Addition of bevacizumab to standard chemoradiation for nasopharyngeal carcinoma (RTOG 0615): a phase 2 mult

Lancet Oncology, The 13, 172-180 DOI: 10.1016/s1470-2045(11)70303-5

Citation Report

#	Article	IF	CITATIONS
1	Current and emerging treatment options for nasopharyngeal carcinoma. OncoTargets and Therapy, 2012, 5, 297.	1.0	32
3	Nasopharyngeal cancer: a promising future. Lancet Oncology, The, 2012, 13, 116-118.	5.1	33
4	The battle against nasopharyngeal cancer. Radiotherapy and Oncology, 2012, 104, 272-278.	0.3	191
5	Targeted therapy in head and neck cancer. Tumor Biology, 2012, 33, 707-721.	0.8	75
6	A phase 2 study of bevacizumab with cisplatin plus intensityâ€modulated radiation therapy for stage III/IVB head and neck squamous cell cancer. Cancer, 2012, 118, 5008-5014.	2.0	71
7	Intensity-modulated radiation therapy for nasopharyngeal carcinoma: a review. Journal of Radiation Oncology, 2012, 1, 129-146.	0.7	59
8	Adjuvant chemotherapy in advanced nasopharyngeal carcinoma based on plasma EBV load. Journal of Radiation Oncology, 2012, 1, 117-127.	0.7	18
9	Current Management of Nasopharyngeal Cancer. Seminars in Radiation Oncology, 2012, 22, 233-244.	1.0	274
10	Expression profiling of 21 biomolecules in locally advanced nasopharyngeal carcinomas of Caucasian patients. BMC Clinical Pathology, 2013, 13, 1.	1.8	23
11	Significant efficacies of neoadjuvant and adjuvant chemotherapy for nasopharyngeal carcinoma by meta-analysis of published literature-based randomized, controlled trials. Annals of Oncology, 2013, 24, 2136-2146.	0.6	120
12	The feasibility of omitting irradiation to the contralateral lower neck in stage N1 nasopharyngeal carcinoma patients. Radiation Oncology, 2013, 8, 230.	1.2	10
13	Is Selective Neck Irradiation Safe for Node-Negative Nasopharyngeal Carcinoma?. International Journal of Radiation Oncology Biology Physics, 2013, 85, 902-903.	0.4	13
14	Pretreatment 18F-FDG PET standardized uptake value of primary tumor and neck lymph nodes as a predictor of distant metastasis for patients with nasopharyngeal carcinoma. Oral Oncology, 2013, 49, 169-174.	0.8	35
15	Immunotherapy for head and neck cancer patients: shifting the balance. Immunotherapy, 2013, 5, 49-61.	1.0	20
16	Prognostic analysis of adjuvant chemotherapy in patients with nasopharyngeal carcinoma. Future Oncology, 2013, 9, 1469-1476.	1.1	6
17	Microenvironment and Radiation Therapy. BioMed Research International, 2013, 2013, 1-13.	0.9	122
19	Locoregional Control After Intensity-modulated Radiotherapy for Nasopharyngeal Carcinoma with an Anatomy-based Target Definition. Japanese Journal of Clinical Oncology, 2013, 43, 1218-1225.	0.6	3
20	Determination of the Planning Target Volume Margin by the Use of kv Portal Imaging and kvCone Beam Computerized Tomography UHOD - Uluslararasi Hematoloji-Onkoloji Dergisi, 2013, 23, 254-259.	0.1	0

#	Article	IF	CITATIONS
21	Trial watch. Oncolmmunology, 2013, 2, e22789.	2.1	92
22	Phase II study of sorafenib in combination with cisplatin and 5-fluorouracil to treat recurrent or metastatic nasopharyngeal carcinoma. Annals of Oncology, 2013, 24, 1055-1061.	0.6	66
23	Phase I/II study of induction chemotherapy plus concurrent chemotherapy and SMART-IMRT-based radiotherapy in locoregionally-advanced nasopharyngeal cancer. Oncology Letters, 2013, 5, 889-895.	0.8	6
24	Emerging treatment options for nasopharyngeal carcinoma. Drug Design, Development and Therapy, 2013, 7, 37.	2.0	111
25	Evaluation of the Dosimetric Feasibility of Hippocampal Sparing Intensity-Modulated Radiotherapy in Patients with Locally Advanced Nasopharyngeal Carcinoma. PLoS ONE, 2014, 9, e90007.	1.1	16
26	Adding Maximum Standard Uptake Value of Primary Lesion and Lymph Nodes in 18F-Fluorodeoxyglucose PET Helps Predict Distant Metastasis in Patients with Nasopharyngeal Carcinoma. PLoS ONE, 2014, 9, e103153.	1.1	12
27	Therapeutic implications of Epstein–Barr virus infection for the treatment of nasopharyngeal carcinoma. Therapeutics and Clinical Risk Management, 2014, 10, 721.	0.9	48
28	Targeting hypoxia-inducible factor-1α (HIF-1α) in combination with antiangiogenic therapy: A phase I trial of bortezomib plus bevacizumab. Oncotarget, 2014, 5, 10280-10292.	0.8	49
31	Nasopharyngeal Carcinoma: Management Strategies. , 2014, , .		2
32	Novel therapy for nasopharyngeal carcinoma – Where are we. Oral Oncology, 2014, 50, 798-801.	0.8	36
33	MET inhibitor PHA-665752 suppresses the hepatocyte growth factor-induced cell proliferation and radioresistance in nasopharyngeal carcinoma cells. Biochemical and Biophysical Research Communications, 2014, 449, 49-54.	1.0	14
34	Sparing level Ib lymph nodes by intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma. International Journal of Clinical Oncology, 2014, 19, 998-1004.	1.0	26
35	Improving the Efficacy of Chemoradiation with Targeted Agents. Cancer Discovery, 2014, 4, 280-291.	7.7	75
36	Translational research in nasopharyngeal carcinoma. Oral Oncology, 2014, 50, 345-352.	0.8	9
37	Oral epithelial stem cells—Implications in normal development and cancer metastasis. Experimental Cell Research, 2014, 325, 111-129.	1.2	41
38	Plasma Epstein–Barr viral DNA load at midpoint of radiotherapy course predicts outcome in advanced-stage nasopharyngeal carcinoma. Annals of Oncology, 2014, 25, 1204-1208.	0.6	175
39	Extent of pathologic extracapsular extension and outcomes in patients with nonoropharyngeal head and neck cancer treated with initial surgical resection. Cancer, 2014, 120, 1499-1506.	2.0	54
40	Effect of Dosimetric Factors on Occurrence and Volume of Temporal Lobe Necrosis Following Intensity Modulated Radiation Therapy for Nasopharyngeal Carcinoma: A Case-Control Study. International Journal of Radiation Oncology Biology Physics, 2014, 90, 261-269.	