681	The microbiome of Crohn's disease aphthous ulcers. Gut Pathogens, 2018, 10, 44.	1.6	8
682	Fecal microbiota transplant & Double 11, 321-328.	1.6	50
683	Comparisons of gut microbiota profiles in wild-type and gelatinase B/matrix metalloproteinase-9-deficient mice in acute DSS-induced colitis. Npj Biofilms and Microbiomes, 2018, 4, 18.	2.9	10
684	Metabolic Syndrome During Perinatal Period in Sows and the Link With Gut Microbiota and Metabolites. Frontiers in Microbiology, 2018, 9, 1989.	1.5	71
685	The intestinal microbiota in the pathogenesis of inflammatory bowel diseases: new insights into complex disease. Clinical Science, 2018, 132, 2013-2028.	1.8	51
686	Fecal Microbiota Transplantation Ameliorates Experimentally Induced Colitis in Mice by Upregulating AhR. Frontiers in Microbiology, 2018, 9, 1921.	1.5	45
687	<i>Lactobacillus reuteri</i> Fâ€9â€35 Prevents DSSâ€Induced Colitis by Inhibiting Proinflammatory Gene Expression and Restoring the Gut Microbiota in Mice. Journal of Food Science, 2018, 83, 2645-2652.	1.5	60
688	The Gut Microbiota in the Pathogenesis and Therapeutics of Inflammatory Bowel Disease. Frontiers in Microbiology, 2018, 9, 2247.	1.5	408
689	Pathogen- and Microbial- Associated Molecular Patterns (PAMPs/MAMPs) and the Innate Immune Response in Crohn's Disease. , 2018, , 175-187.		6
690	Composition of the teat canal and intramammary microbiota of dairy cows subjected to antimicrobial dry cow therapy and internal teat sealant. Journal of Dairy Science, 2018, 101, 10191-10205.	1.4	46
691	Enterobacteriaceae are essential for the modulation of colitis severity by fungi. Microbiome, 2018, 6, 152.	4.9	143
692	Impact of xylanases on gut microbiota of growing pigs fed corn- or wheat-based diets. Animal Nutrition, 2018, 4, 339-350.	2.1	41
693	Molecular diagnosis and classification of inflammatory bowel disease. Expert Review of Molecular Diagnostics, 2018, 18, 867-886.	1.5	27
694	Diet during Pregnancy and Infancy and the Infant Intestinal Microbiome. Journal of Pediatrics, 2018, 203, 47-54.e4.	0.9	66

#	Article	IF	Citations
695	Environmental temperature alters the digestive performance and gut microbiota of a terrestrial amphibian. Journal of Experimental Biology, 2018, 221, .	0.8	98
696	The role of diet in the aetiopathogenesis of inflammatory bowel disease. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 525-535.	8.2	178
697	Interplay between gut microbiota metabolism and inflammation in HIV infection. ISME Journal, 2018, 12, 1964-1976.	4.4	48
698	Molecular profiling of mucosal tissue associated microbiota in patients manifesting acute exacerbations and remission stage of ulcerative colitis. World Journal of Microbiology and Biotechnology, 2018, 34, 76.	1.7	53
699	Fecal bacteria from Crohn's disease patients more potently activated NOD-like receptors and Toll-like receptors in macrophages, in an IL-4-repressible fashion. Microbial Pathogenesis, 2018, 121, 40-44.	1.3	9
700	Fecal Microbiota Transplantation as Therapy for Inflammatory Bowel Disease. , 2018, , 319-327.		2
701	Asymptomatic Intestinal Colonization with Protist <i>Blastocystis</i> Is Strongly Associated with Distinct Microbiome Ecological Patterns. MSystems, 2018, 3, .	1.7	99
702	The presence of genetic risk variants within PTPN2 and PTPN22 is associated with intestinal microbiota alterations in Swiss IBD cohort patients. PLoS ONE, 2018, 13, e0199664.	1.1	35
703	Correcting for batch effects in case-control microbiome studies. PLoS Computational Biology, 2018, 14, e1006102.	1.5	108
704	Microbial Physiology of the Digestive Tract and Its Role in Inflammatory Bowel Diseases. , 2018, , 795-810.		9
705	Dietary Polyphenols, Gut Microbiota, and Intestinal Epithelial Health., 2018,, 295-314.		2
706	Overlapping Community Compositions of Gut and Fecal Microbiomes in Lab-Reared and Field-Collected German Cockroaches. Applied and Environmental Microbiology, 2018, 84, .	1.4	67
707	Alterations in the gut bacterial microbiome in fungal Keratitis patients. PLoS ONE, 2018, 13, e0199640.	1.1	65
708	Dysbiosis of the buccal mucosa microbiome in primary Sjögren's syndrome patients. Rheumatology, 2018, 57, 2225-2234.	0.9	47
709	The effect of Lactobacillus fermentum ME-3 on the intestinal microbiota and urine polyamines content: A double-blind placebo-controlled pilot trial. Journal of Functional Foods, 2018, 48, 430-438.	1.6	9
710	Fiber Supplements Derived From Sugarcane Stem, Wheat Dextrin and Psyllium Husk Have Different In Vitro Effects on the Human Gut Microbiota. Frontiers in Microbiology, 2018, 9, 1618.	1.5	25
711	Conducting metagenomic studies in microbiology and clinical research. Applied Microbiology and Biotechnology, 2018, 102, 8629-8646.	1.7	26
712	Remnant Small Bowel Length in Pediatric Short Bowel Syndrome and the Correlation with Intestinal Dysbiosis and Linear Growth. Journal of the American College of Surgeons, 2018, 227, 439-449.	0.2	28

#	Article	IF	Citations
713	A metagenomic study of the gut microbiome in Behcet's disease. Microbiome, 2018, 6, 135.	4.9	173
714	Traditional Herbal Medicine-Derived Sulforaphene LFS-01 Reverses Colitis in Mice by Selectively Altering the Gut Microbiota and Promoting Intestinal Gamma-Delta T Cells. Frontiers in Pharmacology, 2017, 8, 959.	1.6	33
715	Microbiome Responses to an Uncontrolled Short-Term Diet Intervention in the Frame of the Citizen Science Project. Nutrients, 2018, 10, 576.	1.7	96
716	Inflammation-related differences in mucosa-associated microbiota and intestinal barrier function in colonic Crohn's disease. American Journal of Physiology - Renal Physiology, 2018, 315, G420-G431.	1.6	46
717	Gut microbiota components are associated with fixed airway obstruction in asthmatic patients living in the tropics. Scientific Reports, 2018, 8, 9582.	1.6	16
718	Analyzing differences between microbiome communities using mixture distributions. Statistics in Medicine, 2018, 37, 4036-4053.	0.8	7
719	Mycobiome and Gut Inflammation. , 2018, , 271-280.		4
720	Microbiome Analyses for Toxicological Studies. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2018, 77, e53.	1.1	11
721	Metagenomic Characterization of the Human Intestinal Microbiota in Fecal Samples from STEC-Infected Patients. Frontiers in Cellular and Infection Microbiology, 2018, 8, 25.	1.8	47
722	NLRX1 Modulates Immunometabolic Mechanisms Controlling the Host–Gut Microbiota Interactions during Inflammatory Bowel Disease. Frontiers in Immunology, 2018, 9, 363.	2.2	42
723	Spatial Heterogeneity and Co-occurrence of Mucosal and Luminal Microbiome across Swine Intestinal Tract. Frontiers in Microbiology, 2018, 9, 48.	1.5	172
724	Dysbiosis and Ecotypes of the Salivary Microbiome Associated With Inflammatory Bowel Diseases and the Assistance in Diagnosis of Diseases Using Oral Bacterial Profiles. Frontiers in Microbiology, 2018, 9, 1136.	1.5	87
725	Time Series Analysis of the Microbiota of Children Suffering From Acute Infectious Diarrhea and Their Recovery After Treatment. Frontiers in Microbiology, 2018, 9, 1230.	1.5	49
726	5-Aminosalicylic Acid Alters the Gut Bacterial Microbiota in Patients With Ulcerative Colitis. Frontiers in Microbiology, 2018, 9, 1274.	1.5	113
727	Persistence of Cellulolytic Bacteria Fibrobacter and Treponema After Short-Term Corn Stover-Based Dietary Intervention Reveals the Potential to Improve Rumen Fibrolytic Function. Frontiers in Microbiology, 2018, 9, 1363.	1.5	92
728	From the Bottom-Up: Chemotherapy and Gut-Brain Axis Dysregulation. Frontiers in Behavioral Neuroscience, 2018, 12, 104.	1.0	68
729	Mediation Analysis as a Means of Identifying Dietary Components That Differentially Affect the Fecal Microbiota of Infants Weaned by Modified Baby-Led and Traditional Approaches. Applied and Environmental Microbiology, 2018, 84, .	1.4	35
730	Toll-Like Receptors: Regulators of the Immune Response in the Human Gut. Nutrients, 2018, 10, 203.	1.7	148

#	Article	IF	CITATIONS
731	Gut microbiota: a new way to take your vitamins. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 521-522.	8.2	6
732	Robust Microbial Markers for Non-Invasive Inflammatory Bowel Disease Identification. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 16, 1-1.	1.9	7
733	Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome. Cell Host and Microbe, 2018, 24, 133-145.e5.	5.1	822
734	Phylogenetic convolutional neural networks in metagenomics. BMC Bioinformatics, 2018, 19, 49.	1.2	7 5
735	Different rearing conditions alter gut microbiota composition and host physiology in Shaoxing ducks. Scientific Reports, 2018, 8, 7387.	1.6	38
736	Healthy hosts rule within: ecological forces shaping the gut microbiota. Mucosal Immunology, 2018, 11, 1299-1305.	2.7	7 5
737	Temporal Regulation of the Bacterial Metabolite Deoxycholate during Colonic Repair Is Critical for Crypt Regeneration. Cell Host and Microbe, 2018, 24, 353-363.e5.	5.1	46
738	Abundance of <i>Enterobacteriaceae</i> in the colon mucosa in diverticular disease. World Journal of Gastrointestinal Pathophysiology, 2018, 9, 18-27.	0.5	25
739	Development of the Pediatric Gut Microbiome: Impact on Health and Disease. American Journal of the Medical Sciences, 2018, 356, 413-423.	0.4	109
740	The journey of gut microbiome – An introduction and its influence on metabolic disorders. Frontiers in Biology, 2018, 13, 327-341.	0.7	4
741	A High Salt Diet Modulates the Gut Microbiota and Short Chain Fatty Acids Production in a Salt-Sensitive Hypertension Rat Model. Nutrients, 2018, 10, 1154.	1.7	148
742	Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nature Medicine, 2018, 24, 1532-1535.	15.2	629
743	Oxidative stress decreases the redox ratio and folate content in the gut microbe, Enterococcus durans (MTCC 3031). Scientific Reports, 2018, 8, 12138.	1.6	20
744	The gut microbiome of nonhuman primates: Lessons in ecology and evolution. American Journal of Primatology, 2018, 80, e22867.	0.8	100
745	The microbiome of translocated bacterial populations in patients with and without inflammatory bowel disease. Internal Medicine Journal, 2018, 48, 1346-1354.	0.5	16
746	Interactions between species introduce spurious associations in microbiome studies. PLoS Computational Biology, 2018, 14, e1005939.	1.5	28
747	Intestinal-Based Diseases and Peripheral Infection Risk Associated with Gut Dysbiosis: Therapeutic use of Pre- and Probiotics and Fecal Microbiota Transplantation. , 2018, , 197-288.		0
748	Impact of gastrointestinal disease states on oral drug absorption – implications for formulation design – a PEARRL review. Journal of Pharmacy and Pharmacology, 2019, 71, 674-698.	1.2	53

#	Article	IF	CITATIONS
749	Allergic and Immunologic Perspectives of Inflammatory Bowel Disease. Clinical Reviews in Allergy and Immunology, 2019, 57, 179-193.	2.9	28
750	The influence of timing of Maternal administration of Antibiotics during cesarean section on the intestinal Microbial colonization in Infants (MAMI-trial): study protocol for a randomised controlled trial. Trials, 2019, 20, 479.	0.7	7
751	Modulation of gut microbiota by Ilex kudingcha improves dextran sulfate sodium-induced colitis. Food Research International, 2019, 126, 108595.	2.9	52
752	Benchmarking Metagenomics Tools for Taxonomic Classification. Cell, 2019, 178, 779-794.	13.5	364
753	Specific changes in faecal microbiota are associated with familial Mediterranean fever. Annals of the Rheumatic Diseases, 2019, 78, 1398-1404.	0.5	18
754	Shifts in the Human Gut Microbiota Structure Caused by Quadruple Helicobacter pylori Eradication Therapy. Frontiers in Microbiology, 2019, 10, 1902.	1.5	39
755	Gut microbiome in chronic rheumatic and inflammatory bowel diseases: Similarities and differences. United European Gastroenterology Journal, 2019, 7, 1008-1032.	1.6	64
756	Gut Microbiota, Dietary Phytochemicals, and Benefits to Human Health. Current Pharmacology Reports, 2019, 5, 332-344.	1.5	54
757	Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens, 2019, 8, 126.	1.2	464
758	The Role of Gut Microbiota in Intestinal Inflammation with Respect to Diet and Extrinsic Stressors. Microorganisms, 2019, 7, 271.	1.6	186
759	A three-dimensional immunocompetent intestine-on-chip model as in vitro platform for functional and microbial interaction studies. Biomaterials, 2019, 220, 119396.	5.7	107
760	When Cultures Meet: The Landscape of "Social―Interactions between the Host and Its Indigenous Microbes. BioEssays, 2019, 41, 1900002.	1.2	3
761	Clustering co-abundant genes identifies components of the gut microbiome that are reproducibly associated with colorectal cancer and inflammatory bowel disease. Microbiome, 2019, 7, 110.	4.9	31
762	Nutrition, Immunity, and Autoimmune Diseases. , 2019, , 415-436.		2
763	Obese Individuals with and without Type 2 Diabetes Show Different Gut Microbial Functional Capacity and Composition. Cell Host and Microbe, 2019, 26, 252-264.e10.	5.1	274
764	Smoking and microbiome in oral, airway, gut and some systemic diseases. Journal of Translational Medicine, 2019, 17, 225.	1.8	183
765	Sequential Changes in the Host Gut Microbiota During Infection With the Intestinal Parasitic Nematode Strongyloides venezuelensis. Frontiers in Cellular and Infection Microbiology, 2019, 9, 217.	1.8	31
766	Functional analysis of gut microbiota and immunoinflammation in children with autism spectrum disorders. Digestive and Liver Disease, 2019, 51, 1366-1374.	0.4	38

#	Article	IF	CITATIONS
767	Evidence of Disturbed Gut Microbial Metabolic Activity in Pediatric Crohn's Disease. Crohn's & Colitis 360, 2019, 1, .	0.5	3
768	Reply to the Letter to the Editor: Gut microbiota composition is associated with temperament traits in infants. Brain, Behavior, and Immunity, 2019, 81, 671-672.	2.0	1
769	In silico Approach for Unveiling the Glycoside Hydrolase Activities in Faecalibacterium prausnitzii Through a Systematic and Integrative Large-Scale Analysis. Frontiers in Microbiology, 2019, 10, 517.	1.5	8
770	Dysbiosis of intestinal microbiota induced by dietary oxidized fish oil and recovery of diet-induced dysbiosis via taurine supplementation in rice field eel (Monopterus albus). Aquaculture, 2019, 512, 734288.	1.7	40
771	Gut microbiome and serum metabolome analyses identify molecular biomarkers and altered glutamate metabolism in fibromyalgia. EBioMedicine, 2019, 46, 499-511.	2.7	128
772	Enteral Nutrition as a Growth Medium for Cultivable Commensal Bacteria and Its Effect on Their Quantity in the Stool of Children with Crohn's Disease. Journal of Medicinal Food, 2019, 22, 810-816.	0.8	1
773	Human Virome and Disease: High-Throughput Sequencing for Virus Discovery, Identification of Phage-Bacteria Dysbiosis and Development of Therapeutic Approaches with Emphasis on the Human Gut. Viruses, 2019, 11, 656.	1.5	111
774	The infantile cutaneous microbiome: A review. Pediatric Dermatology, 2019, 36, 574-580.	0.5	39
775	Study of Environmental Enteropathy and Malnutrition (SEEM) in Pakistan: protocols for biopsy based biomarker discovery and validation. BMC Pediatrics, 2019, 19, 247.	0.7	22
776	Gut Microbiota and Risk of Persistent Nonalcoholic Fatty Liver Diseases. Journal of Clinical Medicine, 2019, 8, 1089.	1.0	48
777	Dicaffeoylquinic acids from Ilex kudingcha attenuate dextran sulfate sodium-induced colitis in C57BL/6 mice in association with the modulation of gut microbiota. Journal of Functional Foods, 2019, 61, 103468.	1.6	20
778	Microbiota-Immune Interaction in the Pathogenesis of Gut-Derived Infection. Frontiers in Immunology, 2019, 10, 1873.	2.2	91
779	Consumption of post-fermented Jing-Wei Fuzhuan brick tea alleviates liver dysfunction and intestinal microbiota dysbiosis in high fructose diet-fed mice. RSC Advances, 2019, 9, 17501-17513.	1.7	19
780	Gut microbiome analysis by post: Evaluation of the optimal method to collect stool samples from infants within a national cohort study. PLoS ONE, 2019, 14, e0216557.	1.1	11
781	Mucosa-associated microbiota drives pathogenic functions in IBD-derived intestinal iNKT cells. Life Science Alliance, 2019, 2, e201800229.	1.3	27
782	Trait-based analysis of the human skin microbiome. Microbiome, 2019, 7, 101.	4.9	25
783	Intestinal microbiome composition and its relation to joint pain and inflammation. Nature Communications, 2019, 10, 4881.	5.8	176
784	Microbe-host interplay in atopic dermatitis and psoriasis. Nature Communications, 2019, 10, 4703.	5.8	217

#	Article	IF	Citations
785	Indoor bacterial microbiota and development of asthma by 10.5Âyears of age. Journal of Allergy and Clinical Immunology, 2019, 144, 1402-1410.	1.5	50
786	Supply of Methionine During Late-Pregnancy Alters Fecal Microbiota and Metabolome in Neonatal Dairy Calves Without Changes in Daily Feed Intake. Frontiers in Microbiology, 2019, 10, 2159.	1.5	38
787	Age-related compositional and functional changes in micro-pig gut microbiome. GeroScience, 2019, 41, 935-944.	2.1	30
788	Revealing Complex Ecological Dynamics via Symbolic Regression. BioEssays, 2019, 41, e1900069.	1.2	18
789	Oral Microbiome Alterations Associated with Early Childhood Caries Highlight the Importance of Carbohydrate Metabolic Activities. MSystems, 2019, 4, .	1.7	56
790	Saccharomyces boulardii alleviates ulcerative colitis carcinogenesis in mice by reducing TNF-α and IL-6 levels and functions and by rebalancing intestinal microbiota. BMC Microbiology, 2019, 19, 246.	1.3	115
791	Role of environmental factors in the pathogenesis of Crohn's disease: a critical review. International Journal of Colorectal Disease, 2019, 34, 2023-2034.	1.0	13
792	Gut microbiota-derived succinate: Friend or foe in human metabolic diseases?. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 439-447.	2.6	162
793	Retinal artery occlusion is associated with compositional and functional shifts in the gut microbiome and altered trimethylamine-N-oxide levels. Scientific Reports, 2019, 9, 15303.	1.6	19
794	Effect of Fermented Corn-Soybean Meal on Serum Immunity, the Expression of Genes Related to Gut Immunity, Gut Microbiota, and Bacterial Metabolites in Grower-Finisher Pigs. Frontiers in Microbiology, 2019, 10, 2620.	1.5	36
795	Taraxacum officinale extract ameliorates dextran sodium sulphateâ€induced colitis by regulating fatty acid degradation and microbial dysbiosis. Journal of Cellular and Molecular Medicine, 2019, 23, 8161-8172.	1.6	31
796	Honey Polyphenols Ameliorate DSSâ€Induced Ulcerative Colitis via Modulating Gut Microbiota in Rats. Molecular Nutrition and Food Research, 2019, 63, e1900638.	1.5	73
797	Effect of the Nursing Mother on the Gut Microbiome of the Offspring During Early Mouse Development. Microbial Ecology, 2019, 78, 517-527.	1.4	17
798	Integrated Meta-omics Reveals a Fungus-Associated Bacteriome and Distinct Functional Pathways in Clostridioides difficile Infection. MSphere, 2019, 4, .	1.3	28
799	Microbiota-Nourishing Immunity: A Guide to Understanding Our Microbial Self. Immunity, 2019, 51, 214-224.	6.6	24
800	Malvidin 3â€Glucoside Modulated Gut Microbial Dysbiosis and Global Metabolome Disrupted in a Murine Colitis Model Induced by Dextran Sulfate Sodium. Molecular Nutrition and Food Research, 2019, 63, e1900455.	1.5	21
801	Heterogeneous Graph Based Similarity Measure for Categorical Data Unsupervised Learning. IEEE Access, 2019, 7, 112662-112680.	2.6	1
802	Are There Potential Applications of Fecal Microbiota Transplantation beyond Intestinal Disorders?. BioMed Research International, 2019, 2019, 1-11.	0.9	21

#	Article	IF	CITATIONS
803	Phylogenetic tree-based microbiome association test. Bioinformatics, 2020, 36, 1000-1006.	1.8	10
804	Phage Therapy with a focus on the Human Microbiota. Antibiotics, 2019, 8, 131.	1.5	83
805	The interleukin-33 receptor contributes to pulmonary responses to ozone in male mice: role of the microbiome. Respiratory Research, 2019, 20, 197.	1.4	19
806	The association of gut microbiota characteristics in Malawian infants with growth and inflammation. Scientific Reports, 2019, 9, 12893.	1.6	25
807	Systematic Review and Meta-analysis: Short-Chain Fatty Acid Characterization in Patients With Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2019, 25, 1751-1763.	0.9	73
808	Baseline human gut microbiota profile in healthy people and standard reporting template. PLoS ONE, 2019, 14, e0206484.	1.1	133
809	Dietary bovine milk exosomes elicit changes in bacterial communities in C57BL/6 mice. American Journal of Physiology - Renal Physiology, 2019, 317, G618-G624.	1.6	87
810	Urinary lead concentration and composition of the adult gut microbiota in a cross-sectional population-based sample. Environment International, 2019, 133, 105122.	4.8	49
811	Dietary cranberry suppressed colonic inflammation and alleviated gut microbiota dysbiosis in dextran sodium sulfate-treated mice. Food and Function, 2019, 10, 6331-6341.	2.1	67
812	A comprehensive assessment of demographic, environmental, and host genetic associations with gut microbiome diversity in healthy individuals. Microbiome, 2019, 7, 130.	4.9	101
813	Increased abundance of proteobacteria in aggressive Crohn's disease seven years after diagnosis. Scientific Reports, 2019, 9, 13473.	1.6	83
814	Intestinal autophagy links psychosocial stress with gut microbiota to promote inflammatory bowel disease. Cell Death and Disease, 2019, 10, 391.	2.7	55
815	Microbiota modulation-based therapy for luminal GI disorders: current applications of probiotics and fecal microbiota transplantation. Expert Opinion on Biological Therapy, 2019, 19, 1343-1355.	1.4	11
816	Impacts of environmental complexity on respiratory and gut microbiome community structure and diversity in growing pigs. Scientific Reports, 2019, 9, 13773.	1.6	33
817	Microbiome-Transcriptome Interactions Related to Severity of Respiratory Syncytial Virus Infection. Scientific Reports, 2019, 9, 13824.	1.6	30
818	Impacts of novel duck reovirus infection on the composition of intestinal microbiota of Muscovy ducklings. Microbial Pathogenesis, 2019, 137, 103764.	1.3	13
819	Evaluation of Direct from Sample Metabolomics of Human Feces Using Rapid Evaporative Ionization Mass Spectrometry. Analytical Chemistry, 2019, 91, 13448-13457.	3.2	22
820	The role of the gut microbiota in the treatment of inflammatory bowel diseases. Microbial Pathogenesis, 2019, 137, 103774.	1.3	62

#	Article	IF	CITATIONS
821	Altered Middle Ear Microbiome in Children With Chronic Otitis Media With Effusion and Respiratory Illnesses. Frontiers in Cellular and Infection Microbiology, 2019, 9, 339.	1.8	19
822	Enteral Nutrition in Adult Crohn's Disease: Toward a Paradigm Shift. Nutrients, 2019, 11, 2222.	1.7	30
823	Host transcriptome and microbiome interaction modulates physiology of full-sibs broilers with divergent feed conversion ratio. Npj Biofilms and Microbiomes, 2019, 5, 24.	2.9	23
824	Connect between gut microbiome and diseases of the human eye. Journal of Biosciences, 2019, 44, 1.	0.5	27
825	Impact of the gut microbiota on immune checkpoint inhibitor-associated toxicities. Therapeutic Advances in Gastroenterology, 2019, 12, 175628481987091.	1.4	35
826	Host-Specific Adaptive Diversification of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. Cell Host and Microbe, 2019, 25, 301-312.e5.	5.1	65
827	Microbial network disturbances in relapsing refractory Crohn's disease. Nature Medicine, 2019, 25, 323-336.	15.2	277
828	Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation. Gut, 2019, 68, 1801-1812.	6.1	157
829	Altered fecal bacterial composition correlates with disease activity in inflammatory bowel disease and the extent of IL8 induction. Current Research in Translational Medicine, 2019, 67, 41-50.	1.2	29
830	Carbonic Anhydrase 6 Gene Variation influences Oral Microbiota Composition and Caries Risk in Swedish adolescents. Scientific Reports, 2019, 9, 452.	1.6	21
831	Urogenital schistosomiasis is associated with signatures of microbiome dysbiosis in Nigerian adolescents. Scientific Reports, 2019, 9, 829.	1.6	41
832	The application of omics techniques to understand the role of the gut microbiota in inflammatory bowel disease. Therapeutic Advances in Gastroenterology, 2019, 12, 175628481882225.	1.4	49
833	A longitudinal assessment of host-microbe-parasite interactions resolves the zebrafish gut microbiome's link to Pseudocapillaria tomentosa infection and pathology. Microbiome, 2019, 7, 10.	4.9	70
834	Loss of RHBDF2 results in an early-onset spontaneous murine colitis. Journal of Leukocyte Biology, 2019, 105, 767-781.	1.5	26
835	Microbiota-nourishing Immunity and Its Relevance for Ulcerative Colitis. Inflammatory Bowel Diseases, 2019, 25, 811-815.	0.9	26
836	SLC39A8 missense variant is associated with Crohn's disease but does not have a major impact on gut microbiome composition in healthy subjects. PLoS ONE, 2019, 14, e0211328.	1.1	10
837	Green Tea Polyphenols Modify the Gut Microbiome in <i>db/db</i> Mice as Coâ€Abundance Groups Correlating with the Blood Glucose Lowering Effect. Molecular Nutrition and Food Research, 2019, 63, e1801064.	1.5	69
838	Ethnicity-Influenced Microbiota: A Future Healthcare Perspective. Trends in Microbiology, 2019, 27, 191-193.	3.5	9

#	Article	IF	CITATIONS
839	The Crohnâ \in TM s disease polymorphism, ATG16L1 T300A, alters the gut microbiota and enhances the local Th1/Th17 response. ELife, 2019, 8, .	2.8	84
840	Influence of maternal microbiota during pregnancy on infant immunity. Clinical and Experimental Immunology, 2019, 198, 47-56.	1.1	72
841	Claudin Family Participates in the Pathogenesis of Inflammatory Bowel Diseases and Colitis-Associated Colorectal Cancer. Frontiers in Immunology, 2019, 10, 1441.	2.2	76
842	High-Fat Diet Alters the Intestinal Microbiota in Streptozotocin-Induced Type 2 Diabetic Mice. Microorganisms, 2019, 7, 176.	1.6	43
843	Host-derived fecal microRNAs can indicate gut microbiota healthiness and ability to induce inflammation. Theranostics, 2019, 9, 4542-4557.	4.6	52
844	Microbial genes and pathways inÂinflammatory bowel disease. Nature Reviews Microbiology, 2019, 17, 497-511.	13.6	447
845	The gut microbiota perspective for interventions in MS. Autoimmunity Reviews, 2019, 18, 814-824.	2.5	19
846	Characterization of Mucosa-Associated Microbiota in Matched Cancer and Non-neoplastic Mucosa From Patients With Colorectal Cancer. Frontiers in Microbiology, 2019, 10, 1317.	1.5	21
847	Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature, 2019, 569, 655-662.	13.7	1,638
848	The Integrative Human Microbiome Project. Nature, 2019, 569, 641-648.	13.7	816
849	The role of inflammation and the gut microbiome in depression and anxiety. Journal of Neuroscience Research, 2019, 97, 1223-1241.	1.3	261
850	Metaâ€Omics―and Metabolic Modelingâ€Assisted Deciphering of Human Microbiota Metabolism. Biotechnology Journal, 2019, 14, 1800445.	1.8	7
851	Gut microbiome differences between wild and captive black rhinoceros $\hat{a} \in \text{``implications for rhinohealth. Scientific Reports, 2019, 9, 7570.}$	1.6	97
852	The Anti-inflammatory Effects of Dietary Anthocyanins against Ulcerative Colitis. International Journal of Molecular Sciences, 2019, 20, 2588.	1.8	78
853	Microbiota Contribute to Obesity-related Increases in the Pulmonary Response to Ozone. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 702-712.	1.4	34
854	Fecal Microbial Communities in a Large Representative Cohort of California Dairy Cows. Frontiers in Microbiology, 2019, 10, 1093.	1.5	60
855	Gut microbiota: a new angle for traditional herbal medicine research. RSC Advances, 2019, 9, 17457-17472.	1.7	31
856	Fecal shortâ€chain fatty acid concentrations and dysbiosis in dogs with chronic enteropathy. Journal of Veterinary Internal Medicine, 2019, 33, 1608-1618.	0.6	106

#	ARTICLE	IF	CITATIONS
857	A Manganese-Superoxide Dismutase From Thermus thermophilus HB27 Suppresses Inflammatory Responses and Alleviates Experimentally Induced Colitis. Inflammatory Bowel Diseases, 2019, 25, 1644-1655.	0.9	17
858	Predicting Clinical Outcomes of Cirrhosis Patients With Hepatic Encephalopathy From the Fecal Microbiome. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 301-318.e2.	2.3	76
859	The Healthy Human Blood Microbiome: Fact or Fiction?. Frontiers in Cellular and Infection Microbiology, 2019, 9, 148.	1.8	221
860	The impact of probiotic Clostridium butyricum MIYAIRI 588 on murine gut metabolic alterations. Journal of Infection and Chemotherapy, 2019, 25, 571-577.	0.8	17
861	The Role of Biomarkers in theÂlleal Anal Pouch. , 2019, , 169-180.		0
862	Bases for the Adequate Development of Nutritional Recommendations for Patients with Inflammatory Bowel Disease. Nutrients, $2019, 11, 1062$.	1.7	8
863	Challenges in IBD Research: Environmental Triggers. Inflammatory Bowel Diseases, 2019, 25, S13-S23.	0.9	62
864	The Clinical and Steroid-Free Remission of Fecal Microbiota Transplantation to Patients with Ulcerative Colitis: A Meta-Analysis. Gastroenterology Research and Practice, 2019, 2019, 1-10.	0.7	14
865	STAT2 dependent Type I Interferon response promotes dysbiosis and luminal expansion of the enteric pathogen Salmonella Typhimurium. PLoS Pathogens, 2019, 15, e1007745.	2.1	25
866	Characterization of Microbiota Associated with Digesta and Mucosa in Different Regions of Gastrointestinal Tract of Nursery Pigs. International Journal of Molecular Sciences, 2019, 20, 1630.	1.8	56
867	L. pseudomesenteroides and L. johnsonii isolated from yaks in Tibet modulate gut microbiota in mice to ameliorate enteroinvasive Escherichia coli-induced diarrhea. Microbial Pathogenesis, 2019, 132, 1-9.	1.3	22
868	metamicrobiomeR: an R package for analysis of microbiome relative abundance data using zero-inflated beta GAMLSS and meta-analysis across studies using random effects models. BMC Bioinformatics, 2019, 20, 188.	1.2	56
869	Preventing adolescent stress-induced cognitive and microbiome changes by diet. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9644-9651.	3.3	79
870	Neonatal Vitamin A Supplementation and Vitamin A Status Are Associated with Gut Microbiome Composition in Bangladeshi Infants in Early Infancy and at 2 Years of Age. Journal of Nutrition, 2019, 149, 1075-1088.	1.3	42
871	Protocol for the Gut Bugs Trial: a randomised double-blind placebo-controlled trial of gut microbiome transfer for the treatment of obesity in adolescents. BMJ Open, 2019, 9, e026174.	0.8	16
872	A different gut microbiome linked to inflammation found in cirrhotic patients with and without hepatocellular carcinoma. Annals of Hepatology, 2019, 18, 480-487.	0.6	50
873	<scp>HLA</scp> Alleles Associated With Risk of Ankylosing Spondylitis and Rheumatoid Arthritis Influence the Gut Microbiome. Arthritis and Rheumatology, 2019, 71, 1642-1650.	2.9	116
874	The impact of probiotics and lactoferrin supplementation on piglet gastrointestinal microbial communities. BioMetals, 2019, 32, 533-543.	1.8	18

#	ARTICLE	IF	CITATIONS
875	Removal of adult cyathostomins alters faecal microbiota and promotes an inflammatory phenotype in horses. International Journal for Parasitology, 2019, 49, 489-500.	1.3	35
876	Different gut microbiome composition in obese Guizhou minipigs between female and castrated male. Folia Microbiologica, 2019, 64, 889-898.	1.1	4
877	Associations between usual diet and gut microbiota composition: results from the Milieu Intérieur cross-sectional study. American Journal of Clinical Nutrition, 2019, 109, 1472-1483.	2.2	66
878	Effects of single and combined toxic exposures on the gut microbiome: Current knowledge and future directions. Toxicology Letters, 2019, 312, 72-97.	0.4	106
879	Mucosal 5â€aminosalicylic acid concentration, drug formulation and mucosal microbiome in patients with quiescent ulcerative colitis. Alimentary Pharmacology and Therapeutics, 2019, 49, 1301-1313.	1.9	30
880	Association of the Infant Gut Microbiome With Early Childhood Neurodevelopmental Outcomes. JAMA Network Open, 2019, 2, e190905.	2.8	75
881	Alcohol-induced changes in the gut microbiome and metabolome of rhesus macaques. Psychopharmacology, 2019, 236, 1531-1544.	1.5	16
882	Characterization of the rumen and fecal microbiome in bloated and non-bloated cattle grazing alfalfa pastures and subjected to bloat prevention strategies. Scientific Reports, 2019, 9, 4272.	1.6	20
883	The Gut Microbiome and Ankylosing Spondylitis. , 2019, , 87-95.		1
884	Mapping the microbial interactome: Statistical and experimental approaches for microbiome network inference. Experimental Biology and Medicine, 2019, 244, 445-458.	1.1	34
885	Probiotics: Reiterating What They Are and What They Are Not. Frontiers in Microbiology, 2019, 10, 424.	1.5	114
886	PAI-1 augments mucosal damage in colitis. Science Translational Medicine, 2019, 11, .	5.8	44
887	Using formalin fixed paraffin embedded tissue to characterize the preterm gut microbiota in necrotising enterocolitis and spontaneous isolated perforation using marginal and diseased tissue. BMC Microbiology, 2019, 19, 52.	1.3	24
888	Human Gut Microbiome Response Induced by Fermented Dairy Product Intake in Healthy Volunteers. Nutrients, 2019, 11, 547.	1.7	56
889	Isolation and characterization of a high molecular mass \hat{l}^2 -glucan from Lactobacillus fermentum Lf2 and evaluation of its immunomodulatory activity. Carbohydrate Research, 2019, 476, 44-52.	1.1	16
890	Faecal Microbiota Dynamics and their Relation to Disease Course in Crohn's Disease. Journal of Crohn's and Colitis, 2019, 13, 1273-1282.	0.6	42
891	Comparison of the gut microbiota composition between the wild and captive Tibetan wild ass () Tj ETQq0 0 0 rgE	3T /Overlo	ck 10 Tf 50 10 41
892	Mycobiome Profiles in Breast Milk from Healthy Women Depend on Mode of Delivery, Geographic Location, and Interaction with Bacteria. Applied and Environmental Microbiology, 2019, 85, .	1.4	76

#	Article	IF	CITATIONS
893	Influence of Crohn's disease related polymorphisms in innate immune function on ileal microbiome. PLoS ONE, 2019, 14, e0213108.	1.1	13
894	Sunbeam: an extensible pipeline for analyzing metagenomic sequencing experiments. Microbiome, 2019, 7, 46.	4.9	134
895	Genetic effects on the commensal microbiota in inflammatory bowel disease patients. PLoS Genetics, 2019, 15, e1008018.	1.5	35
896	Compositional and Functional Differences between Microbiota and Cervical Carcinogenesis as Identified by Shotgun Metagenomic Sequencing. Cancers, 2019, 11, 309.	1.7	37
897	Effect of fecal microbiota transplantation on experimental colitis in mice. Experimental and Therapeutic Medicine, 2019, 17, 2581-2586.	0.8	16
898	Feeding practice influences gut microbiome composition in very low birth weight preterm infants and the association with oxidative stress: A prospective cohort study. Free Radical Biology and Medicine, 2019, 142, 146-154.	1.3	50
899	Intestinal microbiome as a novel the rapeutic target for local and systemic inflammation. , 2019, 199, 164-172.		49
900	MNEMONIC: MetageNomic Experiment Mining to create an OTU Network of Inhabitant Correlations. BMC Bioinformatics, 2019, 20, 96.	1.2	1
901	Malassezia Is Associated with Crohn's Disease and Exacerbates Colitis in Mouse Models. Cell Host and Microbe, 2019, 25, 377-388.e6.	5.1	283
902	Anti-inflammatory Gut Microbial Pathways Are Decreased During Crohn's Disease Exacerbations. Journal of Crohn's and Colitis, 2019, 13, 1439-1449.	0.6	39
903	Factors influencing the gut microbiome in children: from infancy to childhood. Journal of Biosciences, 2019, 44, 1.	0.5	81
904	The gut microbiota community and antioxidant enzymes activity of barramundi reared at seawater and freshwater. Fish and Shellfish Immunology, 2019, 89, 127-131.	1.6	34
905	Unique Gene Expression Signatures in the Intestinal Mucosa and Organoids Derived from Germ-Free and Monoassociated Mice. International Journal of Molecular Sciences, 2019, 20, 1581.	1.8	11
906	The relationship between gastric microbiota and gastric disease. Scandinavian Journal of Gastroenterology, 2019, 54, 391-396.	0.6	32
907	Colonic Mucosal Transcriptomic Changes in Patients with Long-Duration Ulcerative Colitis Revealed Colitis-Associated Cancer Pathways. Journal of Crohn's and Colitis, 2019, 13, 755-763.	0.6	65
908	Construction of a Model Culture System of Human Colonic Microbiota to Detect Decreased <i>Lachnospiraceae</i> Abundance and Butyrogenesis in the Feces of Ulcerative Colitis Patients. Biotechnology Journal, 2019, 14, e1800555.	1.8	43
909	Compositional changes to the ileal microbiome precede the onset of spontaneous ileitis in SHIP deficient mice. Gut Microbes, 2019, 10, 578-598.	4.3	46
910	Dysbiosis in Benign and Malignant Diseases of the Exocrine Pancreas. , 2019, , 357-364.		0

#	Article	IF	CITATIONS
911	Methods in Metagenomics and Environmental Biotechnology. Environmental Chemistry for A Sustainable World, 2019, , 85-113.	0.3	3
912	Alterations of the Gut Microbiome in Chronic Hepatitis B Virus Infection Associated with Alanine Aminotransferase Level. Journal of Clinical Medicine, 2019, 8, 173.	1.0	27
913	The Use of Probiotic Therapy to Modulate the Gut Microbiota and Dendritic Cell Responses in Inflammatory Bowel Diseases. Medical Sciences (Basel, Switzerland), 2019, 7, 33.	1.3	12
914	A prospective cohort for the investigation of alteration in temporal transcriptional and microbiome trajectories preceding preterm birth: a study protocol. BMJ Open, 2019, 9, e023417.	0.8	15
915	The Response of <i>nor</i> and <i>nos</i> Contributes to <i>Staphylococcus aureus</i> Virulence and Metabolism. Journal of Bacteriology, 2019, 201, .	1.0	7
916	Thirty Years of Lactobacillus rhamnosus GG. Journal of Clinical Gastroenterology, 2019, 53, S1-S41.	1.1	205
917	Eczema-protective probiotic alters infant gut microbiome functional capacity but not composition: sub-sample analysis from a RCT. Beneficial Microbes, 2019, 10, 5-17.	1.0	31
918	Bacillus licheniformis Zhengchangsheng \hat{A}^{\odot} attenuates DSS-induced colitis and modulates the gut microbiota in mice. Beneficial Microbes, 2019, 10, 543-553.	1.0	20
919	Complex Microbiota in Laboratory Rodents: Management Considerations. ILAR Journal, 2019, 60, 289-297.	1.8	10
920	Meta-analysis Reveals Potential Influence of Oxidative Stress on the Airway Microbiomes of Cystic Fibrosis Patients. Genomics, Proteomics and Bioinformatics, 2019, 17, 590-602.	3.0	4
921	Multi-Stage Probabilistic Bipartite Graph Algorithm - Effect of Herbal Medicines on the Gut Ecosystem. , 2019, , .		0
922	Methods in microbiome research: Past, present, and future. Best Practice and Research in Clinical Rheumatology, 2019, 33, 101498.	1.4	12
923	Biomarker discovery in inflammatory bowel diseases using network-based feature selection. PLoS ONE, 2019, 14, e0225382.	1.1	17
924	Fecal microbiome signatures of pancreatic cancer patients. Scientific Reports, 2019, 9, 16801.	1.6	77
925	Identification of the core bacteria in rectums of diarrheic and non-diarrheic piglets. Scientific Reports, 2019, 9, 18675.	1.6	43
926	Estradiol and high fat diet associate with changes in gut microbiota in female ob/ob mice. Scientific Reports, 2019, 9, 20192.	1.6	45
927	A novel graph theoretical approach for modeling microbiomes and inferring microbial ecological relationships. BMC Genomics, 2019, 20, 945.	1.2	10
928	Clostridioides difficile Colonization Is Differentially Associated With Gut Microbiome Profiles by Infant Feeding Modality at 3–4 Months of Age. Frontiers in Immunology, 2019, 10, 2866.	2.2	22

#	Article	IF	Citations
929	Zinc Deficiency During Pregnancy Leads to Altered Microbiome and Elevated Inflammatory Markers in Mice. Frontiers in Neuroscience, 2019, 13, 1295.	1.4	51
930	The Role of the Gut Microbiome in Predicting Response to Diet and the Development of Precision Nutrition Models—Part I: Overview of Current Methods. Advances in Nutrition, 2019, 10, 953-978.	2.9	53
931	Gut-derived Enterococcus faecium from ulcerative colitis patients promotes colitis in a genetically susceptible mouse host. Genome Biology, 2019, 20, 252.	3.8	78
932	Fingerprinting cities: differentiating subway microbiome functionality. Biology Direct, 2019, 14, 19.	1.9	11
933	Platinum Nanoparticles As A Therapeutic Agent Against Dextran Sodium Sulfate-Induced Colitis In Mice. International Journal of Nanomedicine, 2019, Volume 14, 8361-8378.	3.3	33
934	Pharmacokinetic and pharmacodynamic insights from microfluidic intestine-on-a-chip models. Expert Opinion on Drug Metabolism and Toxicology, 2019, 15, 1005-1019.	1.5	35
935	tmap: an integrative framework based on topological data analysis for population-scale microbiome stratification and association studies. Genome Biology, 2019, 20, 293.	3.8	20
936	Impact of occupational exposure on human microbiota. Current Opinion in Allergy and Clinical Immunology, 2019, 19, 86-91.	1.1	13
937	Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature, 2019, 574, 117-121.	13.7	617
938	Physiologic intestinal 18F-FDG uptake is associated with alteration of gut microbiota and proinflammatory cytokine levels in breast cancer. Scientific Reports, 2019, 9, 18273.	1.6	14
939	Exercise and the Gut Microbiome: A Review of the Evidence, Potential Mechanisms, and Implications for Human Health. Exercise and Sport Sciences Reviews, 2019, 47, 75-85.	1.6	273
940	Individualized Dynamics in the Gut Microbiota Precede Crohn's Disease Flares. American Journal of Gastroenterology, 2019, 114, 1142-1151.	0.2	50
941	The Gut Microbiota in Collagenous Colitis Shares Characteristics With Inflammatory Bowel Disease-Associated Dysbiosis. Clinical and Translational Gastroenterology, 2019, 10, e00065.	1.3	35
942	Decreased Fecal Bacterial Diversity and Altered Microbiome in Children Colonized With <i>Clostridium difficile</i> Journal of Pediatric Gastroenterology and Nutrition, 2019, 68, 502-508.	0.9	12
943	Immunomodulating Activity and Therapeutic Effects of Short Chain Fatty Acids and Tryptophan Post-biotics in Inflammatory Bowel Disease. Frontiers in Immunology, 2019, 10, 2754.	2.2	125
944	Discordant transmission of bacteria and viruses from mothers to babies at birth. Microbiome, 2019, 7, 156.	4.9	71
945	The Human Mesenteric Lymph Node Microbiome Differentiates Between Crohn's Disease and Ulcerative Colitis. Journal of Crohn's and Colitis, 2019, 13, 58-66.	0.6	46
946	Temporal Variability and Stability of the Fecal Microbiome: The Multiethnic Cohort Study. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 154-162.	1.1	31

#	Article	IF	Citations
947	Enteric Virome and Bacterial Microbiota in Children With Ulcerative Colitis and Crohn Disease. Journal of Pediatric Gastroenterology and Nutrition, 2019, 68, 30-36.	0.9	89
948	El Niño Altered Gut Microbiota of Children: A New Insight on Weather–Gut Interactions and Protective Effects of Probiotic. Journal of Medicinal Food, 2019, 22, 230-240.	0.8	6
949	Effect of storage and DNA extraction method on 16S rRNA-profiled fecal microbiota in Japanese adults. Journal of Clinical Biochemistry and Nutrition, 2019, 64, 106-111.	0.6	23
950	The Role of Succinate in the Regulation of Intestinal Inflammation. Nutrients, 2019, 11, 25.	1.7	183
951	Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life. Nature Microbiology, 2019, 4, 470-479.	5.9	164
952	A metabolomic explanation on beneficial effects of dietary Goji on intestine inflammation. Journal of Functional Foods, 2019, 53, 109-114.	1.6	11
953	Compound polysaccharides ameliorate experimental colitis by modulating gut microbiota composition and function. Journal of Gastroenterology and Hepatology (Australia), 2019, 34, 1554-1562.	1.4	46
954	The microbiome in SLE pathogenesis. Nature Reviews Rheumatology, 2019, 15, 72-74.	3.5	38
955	Earlyâ€onset inflammatory bowel disease as a model disease to identify key regulators of immune homeostasis mechanisms. Immunological Reviews, 2019, 287, 162-185.	2.8	60
956	Inulin-type fructans improve active ulcerative colitis associated with microbiota changes and increased short-chain fatty acids levels. Gut Microbes, 2019, 10, 334-357.	4.3	114
957	Dietary metabolism, the gut microbiome, and heart failure. Nature Reviews Cardiology, 2019, 16, 137-154.	6.1	449
958	Intestinal dysbiosis in inflammatory bowel disease associated with primary immunodeficiency. Journal of Allergy and Clinical Immunology, 2019, 143, 775-778.e6.	1.5	28
959	The role of dietary factors in inflammatory bowel diseases: New perspectives. Journal of Digestive Diseases, 2019, 20, 11-17.	0.7	10
960	<i>IL23R</i> -Protective Coding Variant Promotes Beneficial Bacteria and Diversity in the Ileal Microbiome in Healthy Individuals Without Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 2019, 13, 451-461.	0.6	23
961	Shared gut, but distinct oral microbiota composition in primary Sjögren's syndrome and systemic lupus erythematosus. Journal of Autoimmunity, 2019, 97, 77-87.	3.0	147
962	The Impact of Cholecystectomy on the Gut Microbiota: A Case-Control Study. Journal of Clinical Medicine, 2019, 8, 79.	1.0	43
963	The Role of Dietary Nutrients in Inflammatory Bowel Disease. Frontiers in Immunology, 2018, 9, 3183.	2,2	120
964	Invited Commentary: Improving the Accessibility of Human Microbiome Project Data Through Integration With R/Bioconductor. American Journal of Epidemiology, 2019, 188, 1027-1030.	1.6	3

#	ARTICLE	IF	CITATIONS
965	The 1000IBD project: multi-omics data of 1000 inflammatory bowel disease patients; data release 1. BMC Gastroenterology, 2019, 19, 5.	0.8	68
966	The respiratory microbiome and susceptibility to influenza virus infection. PLoS ONE, 2019, 14, e0207898.	1.1	73
967	The gut microbiome of Mexican children affected by obesity. Anaerobe, 2019, 55, 11-23.	1.0	71
968	<i>Salmonella</i> shedding status of the sow affects the microbiota of their piglets at weaning. Journal of Applied Microbiology, 2019, 126, 411-423.	1.4	16
969	Bacterial imbalance and gut pathologies: Association and contribution of <i>E. coli</i> in inflammatory bowel disease. Critical Reviews in Clinical Laboratory Sciences, 2019, 56, 1-17.	2.7	33
970	Gastrointestinal Microbiota Disruption and Risk of Colonization With Carbapenem-resistant Pseudomonas aeruginosa in Intensive Care Unit Patients. Clinical Infectious Diseases, 2019, 69, 604-613.	2.9	43
971	The role of gut microbiome and its interaction with arsenic exposure in carotid intima-media thickness in a Bangladesh population. Environment International, 2019, 123, 104-113.	4.8	30
972	Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nature Microbiology, 2019, 4, 293-305.	5.9	1,094
973	The Impact of Bioinformatics Tools in the Development of Antimicrobial Drugs and Other Agents. , 2019, , 335-347.		2
974	Microbiota in cancer development and treatment. Journal of Cancer Research and Clinical Oncology, 2019, 145, 49-63.	1.2	64
975	The Human Microbiome in Health and Disease. , 2019, , 607-618.		8
976	Effect of probiotic interventions on depressive symptoms: A narrative review evaluating systematic reviews. Psychiatry and Clinical Neurosciences, 2019, 73, 154-162.	1.0	40
977	Faecal freezing preservation period influences colonization ability for faecal microbiota transplantation. Journal of Applied Microbiology, 2019, 126, 973-984.	1.4	19
978	Exclusive enteral nutrition in Crohn's disease: Evidence and practicalities. Clinical Nutrition, 2019, 38, 80-89.	2.3	90
979	A screen of Crohn's disease-associated microbial metabolites identifies ascorbate as a novel metabolic inhibitor of activated human T cells. Mucosal Immunology, 2019, 12, 457-467.	2.7	44
980	Biases from different DNA extraction methods in intestine microbiome research based on 16S rDNA sequencing: a case in the koi carp, <i>Cyprinus carpio</i> var. <i>Koi</i> . MicrobiologyOpen, 2019, 8, e00626.	1.2	13
981	Risk of colorectal cancer in inflammatory bowel diseases. Seminars in Cancer Biology, 2020, 64, 51-60.	4.3	146
982	Alterations of gut microbiome in autoimmune hepatitis. Gut, 2020, 69, 569-577.	6.1	212

#	Article	IF	CITATIONS
983	Effects of a formula with a probiotic Bifidobacterium lactis Supplement on the gut microbiota of low birth weight infants. European Journal of Nutrition, 2020, 59, 1493-1503.	1.8	20
984	Influence of moderate beer consumption on human gut microbiota and its impact on fasting glucose and \hat{l}^2 -cell function. Alcohol, 2020, 85, 77-94.	0.8	37
985	Mechanism and intervention measures of iron side effects on the intestine. Critical Reviews in Food Science and Nutrition, 2020, 60, 2113-2125.	5 . 4	68
986	Prominence of ileal mucosa-associated microbiota to predict postoperative endoscopic recurrence in Crohn's disease. Gut, 2020, 69, 462-472.	6.1	76
987	Fungi participate in the dysbiosis of gut microbiota in patients with primary sclerosing cholangitis. Gut, 2020, 69, 92-102.	6.1	136
988	Infants born to mothers with IBD present with altered gut microbiome that transfers abnormalities of the adaptive immune system to germ-free mice. Gut, 2020, 69, 42-51.	6.1	121
989	From the Pipeline to the Bedside: Advances and Challenges in Clinical Metagenomics. Journal of Infectious Diseases, 2020, 221, S331-S340.	1.9	69
990	Metabolomics and microbial composition increase insight into the impact of dietary differences in cirrhosis. Liver International, 2020, 40, 416-427.	1.9	13
991	Unique and specific Proteobacteria diversity in urinary microbiota of tolerant kidney transplanted recipients. American Journal of Transplantation, 2020, 20, 145-158.	2.6	19
992	Colitis, Ulcerative. , 2020, , 552-574.		0
993	IL-13 mRNA Tissue Content Identifies Two Subsets of Adult Ulcerative Colitis Patients With Different Clinical and Mucosa-Associated Microbiota Profiles. Journal of Crohn's and Colitis, 2020, 14, 369-380.	0.6	25
994	Interplay of Human Gut Microbiome in Health and Wellness. Indian Journal of Microbiology, 2020, 60, 26-36.	1.5	40
995	Attenuation of DSS induced colitis by Dictyophora indusiata polysaccharide (DIP) via modulation of gut microbiota and inflammatory related signaling pathways. Journal of Functional Foods, 2020, 64, 103641.	1.6	86
996	Lower gut microbiome diversity and higher abundance of proinflammatory genus <i>Collinsella</i> are associated with biopsy-proven nonalcoholic steatohepatitis. Gut Microbes, 2020, 11, 569-580.	4.3	125
997	Duodenal and rectal mucosal microbiota related to small intestinal bacterial overgrowth in diarrheaâ€predominant irritable bowel syndrome. Journal of Gastroenterology and Hepatology (Australia), 2020, 35, 795-805.	1.4	19
998	Dietary l-serine confers a competitive fitness advantage to Enterobacteriaceae in the inflamed gut. Nature Microbiology, 2020, 5, 116-125.	5.9	93
999	Sulfated oligosaccharide of Gracilaria lemaneiformis protect against food allergic response in mice by up-regulating immunosuppression. Carbohydrate Polymers, 2020, 230, 115567.	5.1	42
1000	Association of Alterations in Intestinal Microbiota With Impaired Psychological Function in Patients With Inflammatory Bowel Diseases in Remission. Clinical Gastroenterology and Hepatology, 2020, 18, 2019-2029.e11.	2.4	64

#	Article	IF	Citations
1001	Harvesting of Prebiotic Fructooligosaccharides by Nonbeneficial Human Gut Bacteria. MSphere, 2020, 5, .	1.3	12
1002	Goat milk fermented by lactic acid bacteria modulates small intestinal microbiota and immune responses. Journal of Functional Foods, 2020, 65, 103744.	1.6	18
1003	Altered Gut Microbiota Is Present in Newly Diagnosed Pediatric Patients With Inflammatory Bowel Disease. Journal of Pediatric Gastroenterology and Nutrition, 2020, 70, 497-502.	0.9	15
1004	Salivary Microbiome and Cigarette Smoking: A First of Its Kind Investigation in Jordan. International Journal of Environmental Research and Public Health, 2020, 17, 256.	1.2	41
1005	Microscopic Colitis and Risk of Inflammatory Bowel Disease in a Nationwide Cohort Study. Gastroenterology, 2020, 158, 1574-1583.e2.	0.6	42
1006	Sex Differences in the Impact of Dietary Fiber on Pulmonary Responses to Ozone. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 503-512.	1.4	17
1007	Berberine ameliorates colonic damage accompanied with the modulation of dysfunctional bacteria and functions in ulcerative colitis rats. Applied Microbiology and Biotechnology, 2020, 104, 1737-1749.	1.7	39
1008	Modulation effect of Lactobacillus acidophilus KLDS 1.0738 on gut microbiota and TLR4 expression in \hat{l}^2 -lactoglobulin-induced allergic mice model. Allergologia Et Immunopathologia, 2020, 48, 149-157.	1.0	18
1009	Roseburia spp. Abundance Associates with Alcohol Consumption in Humans and Its Administration Ameliorates Alcoholic Fatty Liver in Mice. Cell Host and Microbe, 2020, 27, 25-40.e6.	5.1	131
1010	Understanding resolution of inflammation in periodontal diseases: Is chronic inflammatory periodontitis a failure to resolve?. Periodontology 2000, 2020, 82, 205-213.	6.3	77
1011	Microbial Signatures and Innate Immune Gene Expression in Lamina Propria Phagocytes of Inflammatory Bowel Disease Patients. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 387-402.	2.3	14
1012	Adherence to a Mediterranean diet is associated with a lower risk of later-onset Crohn's disease: results from two large prospective cohort studies. Gut, 2020, 69, 1637-1644.	6.1	124
1013	The relationship between fecal bile acids and microbiome community structure in pediatric Crohn's disease. ISME Journal, 2020, 14, 702-713.	4.4	59
1014	Characterization of gastrointestinal pathologies in the dystonia musculorum mouse model for hereditary sensory and autonomic neuropathy type VI. Neurogastroenterology and Motility, 2020, 32, e13773.	1.6	0
1015	<tt>MDiNE</tt> : a model to estimate differential co-occurrence networks in microbiome studies. Bioinformatics, 2020, 36, 1840-1847.	1.8	30
1016	The "Culture―of Pain Control: A Review of Opioid-Induced Dysbiosis (OID) in Antinociceptive Tolerance. Journal of Pain, 2020, 21, 751-762.	0.7	5
1017	Walnuts and Vegetable Oils Containing Oleic Acid Differentially Affect the Gut Microbiota and Associations with Cardiovascular Risk Factors: Follow-up of a Randomized, Controlled, Feeding Trial in Adults at Risk for Cardiovascular Disease. Journal of Nutrition, 2020, 150, 806-817.	1.3	51
1018	Microbial orchestra in juvenile idiopathic arthritis: Sounds of disarray?. Immunological Reviews, 2020, 294, 9-26.	2.8	20

#	Article	IF	CITATIONS
1019	Changes in gut microbial metagenomic pathways associated with clinical outcomes after the elimination of malabsorbed sugars in an IBS cohort. Gut Microbes, 2020, 11, 620-631.	4.3	15
1020	An orally administered butyrate-releasing xylan derivative reduces inflammation in dextran sulphate sodium-induced murine colitis. International Journal of Biological Macromolecules, 2020, 156, 1217-1233.	3.6	60
1021	Relationships Between Vitamin D, Gut Microbiome, and Systemic Autoimmunity. Frontiers in Immunology, 2019, 10, 3141.	2.2	121
1022	<p>Treatment of Recurrent Clostridioides difficile Infection Using Fecal Microbiota Transplantation in Iranian Patients with Underlying Inflammatory Bowel Disease</p> . Journal of Inflammation Research, 2020, Volume 13, 563-570.	1.6	9
1023	The Bacterial Community Associated with the Amarillo Zamorano Maize (Zea mays) Landrace Silage Process. Microorganisms, 2020, 8, 1503.	1.6	7
1024	Early development of the skin microbiome: therapeutic opportunities. Pediatric Research, 2021, 90, 731-737.	1.1	14
1025	Health and disease markers correlate with gut microbiome composition across thousands of people. Nature Communications, 2020, 11, 5206.	5.8	378
1026	Ureteral Stent Microbiota Is Associated with Patient Comorbidities but Not Antibiotic Exposure. Cell Reports Medicine, 2020, 1, 100094.	3.3	16
1027	Nutrition and the Gut Microbiota in 10- to 18-Month-Old Children Living in Urban Slums of Mumbai, India. MSphere, 2020, 5, .	1.3	20
1028	Gut Microbiome Changes in Patients with Active Left-Sided Ulcerative Colitis after Fecal Microbiome Transplantation and Topical 5-aminosalicylic Acid Therapy. Cells, 2020, 9, 2283.	1.8	37
1029	The Gut Microbiota and Inflammation: An Overview. International Journal of Environmental Research and Public Health, 2020, 17, 7618.	1.2	296
1030	Fecal Microbiota Alterations Associated With Clinical and Endoscopic Response to Infliximab Therapy in Crohn's Disease. Inflammatory Bowel Diseases, 2020, 26, 1636-1647.	0.9	23
1031	Microbial Biodiversity and Bioremediation Assessment Through Omics Approaches. Frontiers in Environmental Chemistry, 2020, 1 , .	0.7	98
1032	Effects of starvation on enzyme activities and intestinal microflora composition in loach (Paramisgurnus dabryanus). Aquaculture Reports, 2020, 18, 100467.	0.7	8
1033	Epidemiology and Pathogenesis of Ulcerative Colitis. Gastroenterology Clinics of North America, 2020, 49, 643-654.	1.0	227
1034	Ueg Week 2020 Poster Presentations. United European Gastroenterology Journal, 2020, 8, 144-887.	1.6	7
1035	Early-life gut dysbiosis linked to juvenile mortality in ostriches. Microbiome, 2020, 8, 147.	4.9	30
1036	eHealth: Disease activity measures are related to the faecal gut microbiota in adult patients with ulcerative colitis. Scandinavian Journal of Gastroenterology, 2020, 55, 1291-1300.	0.6	5

#	Article	IF	CITATIONS
1037	SSAT State-of-the-Art Conference: Advancements in the Microbiome. Journal of Gastrointestinal Surgery, 2021, 25, 1885-1895.	0.9	1
1038	Use of the synbiotic VSL#3 and yacon-based concentrate attenuates intestinal damage and reduces the abundance of Candidatus Saccharimonas in a colitis-associated carcinogenesis model. Food Research International, 2020, 137, 109721.	2.9	47
1039	Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese NAFLD. Nature Communications, 2020, 11, 4982.	5.8	189
1040	Long-term effects of antimicrobial drugs on the composition of the human gut microbiota. Gut Microbes, 2020, 12, 1791677.	4.3	31
1041	Changes in the fecal bacterial microbiota associated with disease severity in alcoholic hepatitis patients. Gut Microbes, 2020, 12, 1785251.	4.3	60
1042	Salinity, Water Level, and Forest Structure Contribute to Baldcypress (Taxodium distichum) Rhizosphere and Endosphere Community Structure. Wetlands, 2020, 40, 2179-2188.	0.7	3
1043	Deep in the Bowel: Highly Interpretable Neural Encoder-Decoder Networks Predict Gut Metabolites from Gut Microbiome. BMC Genomics, 2020, 21, 256.	1.2	34
1044	Sodium Butyrate Alleviates Mouse Colitis by Regulating Gut Microbiota Dysbiosis. Animals, 2020, 10, 1154.	1.0	47
1045	Gut microbiome signatures of nursing home residents carrying Enterobacteria producing extended-spectrum \hat{l}^2 -lactamases. Antimicrobial Resistance and Infection Control, 2020, 9, 107.	1.5	12
1046	Characteristics of three microbial colonization states in the duodenum of the cirrhotic patients. Future Microbiology, 2020, 15, 855-868.	1.0	7
1047	Exploiting the gut microbiota's fermentation capabilities towards disease prevention. Journal of Pharmaceutical and Biomedical Analysis, 2020, 189, 113469.	1.4	3
1048	The sputum microbiome is distinct between COPD and health, independent of smoking history. Respiratory Research, 2020, 21, 183.	1.4	45
1049	Dietary supplementation of Bacillus subtilis PB6 improves sow reproductive performance and reduces piglet birth intervals. Animal Nutrition, 2020, 6, 278-287.	2.1	34
1050	Polyamines of human strain Lactobacillus plantarum Inducia induce modulation of innate immune markers. Journal of Functional Foods, 2020, 72, 104064.	1.6	5
1051	Gut microbiome: Current development, challenges, and perspectives. , 2020, , 227-241.		1
1052	Can pseudocereals modulate microbiota by functioning as probiotics or prebiotics?. Critical Reviews in Food Science and Nutrition, 2022, 62, 1725-1739.	5.4	27
1053	Characterization of fungal and bacterial dysbiosis in young adult Chinese patients with Crohn's disease. Therapeutic Advances in Gastroenterology, 2020, 13, 175628482097120.	1.4	34
1054	Gut microbiota from androgenâ€altered donors alter pulmonary responses to ozone in female mice. Physiological Reports, 2020, 8, e14584.	0.7	1

#	Article	IF	CITATIONS
1055	Desacetyl-α-MSH and α-MSH have sex specific interactions with diet to influence mouse gut morphology, metabolites and microbiota. Scientific Reports, 2020, 10, 18957.	1.6	3
1056	Saccharomyces cerevisiae Fermentation Product Did Not Attenuate Clinical Signs, but Psyllium Husk Has Protective Effects in a Murine Dextran Sulfate Sodium–Induced Colitis Model. Current Developments in Nutrition, 2020, 4, nzaa159.	0.1	3
1057	Study of the fetal and maternal microbiota in pregnant women with intrauterine growth restriction and its relationship with inflammatory biomarkers. Medicine (United States), 2020, 99, e22722.	0.4	5
1058	Dynamic Changes in the Gut Microbiome at the Acute Stage of Ischemic Stroke in a Pig Model. Frontiers in Neuroscience, 2020, 14, 587986.	1.4	29
1059	The Association between Drinking Water Quality and Inflammatory Bowel Disease—A Study in Eastern Croatia. International Journal of Environmental Research and Public Health, 2020, 17, 8495.	1.2	3
1060	Novel Odoribacter splanchnicus Strain and Its Outer Membrane Vesicles Exert Immunoregulatory Effects in vitro. Frontiers in Microbiology, 2020, 11, 575455.	1.5	110
1061	Discovery of Predictors of Mycoplasma hyopneumoniae Vaccine Response Efficiency in Pigs: 16S rRNA Gene Fecal Microbiota Analysis. Microorganisms, 2020, 8, 1151.	1.6	10
1062	Both endogenous and exogenous miR-139–5p inhibit Fusobacterium nucleatum-related colorectal cancer development. European Journal of Pharmacology, 2020, 888, 173459.	1.7	9
1063	A period of 10 weeks of increased protein consumption does not alter faecal microbiota or volatile metabolites in healthy older men: a randomised controlled trial. Journal of Nutritional Science, 2020, 9, e25.	0.7	10
1064	Iron homeostasis disorder in piglet intestine. Metallomics, 2020, 12, 1494-1507.	1.0	20
1065	Randomised clinical study: oral aspirin 325Âmg daily vs placebo alters gut microbial composition and bacterial taxa associated with colorectal cancer risk. Alimentary Pharmacology and Therapeutics, 2020, 52, 976-987.	1.9	40
1066	Host Genetic and Gut Microbial Signatures in Familial Inflammatory Bowel Disease. Clinical and Translational Gastroenterology, 2020, 11, e00213.	1.3	9
1067	The Relationship between Choline Bioavailability from Diet, Intestinal Microbiota Composition, and Its Modulation of Human Diseases. Nutrients, 2020, 12, 2340.	1.7	90
1068	Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 597-617.	8.2	138
1069	A Distinct Contractile Injection System Gene Cluster Found in a Majority of Healthy Adult Human Microbiomes. MSystems, 2020, 5, .	1.7	8
1070	Different effects of constitutive and induced microbiota modulation on microglia in a mouse model of Alzheimer's disease. Acta Neuropathologica Communications, 2020, 8, 119.	2.4	75
1071	Microbial Signature in Adipose Tissue of Crohn's Disease Patients. Journal of Clinical Medicine, 2020, 9, 2448.	1.0	15
1072	Faecal microbiota signatures of IBD and their relation to diagnosis, disease phenotype, inflammation, treatment escalation and anti-TNF response in a European Multicentre Study (IBD-Character). Scandinavian Journal of Gastroenterology, 2020, 55, 1146-1156.	0.6	20

#	Article	IF	CITATIONS
1073	Vitamin D supplementation in pregnancy and early infancy in relation to gut microbiota composition and <i>C. difficile</i> colonization: implications for viral respiratory infections. Gut Microbes, 2020, 12, 1799734.	4.3	16
1074	Differential Responses to Dietary Protein and Carbohydrate Ratio on Gut Microbiome in Obese vs. Lean Cats. Frontiers in Microbiology, 2020, 11, 591462.	1.5	7
1075	Gut Microbiological Disorders Reduce Semen Utilization Rate in Duroc Boars. Frontiers in Microbiology, 2020, 11, 581926.	1.5	13
1076	Human milk microbiota in sub-acute lactational mastitis induces inflammation and undergoes changes in composition, diversity and load. Scientific Reports, 2020, 10, 18521.	1.6	17
1077	HLA-A alleles including HLA-A29 affect the composition of the gut microbiome: a potential clue to the pathogenesis of birdshot retinochoroidopathy. Scientific Reports, 2020, 10, 17636.	1.6	12
1078	In search for interplay between stool microRNAs, microbiota and short chain fatty acids in Crohn's disease - a preliminary study. BMC Gastroenterology, 2020, 20, 307.	0.8	12
1079	Prospective associations of the infant gut microbiome and microbial function with social behaviors related to autism at age 3Âyears. Scientific Reports, 2020, 10, 15515.	1.6	28
1080	Diet posttranslationally modifies the mouse gut microbial proteome to modulate renal function. Science, 2020, 369, 1518-1524.	6.0	108
1081	Associations of the intestinal microbiome with the complement system in neovascular age-related macular degeneration. Npj Genomic Medicine, 2020, 5, 34.	1.7	44
1082	The Anopheles coluzzii microbiome and its interaction with the intracellular parasite Wolbachia. Scientific Reports, 2020, 10, 13847.	1.6	21
1083	Metagenomics analysis of gut microbiota in response to diet intervention and gestational diabetes in overweight and obese women: a randomised, double-blind, placebo-controlled clinical trial. Gut, 2021, 70, gutjnl-2020-321643.	6.1	37
1084	Linking Strain Engraftment in Fecal Microbiota Transplantation With Maintenance of Remission in Crohn's Disease. Gastroenterology, 2020, 159, 2193-2202.e5.	0.6	41
1085	Bovine Lactoferrin Supplementation Does Not Disrupt Microbiota Development in Preterm Infants Receiving Probiotics. Journal of Pediatric Gastroenterology and Nutrition, 2020, 71, 216-222.	0.9	5
1086	Sacha inchi (<i>Plukenetia volubilis</i> L.) shell extract alleviates hypertension in association with the regulation of gut microbiota. Food and Function, 2020, 11, 8051-8067.	2.1	9
1087	The Gut Microbiome Is Associated with Clinical Response to Anti–PD-1/PD-L1 Immunotherapy in Gastrointestinal Cancer. Cancer Immunology Research, 2020, 8, 1251-1261.	1.6	155
1088	Role of RING-Type E3 Ubiquitin Ligases in Inflammatory Signalling and Inflammatory Bowel Disease. Mediators of Inflammation, 2020, 2020, 1-10.	1.4	9
1089	Airborne Bacteria in Outdoor Air and Air of Mechanically Ventilated Buildings at City Scale in Hong Kong across Seasons. Environmental Science & Envir	4.6	25
1090	Anti-fatigue property of the oyster polypeptide fraction and its effect on gut microbiota in mice. Food and Function, 2020, 11, 8659-8669.	2.1	32

#	Article	IF	CITATIONS
1091	Systematic analysis of gut microbiota in pregnant women and its correlations with individual heterogeneity. Npj Biofilms and Microbiomes, 2020, 6, 32.	2.9	61
1092	Multi-omics analysis reveals the influence of genetic and environmental risk factors on developing gut microbiota in infants at risk of celiac disease. Microbiome, 2020, 8, 130.	4.9	66
1093	Gut Microbiota Dynamics in Parkinsonian Mice. ACS Chemical Neuroscience, 2020, 11, 3267-3276.	1.7	7
1094	The Gut Microbiome in Psychosis From Mice to Men: A Systematic Review of Preclinical and Clinical Studies. Frontiers in Psychiatry, 2020, 11, 799.	1.3	19
1095	Defined microbiota transplant restores Th17/RORγt ⁺ regulatory T cell balance in mice colonized with inflammatory bowel disease microbiotas. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21536-21545.	3.3	58
1096	The gut microbiome in dogs with congestive heart failure: a pilot study. Scientific Reports, 2020, 10, 13777.	1.6	15
1097	Astragalus mongholicus Bunge and Panax Notoginseng Formula (A&P) Combined With Bifidobacterium Contribute a Renoprotective Effect in Chronic Kidney Disease Through Inhibiting Macrophage Inflammatory Response in Kidney and Intestine. Frontiers in Physiology, 2020, 11, 583668.	1.3	8
1098	Gut Microbial Dysbiosis and Plasma Metabolic Profile in Individuals With Vitiligo. Frontiers in Microbiology, 2020, 11, 592248.	1.5	22
1099	MINERVA: A Facile Strategy for SARS-CoV-2 Whole-Genome Deep Sequencing of Clinical Samples. Molecular Cell, 2020, 80, 1123-1134.e4.	4.5	13
1100	Butyrate Mitigates Weanling Piglets From Lipopolysaccharide-Induced Colitis by Regulating Microbiota and Energy Metabolism of the Gut–Liver Axis. Frontiers in Microbiology, 2020, 11, 588666.	1.5	19
1101	Regulating Gut Microbiome: Therapeutic Strategy for Rheumatoid Arthritis During Pregnancy and Lactation. Frontiers in Pharmacology, 2020, 11, 594042.	1.6	10
1102	Gut microbiota and metabolic health among overweight and obese individuals. Scientific Reports, 2020, 10, 19417.	1.6	75
1103	Fish Oil, Cannabidiol and the Gut Microbiota: An Investigation in a Murine Model of Colitis. Frontiers in Pharmacology, 2020, 11, 585096.	1.6	36
1104	The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms, 2020, 8, 1715.	1.6	713
1105	Connecting the Dots Between Inflammatory Bowel Disease and Metabolic Syndrome: A Focus on Gut-Derived Metabolites. Nutrients, 2020, 12, 1434.	1.7	39
1106	pepFunk: a tool for peptide-centric functional analysis of metaproteomic human gut microbiome studies. Bioinformatics, 2020, 36, 4171-4179.	1.8	7
1107	Muc5ac Expression Protects the Colonic Barrier in Experimental Colitis. Inflammatory Bowel Diseases, 2020, 26, 1353-1367.	0.9	30
1108	Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology, 2020, 159, 944-955.e8.	0.6	1,072

#	Article	IF	CITATIONS
1109	The Effects of the Marine-Derived Polysaccharides Laminarin and Chitosan on Aspects of Colonic Health in Pigs Challenged with Dextran Sodium Sulphate. Marine Drugs, 2020, 18, 262.	2.2	15
1110	The role of the microbiota in periodontal disease. Periodontology 2000, 2020, 83, 14-25.	6.3	330
1111	Clinical remission of ulcerative colitis after different modes of faecal microbiota transplantation: a meta-analysis. International Journal of Colorectal Disease, 2020, 35, 1025-1034.	1.0	15
1112	The ameliorative effect of <i> Lactobacillus plantarum </i> Function, 2020, 11, 5205-5222.	2.1	50
1113	Gut microbiota in early pregnancy among women with Hyperglycaemia vs. Normal blood glucose. BMC Pregnancy and Childbirth, 2020, 20, 284.	0.9	19
1114	No distinct microbiome signature of irritable bowel syndrome found in a Swedish random population. Gut, 2020, 69, 1076-1084.	6.1	76
1115	Synergic interactions between polyphenols and gut microbiota in mitigating inflammatory bowel diseases. Food and Function, 2020, 11, 4878-4891.	2.1	78
1116	Dendrobium officinale Kimura et Migo and American ginseng mixture: A Chinese herbal formulation for gut microbiota modulation. Chinese Journal of Natural Medicines, 2020, 18, 446-459.	0.7	15
1117	Predicted Metabolic Pathway Distributions in Stool Bacteria in Very-Low-Birth-Weight Infants: Potential Relationships with NICU Faltered Growth. Nutrients, 2020, 12, 1345.	1.7	5
1118	Composition and co-occurrence patterns of the microbiota of different niches of the bovine mammary gland: potential associations with mastitis susceptibility, udder inflammation, and teat-end hyperkeratosis. Animal Microbiome, 2020, 2, 11.	1.5	32
1119	Patients infected with Mycobacterium africanum versus Mycobacterium tuberculosis possess distinct intestinal microbiota. PLoS Neglected Tropical Diseases, 2020, 14, e0008230.	1.3	14
1120	Crohn's Disease Differentially Affects Region-Specific Composition and Aerotolerance Profiles of Mucosally Adherent Bacteria. Inflammatory Bowel Diseases, 2020, 26, 1843-1855.	0.9	9
1121	Major Lipids, Apolipoproteins, and Alterations of Gut Microbiota. Journal of Clinical Medicine, 2020, 9, 1589.	1.0	21
1122	Review article: bugs, inflammation and mood—a microbiotaâ€based approach to psychiatric symptoms in inflammatory bowel diseases. Alimentary Pharmacology and Therapeutics, 2020, 52, 247-266.	1.9	26
1123	Computational Approaches for Unraveling the Effects of Variation in the Human Genome and Microbiome. Annual Review of Biomedical Data Science, 2020, 3, 411-432.	2.8	5
1124	VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome, 2020, 8, 90.	4.9	482
1125	Gut-on-a-chip: Current progress and future opportunities. Biomaterials, 2020, 255, 120196.	5.7	117
1126	Luminal microbiota related to Crohn's disease recurrence after surgery. Gut Microbes, 2020, 11, 1713-1728.	4.3	22

#	Article	IF	CITATIONS
1127	Comparative study of classifiers for human microbiome data. Medicine in Microecology, 2020, 4, 100013.	0.7	33
1128	Impact of DNA Extraction Method on Variation in Human and Built Environment Microbial Community and Functional Profiles Assessed by Shotgun Metagenomics Sequencing. Frontiers in Microbiology, 2020, 11, 953.	1.5	40
1129	Relationship between T cells and microbiota in health and disease. Progress in Molecular Biology and Translational Science, 2020, 171, 95-129.	0.9	4
1130	The microbial biogeography of the gastrointestinal tract of preterm and term lambs. Scientific Reports, 2020, 10, 9113.	1.6	8
1131	Could the gut microbiota community in the coral trout <i>Plectropomus leopardus</i> (Lacepède,) Tj ETQq0 0 (O rgBT /Ov	erlock 10 Tf !
1132	Differences in Compositions of Gut Bacterial Populations and Bacteriophages in 5–11 Year-Olds Born Preterm Compared to Full Term. Frontiers in Cellular and Infection Microbiology, 2020, 10, 276.	1.8	9
1133	Gut Microbiome Dysbiosis and Depression: a Comprehensive Review. Current Pain and Headache Reports, 2020, 24, 36.	1.3	31
1134	Dietary Red Meat Adversely Affects Disease Severity in a Pig Model of DSS-Induced Colitis Despite Reduction in Colonic Pro-Inflammatory Gene Expression. Nutrients, 2020, 12, 1728.	1.7	8
1135	High Oscillospira abundance indicates constipation and low BMI in the Guangdong Gut Microbiome Project. Scientific Reports, 2020, 10, 9364.	1.6	74
1136	Altered Gut Archaea Composition and Interaction With Bacteria Are Associated With Colorectal Cancer. Gastroenterology, 2020, 159, 1459-1470.e5.	0.6	87
1137	Altering Routine Intensive Care Unit Practices to Support Commensalism. Nutrition in Clinical Practice, 2020, 35, 433-441.	1.1	4
1138	Association of colitis with gut-microbiota dysbiosis in clathrin adapter AP-1B knockout mice. PLoS ONE, 2020, 15, e0228358.	1.1	17
1139	The Computational Diet: A Review of Computational Methods Across Diet, Microbiome, and Health. Frontiers in Microbiology, 2020, 11, 393.	1.5	32
1140	MICROBIOTA INSIGHTS IN CLOSTRIDIUM DIFFICILE INFECTION AND INFLAMMATORY BOWEL DISEASE. Gut Microbes, 2020, 12, 1725220.	4.3	49
1141	Longitudinal survey of microbiome associated with particulate matter in a megacity. Genome Biology, 2020, 21, 55.	3.8	59
1142	Current Perspectives on Gut Microbiome Dysbiosis and Depression. Advances in Therapy, 2020, 37, 1328-1346.	1.3	93
1143	The link "Cancer and autoimmune diseases―in the light of microbiota: Evidence of a potential culprit. Immunology Letters, 2020, 222, 12-28.	1.1	14
1144	Biomarker development for axial spondyloarthritis. Nature Reviews Rheumatology, 2020, 16, 448-463.	3.5	34

#	Article	IF	CITATIONS
1145	Differentially Abundant Bacterial Taxa Associated with Prognostic Variables of Crohn's Disease: Results from the IMPACT Study. Journal of Clinical Medicine, 2020, 9, 1748.	1.0	12
1146	Challenges and emerging systems biology approaches to discover how the human gut microbiome impact host physiology. Biophysical Reviews, 2020, 12, 851-863.	1.5	8
1147	Optimal strategies to prevent recrudescent Crohn's disease after resection. Seminars in Colon and Rectal Surgery, 2020, 31, 100746.	0.2	0
1148	Seasonal Variation and Sexual Dimorphism of the Microbiota in Wild Blue Sheep (Pseudois nayaur). Frontiers in Microbiology, 2020, 11, 1260.	1.5	15
1149	Changes of the human skin microbiota upon chronic exposure to polycyclic aromatic hydrocarbon pollutants. Microbiome, 2020, 8, 100.	4.9	58
1150	Microbial management. Science, 2020, 369, 153-153.	6.0	4
1151	The duodenal microbiome is altered in small intestinal bacterial overgrowth. PLoS ONE, 2020, 15, e0234906.	1.1	68
1152	Heat stress during late gestation disrupts maternal microbial transmission with altered offspring's gut microbial colonization and serum metabolites in a pig model. Environmental Pollution, 2020, 266, 115111.	3.7	25
1153	Immune status, and not HIV infection or exposure, drives the development of the oral microbiota. Scientific Reports, 2020, 10, 10830.	1.6	15
1154	Effects of a readyâ€toâ€eat cereal formula powder on glucose metabolism, inflammation, and gut microbiota in diabetic db/db mice. Food Science and Nutrition, 2020, 8, 4523-4533.	1.5	4
1155	Effect of introduced parasites on the survival and microbiota of nestling cactus finches (Geospiza) Tj ETQq0 0 0 r	gBT /Over	loçk 10 Tf 50
1156	Changes in microbiome and metabolomic profiles of fecal samples stored with stabilizing solution at room temperature: a pilot study. Scientific Reports, 2020, 10, 1789.	1.6	22
1157	The Microbiome as a Component of the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1225, 137-153.	0.8	67
1158	Co-occurrence patterns of bacteria within microbiome of Moscow subway. Computational and Structural Biotechnology Journal, 2020, 18, 314-322.	1.9	25
1159	Carnelian uncovers hidden functional patterns across diverse study populations from whole metagenome sequencing reads. Genome Biology, 2020, 21, 47.	3.8	14
1160	Metabonomics and the Gut Microbiome Associated With Primary Response to Anti-TNF Therapy in Crohnâ \in ^M s Disease. Journal of Crohn's and Colitis, 2020, 14, 1090-1102.	0.6	62
1161	Interleukin-22-mediated host glycosylation prevents Clostridioides difficile infection by modulating the metabolic activity of the gut microbiota. Nature Medicine, 2020, 26, 608-617.	15.2	136
1162	Propionic Acid Promotes the Virulent Phenotype of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. Cell Reports, 2020, 30, 2297-2305.e5.	2.9	42

#	Article	IF	CITATIONS
1163	Saikosaponin-d ameliorates dextran sulfate sodium-induced colitis by suppressing NF-κB activation and modulating the gut microbiota in mice. International Immunopharmacology, 2020, 81, 106288.	1.7	59
1164	Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 223-237.	8.2	893
1165	An alphaâ€defensin gene single nucleotide polymorphism modulates the gut microbiota and may alter the risk of acute graft―versus â€host disease. British Journal of Haematology, 2020, 189, 926-930.	1.2	4
1166	Modulation of human endogenous retroviruses –H, -W and -K transcription by microbes. Microbes and Infection, 2020, 22, 366-370.	1.0	7
1167	Oropharyngeal microbiome of a college population following a meningococcal disease outbreak. Scientific Reports, 2020, 10, 632.	1.6	7
1168	Gut Microbiome and Immune Checkpoint Inhibitor-Induced Enterocolitis. Digestive Diseases and Sciences, 2020, 65, 797-799.	1.1	13
1169	Gut microbiota in ulcerative colitis: insights on pathogenesis and treatment. Journal of Digestive Diseases, 2020, 21, 147-159.	0.7	129
1170	Aging Increases the Severity of Colitis and the Related Changes to the Gut Barrier and Gut Microbiota in Humans and Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1284-1292.	1.7	76
1171	Gastrointestinal Microbiome – What We Need to Know in Clinical Practice. GE Portuguese Journal of Gastroenterology, 2020, 27, 336-351.	0.3	19
1172	Diversity, compositional and functional differences between gut microbiota of children and adults. Scientific Reports, 2020, 10, 1040.	1.6	89
1173	The cutaneous microbiota of bats has in vitro antifungal activity against the white nose pathogen. FEMS Microbiology Ecology, 2020, 96, .	1.3	19
1174	Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nature Protocols, 2020, 15, 799-821.	5.5	1,019
1175	Antibiotic Treatment Does Not Ameliorate the Metabolic Changes in Rats Presenting Dysbiosis After Consuming a High Fructose Diet. Nutrients, 2020, 12, 203.	1.7	10
1176	The microbiota and immuneâ€mediated diseases: Opportunities for therapeutic intervention. European Journal of Immunology, 2020, 50, 326-337.	1.6	39
1177	The canine gastrointestinal microbiota: early studies and research frontiers. Gut Microbes, 2020, 11, 635-654.	4.3	22
1178	Fecal dysbiosis in infants with cystic fibrosis is associated with early linear growth failure. Nature Medicine, 2020, 26, 215-221.	15.2	65
1179	Development of the Microbiota and Associations With Birth Mode, Diet, and Atopic Disorders in a Longitudinal Analysis of Stool Samples, Collected From Infancy Through Early Childhood. Gastroenterology, 2020, 158, 1584-1596.	0.6	159
1180	Characterization of the Gut Microbiota of Individuals at Different T2D Stages Reveals a Complex Relationship with the Host. Microorganisms, 2020, 8, 94.	1.6	44

#	Article	IF	CITATIONS
1181	Muscovy Duck Reovirus Infection Disrupts the Composition of Intestinal Microbiota in Muscovy Ducklings. Current Microbiology, 2020, 77, 769-778.	1.0	10
1182	Unique k-mers as Strain-Specific Barcodes for Phylogenetic Analysis and Natural Microbiome Profiling. International Journal of Molecular Sciences, 2020, 21, 944.	1.8	7
1183	Characteristics and Dysbiosis of the Gut Microbiome in Renal Transplant Recipients. Journal of Clinical Medicine, 2020, 9, 386.	1.0	58
1184	Insights into the Role of Human Gut Microbiota in Clostridioides difficile Infection. Microorganisms, 2020, 8, 200.	1.6	40
1185	Incorporating Phylogenetic Information in Microbiome Differential Abundance Studies Has No Effect on Detection Power and FDR Control. Frontiers in Microbiology, 2020, 11, 649.	1.5	14
1186	Revisiting Inflammatory Bowel Disease: Pathology, Treatments, Challenges and Emerging Therapeutics Including Drug Leads from Natural Products. Journal of Clinical Medicine, 2020, 9, 1273.	1.0	83
1187	Intestinal effect of the probiotic Escherichia coli strain Nissle 1917 and its OMV. Journal of Diabetes and Metabolic Disorders, 2020, 19, 597-604.	0.8	18
1188	Gut Microbiota Modulate CD8ÂT Cell Responses to Influence Colitis-Associated Tumorigenesis. Cell Reports, 2020, 31, 107471.	2.9	103
1189	Gut microbiota in chronic inflammatory disorders: A focus on pediatric inflammatory bowel diseases and juvenile idiopathic arthritis. Clinical Immunology, 2020, 215, 108415.	1.4	19
1190	Seasonal changes of circulating 25-hydroxyvitamin D correlate with the lower gut microbiome composition in inflammatory bowel disease patients. Scientific Reports, 2020, 10, 6024.	1.6	23
1191	Big data in IBD: big progress for clinical practice. Gut, 2020, 69, 1520-1532.	6.1	121
1192	Establishment and Application of Peristaltic Human Gut-Vessel Microsystem for Studying Host–Microbial Interaction. Frontiers in Bioengineering and Biotechnology, 2020, 8, 272.	2.0	37
1193	IL-33, diet-induced obesity, and pulmonary responses to ozone. Respiratory Research, 2020, 21, 98.	1.4	9
1194	MICOM: Metagenome-Scale Modeling To Infer Metabolic Interactions in the Gut Microbiota. MSystems, 2020, 5, .	1.7	126
1195	Role of Microbiome and Antibiotics in Autoimmune Diseases. Nutrition in Clinical Practice, 2020, 35, 406-416.	1.1	35
1196	Implication of gut microbiota in the association between infant antibiotic exposure and childhood obesity and adiposity accumulation. International Journal of Obesity, 2020, 44, 1508-1520.	1.6	38
1197	Study of the alleviation effects of a combination of <i>Lactobacillus rhamnosus</i> and inulin on mice with colitis. Food and Function, 2020, 11, 3823-3837.	2.1	69
1198	A novel normalization and differential abundance test framework for microbiome data. Bioinformatics, 2020, 36, 3959-3965.	1.8	12

#	ARTICLE	IF	CITATIONS
1199	Microbiome-Based Biomarkers for IBD. Inflammatory Bowel Diseases, 2020, 26, 1463-1469.	0.9	27
1200	Gut Epithelial Metabolism as a Key Driver of Intestinal Dysbiosis Associated with Noncommunicable Diseases. Infection and Immunity, 2020, 88, .	1.0	24
1201	Randomised Double-Blind Placebo-Controlled Trial of Inulin with Metronidazole in Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients, 2020, 12, 937.	1.7	35
1202	Nutrition, IBD and Gut Microbiota: A Review. Nutrients, 2020, 12, 944.	1.7	172
1203	NOD2 Influences Trajectories of Intestinal Microbiota Recovery After Antibiotic Perturbation. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 365-389.	2.3	19
1204	Dietary polyphenol impact on gut health and microbiota. Critical Reviews in Food Science and Nutrition, 2021, 61, 690-711.	5.4	139
1205	Human microbiome and homeostasis: insights into the key role of prebiotics, probiotics, and symbiotics. Critical Reviews in Food Science and Nutrition, 2021, 61, 1415-1428.	5.4	20
1206	Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunology, 2021, 14, 113-124.	2.7	216
1207	gutMEGA: a database of the human gut MEtaGenome Atlas. Briefings in Bioinformatics, 2021, 22, .	3.2	22
1208	Individual and Site-Specific Variation in a Biogeographical Profile of the Coyote Gastrointestinal Microbiota. Microbial Ecology, 2021, 81, 240-252.	1.4	17
1209	The microbiome in inflammatory bowel diseases: from pathogenesis to therapy. Protein and Cell, 2021, 12, 331-345.	4.8	133
1210	Influence of proton pump inhibitor or rebamipide use on gut microbiota of rheumatoid arthritis patients. Rheumatology, 2021, 60, 708-716.	0.9	10
1211	Lactobacillus plantarum-Mediated Regulation of Dietary Aluminum Induces Changes in the Human Gut Microbiota: an In Vitro Colonic Fermentation Study. Probiotics and Antimicrobial Proteins, 2021, 13, 398-412.	1.9	19
1212	Home, sweet home: how mucus accommodates our microbiota. FEBS Journal, 2021, 288, 1789-1799.	2.2	32
1213	The effect of nut consumption (tree nuts and peanuts) on the gut microbiota of humans: a systematic review. British Journal of Nutrition, 2021, 125, 508-520.	1.2	36
1214	Tuning parameter selection for a penalized estimator of species richness. Journal of Applied Statistics, 2021, 48, 1053-1070.	0.6	0
1215	Hypothesis testing for phylogenetic composition: a minimum-cost flow perspective. Biometrika, 2021, 108, 17-36.	1.3	6
1216	Microbial Butyrate Synthesis Indicates Therapeutic Efficacy of Azathioprine in IBD Patients. Journal of Crohn's and Colitis, 2021, 15, 88-98.	0.6	41

#	Article	IF	CITATIONS
1217	Liver X receptor regulates Th17 and ROR \hat{l}^3 t+ Treg cells by distinct mechanisms. Mucosal Immunology, 2021, 14, 411-419.	2.7	9
1218	Tripartite relationship between gut microbiota, intestinal mucus and dietary fibers: towards preventive strategies against enteric infections. FEMS Microbiology Reviews, 2021, 45, .	3.9	27
1219	Gastrointestinal Surgery for Inflammatory Bowel Disease Persistently Lowers Microbiome and Metabolome Diversity. Inflammatory Bowel Diseases, 2021, 27, 603-616.	0.9	25
1220	How Microbial Food Fermentation Supports a Tolerant Gut. Molecular Nutrition and Food Research, 2021, 65, 2000036.	1.5	3
1221	A Phase 1b Safety Study of SER-287, a Spore-Based Microbiome Therapeutic, for Active Mild to Moderate Ulcerative Colitis. Gastroenterology, 2021, 160, 115-127.e30.	0.6	48
1222	Characterization of gut microbiota in polycystic ovary syndrome: Findings from a lean population. European Journal of Clinical Investigation, 2021, 51, e13417.	1.7	30
1223	IBDs and the pediatric age: Their peculiarities and the involvement of the microbiota. Digestive and Liver Disease, 2021, 53, 17-25.	0.4	9
1224	Putative Pathobionts in HLA-B27-Associated Spondyloarthropathy. Frontiers in Immunology, 2020, 11, 586494.	2.2	13
1225	Aging, Frailty, and the Microbiomeâ€"How Dysbiosis Influences Human Aging and Disease. Gastroenterology, 2021, 160, 507-523.	0.6	67
1226	Scutellaria baicalensis Georgi polysaccharide ameliorates DSS-induced ulcerative colitis by improving intestinal barrier function and modulating gut microbiota. International Journal of Biological Macromolecules, 2021, 166, 1035-1045.	3.6	211
1227	Optimizing the quality of clinical studies on oral microbiome: A practical guide for planning, performing, and reporting. Periodontology 2000, 2021, 85, 210-236.	6.3	51
1228	Inflammatory Bowel Diseases (IBD) and the Microbiomeâ€"Searching the Crime Scene for Clues. Gastroenterology, 2021, 160, 524-537.	0.6	276
1229	Dietary fibre in gastrointestinal health and disease. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 101-116.	8.2	367
1230	Microbiome: an emerging new frontier in graftâ€'versusâ€'host disease. Inflammation Research, 2021, 70, 1-5.	1.6	1
1231	Alterations of the Treatment-Naive Gut Microbiome in Newly Diagnosed Hepatitis C Virus Infection. ACS Infectious Diseases, 2021, 7, 1059-1068.	1.8	17
1232	High-throughput sequencing reveals significant diversity in the gut microbiomes of humpback		

#	Article	IF	CITATIONS
1235	Crohn's Disease. , 2021, , 277-291.		0
1236	Rectal microbiota diversity in Kenyan MSM is inversely associated with frequency of receptive anal sex, independent of HIV status. Aids, 2021, 35, 1091-1101.	1.0	5
1237	Oligopeptides from Jinhua ham prevent alcohol-induced liver damage by regulating intestinal homeostasis and oxidative stress in mice. Food and Function, 2021, 12, 10053-10070.	2.1	14
1238	A murine model to study the gut bacteria parameters during complex antibiotics like cefotaxime and ceftriaxone treatment. Computational and Structural Biotechnology Journal, 2021, 19, 1423-1430.	1.9	4
1239	Gut Ruminococcaceae Levels Correlate with Risk of Antibiotic-Associated Diarrhea. SSRN Electronic Journal, O, , .	0.4	0
1240	Research in Exercise Science and Gut Microbiota: A Two-way Relationship. , 2022, , 308-318.		0
1241	Troubled Process of Parturition of the Domestic Pig. , 0, , .		1
1243	The high prevalence of <i>Clostridioides difficile</i> among nursing home elders associates with a dysbiotic microbiome. Gut Microbes, 2021, 13, 1-15.	4.3	10
1244	Assessing the Relationship Between Nitrate-Reducing Capacity of the Oral Microbiome and Systemic Outcomes. Methods in Molecular Biology, 2021, 2327, 139-160.	0.4	1
1245	Association Between Gut Microbiome and Frailty in the Older Adult Population in Korea. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 1362-1368.	1.7	21
1246	Application of Next Generation Sequencing in Laboratory Medicine. Annals of Laboratory Medicine, 2021, 41, 25-43.	1.2	99
1247	Progressive Shifts in the Gut Microbiome Reflect Prediabetes and Diabetes Development in a Treatment-Naive Mexican Cohort. Frontiers in Endocrinology, 2020, 11, 602326.	1.5	13
1248	Critical roles of bile acids in regulating intestinal mucosal immune responses. Therapeutic Advances in Gastroenterology, 2021, 14, 175628482110180.	1.4	38
1249	Sex- and age-related trajectories of the adult human gut microbiota shared across populations of different ethnicities. Nature Aging, 2021, 1, 87-100.	5. 3	86
1250	<i>Lactobacillus paracasei</i> L9 improves colitis by expanding butyrate-producing bacteria that inhibit the IL-6/STAT3 signaling pathway. Food and Function, 2021, 12, 10700-10713.	2.1	15
1251	Role of diet and nutrition in inflammatory bowel disease. World Journal of Experimental Medicine, 2021, 11, 1-16.	0.9	16
1252	Ulcerative Colitis in Children and Adolescents. , 2021, , 474-492.e8.		1
1253	Gut microbiome-based supervised machine learning for clinical diagnosis of inflammatory bowel diseases. American Journal of Physiology - Renal Physiology, 2021, 320, G328-G337.	1.6	36

#	Article	IF	CITATIONS
1254	Large-scale association analyses identify host factors influencing human gut microbiome composition. Nature Genetics, 2021, 53, 156-165.	9.4	676
1255	Metagenomic analysis of mother-infant gut microbiome reveals global distinct and shared microbial signatures. Gut Microbes, 2021, 13, 1-24.	4.3	18
1256	GutBalance: a server for the human gut microbiome-based disease prediction and biomarker discovery with compositionality addressed. Briefings in Bioinformatics, 2021, 22, .	3.2	12
1257	Colonisation with endogenous <i>Lactobacillus reuteri</i> R28 and exogenous <i>Lactobacillus plantarum</i> AR17-1 and the effects on intestinal inflammation in mice. Food and Function, 2021, 12, 2481-2488.	2.1	13
1258	A Single Dose of Synbiotics and Vitamins at Birth Affects Piglet Microbiota before Weaning and Modifies Post-Weaning Performance. Animals, 2021, 11, 84.	1.0	5
1259	Plastics and the microbiome: impacts and solutions. Environmental Microbiomes, 2021, 16, 2.	2.2	118
1260	Whole microbial community viability is not quantitatively reflected by propidium monoazide sequencing approach. Microbiome, $2021, 9, 17$.	4.9	36
1261	The Composition and Metabolic Potential of the Human Small Intestinal Microbiota Within the Context of Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 2021, 15, 1326-1338.	0.6	18
1262	Microbiota in utero? When and Where Microbial Establishment Starts?., 2021, , 13-13.		0
1263	Oxidative Stress in the Pathogenesis of Crohn's Disease and the Interconnection with Immunological Response, Microbiota, External Environmental Factors, and Epigenetics. Antioxidants, 2021, 10, 64.	2.2	41
1264	Ectopic gut colonization: a metagenomic study of the oral and gut microbiome in Crohn's disease. Gut Pathogens, 2021, 13, 13.	1.6	26
1265	Distinctive Microbial Signatures and Gut-Brain Crosstalk in Pediatric Patients with Coeliac Disease and Type 1 Diabetes Mellitus. International Journal of Molecular Sciences, 2021, 22, 1511.	1.8	10
1266	Stem Cell Impairment at the Host-Microbiota Interface in Colorectal Cancer. Cancers, 2021, 13, 996.	1.7	22
1267	The effect of acute moderate-intensity exercise on the serum and fecal metabolomes and the gut microbiota of cross-country endurance athletes. Scientific Reports, 2021, 11, 3558.	1.6	44
1268	Alterations in the gut bacterial microbiome in people with type 2 diabetes mellitus and diabetic retinopathy. Scientific Reports, 2021, 11, 2738.	1.6	91
1269	High intake of vegetables is linked to lower white blood cell profile and the effect is mediated by the gut microbiome. BMC Medicine, 2021, 19, 37.	2.3	30
1270	Data Analysis Strategies for Microbiome Studies in Human Populationsâ€"a Systematic Review of Current Practice. MSystems, 2021, 6, .	1.7	14
1271	The Gastrointestinal Microbiota of the Common Marmoset (<i>Callithrix jacchus</i>). ILAR Journal, 2020, 61, 188-198.	1.8	7

#	Article	IF	CITATIONS
1272	A multi-omic investigation of male lower urinary tract symptoms: Potential role for JC virus. PLoS ONE, 2021, 16, e0246266.	1.1	7
1273	Metabolomics as a Promising Resource Identifying Potential Biomarkers for Inflammatory Bowel Disease. Journal of Clinical Medicine, 2021, 10, 622.	1.0	23
1274	Adsorptive granulomonocytapheresis alters the gut bacterial microbiota in patients with active ulcerative colitis. Journal of Clinical Apheresis, 2021, 36, 454-464.	0.7	3
1275	A genome-wide association study for gut metagenome in Chinese adults illuminates complex diseases. Cell Discovery, 2021, 7, 9.	3.1	49
1276	Bayesian biclustering for microbial metagenomic sequencing data via multinomial matrix factorization. Biostatistics, 2022, 23, 891-909.	0.9	14
1277	Pivotal Role of the Interaction Between Herbal Medicines and Gut Microbiota on Disease Treatment. Current Drug Targets, 2021, 22, 336-346.	1.0	6
1279	Modulation of inflammatory responses by gastrointestinal Prevotella spp. – From associations to functional studies. International Journal of Medical Microbiology, 2021, 311, 151472.	1.5	43
1280	APOE- $\hat{l}\mu 4$ Carrier Status and Gut Microbiota Dysbiosis in Patients With Alzheimer Disease. Frontiers in Neuroscience, 2021, 15, 619051.	1.4	30
1281	Ginger Alleviates DSS-Induced Ulcerative Colitis Severity by Improving the Diversity and Function of Gut Microbiota. Frontiers in Pharmacology, 2021, 12, 632569.	1.6	32
1282	Gut microbiota changes in inflammatory bowel diseases and ankylosing spondilytis. Journal of Gastrointestinal and Liver Diseases, 2021, 30, 46-54.	0.5	9
1283	Inflammatory Bowel Disease: A Personalized Approach. Frontiers in Pediatrics, 2020, 8, 620545.	0.9	0
1284	Alterations in Gut Microbial Communities Across Anatomical Locations in Inflammatory Bowel Diseases. Frontiers in Nutrition, 2021, 8, 615064.	1.6	14
1285	Dysbiosis of fecal microbiota in cats with naturally occurring and experimentally induced Tritrichomonas foetus infection. PLoS ONE, 2021, 16, e0246957.	1.1	9
1286	Australia IBD Microbiome (AIM) Study: protocol for a multicentre longitudinal prospective cohort study. BMJ Open, 2021, 11, e042493.	0.8	6
1287	Associations Among Plant-Based Diet Quality, Uremic Toxins, and Gut Microbiota Profile in Adults Undergoing Hemodialysis Therapy., 2021, 31, 177-188.		18
1288	Inhibitory Effects of Breast Milk-Derived Lactobacillus rhamnosus Probio-M9 on Colitis-Associated Carcinogenesis by Restoration of the Gut Microbiota in a Mouse Model. Nutrients, 2021, 13, 1143.	1.7	39
1289	Sulfoquinovose is a select nutrient of prominent bacteria and a source of hydrogen sulfide in the human gut. ISME Journal, 2021, 15, 2779-2791.	4.4	30
1291	The Role of Enterobacteriaceae in Gut Microbiota Dysbiosis in Inflammatory Bowel Diseases. Microorganisms, 2021, 9, 697.	1.6	116

#	Article	IF	CITATIONS
1292	Antioxidant Therapy in Inflammatory Bowel Diseases. Antioxidants, 2021, 10, 412.	2.2	43
1293	Factors Associated With the Microbiome in Moderate–Late Preterm Babies: A Cohort Study From the DIAMOND Randomized Controlled Trial. Frontiers in Cellular and Infection Microbiology, 2021, 11, 595323.	1.8	10
1294	The Role of Intestinal Dysbacteriosis Induced Arachidonic Acid Metabolism Disorder in Inflammaging in Atherosclerosis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 618265.	1.8	37
1295	Distance-Based Analysis with Quantile Regression Models. Statistics in Biosciences, 2021, 13, 291-312.	0.6	0
1296	Forensic Microbiome Database: A Tool for Forensic Geolocation Meta-Analysis Using Publicly Available 16S rRNA Microbiome Sequencing. Frontiers in Microbiology, 2021, 12, 644861.	1.5	16
1297	Mediterranean diet consumption affects the endocannabinoid system in overweight and obese subjects: possible links with gut microbiome, insulin resistance and inflammation. European Journal of Nutrition, 2021, 60, 3703-3716.	1.8	33
1298	The Relationship between the Gut Microbiome and Metformin as a Key for Treating Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 2021, 22, 3566.	1.8	62
1299	Isomaltooligosaccharide and Bacillus regulate the duration of farrowing and weaning-estrous interval in sows during the perinatal period by changing the gut microbiota of sows. Animal Nutrition, 2021, 7, 72-83.	2.1	12
1300	Entamoeba histolyticaâ€"Gut Microbiota Interaction: More Than Meets the Eye. Microorganisms, 2021, 9, 581.	1.6	13
1301	Interrelationship of Stress, Environment, and Herpes Simplex Virus Type-1 on Behçet's Disease: Using a Mouse Model. Frontiers in Immunology, 2021, 12, 607768.	2.2	8
1302	DCMD: Distance-based classification using mixture distributions on microbiome data. PLoS Computational Biology, 2021, 17, e1008799.	1.5	2
1303	Configuration of Gut Microbiota Structure and Potential Functionality in Two Teleosts under the Influence of Dietary Insect Meals. Microorganisms, 2021, 9, 699.	1.6	30
1305	Defined gut microbial communities: promising tools to understand and combat disease. Microbes and Infection, 2021, 23, 104816.	1.0	6
1306	Rapid transcriptional and metabolic adaptation of intestinal microbes to host immune activation. Cell Host and Microbe, 2021, 29, 378-393.e5.	5.1	52
1307	The Role of Immune Response and Microbiota on Campylobacteriosis. , 0, , .		1
1308	Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox. Genome Biology, 2021, 22, 93.	3.8	122
1309	The Interplay between Immune System and Microbiota in Inflammatory Bowel Disease: A Narrative Review. International Journal of Molecular Sciences, 2021, 22, 3076.	1.8	35
1310	Gut microbiota composition associated with hepatic fibrosis in nonâ€obese patients with nonâ€olcoholic fatty liver disease. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 2275-2284.	1.4	26

#	Article	IF	CITATIONS
1311	Potential role of microbiome in Chronic Fatigue Syndrome/Myalgic Encephalomyelits (CFS/ME). Scientific Reports, 2021, 11, 7043.	1.6	42
1312	Characteristics of the intestinal microbiome in ankylosing spondylitis. Experimental and Therapeutic Medicine, 2021, 22, 676.	0.8	21
1313	Gut Microbiome in Progressive Multiple Sclerosis. Annals of Neurology, 2021, 89, 1195-1211.	2.8	115
1314	Study on the Effect of Oral Administration of Bacteriophages in Charles Foster Rats With Special Reference to Immunological and Adverse Effects. Frontiers in Pharmacology, 2021, 12, 615445.	1.6	8
1315	Infant Feeding Alters the Longitudinal Impact of Birth Mode on the Development of the Gut Microbiota in the First Year of Life. Frontiers in Microbiology, 2021, 12, 642197.	1.5	28
1316	Long-term evolution and short-term adaptation of microbiota strains and sub-strains in mice. Cell Host and Microbe, 2021, 29, 650-663.e9.	5.1	58
1318	Advances in Genomic Discovery and Implications for Personalized Prevention and Medicine: Estonia as Example. Journal of Personalized Medicine, 2021, 11, 358.	1,1	6
1319	Dysbiosis in Metabolic Genes of the Gut Microbiomes of Patients with an Ileo-anal Pouch Resembles That Observed in Crohn's Disease. MSystems, 2021, 6, .	1.7	19
1320	Noninvasive early diagnosis of intestinal diseases based on artificial intelligence in genomics and microbiome. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 823-831.	1.4	13
1321	Gut Dysbiosis and Its Associations with Gut Microbiota-Derived Metabolites in Dogs with Myxomatous Mitral Valve Disease. MSystems, 2021, 6, .	1.7	25
1322	Systematic Review: The Gut Microbiome and Its Potential Clinical Application in Inflammatory Bowel Disease. Microorganisms, 2021, 9, 977.	1.6	83
1323	Enzymatically Inactive Tissue-Type Plasminogen Activator Reverses Disease Progression in the Dextran Sulfate Sodium Mouse Model of Inflammatory Bowel Disease. American Journal of Pathology, 2021, 191, 590-601.	1.9	7
1324	Multi-organ-on-a-chip for pharmacokinetics and toxicokinetic study of drugs. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 969-986.	1.5	23
1325	Fungal and Bacterial Loads: Noninvasive Inflammatory Bowel Disease Biomarkers for the Clinical Setting. MSystems, 2021, 6, .	1.7	15
1326	Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 503-513.	8.2	74
1327	<pre><scp>RNase1</scp></pre> /scp> can modulate gut microbiota and metabolome after <scp><i>Aeromonas hydrophila</i></scp> infection in blunt snout bream. Environmental Microbiology, 2021, 23, 5258-5272.	1.8	13
1328	The impact of Opisthorchis felineus infection and praziquantel treatment on the intestinal microbiota in children. Acta Tropica, 2021, 217, 105835.	0.9	5
1329	Site- and Taxa-Specific Disease-Associated Oral Microbial Structures Distinguish Inflammatory Bowel Diseases, 2021, 27, 1889-1900.	0.9	14

#	Article	IF	CITATIONS
1330	Diet–Microbiota Interactions in Inflammatory Bowel Disease. Nutrients, 2021, 13, 1533.	1.7	46
1331	DUOX2 variants associate with preclinical disturbances in microbiota-immune homeostasis and increased inflammatory bowel disease risk. Journal of Clinical Investigation, 2021, 131, .	3.9	35
1332	Identification of microbial markers across populations in early detection of colorectal cancer. Nature Communications, 2021, 12, 3063.	5.8	109
1333	Association Between Mode of Delivery of the Breech Fetus and Hospitalizations Due to Inflammatory Bowel Disease During Childhood. Journal of Clinical Gastroenterology, 2022, 56, e161-e165.	1.1	2
1334	The Use of Fecal Microbiome Transplant in Treating Human Diseases: Too Early for Poop?. Frontiers in Microbiology, 2021, 12, 519836.	1.5	34
1335	Constituents, Pharmacokinetics, and Pharmacology of Gegen-Qinlian Decoction. Frontiers in Pharmacology, 2021, 12, 668418.	1.6	29
1336	Metagenomic Analysis of Common Intestinal Diseases Reveals Relationships among Microbial Signatures and Powers Multidisease Diagnostic Models. MSystems, 2021, 6, .	1.7	12
1337	Deletion of mucin 2 induces colitis with concomitant metabolic abnormalities in mice. American Journal of Physiology - Renal Physiology, 2021, 320, G791-G803.	1.6	15
1338	Ecological and network analyses identify four microbial species with potential significance for the diagnosis/treatment of ulcerative colitis (UC). BMC Microbiology, 2021, 21, 138.	1.3	24
1339	MiMeNet: Exploring microbiome-metabolome relationships using neural networks. PLoS Computational Biology, 2021, 17, e1009021.	1.5	42
1340	Bacillus Subtilis 29784 as a Feed Additive for Broilers Shifts the Intestinal Microbial Composition and Supports the Production of Hypoxanthine and Nicotinic Acid. Animals, 2021, 11, 1335.	1.0	11
1341	Fish Sidestream-Derived Protein Hydrolysates Suppress DSS-Induced Colitis by Modulating Intestinal Inflammation in Mice. Marine Drugs, 2021, 19, 312.	2.2	10
1342	Core Altered Microorganisms in Colitis Mouse Model: A Comprehensive Time-Point and Fecal Microbiota Transplantation Analysis. Antibiotics, 2021, 10, 643.	1.5	54
1343	Gut Microbiome Changes with Acute Diarrheal Disease in Urban Versus Rural Settings in Northern Ecuador. American Journal of Tropical Medicine and Hygiene, 2021, 104, 2275-2285.	0.6	7
1344	Cystic Fibrosis Human Organs-on-a-Chip. Micromachines, 2021, 12, 747.	1.4	7
1345	Therapeutic potential of an intestinotrophic hormone, glucagon-like peptide 2, for treatment of type 2 short bowel syndrome rats with intestinal bacterial and fungal dysbiosis. BMC Infectious Diseases, 2021, 21, 583.	1.3	8
1346	Mediterranean Diet to Prevent the Development of Colon Diseases: A Meta-Analysis of Gut Microbiota Studies. Nutrients, 2021, 13, 2234.	1.7	42
1347	Inflammatory bowel disease and the gut microbiota. Proceedings of the Nutrition Society, 2021, , 1-11.	0.4	6

#	Article	IF	Citations
1348	A transomic cohort as a reference point for promoting a healthy human gut microbiome. Medicine in Microecology, 2021, 8, 100039.	0.7	24
1349	Gut Microbiota and Inflammatory Disorders. Current Drug Targets, 2022, 23, 156-169.	1.0	2
1350	Seaweed Components as Potential Modulators of the Gut Microbiota. Marine Drugs, 2021, 19, 358.	2.2	52
1351	Crataegus pinnatifida polysaccharide alleviates colitis via modulation of gut microbiota and SCFAs metabolism. International Journal of Biological Macromolecules, 2021, 181, 357-368.	3.6	122
1352	Fecal microbiota profile in patients with inflammatory bowel disease in Taiwan. Journal of the Chinese Medical Association, 2021, 84, 580-587.	0.6	6
1353	Highlighting the Relevance of Gut Microbiota Manipulation in Inflammatory Bowel Disease. Diagnostics, 2021, 11, 1090.	1.3	43
1354	Benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases. Nature Communications, 2021, 12, 3562.	5.8	30
1355	Endocrine disruption in Crohn's disease: Bisphenol A enhances systemic inflammatory response in patients with gut barrier translocation of dysbiotic microbiota products. FASEB Journal, 2021, 35, e21697.	0.2	17
1356	Amino Acid Trp: The Far Out Impacts of Host and Commensal Tryptophan Metabolism. Frontiers in Immunology, 2021, 12, 653208.	2.2	45
1357	Environmental concentrations of antibiotics alter the zebrafish gut microbiome structure and potential functions. Environmental Pollution, 2021, 278, 116760.	3.7	49
1358	Unhealthy Lifestyle and Gut Dysbiosis: A Better Understanding of the Effects of Poor Diet and Nicotine on the Intestinal Microbiome. Frontiers in Endocrinology, 2021, 12, 667066.	1.5	82
1359	Immune checkpoint blockade reprograms systemic immune landscape and tumor microenvironment in obesity-associated breast cancer. Cell Reports, 2021, 35, 109285.	2.9	38
1360	Evaluation of the mitigation efficacy of a yeast cell wall extract toward deoxynivalenol contaminated diet fed to turbot (Scophthalmus maximus). Ecotoxicology and Environmental Safety, 2021, 216, 112221.	2.9	9
1361	Diversity and Adaptations of Escherichia coli Strains: Exploring the Intestinal Community in Crohn's Disease Patients and Healthy Individuals. Microorganisms, 2021, 9, 1299.	1.6	6
1362	Life History Recorded in the Vagino-cervical Microbiome Along with Multi-omes. Genomics, Proteomics and Bioinformatics, 2022, 20, 304-321.	3.0	18
1363	Host habitat is the major determinant of the gut microbiome of fish. Microbiome, 2021, 9, 166.	4.9	100
1364	Comparative Transcriptome and Endophytic Bacterial Community Analysis of Morchella conica SH. Frontiers in Microbiology, 2021, 12, 682356.	1.5	3
1365	Molecular Communication Between Neuronal Networks and Intestinal Epithelial Cells in Gut Inflammation and Parkinson's Disease. Frontiers in Medicine, 2021, 8, 655123.	1.2	11

#	Article	IF	Citations
1366	T helper cell immunity in pregnancy and influence on autoimmune disease progression. Journal of Autoimmunity, 2021, 121, 102651.	3.0	22
1367	Metatranscriptomics for the Human Microbiome and Microbial Community Functional Profiling. Annual Review of Biomedical Data Science, 2021, 4, 279-311.	2.8	36
1368	Fecal microbiota transplantation therapy in Crohn's disease: Systematic review. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 2672-2686.	1.4	35
1369	Microbiome signatures of progression toward celiac disease onset in at-risk children in a longitudinal prospective cohort study. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	70
1370	Extracellular vesicles-mediated interaction within intestinal microenvironment in inflammatory bowel disease. Journal of Advanced Research, 2022, 37, 221-233.	4.4	45
1372	The role of fecal sulfur metabolome in inflammatory bowel diseases. International Journal of Medical Microbiology, 2021, 311, 151513.	1.5	40
1373	Management of Clostridioides difficile infection in patients with inflammatory bowel disease. Intestinal Research, 2021, 19, 265-274.	1.0	23
1374	Relationship between clinical features and intestinal microbiota in Chinese patients with ulcerative colitis. World Journal of Gastroenterology, 2021, 27, 4722-4737.	1.4	32
1375	Association between the urogenital microbiome and surgical treatment response in women undergoing midurethral sling operation for mixed urinary incontinence. American Journal of Obstetrics and Gynecology, 2022, 226, 93.e1-93.e15.	0.7	11
1376	Gut microbiome is affected by gut region but robust to host physiological changes in captive active-season ground squirrels. Animal Microbiome, 2021, 3, 56.	1.5	5
1377	Nonfood Prebiotic, Probiotic, and Synbiotic Use Has Increased in US Adults and Children From 1999 to 2018. Gastroenterology, 2021, 161, 476-486.e3.	0.6	23
1378	Crosstalk Between Intestinal Microbiota Derived Metabolites and Tissues in Allogeneic Hematopoietic Cell Transplantation. Frontiers in Immunology, 2021, 12, 703298.	2.2	8
1379	Insight Into the Potential Value of Gut Microbial Signatures for Prediction of Gestational Anemia. Frontiers in Cellular and Infection Microbiology, 2021, 11, 734561.	1.8	5
1380	Gut microbiome is associated with multiple sclerosis activity in children. Annals of Clinical and Translational Neurology, 2021, 8, 1867-1883.	1.7	21
1381	Impact of nisin on <i>Clostridioides difficile</i> and microbiota composition in a faecal fermentation model of the human colon. Journal of Applied Microbiology, 2022, 132, 1397-1408.	1.4	7
1382	Understanding the Interactions Between the Ocular Surface Microbiome and the Tear Proteome. , 2021, 62, 8.		18
1383	Phase angle through electrical bioimpedance as a predictor of cellularity in inflammatory bowel disease. Artificial Intelligence in Gastroenterology, 2021, 2, 111-123.	0.2	1
1384	The impact of the host intestinal microbiome on carcinogenesis and the response to chemotherapy. Future Oncology, 2021, 17, 4371-4387.	1.1	7

#	Article	IF	CITATIONS
1385	Metagenomic analysis revealed the potential role of gut microbiome in gout. Npj Biofilms and Microbiomes, 2021, 7, 66.	2.9	91
1386	Modulation of the Mucosa-Associated Microbiome Linked to the PTPN2 Risk Gene in Patients with Primary Sclerosing Cholangitis and Ulcerative Colitis. Microorganisms, 2021, 9, 1752.	1.6	6
1387	Exposure to Parasitic Protists and Helminths Changes the Intestinal Community Structure of Bacterial Communities in a Cohort of Mother-Child Binomials from a Semirural Setting in Mexico. MSphere, 2021, 6, e0008321.	1.3	9
1388	Dynamic Colonization of Microbes and Their Functions after Fecal Microbiota Transplantation for Inflammatory Bowel Disease. MBio, 2021, 12, e0097521.	1.8	26
1389	Fecal microbiota transplantation for recurrent Clostridioides difficile infection in patients with concurrent ulcerative colitis. Acta Microbiologica Et Immunologica Hungarica, 2021, , .	0.4	1
1390	Genetic divergence and functional convergence of gut bacteria between the Eastern honey bee Apis cerana and the Western honey bee Apis mellifera. Journal of Advanced Research, 2022, 37, 19-31.	4.4	10
1391	Antitumor Necrosis Factor-like Ligand 1A Therapy Targets Tissue Inflammation and Fibrosis Pathways and Reduces Gut Pathobionts in Ulcerative Colitis. Inflammatory Bowel Diseases, 2022, 28, 434-446.	0.9	14
1392	Eubacterium rectale Attenuates HSV-1 Induced Systemic Inflammation in Mice by Inhibiting CD83. Frontiers in Immunology, 2021, 12, 712312.	2.2	24
1393	A transepithelial pathway delivers succinate to macrophages, thus perpetuating their pro-inflammatory metabolic state. Cell Reports, 2021, 36, 109521.	2.9	36
1394	The gastric microbiota in patients with Crohn's disease; a preliminary study. Scientific Reports, 2021, 11, 17866.	1.6	4
1395	A statistical model for describing and simulating microbial community profiles. PLoS Computational Biology, 2021, 17, e1008913.	1.5	21
1396	Role of the gut microbiome in chronic diseases: a narrative review. European Journal of Clinical Nutrition, 2022, 76, 489-501.	1.3	168
1397	Gut Microbiome Composition and Metabolic Status Are Differently Affected by Early Exposure to Unhealthy Diets in a Rat Model. Nutrients, 2021, 13, 3236.	1.7	9
1398	Over 50,000 Metagenomically Assembled Draft Genomes for the Human Oral Microbiome Reveal New Taxa. Genomics, Proteomics and Bioinformatics, 2022, 20, 246-259.	3.0	38
1399	Effects of red meat diet on gut microbiota in mice. Food Science and Technology, 0, , .	0.8	1
1400	Moderate-Intensity Physical Exercise Affects the Exercise Performance and Gut Microbiota of Mice. Frontiers in Cellular and Infection Microbiology, 2021, 11, 712381.	1.8	21
1401	Metabolomics activity screening of T cell–induced colitis reveals anti-inflammatory metabolites. Science Signaling, 2021, 14, eabf6584.	1.6	19
1402	Robust logistic zero-sum regression for microbiome compositional data. Advances in Data Analysis and Classification, 2022, 16, 301-324.	0.9	7

#	Article	IF	CITATIONS
1403	Prebiotic effects in vitro of anthocyanins from the fruits of Lycium ruthenicum Murray on gut microbiota compositions of feces from healthy human and patients with inflammatory bowel disease. LWT - Food Science and Technology, 2021, 149, 111829.	2.5	13
1404	The role of precision nutrition in the modulation of microbial composition and function in people with inflammatory bowel disease. The Lancet Gastroenterology and Hepatology, 2021, 6, 754-769.	3.7	27
1405	Gut Microbiota and Dietary Factors as Modulators of the Mucus Layer in Inflammatory Bowel Disease. International Journal of Molecular Sciences, 2021, 22, 10224.	1.8	13
1406	Gastrointestinal Toxicity of Pelvic Radiotherapy: Are We Letting Women Down?. Clinical Oncology, 2021, 33, 591-601.	0.6	10
1407	Consumption of Butylated Starch Alleviates the Chronic Restraint Stress-Induced Neurobehavioral and Gut Barrier Deficits Through Reshaping the Gut Microbiota. Frontiers in Immunology, 2021, 12, 755481.	2.2	30
1409	Landscapes and bacterial signatures of mucosa-associated intestinal microbiota in Chilean and Spanish patients with inflammatory bowel disease. Microbial Cell, 2021, 8, 223-238.	1.4	11
1410	Dairy consumption and physical fitness tests associated with fecal microbiome in a Chinese cohort. Medicine in Microecology, 2021, 9, 100038.	0.7	6
1411	Pilot Sub-Study of the Effect of Hepatitis C Cure by Glecaprevir/Pibrentasvir on the Gut Microbiome of Patients with Chronic Hepatitis C Genotypes 1 to 6 in the Mythen Study. Pharmaceuticals, 2021, 14, 931.	1.7	5
1412	Exploring how microbiome signatures change across inflammatory bowel disease conditions and disease locations. Scientific Reports, 2021, 11, 18699.	1.6	9
1413	Results of the Seventh Scientific Workshop of ECCO: Precision Medicine in IBD—What, Why, and How. Journal of Crohn's and Colitis, 2021, 15, 1410-1430.	0.6	28
1414	Disease trends in a young Chinese cohort according to fecal metagenome and plasma metabolites. Medicine in Microecology, 2021, , 100037.	0.7	2
1416	Metabolic Influences of Gut Microbiota Dysbiosis on Inflammatory Bowel Disease. Frontiers in Physiology, 2021, 12, 715506.	1.3	56
1417	EPA and DHA confer protection against deoxynivalenol-induced endoplasmic reticulum stress and iron imbalance in IPEC-1 cells. British Journal of Nutrition, 2022, 128, 161-171.	1.2	12
1418	Intestinal microbiota changes induced by TNF-inhibitors in IBD-related spondyloarthritis. RMD Open, 2021, 7, e001755.	1.8	12
1420	Extracellular vesicles derived from gut microbiota in inflammatory bowel disease and colorectal cancer. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2021, 165, 233-240.	0.2	4
1421	Egg white peptides ameliorate dextran sulfate sodium-induced acute colitis symptoms by inhibiting the production of pro-inflammatory cytokines and modulation of gut microbiota composition. Food Chemistry, 2021, 360, 129981.	4.2	70
1422	Matrine protects against DSS-induced murine colitis by improving gut barrier integrity, inhibiting the PPAR-α signaling pathway, and modulating gut microbiota. International Immunopharmacology, 2021, 100, 108091.	1.7	27
1423	Characterization of the blood microbiota in children with Celiac disease. Current Research in Microbial Sciences, 2021, 2, 100069.	1.4	0

#	Article	IF	CITATIONS
1424	Effect of virgin low density polyethylene microplastic ingestion on intestinal histopathology and microbiota of gilthead sea bream. Aquaculture, 2021, 545, 737245.	1.7	26
1425	Long-term biodiversity intervention shapes health-associated commensal microbiota among urban day-care children. Environment International, 2021, 157, 106811.	4.8	36
1426	The Role of Microbiota in Gut Inflammation and Sepsis. , 2022, , 370-370.		0
1427	Fecal Microbiome Transplantation: An Offhand Recipe for Microbiome Therapeutics. , 2022, , 246-256.		1
1428	Integrated gut virome and bacteriome dynamics in COVID-19 patients. Gut Microbes, 2021, 13, 1-21.	4.3	81
1429	Fecal microbiome and metabolome differ in healthy and food-allergic twins. Journal of Clinical Investigation, 2021, 131, .	3.9	69
1430	The Oral Microbiome in Pediatric IBD: A Source of Pathobionts or Biomarkers?. Frontiers in Pediatrics, 2020, 8, 620254.	0.9	16
1431	Metabolic Phenotypes as Potential Biomarkers for Linking Gut Microbiome With Inflammatory Bowel Diseases. Frontiers in Molecular Biosciences, 2020, 7, 603740.	1.6	8
1432	Therapeutic Potential of Escherichia coli Nissle 1917 in Clinically Remission-attained Ulcerative Colitis Patients: A Hospital-based Cohort Study. Korean journal of gastroenterology = Taehan Sohwagi Hakhoe chi, The, 2021, 77, 12-21.	0.2	8
1433	The Impacts of Probiotics on Microbiota in Patients With Autism Spectrum Disorder. , 2022, , 296-319.		2
1434	Probiotic lactobacilli as a promising strategy to ameliorate disorders associated with intestinal inflammation induced by a non-steroidal anti-inflammatory drug. Scientific Reports, 2021, 11, 571.	1.6	30
1435	Immunoglobulin A Targets a Unique Subset of the Microbiota in Inflammatory Bowel Disease. Cell Host and Microbe, 2021, 29, 83-93.e3.	5.1	53
1437	Fecal transplantation for treatment of inflammatory bowel disease. The Cochrane Library, 2018, 2018, CD012774.	1.5	119
1438	Shifting the paradigm from inhibitors of inflammation to resolvers of inflammation in periodontitis. Journal of Periodontology, 2020, 91, S19-S25.	1.7	37
1439	Next-Generation Sequencing and Its Application: Empowering in Public Health Beyond Reality. Microorganisms for Sustainability, 2019, , 313-341.	0.4	28
1440	Gut Microbiota and Alimentary Tract Injury. Advances in Experimental Medicine and Biology, 2020, 1238, 11-22.	0.8	6
1441	The effects of cigarettes and alcohol on intestinal microbiota in healthy men. Journal of Microbiology, 2020, 58, 926-937.	1.3	26
1442	Delivery Mode Affects Stability of Early Infant Gut Microbiota. Cell Reports Medicine, 2020, 1, 100156.	3.3	97

#	Article	IF	CITATIONS
1443	Pinocembrin alleviates ulcerative colitis in mice via regulating gut microbiota, suppressing TLR4/MD2/NF-κB pathway and promoting intestinal barrier. Bioscience Reports, 2020, 40, .	1.1	25
1444	Bacterial Mucosa-associated Microbiome in Inflamed and Proximal Noninflamed Ileum of Patients With Crohn's Disease. Inflammatory Bowel Diseases, 2021, 27, 12-24.	0.9	46
1445	Concomitant decrease of double-positive lymphocyte population CD4CD8αα and Faecalibacterium prausnitzii in patients with colorectal cancer. European Journal of Gastroenterology and Hepatology, 2021, 32, 149-156.	0.8	10
1446	Prevention of Severe Intestinal Barrier Dysfunction Through a Single-Species Probiotics is Associated With the Activation of Microbiome-Mediated Glutamate–Glutamine Biosynthesis. Shock, 2021, 55, 128-137.	1.0	7
1447	The nursing home elder microbiome stability and associations with age, frailty, nutrition and physical location. Journal of Medical Microbiology, 2018, 67, 40-51.	0.7	69
1477	Systematic review: ileoanal pouch microbiota in health and disease. Alimentary Pharmacology and Therapeutics, 2018, 47, 466-477.	1.9	38
1478	Microbial Genomics and Pathogen Discovery. , 0, , 238-251.		1
1479	The gut microbiome: what every gastroenterologist needs to know. Frontline Gastroenterology, 2021, 12, 118-127.	0.9	16
1480	Influence of gastrectomy for gastric cancer treatment on faecal microbiome and metabolome profiles. Gut, 2020, 69, 1404-1415.	6.1	84
1481	Quyushengxin Formula Causes Differences in Bacterial and Phage Composition in Ulcerative Colitis Patients. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-13.	0.5	7
1482	Effects of proton pump inhibitor on the human gut microbiome profile in multi-ethnic groups in Singapore. Singapore Medical Journal, 2019, 60, 512-521.	0.3	16
1483	Indole-3-carbinol prevents colitis and associated microbial dysbiosis in an IL-22–dependent manner. JCI Insight, 2020, 5, .	2.3	78
1484	Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature. Journal of Clinical Investigation, 2014, 124, 3617-3633.	3.9	431
1485	Functional predictions from inference and observation in sequence-based inflammatory bowel disease research. Genome Biology, 2012, 13, 169.	13.9	14
1486	Modeling microbial abundances and dysbiosis with beta-binomial regression. Annals of Applied Statistics, 2020, 14, 94-115.	0.5	206
1487	Bayesian mixed effects models for zero-inflated compositions in microbiome data analysis. Annals of Applied Statistics, 2020, 14, .	0.5	7
1488	Bugs, genes, fatty acids, and serotonin: Unraveling inflammatory bowel disease?. F1000Research, 2015, 4, 1146.	0.8	6
1489	Microbiome analysis – from technical advances to biological relevance. F1000prime Reports, 2014, 6, 51.	5.9	9

#	Article	IF	CITATIONS
1490	Intestinal Microbiome, Small Intestinal Bacterial Overgrowth and Inflammatory Bowel Diseases - What are the Connections?. Current Health Sciences Journal, 2015, 41, 197-203.	0.2	1
1491	Automated and Accurate Estimation of Gene Family Abundance from Shotgun Metagenomes. PLoS Computational Biology, 2015, 11, e1004573.	1.5	55
1492	Variation in Rural African Gut Microbiota Is Strongly Correlated with Colonization by Entamoeba and Subsistence. PLoS Genetics, 2015, 11, e1005658.	1.5	171
1493	Colorectal cancer mutational profiles correlate with defined microbial communities in the tumor microenvironment. PLoS Genetics, 2018, 14, e1007376.	1.5	65
1494	A Modular Organization of the Human Intestinal Mucosal Microbiota and Its Association with Inflammatory Bowel Disease. PLoS ONE, 2013, 8, e80702.	1.1	147
1495	The Fecal Microbiome in Cats with Diarrhea. PLoS ONE, 2015, 10, e0127378.	1.1	95
1496	Dual Transcriptomic Profiling of Host and Microbiota during Health and Disease in Pediatric Asthma. PLoS ONE, 2015, 10, e0131819.	1.1	87
1497	Influence of the Biliary System on Biliary Bacteria Revealed by Bacterial Communities of the Human Biliary and Upper Digestive Tracts. PLoS ONE, 2016, 11, e0150519.	1.1	70
1498	Abundance profiling of specific gene groups using precomputed gut metagenomes yields novel biological hypotheses. PLoS ONE, 2017, 12, e0176154.	1.1	25
1499	Parametric studies of metabolic cooperativity in Escherichia coli colonies: Strain and geometric confinement effects. PLoS ONE, 2017, 12, e0182570.	1.1	10
1500	Experimental colitis delays and reduces the severity of collagen-induced arthritis in mice. PLoS ONE, 2017, 12, e0184624.	1.1	10
1501	Comparison of gizzard and intestinal microbiota of wild neotropical birds. PLoS ONE, 2018, 13, e0194857.	1.1	30
1502	Variation in the microbiome of the urogenital tract of Chlamydia-free female koalas (Phascolarctos) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
1503	Nutritional combinatorial impact on the gut microbiota and plasma short-chain fatty acids levels in the prevention of mammary cancer in Her2/neu estrogen receptor-negative transgenic mice. PLoS ONE, 2020, 15, e0234893.	1.1	18
1504	Interactive roles of gut microbiota and gastrointestinal motility in the development of inflammatory disorders. Inflammation and Cell Signaling, 0, , .	1.6	8
1505	Early life microbiome perturbation alters pulmonary responses to ozone in male mice. Physiological Reports, 2020, 8, e14290.	0.7	14
1506	Dysbiosis of gut microbiota in inflammatory bowel disease: Current therapies and potential for microbiota-modulating therapeutic approaches. Bosnian Journal of Basic Medical Sciences, 2021, 21, 270-283.	0.6	21
1507	Role of the Kaiso gene in the development of inï¬,ammation in Mucin-2 defcient mice. Vavilovskii Zhurnal Genetiki I Selektsii, 2019, 22, 1078-1083.	0.4	2

#	ARTICLE	IF	Citations
1508	Microbiome, gut dysbiosis and inflammatory bowel disease: That moment when the function is more important than taxonomy. Alʹmanah KliniÄeskoj Mediciny, 2018, 46, 396-425.	0.2	26
1509	Gut Microbiota in Health and Diseases – A Review. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 1586-1599.	0.0	15
1510	Developing a Reproducible Microbiome Data Analysis Pipeline Using the Amazon Web Services Cloud for a Cancer Research Group: Proof-of-Concept Study. JMIR Medical Informatics, 2019, 7, e14667.	1.3	12
1511	VSL#3 can prevent ulcerative colitis-associated carcinogenesis in mice. World Journal of Gastroenterology, 2018, 24, 4254-4262.	1.4	123
1512	Evaluation and comparison of short chain fatty acids composition in gut diseases. World Journal of Gastroenterology, 2019, 25, 5543-5558.	1.4	83
1513	Emerging use of artificial intelligence in inflammatory bowel disease. World Journal of Gastroenterology, 2020, 26, 6923-6928.	1.4	21
1514	Proteomic insights on the metabolism in inflammatory bowel disease. World Journal of Gastroenterology, 2020, 26, 696-705.	1.4	6
1515	An Update on the Relationship Between the Gut Microbiome and Obsessive-Compulsive Disorder. Psychiatric Annals, 2017, 47, 542-551.	0.1	5
1516	Navigating the Microbial Basis of Inflammatory Bowel Diseases: Seeing the Light at the End of the Tunnel. Gut and Liver, 2016, 10, 502-508.	1.4	14
1517	Nutritional approach as therapeutic manipulation in inflammatory bowel disease. Intestinal Research, 2019, 17, 463-475.	1.0	5
1518	Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls. Peerl, 2015, 3, e1140.	0.9	222
1519	Evaluation of a therapy for Idiopathic Chronic Enterocolitis in rhesus macaques (<i>Macaca) Tj ETQq1 1 0.784314</i>	ł rgBT G.9	/Overlock 10 Tf
1520	Regional distribution of <i>Christensenellaceae</i> and its associations with metabolic syndrome based on a population-level analysis. PeerJ, 2020, 8, e9591.	0.9	34
1521	The exposome in inflammatory bowel disease. Tropical Gastroenterology: Official Journal of the Digestive Diseases Foundation, 2014, 35, 135-140.	0.0	10
1522	A clinical primer of the role of gut microbiome in health and disease. Tropical Gastroenterology: Official Journal of the Digestive Diseases Foundation, 2015, 36, 1-13.	0.0	9
1523	Comparison of DNA Extraction Methods for Human Oral Microbiome Research. British Journal of Medicine and Medical Research, 2014, 4, 1980-1991.	0.2	14
1524	Gut Ruminococcaceae Levels Correlate with Risk of Antibiotic-Associated Diarrhea. SSRN Electronic Journal, 0, , .	0.4	0
1525	Microbiome Diagnostics and Interventions in Health and Disease. , 2021, , 157-215.		1

#	Article	IF	Citations
1526	mBodyMap: a curated database for microbes across human body and their associations with health and diseases. Nucleic Acids Research, 2022, 50, D808-D816.	6.5	26
1527	Early-life formula feeding is associated with infant gut microbiota alterations and an increased antibiotic resistance load. American Journal of Clinical Nutrition, 2022, 115, 407-421.	2.2	29
1528	The importance of age in compositional and functional profiling of the human intestinal microbiome. PLoS ONE, 2021, 16, e0258505.	1.1	10
1529	A recombinant glucocorticoidâ€induced leucine zipper protein ameliorates symptoms of dextran sulfate sodiumâ€induced colitis by improving intestinal permeability. FASEB Journal, 2021, 35, e21950.	0.2	10
1530	Gut microbiota and shortâ€chain fatty acid alterations in cachectic cancer patients. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 2007-2021.	2.9	56
1531	Metagenomic Profiling of Fecal-Derived Bacterial Membrane Vesicles in Crohn's Disease Patients. Cells, 2021, 10, 2795.	1.8	5
1532	Cervical Squamous Intraepithelial Lesions Are Associated with Differences in the Vaginal Microbiota of Mexican Women. Microbiology Spectrum, 2021, 9, e0014321.	1.2	21
1533	Transferable Immunoglobulin A–Coated Odoribacter splanchnicus in Responders to Fecal Microbiota Transplantation for Ulcerative Colitis Limits Colonic Inflammation. Gastroenterology, 2022, 162, 166-178.	0.6	60
1534	Probiotic <i>Lactiplantibacillus plantarum</i> Nâ€1 could prevent ethylene glycolâ€induced kidney stones by regulating gut microbiota and enhancing intestinal barrier function. FASEB Journal, 2021, 35, e21937.	0.2	17
1535	Prebiotic Galactooligosaccharide Supplementation in Adults with Ulcerative Colitis: Exploring the Impact on Peripheral Blood Gene Expression, Gut Microbiota, and Clinical Symptoms. Nutrients, 2021, 13, 3598.	1.7	16
1536	Extended graphical lasso for multiple interaction networks for high dimensional omics data. PLoS Computational Biology, 2021, 17, e1008794.	1.5	0
1537	A metagenomic study of the gut microbiome in PTB'S disease. Microbes and Infection, 2022, 24, 104893.	1.0	6
1538	A Bayesian Negative Binomial Hierarchical Model for Identifying Diet–Gut Microbiome Associations. Frontiers in Microbiology, 2021, 12, 711861.	1.5	0
1539	Effect of Environmental Exposures on the Gut Microbiota from Early Infancy to Two Years of Age. Microorganisms, 2021, 9, 2140.	1.6	9
1540	Microbiome Profiling Using Shotgun Metagenomic Sequencing Identified Unique Microorganisms in COVID-19 Patients With Altered Gut Microbiota. Frontiers in Microbiology, 2021, 12, 712081.	1.5	35
1542	Viral Inactivation Impacts Microbiome Estimates in a Tissue-Specific Manner. MSystems, 2021, 6, e0067421.	1.7	1
1543	Microbiome study in irradiated mice treated with BIO 300, a promising radiation countermeasure. Animal Microbiome, 2021, 3, 71.	1.5	13
1545	Mining the Microbiome and Microbiota-Derived Molecules in Inflammatory Bowel Disease. International Journal of Molecular Sciences, 2021, 22, 11243.	1.8	6

#	Article	IF	CITATIONS
1546	The Conserved Serine Transporter SdaC Moonlights To Enable Self Recognition. Journal of Bacteriology, 2022, 204, JB0034721.	1.0	1
1547	Construction of a "Bacteria-Metabolites―Co-Expression Network to Clarify the Anti–Ulcerative Colitis Effect of Flavonoids of Sophora flavescens Aiton by Regulating the "Host–Microbe― Interaction. Frontiers in Pharmacology, 2021, 12, 710052.	1.6	28
1548	Coix seed polysaccharides alleviate type 2 diabetes mellitus via gut microbiota-derived short-chain fatty acids activation of IGF1/PI3K/AKT signaling. Food Research International, 2021, 150, 110717.	2.9	54
1549	Commensal gut microbiota, genetic and epigenetic factors and susceptibility to inflammatory bowel disease. Microbiology Australia, 2013, 34, 151.	0.1	0
1551	Colorectal Adenocarcinoma and Inflammatory Bowel Disease: An Update and Review. Surgery Current Research, 2015, 05, .	0.1	0
1552	The microbiome in rheumatic diseases. , 2015, , 145-151.		0
1553	The Human Microbiome., 0,, 226-237.		1
1554	Commensal Gut Microbes Play an Important Role in Shaping Host Physiology. Journal of Bacteriology & Mycology Open Access, 2015, 1, .	0.2	0
1555	The Modulatory Effect of Dietary <i>Apostichopus japonicus</i> on Mice with Ulcerative Colitis Induced by Trinitrobenzene Sulfonic Acid. Journal of Biosciences and Medicines, 2016, 04, 15-27.	0.1	1
1560	Omics technologies and the choice of treatment strategy for inflammatory intestinal diseases. Russian Journal of Evidence-Based Gastroenterology, 2018, 7, 18.	0.3	0
1562	Mikrobiomische Selbstwirksamkeit. Ol^ffentliche Wissenschaft Und Gesellschaftlicher Wandel, 2019, , 43-66.	0.1	0
1565	Genomic Applications in theÂClinical Management of Infectious Diseases. , 2019, , 583-594.		0
1566	Statistical modeling on human microbiome sequencing data. Big Data & Information Analytics, 2019, 4, 1-12.	1.3	0
1567	The Gut Microbiome in Inflammatory Bowel Disease. , 2019, , 347-377.		0
1569	Deciphering Potential Drug Targets in Clostridium Perfringens through Metabolic Pathway Analysis. International Journal of Scientific Research in Science, Engineering and Technology, 2019, , 432-437.	0.1	0
1582	Selective granulocyte and monocyte apheresis in inflammatory bowel disease: Its past, present and future. World Journal of Gastrointestinal Pathophysiology, 2020, 11, 43-56.	0.5	7
1584	Change of Intestinal Microbial in Prototype Including <i>Lactobacillus plantarum</i> Strains Isolated from Black Raspberry. Journal of Agriculture & Life Science, 2020, 54, 93-99.	0.1	0
1586	Alterations of Gut Bacteria in Hirschsprung Disease and Hirschsprung-Associated Enterocolitis. Microorganisms, 2021, 9, 2241.	1.6	12

#	Article	IF	CITATIONS
1587	Reactive Oxygen Species/Reactive Nitrogen Species as Messengers in the Gut: Impact on Physiology and Metabolic Disorders. Antioxidants and Redox Signaling, 2022, 37, 394-415.	2.5	18
1588	Alteration of the gut microbiome in mycophenolate-induced enteropathy: impacts on the profile of short-chain fatty acids in a mouse model. BMC Pharmacology & Early; Toxicology, 2021, 22, 66.	1.0	15
1589	Metformin inhibits tumor growth and affects intestinal flora in diabetic tumor-bearing mice. European Journal of Pharmacology, 2021, 912, 174605.	1.7	10
1590	Association Between Gut Microbiota and Elevated Serum Urate in Two Independent Cohorts. Arthritis and Rheumatology, 2022, 74, 682-691.	2.9	37
1591	Crohn's Disease. , 2020, , 1-16.		0
1593	Immuneâ€mediated diseases and risk of Crohn's disease or ulcerative colitis: a prospective cohort study. Alimentary Pharmacology and Therapeutics, 2021, 53, 598-607.	1.9	16
1595	Microbiome for Personalized Medicine. , 2020, , 141-157.		0
1596	Extracerebral biometals in autism spectrum disorders: the gut–brain axis. , 2020, , 169-180.		0
1597	Pathogenese chronisch-entzýndlicher Darmerkrankungen. , 2020, , 51-69.		0
1598	An analysis of gut dysbiosis in obesity, diabetes, and chronic gut conditions. Ibnosina Journal of Medicine and Biomedical Sciences, 2020, 12, 264-271.	0.2	0
1601	The Relationship Between Mucosal Microbiota, Colitis, and Systemic Inflammation in Chronic Granulomatous Disorder. Journal of Clinical Immunology, 2022, 42, 312-324.	2.0	8
1602	Gut Microbiome and Gastrointestinal Diseases. Korean Journal of Clinical Laboratory Science, 2018, 50, 11-19.	0.1	2
1603	USE OF METABOLOMICS TO THE DIAGNOSIS OF INFLAMMATORY BOWEL DISEASE. Arquivos De Gastroenterologia, 2020, 57, 311-315.	0.3	10
1604	Intestinal microbiocenosis in patients with recurrent <i>Clostridium difficile</i> infection, ulcerative colitis and irritable bowel syndrome after transplantation of fecal microflora. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2020, , 69-77.	0.1	0
1605	Trace Ratio Optimization for High-Dimensional Multi-Class Discrimination. Journal of Computational and Graphical Statistics, 2021, 30, 192-203.	0.9	1
1608	Intestinal Microbiome in Preterm Infants Influenced by Enteral Iron Dosing. Journal of Pediatric Gastroenterology and Nutrition, 2021, 72, e132-e138.	0.9	5
1610	Faecal Microbiota Transplantation in Inflammatory Bowel Disease: Current Concepts and Future Challenges. Current Drug Targets, 2020, 21, 1440-1447.	1.0	9
1611	Digestive disorders and Intestinal microbiota. Acta Biomedica, 2018, 89, 47-51.	0.2	12

#	Article	IF	CITATIONS
1613	Organ transplantation and gut microbiota: current reviews and future challenges. American Journal of Translational Research (discontinued), 2018, 10, 3330-3344.	0.0	12
1614	Herbal Formula-3 ameliorates OVA-induced food allergy in mice may via modulating the gut microbiota. American Journal of Translational Research (discontinued), 2019, 11, 5812-5823.	0.0	4
1615	The potential therapeutic role of for treatment of inflammatory bowel disease. American Journal of Translational Research (discontinued), 2020, 12, 1569-1583.	0.0	6
1616	Ulcerative colitis results in differential metabolism of cranberry polyphenols by the colon microbiome <i>in vitro</i> . Food and Function, 2021, 12, 12751-12764.	2.1	5
1617	Nutrigenetics and nutrigenomicsâ€"A personalized approach to nutrition. Advances in Genetics, 2021, 108, 277-340.	0.8	5
1618	MAIT cell activation is reduced by direct and microbiota-mediated exposure to bisphenols. Environment International, 2022, 158, 106985.	4.8	10
1619	Current evidence on the modulatory effects of food proteins and peptides in inflammation and gut microbiota., 2022,, 517-534.		2
1620	Video Capsule Endoscopy and Ingestible Electronics: Emerging Trends in Sensors, Circuits, Materials, Telemetry, Optics, and Rapid Reading Software. Advanced Devices & Instrumentation, 2021, 2021, .	4.0	14
1621	Circulating bile acids concentration is predictive of coronary artery disease in human. Scientific Reports, 2021, 11, 22661.	1.6	22
1622	Correlation between Gut Microbiota and Six Facets of Neuroticism in Korean Adults. Journal of Personalized Medicine, 2021, 11, 1246.	1.1	9
1623	Lacticaseibacillus paracasei: Occurrence in the Human Gut Microbiota and K-Mer-Based Assessment of Intraspecies Diversity. Life, 2021, 11, 1246.	1.1	3
1624	Roseburia intestinalis: A Beneficial Gut Organism From the Discoveries in Genus and Species. Frontiers in Cellular and Infection Microbiology, 2021, 11, 757718.	1.8	139
1625	Metagenomic Analysis of Intestinal Microbiota in Florated Rats. Biological Trace Element Research, 2022, 200, 3275-3283.	1.9	4
1626	Systematic review: the association between the gut microbiota and medical therapies in inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 2022, 55, 26-48.	1.9	23
1627	A primer and discussion on DNA-based microbiome data and related bioinformatics analyses. , 0, 1 , .		6
1628	Cell-Free Supernatant of Odoribacter splanchnicus Isolated From Human Feces Exhibits Anti-colorectal Cancer Activity. Frontiers in Microbiology, 2021, 12, 736343.	1.5	12
1630	Dysregulation of alternative splicing is associated with the pathogenesis of ulcerative colitis. BioMedical Engineering OnLine, 2021, 20, 121.	1.3	4
1631	Psychological stress impairs IL22-driven protective gut mucosal immunity against colonising pathobionts. Nature Communications, 2021, 12, 6664.	5.8	26

#	Article	IF	CITATIONS
1632	Interspecies variation in hominid gut microbiota controls host gene regulation. Cell Reports, 2021, 37, 110057.	2.9	9
1633	Inflammatory Bowel Disease: Pathobiology. , 2022, , 743-750.		0
1634	Polysaccharide from edible alga Gloiopeltis furcata attenuates intestinal mucosal damage by therapeutically remodeling the interactions between gut microbiota and mucin O-glycans. Carbohydrate Polymers, 2022, 278, 118921.	5.1	15
1635	Multivariable association discovery in population-scale meta-omics studies. PLoS Computational Biology, 2021, 17, e1009442.	1.5	691
1636	Effect of prophylactic dextrose gel on the neonatal gut microbiome. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2022, 107, 501-507.	1.4	3
1637	Dysbiosis and relapse-related microbiome in inflammatory bowel disease: A shotgun metagenomic approach. Computational and Structural Biotechnology Journal, 2021, 19, 6481-6489.	1.9	21
1639	A Novel Zebrafish Model for Adherent-Invasive Escherichia Coli Indicates Protection from Infection by Treatment with Probiotic E. Coli Nissle. SSRN Electronic Journal, 0, , .	0.4	0
1640	E.coli Nissle increases transcription of flagella assembly and formate hydrogenlyase genes in response to colitis. Gut Microbes, 2021, 13, 1994832.	4.3	2
1641	The Gut Microbiota and Immunopathophysiology. , 2021, , .		0
1642	Intestinal Taxa Abundance and Diversity in Inflammatory Bowel Disease Patients: An Analysis including Covariates and Confounders. Nutrients, 2022, 14, 260.	1.7	21
1643	Long-term exclusive enteral nutrition remodels the gut microbiota and alleviates TNBS-induced colitis in mice. Food and Function, 2022, 13, 1725-1740.	2.1	7
1645	Effects of tea polysaccharides in combination with polyphenols on dextran sodium sulfate-induced colitis in mice. Food Chemistry: X, 2022, 13, 100190.	1.8	13
1646	Unravelling the Neuroinflammatory Mechanisms Underlying the Effects of Social Defeat Stress on Use of Drugs of Abuse. Current Topics in Behavioral Neurosciences, 2021, , 153-180.	0.8	3
1647	GWAS-associated bacteria and their metabolites appear to be causally related to the development of inflammatory bowel disease. European Journal of Clinical Nutrition, 2022, 76, 1024-1030.	1.3	10
1648	WORKbiota: A Systematic Review about the Effects of Occupational Exposure on Microbiota and Workers' Health. International Journal of Environmental Research and Public Health, 2022, 19, 1043.	1.2	5
1649	Fecal and soil microbiota composition of gardening and non-gardening families. Scientific Reports, 2022, 12, 1595.	1.6	8
1650	Pomegranate Extract Improves Colitis in ILâ€10 Knockout Mice Fed a High Fat High Sucrose Diet. Molecular Nutrition and Food Research, 2022, 66, e2100730.	1.5	5
1651	Gut microbiota and metabolic changes towards improved gut health with supplementation of Woodfordia fruticosa, a medicinal plant: An in vitro study. Innovative Food Science and Emerging Technologies, 2022, 75, 102896.	2.7	0

#	Article	IF	CITATIONS
1652	Prebiotic effects of goji berry in protection against inflammatory bowel disease. Critical Reviews in Food Science and Nutrition, 2023, 63, 5206-5230.	5 . 4	11
1655	Gut microbiome alterations in hereditary angioedema. Annals of Allergy, Asthma and Immunology, 2022, , .	0.5	2
1656	Gut Ruminococcaceae levels at baseline correlate with risk of antibiotic-associated diarrhea. IScience, 2022, 25, 103644.	1.9	28
1657	Current advances in the anti-inflammatory effects and mechanisms of natural polysaccharides. Critical Reviews in Food Science and Nutrition, 2023, 63, 5890-5910.	5. 4	32
1658	Comparative Profiling of Survival, Growth, and Intestinal Microbial Community of Pearl Oyster Pinctada maxima Juvenile in the Industrial Farming: The Feasibility of Using Spray-Dried Microalgae Powder. Frontiers in Marine Science, 2022, 8, .	1,2	4
1659	Vitamin D Supplementation in Exclusively Breastfed Infants Is Associated with Alterations in the Fecal Microbiome. Nutrients, 2022, 14, 202.	1.7	6
1660	The Impact of the Microbiome on Resistance to Cancer Treatment with Chemotherapeutic Agents and Immunotherapy. International Journal of Molecular Sciences, 2022, 23, 488.	1.8	31
1661	<i>uvrY</i> Deletion and Acetate Reduce Gut Colonization of Crohn's Disease-Associated Adherent-Invasive Escherichia coli by Decreasing Expression of Type 1 Fimbriae. Infection and Immunity, 2022, 90, iai0066221.	1.0	6
1662	Pediococcus pentosaceus CECT 8330 protects DSS-induced colitis and regulates the intestinal microbiota and immune responses in mice. Journal of Translational Medicine, 2022, 20, 33.	1.8	36
1663	A randomized double-blind cross-over trial to study the effects of resistant starch prebiotic in chronic kidney disease (ReSPECKD). Trials, 2022, 23, 72.	0.7	5
1664	Gut microbiome development in early childhood is affected by day care attendance. Npj Biofilms and Microbiomes, 2022, 8, 2.	2.9	17
1665	Tea Polyphenols: A Natural Antioxidant Regulates Gut Flora to Protect the Intestinal Mucosa and Prevent Chronic Diseases. Antioxidants, 2022, 11, 253.	2.2	18
1666	Gut microbiome and health: mechanistic insights. Gut, 2022, 71, 1020-1032.	6.1	661
1667	Metagenomics Versus Metatranscriptomics of the Murine Gut Microbiome for Assessing Microbial Metabolism During Inflammation. Frontiers in Microbiology, 2022, 13, 829378.	1.5	15
1668	Oral-Intestinal Microbiota in Colorectal Cancer: Inflammation and Immunosuppression. Journal of Inflammation Research, 2022, Volume 15, 747-759.	1.6	19
1669	Rectal swabs are a reliable method of assessing the colonic microbiome. International Journal of Medical Microbiology, 2022, 312, 151549.	1.5	7
1670	Intestinal toxicity of micro- and nano-particles of foodborne titanium dioxide in juvenile mice: Disorders of gut microbiota–host co-metabolites and intestinal barrier damage. Science of the Total Environment, 2022, 821, 153279.	3.9	13
1671	Mucosal microbiome is predictive of pediatric Crohnâ \in ^M s disease across geographic regions in North America. F1000Research, 0, 11, 156.	0.8	0

#	ARTICLE	IF	CITATIONS
1672	Gastrointestinal Autonomic Neuropathy Exacerbates Gut Microbiota Dysbiosis in Adult Patients With Type 2 Diabetes Mellitus. Frontiers in Cellular and Infection Microbiology, 2021, 11, 804733.	1.8	11
1673	Contributions of the microbiome to intestinal inflammation in a gut-on-a-chip. Nano Convergence, 2022, 9, 8.	6.3	32
1674	Analysis of the Associations Between the Human Fecal Microbiome and Bone Density, Structure, and Strength: The Osteoporotic Fractures in Men (MrOS) Cohort. Journal of Bone and Mineral Research, 2020, 37, 597-607.	3.1	13
1675	Potential prebiotic effects of nonabsorptive components of Keemun and Dianhong black tea: an in vitro study. Food Science and Human Wellness, 2022, 11, 648-659.	2.2	4
1676	Alterations in gut bacterial and fungal microbiomes are associated with bacterial Keratitis, an inflammatory disease of the human eye. Journal of Biosciences, 2018, 43, 835-856.	0.5	17
1677	Factors influencing the gut microbiome in children: from infancy to childhood. Journal of Biosciences, 2019, 44, .	0.5	21
1678	Connect between gut microbiome and diseases of the human eye. Journal of Biosciences, 2019, 44, .	0.5	7
1679	The Gut Microbiome. , 2022, , .		O
1680	A nonautonomous chemostat model for the growth of gut microbiome with varying nutrient. Discrete and Continuous Dynamical Systems - Series S, 2022, 15, 2889.	0.6	2
1681	Research Progress of Physiological Function of Short-Chain Fatty Acids in the Intestine. Advances in Clinical Medicine, 2022, 12, 939-945.	0.0	0
1682	Effect of Lycopus lucidus Turcz. supplementation on gut microflora and short chain fatty acid composition in Crj: CD-1 mice. Biocell, 2022, 46, 1-9.	0.4	1
1683	Development and Validation of a Novel Microbiome-Based Biomarker of Post-antibiotic Dysbiosis and Subsequent Restoration. Frontiers in Microbiology, 2021, 12, 781275.	1.5	8
1684	Chronic exposure to ambient traffic-related air pollution (TRAP) alters gut microbial abundance and bile acid metabolism in a transgenic rat model of Alzheimer's disease. Toxicology Reports, 2022, 9, 432-444.	1.6	7
1685	Glycolipid Metabolism and Metagenomic Analysis of the Therapeutic Effect of a Phenolics-Rich Extract from Noni Fruit on Type 2 Diabetic Mice. Journal of Agricultural and Food Chemistry, 2022, 70, 2876-2888.	2.4	34
1686	Gut Microbiota Modulation for Therapeutic Management of Various Diseases: A New Perspective Using Stem Cell Therapy. Current Molecular Pharmacology, 2022, 15, .	0.7	1
1687	Modulation of Gut Microbial Diversity through Non-Pharmaceutical Approaches to Treat Schizophrenia. International Journal of Molecular Sciences, 2022, 23, 2625.	1.8	10
1688	Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 383-397.	8.2	87
1690	Identification of gut microbiome and transcriptome changes in ulcerative colitis and pouchitis. Scandinavian Journal of Gastroenterology, 2022, 57, 942-952.	0.6	7

#	Article	IF	CITATIONS
1692	Micronutrient Improvement of Epithelial Barrier Function in Various Disease States: A Case for Adjuvant Therapy. International Journal of Molecular Sciences, 2022, 23, 2995.	1.8	6
1693	The Toxic Effects of Endocrine Disrupting Chemicals (EDCs) on Gut Microbiota: Bisphenol A (BPA) A Review. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2022, 22, 716-727.	0.6	19
1694	B-cell-depletion reverses dysbiosis of the microbiome in multiple sclerosis patients. Scientific Reports, 2022, 12, 3728.	1.6	10
1695	STIM1 Deficiency In Intestinal Epithelium Attenuates Colonic Inflammation and Tumorigenesis by Reducing ER Stress of Goblet Cells. Cellular and Molecular Gastroenterology and Hepatology, 2022, 14, 193-217.	2.3	12
1697	Inflammatory Bowel Disease and COVID-19: How Microbiomics and Metabolomics Depict Two Sides of the Same Coin. Frontiers in Microbiology, 2022, 13, 856165.	1.5	9
1698	Proposal of a health gut microbiome index based on a meta-analysis of Korean and global population datasets. Journal of Microbiology, 2022, 60, 533-549.	1.3	7
1700	Multiomic Analysis of the Gut Microbiome in Psoriasis Reveals Distinct Hostâ€'Microbe Associations. JID Innovations, 2022, 2, 100115.	1.2	8
1701	Dietary Patterns and Gut Microbiota: The Crucial Actors in Inflammatory Bowel Disease. Advances in Nutrition, 2022, 13, 1628-1651.	2.9	16
1702	Cerebral Intraparenchymal Hemorrhage Changes Patients' Gut Bacteria Composition and Function. Frontiers in Cellular and Infection Microbiology, 2022, 12, 829491.	1.8	13
1703	Alternations in the gut microbiota and metabolome with newly diagnosed unstable angina. Journal of Genetics and Genomics, 2022, 49, 240-248.	1.7	3
1704	Fucoidan Is Not Completely Dependent on Degradation to Fucose to Relieve Ulcerative Colitis. Pharmaceuticals, 2022, 15, 430.	1.7	5
1705	Antihypertensive Therapy by ACEI/ARB Is Associated With Intestinal Flora Alterations and Metabolomic Profiles in Hypertensive Patients. Frontiers in Cell and Developmental Biology, 2022, 10, 861829.	1.8	1
1706	The Positive Influence of Polyphenols Extracted From Pueraria lobata Root on the Gut Microbiota and Its Antioxidant Capability. Frontiers in Nutrition, 2022, 9, 868188.	1.6	11
1707	Dietary manipulation of the gut microbiome in inflammatory bowel disease patients: Pilot study. Gut Microbes, 2022, 14, 2046244.	4.3	29
1708	Host Immunity Influences the Composition of Murine Gut Microbiota. Frontiers in Immunology, 2022, 13, 828016.	2.2	11
1709	Analysis of gut microbiome profiles in common marmosets (Callithrix jacchus) in health and intestinal disease. Scientific Reports, 2022, 12, 4430.	1.6	9
1710	Nutritional management of inflammatory bowel disease; an overview of the evidences. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2022, 16, 102440.	1.8	1
1711	Association between intestinal microbiome and inflammatory bowel disease: Insights from bibliometric analysis. Computational and Structural Biotechnology Journal, 2022, 20, 1716-1725.	1.9	19

#	Article	IF	Citations
1712	Linking circadian rhythms to microbiome-gut-brain axis in aging-associated neurodegenerative diseases. Ageing Research Reviews, 2022, 78, 101620.	5.0	23
1714	Role of Mucin 2 Glycoprotein and L-fucose in Interaction of Immunity and Microbiome within the Experimental Model of Inflammatory Bowel Disease. Biochemistry (Moscow), 2022, 87, 301-318.	0.7	6
1715	Gut microbiota and inflammatory bowel disease. WIREs Mechanisms of Disease, 2022, 14, e1540.	1.5	15
1716	The Potential Role of Phytonutrients Flavonoids Influencing Gut Microbiota in the Prophylaxis and Treatment of Inflammatory Bowel Disease. Frontiers in Nutrition, 2021, 8, 798038.	1.6	25
1717	Exclusive Enteral Nutrition in Adult Crohn's Disease: an Overview of Clinical Practice and Perceived Barriers. Clinical and Experimental Gastroenterology, 2021, Volume 14, 493-501.	1.0	8
1718	Gut Homeostasis; Microbial Cross Talks in Health and Disease Management. Current Research in Nutrition and Food Science, 2021, 9, 1017-1045.	0.3	0
1719	Stability of healthy subgingival microbiome across space and time. Scientific Reports, 2021, 11, 23987.	1.6	14
1720	Cerebrospinal Fluid from Healthy Pregnant Women Does Not Harbor a Detectable Microbial Community. Microbiology Spectrum, 2021, 9, e0076921.	1.2	5
1721	Ginsenosides Rd monomer inhibits proinflammatory cytokines production and alleviates DSS-colitis by NF-κB and P38MAPK pathways in mice. Immunopharmacology and Immunotoxicology, 2022, 44, 110-118.	1,1	5
1722	Anaerostipes hominis sp. nov., a novel butyrate-producing bacteria isolated from faeces of a patient with Crohn's disease. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	0.8	16
1723	Kernel principal components based cascade forest towards disease identification with human microbiota. BMC Medical Informatics and Decision Making, 2021, 21, 360.	1.5	3
1724	Captivity Influences the Gut Microbiome of Rhinopithecus roxellana. Frontiers in Microbiology, 2021, 12, 763022.	1.5	15
1725	Effects of Malted Rice Amazake on Constipation Symptoms and Gut Microbiota in Children and Adults with Severe Motor and Intellectual Disabilities: A Pilot Study. Nutrients, 2021, 13, 4466.	1.7	7
1726	Next-generation sequencing (NGS) methods and their application in clinical microbiology, infectology and epidemiology. Problemy Zdorovʹâ I ðkologii, 2021, 18, 26-32.	0.0	1
1727	GBDR: a Bayesian model for precise prediction of pathogenic microorganisms using 16S rRNA gene sequences. BMC Genomics, 2021, 22, 916.	1.2	0
1728	Lactoferrin modulates gut microbiota and Toll-like receptors (TLRs) in mice with dysbiosis induced by antibiotics. Food and Function, 2022, 13, 5854-5869.	2.1	14
1729	Physical and Dietary Intervention with Opuntia ficus-indica (Nopal) in Women with Obesity Improves Health Condition through Gut Microbiota Adjustment. Nutrients, 2022, 14, 1008.	1.7	7
1730	Dysbiosis in Inflammatory Bowel Disease: Pathogenic Role and Potential Therapeutic Targets. International Journal of Molecular Sciences, 2022, 23, 3464.	1.8	73

#	Article	IF	CITATIONS
1731	LinDA: linear models for differential abundance analysis of microbiome compositional data. Genome Biology, 2022, 23, 95.	3.8	79
1732	Cognitive Function Associated with Gut Microbial Abundance in Sucrose and S-Adenosyl-L-Methionine (SAMe) Metabolic Pathways. Journal of Alzheimer's Disease, 2022, 87, 1115-1130.	1.2	14
1733	Mucosal metabolites fuel the growth and virulence of E. coli linked to Crohn's disease. JCI Insight, 2022, 7, .	2.3	17
1734	Succession of the Gut Microbiome in the Tibetan Population of Minjiang River Basin. Frontiers in Microbiology, 2022, 13, 834335.	1.5	2
1735	Lactobacillus plantarum strains attenuated DSS-induced colitis in mice by modulating the gut microbiota and immune response. International Microbiology, 2022, 25, 587-603.	1.1	15
1736	The healthy urinary microbiome in asymptomatic participants in the MAPP Network Study: Relation to gender, age, and menopausal status. Canadian Urological Association Journal, 2022, 16, .	0.3	4
1737	Relationship between gut microbiome characteristics and the effect of nutritional therapy on glycemic control in pregnant women with gestational diabetes mellitus. PLoS ONE, 2022, 17, e0267045.	1.1	7
1738	Metagenomic and metabolomic remodeling in nonagenarians and centenarians and its association with genetic and socioeconomic factors. Nature Aging, 2022, 2, 438-452.	5. 3	17
1739	16S rRNA and metagenomic shotgun sequencing data revealed consistent patterns of gut microbiome signature in pediatric ulcerative colitis. Scientific Reports, 2022, 12, 6421.	1.6	22
1740	Targeting colonic macrophages improves glycemic control in high-fat diet-induced obesity. Communications Biology, 2022, 5, 370.	2.0	13
1741	Editorial: The Microbiome in Hepatobiliary and Intestinal Disease. Frontiers in Physiology, 2022, 13, 893074.	1.3	6
1742	Gut microbiome responses to dietary intervention with hypocholesterolemic vegetable oils. Npj Biofilms and Microbiomes, 2022, 8, 24.	2.9	11
1867	Microbiota in health and diseases. Signal Transduction and Targeted Therapy, 2022, 7, 135.	7.1	494
1868	Longitudinal analysis of the impact of oral contraceptive use on the gut microbiome. Journal of Medical Microbiology, 2022, 71, .	0.7	8
1869	Antibiotics, gut microbiota, and irritable bowel syndrome: What are the relations?. World Journal of Gastroenterology, 2022, 28, 1204-1219.	1.4	21
1870	Immunomodulatory properties of CNF1 toxin from: implications for colorectal carcinogenesis American Journal of Cancer Research, 2022, 12, 651-660.	1.4	0
1871	OmicsNet 2.0: a web-based platform for multi-omics integration and network visual analytics. Nucleic Acids Research, 2022, 50, W527-W533.	6.5	58
1872	High-sensitivity pattern discovery in large, paired multiomic datasets. Bioinformatics, 2022, 38, i378-i385.	1.8	18

#	Article	IF	CITATIONS
1874	Inflammatory bowel disease biomarkers of human gut microbiota selected via different feature selection methods. PeerJ, 2022, 10, e13205.	0.9	15
1875	Intestinal Dysbiosis in Patients with Histamine Intolerance. Nutrients, 2022, 14, 1774.	1.7	24
1876	Selective Maternal Seeding and Rearing Environment From Birth to Weaning Shape the Developing Piglet Gut Microbiome. Frontiers in Microbiology, 2022, 13, 795101.	1.5	6
1877	Lactobacillus acidophilus and HKL Suspension Alleviates Ulcerative Colitis in Rats by Regulating Gut Microbiota, Suppressing TLR9, and Promoting Metabolism. Frontiers in Pharmacology, 2022, 13, .	1.6	8
1878	Dynamics of Changes in the Gut Microbiota of Healthy Mice Fed with Lactic Acid Bacteria and Bifidobacteria. Microorganisms, 2022, 10, 1020.	1.6	26
1879	Dysbiosis in the Gut Microbiota in Patients with Inflammatory Bowel Disease during Remission. Microbiology Spectrum, 2022, 10, e0061622.	1.2	34
1880	A neural networkâ€based framework to understand the type 2 diabetesâ€related alteration of the human gut microbiome. , 2022, 1, .		5
1881	The Lumenal Microbiota Varies Biogeographically in the Gastrointestinal Tract of Rhesus Macaques. Microbiology Spectrum, 2022, 10, e0034322.	1.2	2
1882	Microbiome systems biology advancements for natural well-being. Science of the Total Environment, 2022, 838, 155915.	3.9	5
1883	Any Future for Faecal Microbiota Transplantation as a Novel Strategy for Gut Microbiota Modulation in Human and Veterinary Medicine?. Life, 2022, 12, 723.	1.1	5
1884	EasyMap - An Interactive Web Tool for Evaluating and Comparing Associations of Clinical Variables and Microbiome Composition. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	3
1885	Goat milk fermented with combined lactic acid bacterium alter microbial community structures and levels of the targeted short-chain fatty acids in the large intestine of mice. Food Research International, 2022, 157, 111352.	2.9	3
1886	Machine Learning Based Microbiome Signature to Predict Inflammatory Bowel Disease Subtypes. Frontiers in Microbiology, 2022, 13, .	1.5	7
1887	Polyphenolic Extracts of Coffee Cherry Husks Alleviated Colitis-Induced Neural Inflammation via NF-κB Signaling Regulation and Gut Microbiota Modification. Journal of Agricultural and Food Chemistry, 2022, 70, 6467-6477.	2.4	12
1888	Discovery of bioactive microbial gene products in inflammatory bowel disease. Nature, 2022, 606, 754-760.	13.7	38
1889	Inflammatory auto-immune diseases of the intestine and their management by natural bioactive compounds. Biomedicine and Pharmacotherapy, 2022, 151, 113158.	2.5	15
1890	Association of Human Intestinal Microbiota with Lifestyle Activity, Adiposity, and Metabolic Profiles in Thai Children with Obesity. Journal of Nutrition and Metabolism, 2022, 2022, 1-14.	0.7	2
1891	Gut Microbes Reveal Pseudomonas Medicates Ingestion Preference via Protein Utilization and Cellular Homeostasis Under Feed Domestication in Freshwater Drum, Aplodinotus grunniens. Frontiers in Microbiology, 2022, 13, .	1.5	9

#	Article	IF	CITATIONS
1892	Immunological and safety profile of bacteriophage therapy: A pre-clinical study. Journal of Applied Microbiology, 2022, 133, 1446-1460.	1.4	1
1894	Interaction between Dietary Factors and Gut Microbiota in Ulcerative Colitis. Journal of Digestive Cancer Reports, 2022, 10, 31-38.	0.0	0
1896	Gut Microbiome Signatures of Progression in Alzheimer's Disease: A Systematic Review and Meta-Analysis. SSRN Electronic Journal, 0, , .	0.4	0
1897	Probiotics in sports and physical exercise. , 2022, , 345-372.		0
1898	Temporal changes in gastrointestinal fungi and the risk of autoimmunity during early childhood: the TEDDY study. Nature Communications, 2022, 13, .	5.8	13
1899	Metabolomics: The Key to Unraveling the Role of the Microbiome in Visceral Pain Neurotransmission. Frontiers in Neuroscience, 0, 16 , .	1.4	3
1900	Milk Fat Globule Membrane Attenuates Acute Colitis and Secondary Liver Injury by Improving the Mucus Barrier and Regulating the Gut Microbiota. Frontiers in Immunology, $0,13,.$	2.2	8
1901	Whole-Genome Sequencing Reveals Age-Specific Changes in the Human Blood Microbiota. Journal of Personalized Medicine, 2022, 12, 939.	1.1	3
1903	Metagenomic Research of Infectious Diseases in Archaeological Contexts: Evidence from the Hospital Real de Todos-os-Santos (Portugal). Applied Sciences (Switzerland), 2022, 12, 6096.	1.3	5
1904	An adult zebrafish model for adherent-invasive Escherichia coli indicates protection from AIEC infection by probiotic E.Âcoli Nissle. IScience, 2022, 25, 104572.	1.9	7
1905	Mesenchymal stem cell-derived exosome mitigates colitis <i>via</i> the modulation of the gut metagenomics–metabolomics–farnesoid X receptor axis. Biomaterials Science, 2022, 10, 4822-4836.	2.6	13
1906	Octanoate Alleviates Dietary Soybean Oil-Induced Intestinal Physical Barrier Damage, Oxidative Stress, Inflammatory Response and Microbial Dysbiosis in Large Yellow Croaker (Larimichthys Crocea). Frontiers in Immunology, 0, 13, .	2.2	5
1907	Sugarâ€sweetened beverages, artificially sweetened beverages and natural juices and risk of inflammatory bowel disease: a cohort study of 121,490 participants. Alimentary Pharmacology and Therapeutics, 2022, 56, 1018-1029.	1.9	20
1908	Both Disease Activity and HLA–B27 Status Are Associated With Gut Microbiome Dysbiosis in Spondyloarthritis Patients. Arthritis and Rheumatology, 2023, 75, 41-52.	2.9	19
1910	Habitat and Host Species Drive the Structure of Bacterial Communities of Two Neotropical Trap-Jaw Odontomachus Ants. Microbial Ecology, 0, , .	1.4	1
1911	Alginate Oligosaccharides Ameliorate DSS-Induced Colitis through Modulation of AMPK/NF-κB Pathway and Intestinal Microbiota. Nutrients, 2022, 14, 2864.	1.7	14
1912	Changes of intestinal microbiota and microbiota-based treatments in IBD. Archives of Microbiology, 2022, 204, .	1.0	3
1913	Distinctive gut microbiomes of ankylosing spondylitis and inflammatory bowel disease patients suggest differing roles in pathogenesis and correlate with disease activity. Arthritis Research and Therapy, 2022, 24, .	1.6	9

#	Article	IF	CITATIONS
1914	MicrobiomeGWAS: A Tool for Identifying Host Genetic Variants Associated with Microbiome Composition. Genes, 2022, 13, 1224.	1.0	9
1915	Sugary vs salty food industry leftovers in postweaning piglets: effects on gut microbiota and intestinal volatile fatty acid production. Animal, 2022, 16, 100584.	1.3	4
1916	Long-term exposure to air pollution and risk of incident inflammatory bowel disease among middle and old aged adults. Ecotoxicology and Environmental Safety, 2022, 242, 113835.	2.9	8
1917	The Common and Unique Pattern of Microbiome Profiles among Saliva, Tissue, and Stool Samples in Patients with Crohn's Disease. Microorganisms, 2022, 10, 1467.	1.6	5
1918	Patient-derived Enterococcus faecium with inflammatory genotypes promote colitis. Journal of Gastroenterology, 2022, 57, 770-783.	2.3	2
1919	Antibiotic and antifungal use in pediatric leukemia and lymphoma patients are associated with increasing opportunistic pathogens and decreasing bacteria responsible for activities that enhance colonic defense. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	6
1920	Bringing pharmacomicrobiomics to the clinic through wellâ€designed studies. Clinical and Translational Science, 2022, 15, 2303-2315.	1.5	4
1921	Mucolytic bacteria license pathobionts to acquire host-derived nutrients during dietary nutrient restriction. Cell Reports, 2022, 40, 111093.	2.9	19
1922	Impact of indigenous microbiota in gut inflammatory disorders. , 2022, , 179-209.		0
1923	The beneficial role of healthy microbiome in metabolic syndrome and cardiovascular health. , 2022, , 109-124.		1
1924	Study of the gut microbiome in Egyptian patients with active ulcerative colitis. Revista De GastroenterologÃa De México (English Edition), 2022, , .	0.1	2
1925	Exploring the association between microbiota and behaviour in suckling piglets. Scientific Reports, 2022, 12, .	1.6	3
1926	Temporal Dynamics of the Intestinal Microbiome Following Short-Term Dietary Restriction. Nutrients, 2022, 14, 2785.	1.7	5
1927	Associations between the Gut Microbiome and Migraines in Children Aged 7-18 Years: An Analysis of the American Gut Project Cohort. Pain Management Nursing, 2023, 24, 35-43.	0.4	7
1928	Association Between Gut Microbiota and Depressive Symptoms: A Cross-Sectional Population-Based Study in South Korea. Psychosomatic Medicine, 2022, 84, 757-765.	1.3	4
1929	Examining the association between the gastrointestinal microbiota and Gulf War illness: A prospective cohort study. PLoS ONE, 2022, 17, e0268479.	1.1	1
1930	Sacha Inchi Oil Press-Cake Protein Hydrolysates Exhibit Anti-Hyperuricemic Activity via Attenuating Renal Damage and Regulating Gut Microbiota. Foods, 2022, 11, 2534.	1.9	6
1931	Crohn's disease in endoscopic remission, obesity, and cases of high genetic risk demonstrate overlapping shifts in the colonic mucosal-luminal interface microbiome. Genome Medicine, 2022, 14, .	3.6	8

#	Article	IF	CITATIONS
1932	Genomic reconstruction of short-chain fatty acid production by the human gut microbiota. Frontiers in Molecular Biosciences, $0, 9, .$	1.6	18
1933	MetaProClust-MS1: an MS1 Profiling Approach for Large-Scale Microbiome Screening. MSystems, 0, , .	1.7	3
1934	Computational approach to modeling microbiome landscapes associated with chronic human disease progression. PLoS Computational Biology, 2022, 18, e1010373.	1.5	3
1935	A Multi-Strain Probiotic Formulation Improves Intestinal Barrier Function by the Modulation of Tight and Adherent Junction Proteins. Cells, 2022, 11, 2617.	1.8	12
1936	Comparison of Metabolites and Gut Microbes between Patients with Ulcerative Colitis and Healthy Individuals for an Integrative Medicine Approach to Ulcerative Colitis—A Pilot Observational Clinical Study (STROBE Compliant). Diagnostics, 2022, 12, 1969.	1.3	6
1937	Impacts of Gut Microbiota on the Immune System and Fecal Microbiota Transplantation as a Re-Emerging Therapy for Autoimmune Diseases. Antibiotics, 2022, 11, 1093.	1.5	4
1938	Bifidobacterium breve Alleviates DSS-Induced Colitis in Mice by Maintaining the Mucosal and Epithelial Barriers and Modulating Gut Microbes. Nutrients, 2022, 14, 3671.	1.7	16
1939	Impact of <i>Lycium barbarum </i> arabinogalactan on the fecal metabolome in a DSS-induced chronic colitis mouse model. Food and Function, 2022, 13, 8703-8716.	2.1	21
1940	The Intestine Microbiota Community and Enzyme Activity in Trachinotus ovatus After Short-Time Antibiotic Bath Administration., 2022, , 195-207.		2
1941	Detection of <i>Klebsiella pneumoniae</i> human gut carriage: a comparison of culture, qPCR, and whole metagenomic sequencing methods. Gut Microbes, 2022, 14, .	4.3	10
1942	Quantitative Fecal Microbiota Profiles Relate to Therapy Response During Induction With Tumor Necrosis Factor α Antagonist Infliximab in Pediatric Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2023, 29, 116-124.	0.9	7
1944	Siderophore Immunization Restricted Colonization of Adherent-Invasive Escherichia coli and Ameliorated Experimental Colitis. MBio, 2022, 13, .	1.8	9
1945	Gut microbiome of multiple sclerosis patients and paired household healthy controls reveal associations with disease risk and course. Cell, 2022, 185, 3467-3486.e16.	13.5	72
1946	Intercontinental Gut Microbiome Variances in IBD. International Journal of Molecular Sciences, 2022, 23, 10868.	1.8	3
1947	Harnessing the Vnn1 pantetheinase pathway boosts short chain fatty acids production and mucosal protection in colitis. Gut, 2023, 72, 1115-1128.	6.1	9
1948	Immune chromatin reader SP140 regulates microbiota and risk for inflammatory bowel disease. Cell Host and Microbe, 2022, 30, 1370-1381.e5.	5.1	8
1949	Regulation of gut microbiota-bile acids axis by probiotics in inflammatory bowel disease. Frontiers in Immunology, 0, 13, .	2.2	5
1950	Cytochrome P450 $1A1$ is essential for the microbial metabolite, Urolithin A-mediated protection against colitis. Frontiers in Immunology, $0,13,.$	2.2	8

#	Article	IF	CITATIONS
1951	Etiology of Ulcerative Colitis. , 0, , .		0
1952	Intestinal microbial diversity in female rhesus (Macaca mulatta) at different physiological periods. Frontiers in Microbiology, $0,13,.$	1.5	0
1953	Novel lineages of single-stranded DNA phages that coevolved with the symbiotic bacteria Rhizobium. Frontiers in Microbiology, 0, 13 , .	1.5	5
1954	Searching for a Consensus Among Inflammatory Bowel Disease Studies: A Systematic Meta-Analysis. Inflammatory Bowel Diseases, 2023, 29, 125-139.	0.9	14
1955	The ileal fungal microbiota is altered in Crohn's disease and is associated with the disease course. Frontiers in Medicine, 0, 9, .	1.2	7
1956	Extracellular vesicle miRNAs promote the intestinal microenvironment by interacting with microbes in colitis. Gut Microbes, 2022, 14, .	4.3	14
1958	Global trends in intestinal flora and ulcerative colitis research during the past 10 years: A bibliometric analysis. Frontiers in Microbiology, 0, 13 , .	1.5	7
1959	Selective serotonin reuptake inhibitors and inflammatory bowel disease; Beneficial or malpractice. Frontiers in Immunology, 0, 13, .	2.2	8
1960	The oral-gut axis: Salivary and fecal microbiome dysbiosis in patients with inflammatory bowel disease. Frontiers in Cellular and Infection Microbiology, $0,12,.$	1.8	24
1961	Microbiome epidemiology and association studies in human health. Nature Reviews Genetics, 2023, 24, 109-124.	7.7	17
1962	Overrepresentation of Enterobacteriaceae and Escherichia coli is the major gut microbiome signature in Crohn's disease and ulcerative colitis; a comprehensive metagenomic analysis of IBDMDB datasets. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	18
1963	Population structure discovery in meta-analyzed microbial communities and inflammatory bowel disease using MMUPHin. Genome Biology, 2022, 23, .	3.8	33
1964	Improvement of Fish Growth and Metabolism by Oligosaccharide Prebiotic Supplement. Aquaculture Nutrition, 2022, 2022, 1-13.	1.1	5
1965	Technology-driven surrogates and the perils of epistemic misalignment: an analysis in contemporary microbiome science. SynthÃse, 2022, 200, .	0.6	2
1966	The dietary treatment of histamine intolerance reduces the abundance of some histamine-secreting bacteria of the gut microbiota in histamine intolerant women. A pilot study. Frontiers in Nutrition, 0, 9, .	1.6	7
1967	The Protective Effects of Nutraceutical Components in Methotrexate-Induced Toxicity Models—An Overview. Microorganisms, 2022, 10, 2053.	1.6	5
1968	Plasticity of the adult human small intestinal stoma microbiota. Cell Host and Microbe, 2022, 30, 1773-1787.e6.	5.1	16
1969	Causality of Opportunistic Pathogen <i>Klebsiella pneumoniae</i> to Hypertension Development. Hypertension, 2022, 79, 2743-2754.	1.3	7

#	Article	IF	CITATIONS
1970	Strain level and comprehensive microbiome analysis in inflammatory bowel disease via multi-technology meta-analysis identifies key bacterial influencers of disease. Frontiers in Microbiology, 0, 13 , .	1.5	3
1971	Immune Checkpoint Inhibitor Enterocolitis vs Idiopathic Inflammatory Bowel Disease. Clinical Gastroenterology and Hepatology, 2023, 21, 878-890.	2.4	3
1972	Comparison of microbial signatures between paired faecal and rectal biopsy samples from healthy volunteers using next-generation sequencing and culturomics. Microbiome, 2022, 10, .	4.9	10
1973	Paeonol Ameliorates Ulcerative Colitis in Mice by Modulating the Gut Microbiota and Metabolites. Metabolites, 2022, 12, 956.	1.3	6
1974	GLP-1 and GLP-2 Orchestrate Intestine Integrity, Gut Microbiota, and Immune System Crosstalk. Microorganisms, 2022, 10, 2061.	1.6	14
1975	Fecal microbiota dynamics and its relationship to diarrhea and health in dairy calves. Journal of Animal Science and Biotechnology, 2022, 13 , .	2.1	12
1976	Bacteroides vulgatus SNUG 40005 Restores Akkermansia Depletion by Metabolite Modulation. Gastroenterology, 2023, 164, 103-116.	0.6	25
1977	Bin1 targeted immunotherapy alters the status of the enteric neurons and the microbiome during ulcerative colitis treatment. PLoS ONE, 2022, 17, e0276910.	1.1	3
1978	Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chemical Reviews, 2023, 123, 31-72.	23.0	54
1979	The Influence of the Gut Microbiome in Paediatric Cancer Origin and Treatment. Antibiotics, 2022, 11, 1521.	1.5	1
1980	Mucosal Immunity and the Gut-Microbiota-Brain-Axis in Neuroimmune Disease. International Journal of Molecular Sciences, 2022, 23, 13328.	1.8	7
1981	Sampling from four geographically divergent young female populations demonstrates forensic geolocation potential in microbiomes. Scientific Reports, 2022, 12, .	1.6	3
1982	Identification of Odoribacter splanchnicus bacteremia using MALDI-TOF mass spectrometry and 16S rRNA sequencing: A case report. Anaerobe, 2022, 78, 102663.	1.0	1
1983	Insight into role of short chain fatty acids in regulating intestinal mucosal barrier and alleviating inflammatory bowel disease. World Chinese Journal of Digestology, 2022, 30, 928-940.	0.0	0
1984	ImmUniverse Consortium: Multi-omics integrative approach in personalized medicine for immune-mediated inflammatory diseases. Frontiers in Immunology, 0, 13, .	2.2	6
1985	The Role of Dietary Fibers in the Management of IBD Symptoms. Nutrients, 2022, 14, 4775.	1.7	7
1986	Gut Microbiota Associated with Gestational Health Conditions in a Sample of Mexican Women. Nutrients, 2022, 14, 4818.	1.7	2
1987	A steamed broccoli sprout diet preparation that reduces colitis via the gut microbiota. Journal of Nutritional Biochemistry, 2023, 112, 109215.	1.9	5

#	ARTICLE	IF	CITATIONS
1988	Gut microbiota-derived metabolite trimethylamine N-oxide and biomarkers of inflammation are linked to endothelial and coronary microvascular function in patients with inflammatory bowel disease. Microvascular Research, 2023, 146, 104458.	1.1	4
1989	Polyphenol-Rich Liupao Tea Extract Prevents High-Fat Diet-Induced MAFLD by Modulating the Gut Microbiota. Nutrients, 2022, 14, 4930.	1.7	3
1990	A Flexible Zero-Inflated Poisson-Gamma Model with Application to Microbiome Sequence Count Data. Journal of the American Statistical Association, 0 , , 1 - 21 .	1.8	2
1991	Metabolic changes during exclusive enteral nutrition in pediatric Crohn's disease patients. Metabolomics, 2022, 18, .	1.4	3
1992	The Role of AIM2 Inflammasome in Knee Osteoarthritis. Journal of Inflammation Research, 0, Volume 15, 6453-6461.	1.6	4
1994	Dark-purple rice extract modulates gut microbiota composition in acetic acid– and indomethacin-induced inflammatory bowel disease in rats. International Microbiology, 2023, 26, 423-434.	1.1	3
1995	The role of the gut microbiome in the intergenerational transmission of the obesity phenotype: A narrative review. Frontiers in Medicine, $0, 9, .$	1.2	2
1996	Pyruvate: Ferredoxin oxidoreductase is involved in IgA-related microbiota dysbiosis and intestinal inflammation. Frontiers in Immunology, 0, 13, .	2.2	2
1997	Stool multi-omics for the study of host–microbe interactions in inflammatory bowel disease. Gut Microbes, 2022, 14, .	4.3	10
1998	Foods may modify responsiveness to cancer immune checkpoint blockers by altering both the gut microbiota and activation of estrogen receptors in immune cells. , 0, 1, .		2
1999	The gut microbiome in human health and disease $\hat{\epsilon}$ Where are we and where are we going? A bibliometric analysis. Frontiers in Microbiology, 0, 13, .	1.5	8
2000	A novel promising diagnosis model for colorectal advanced adenoma and carcinoma based on the progressive gut microbiota gene biomarkers. Cell and Bioscience, 2022, 12, .	2.1	5
2001	Tea Consumption and Gut Microbiome in Older Chinese Adults. Journal of Nutrition, 2023, 153, 293-300.	1.3	0
2002	Oenanthe javanica Ethanolic Extract Alleviates Inflammation and Modifies Gut Microbiota in Mice with DSS-Induced Colitis. Antioxidants, 2022, 11, 2429.	2.2	3
2004	Mucosal microbiome is predictive of pediatric Crohnâ \in TM s disease across geographic regions in North America. F1000Research, 0, 11, 156.	0.8	0
2005	Preventive effect of tilapia skin collagen hydrolysates on ulcerative colitis mice based on metabonomic and <scp>16 S rRNA</scp> gene sequencing. Journal of the Science of Food and Agriculture, 2023, 103, 3645-3658.	1.7	2
2006	The Microbiome in Neurogastroenterology. , 2022, , 73-93.		0
2007	The effect of gut microbiota dysbiosis on patients with preeclampsia. Frontiers in Cellular and Infection Microbiology, $0,12,.$	1.8	4

#	ARTICLE	IF	CITATIONS
2009	Distinct Microbiotas Are Associated with Different Production Lines in the Cutting Room of a Swine Slaughterhouse. Microorganisms, 2023, 11, 133.	1.6	3
2011	Phylogenetic analysis of i>Prevotella copri / i>from fecal and mucosal microbiota of IBS and IBD patients. Therapeutic Advances in Gastroenterology, 2023, 16, 175628482211363.	1.4	4
2012	Intestinal mucosal and fecal microbiota profiles in Crohn's disease in Chinese children. Medicine in Microecology, 2023, 15, 100071.	0.7	1
2013	Gut microbiota diversity in human strongyloidiasis differs little in two different regions in endemic areas of Thailand. PLoS ONE, 2022, 17, e0279766.	1.1	1
2014	Ghrelin Alleviates Experimental Ulcerative Colitis in Old Mice and Modulates Colonocyte Metabolism via PPARÎ ³ Pathway. International Journal of Molecular Sciences, 2023, 24, 565.	1.8	1
2015	MetaAnalyst: a user-friendly tool for metagenomic biomarker detection and phenotype classification. BMC Medical Research Methodology, 2022, 22, .	1.4	2
2016	Sargassum horneri Extract Ameliorates DSS-Induced Colitis through Modulation of mTOR Axis and Intestinal Microbiota. Applied Sciences (Switzerland), 2023, 13, 1742.	1.3	0
2017	Dysbiosis of gut microbiota, potential mediator of bile acid compositions, and prevalence of hand synovitis: a community-based study. Rheumatology, 0, , .	0.9	2
2018	DSS-induced colitis activates the kynurenine pathway in serum and brain by affecting IDO-1 and gut microbiota. Frontiers in Immunology, $0,13,.$	2.2	3
2019	In vitro gut microbiome response to carbohydrate supplementation is acutely affected by a sudden change in diet. BMC Microbiology, 2023, 23, .	1.3	1
2020	Symbiotic association of gut microbiome in health and diseases at ageing., 2023,, 551-571.		0
2021	Human gut virome and COVID-19: Modulating the extent of infection. , 2023, , 279-285.		1
2022	Altered gut microbiota in patients with idiopathic Parkinson's disease: an age–sex matched case–control study. Acta Neurologica Belgica, 2023, 123, 999-1009.	0.5	1
2023	GDReBase: A Knowledge Base for Relations between Human Gut Microbes and Diseases Based on Deep Learning. Applied Sciences (Switzerland), 2023, 13, 1614.	1.3	O
2024	Reduced abundance of butyric acid-producing bacteria in the ileal mucosa-associated microbiota of ulcerative colitis patients. Journal of Clinical Biochemistry and Nutrition, 2023, 73, 77-83.	0.6	1
2025	Gut microbiota and marine phenolics. , 2023, , 343-370.		O
2026	Inhibitory effects of Clostridium butyricum culture and supernatant on inflammatory colorectal cancer in mice. Frontiers in Immunology, 0, 14 , .	2.2	4
2027	DSS-induced acute colitis causes dysregulated tryptophan metabolism in brain: an involvement of gut microbiota. Journal of Nutritional Biochemistry, 2023, 115, 109282.	1.9	5

#	Article	IF	CITATIONS
2030	Microbial Modulation in Inflammatory Bowel Diseases. Immune Network, 2022, 22, .	1.6	1
2031	Microorganisms in the Pathogenesis and Management of Crohn's Disease (CD). , 2022, , 255-269.		O
2032	Bridging biotechnology and nanomedicine to produce biogreen whey-nanovesicles for intestinal health promotion. International Journal of Pharmaceutics, 2023, 633, 122631.	2.6	0
2033	Microbial changes from bariatric surgery alters glucose-dependent insulinotropic polypeptide and prevents fatty liver disease. Gut Microbes, 2023, 15, .	4.3	4
2034	Microbial Dynamics in Newly Diagnosed and Treatment Na \tilde{A} -ve IBD Patients in the Mediterranean. Inflammatory Bowel Diseases, 2023, 29, 1118-1132.	0.9	2
2035	Bile acids as modulators of gut microbiota composition and function. Gut Microbes, 2023, 15, .	4.3	33
2037	An Archetypical Model for Engrafting Bacteroides fragilis into Conventional Mice Following Reproducible Antibiotic Conditioning of the Gut Microbiota. Microorganisms, 2023, 11, 451.	1.6	1
2038	Bile salt hydrolase of Lactiplantibacillus plantarum plays important roles in amelioration of DSS-induced colitis. IScience, 2023, 26, 106196.	1.9	0
2039	Does diet or macronutrients intake drive the structure and function of gut microbiota?. Frontiers in Microbiology, 0, 14, .	1.5	5
2041	Combination Therapy with Indigo and Indirubin for Ulcerative Colitis via Reinforcing Intestinal Barrier Function. Oxidative Medicine and Cellular Longevity, 2023, 2023, 1-24.	1.9	12
2042	Inflammatory Bowel Diseases and Gut Microbiota. International Journal of Molecular Sciences, 2023, 24, 3817.	1.8	24
2043	The diagnostic and prognostic potential of gut bacteria in inflammatory bowel disease. Gut Microbes, 2023, 15, .	4.3	12
2045	The Gut–Organ-Axis Concept: Advances the Application of Gut-on-Chip Technology. International Journal of Molecular Sciences, 2023, 24, 4089.	1.8	19
2046	Protective Effect of Lactiplantibacillus plantarum subsp. plantarum SC-5 on Dextran Sulfate Sodiumâ€"Induced Colitis in Mice. Foods, 2023, 12, 897.	1.9	3
2047	Current evidence and clinical relevance of drug-microbiota interactions in inflammatory bowel disease. Frontiers in Microbiology, 0, 14 , .	1.5	6
2048	Interpersonal variability of the human gut virome confounds disease signal detection in IBD. Communications Biology, 2023, 6, .	2.0	5
2049	A novel non-invasive colorectal cancer diagnostic method: Volatile organic compounds as biomarkers. Clinica Chimica Acta, 2023, 542, 117273.	0.5	3
2050	Gut Microbiota: A Future Clinical Magic Bullet to Manifest Pathogenic Disease in the Current Future. Journal of Pure and Applied Microbiology, 2023, 17, 51-68.	0.3	O

#	Article	IF	CITATIONS
2051	The key players of dysbiosis in Noma disease; A systematic review of etiological studies. Frontiers in Oral Health, $0,4,.$	1.2	1
2052	[Translated article] Pilot study to determine the association between gut microbiota and fragility hip fracture. Revista Española De CirugÃa Ortopédica Y TraumatologÃa, 2023, 67, T279-T289.	0.1	1
2053	Does fluoride exposure impact on the human microbiome?. Toxicology Letters, 2023, 379, 11-19.	0.4	3
2056	Shotgun Metagenomics of Gastric Biopsies Reveals Compositional and Functional Microbiome Shifts in High- and Low-Gastric-Cancer-Risk Populations from Colombia, South America. Gut Microbes, 2023, 15, .	4.3	6
2057	Effects of Pine Pollen Polysaccharides and Sulfated Polysaccharides on Ulcerative Colitis and Gut Flora in Mice. Polymers, 2023, 15, 1414.	2.0	3
2058	Prevention of malignant digestive system tumors should focus on the control of chronic inflammation. World Journal of Gastrointestinal Oncology, 0, 15, 389-404.	0.8	1
2059	Effects of supplementation of Bacillus amyloliquefaciens on performance, systemic immunity, and intestinal microbiota of weaned pigs experimentally infected with a pathogenic enterotoxigenic E. coli F18. Frontiers in Microbiology, 0, 14, .	1.5	2
2061	Integration of multiomics with precision nutrition for gestational diabetes: Study protocol for the Westlake Precision Birth Cohort. , 2023, 2, .		3
2062	Bioinformatic and Statistical Analysis of Microbiome Data. Methods in Molecular Biology, 2023, , 183-229.	0.4	2
2063	ILC3s restrict the dissemination of intestinal bacteria to safeguard liver regeneration after surgery. Cell Reports, 2023, 42, 112269.	2.9	2
2064	Lactobacillus paracasei CNCM I-5220-derived postbiotic protects from the leaky-gut. Frontiers in Microbiology, 0, 14, .	1.5	5
2065	Succinate metabolism and its regulation of host-microbe interactions. Gut Microbes, 2023, 15, .	4.3	16
2066	Intestinal Microbiomics in Physiological and Pathological Conditions. , 0, , .		1
2067	Artificial-enzymes-armed Bifidobacterium longum probiotics for alleviating intestinal inflammation and microbiota dysbiosis. Nature Nanotechnology, 2023, 18, 617-627.	15.6	55
2068	Clostridium butyricum and Chitooligosaccharides in Synbiotic Combination Ameliorate Symptoms in a DSS-Induced Ulcerative Colitis Mouse Model by Modulating Gut Microbiota and Enhancing Intestinal Barrier Function. Microbiology Spectrum, 2023, 11 , .	1.2	2
2069	Dietary polyphenols ameliorate inflammatory bowel diseases: advances and future perspectives to maximize their nutraceutical applications. Phytochemistry Reviews, 0, , .	3.1	3
2070	Diet prevents the expansion of segmented filamentous bacteria and ileo-colonic inflammation in a model of Crohnâ \in^{M} s disease. Microbiome, 2023, 11, .	4.9	3
2071	Is Autologous Fecal Microbiota Transfer after Exclusive Enteral Nutrition in Pediatric Crohn's Disease Patients Rational and Feasible? Data from a Feasibility Test. Nutrients, 2023, 15, 1742.	1.7	1

#	ARTICLE	IF	CITATIONS
2072	Gut Microbiota in Children with Hand Foot and Mouth Disease on 16S rRNA Gene Sequencing. Current Microbiology, 2023, 80, .	1.0	0
2074	Smilax china L. Polysaccharide Alleviates Dextran Sulphate Sodium-Induced Colitis and Modulates the Gut Microbiota in Mice. Foods, 2023, 12, 1632.	1.9	5
2075	Dietary and Sexual Correlates of Gut Microbiota in the Japanese Gecko, Gekko japonicus (Schlegel,) Tj ETQq0 0 C	rgBT/Ove	erlock 10 Tf 5
2076	Effect of Lactobacillus Rhamnosus GG for Regulation of Inflammatory Response in Radiation-Induced Enteritis. Probiotics and Antimicrobial Proteins, 0, , .	1.9	4
2077	Gut microbiota and ionizing radiation-induced damage: Is there a link?. Environmental Research, 2023, 229, 115947.	3.7	1
2078	Effects of Simulated In Vitro Digestion on the Structural Characteristics, Inhibitory Activity on α-Glucosidase, and Fermentation Behaviours of a Polysaccharide from Anemarrhena asphodeloides Bunge. Nutrients, 2023, 15, 1965.	1.7	1
2079	Kernel-based genetic association analysis for microbiome phenotypes identifies host genetic drivers of beta-diversity. Microbiome, 2023, 11 , .	4.9	1
2090	Microbiome therapeutics as an alternative to the antibiotics. , 2023, , 421-441.		0
2109	Smart Cities as Hubs: a use case from Biotechnology. , 2023, , .		0
2113	Gut Microbiome and Crohn's Disease: An Enigmatic Crosstalk. , 0, , .		0
2129	Wavelet-Based Microbiome Correlations of Host Traits. , 2022, , .		1
2164	Pelvic Radiation Disease and the Gastrointestinal Tract. , 2023, , 269-287.		0
2207	Neutrophils: from IBD to the gut microbiota. Nature Reviews Gastroenterology and Hepatology, 2024, 21, 184-197.	8.2	0
2211	Intestinal Mucosal Immunity Caused Autoimmune Diseases., 0, , .		O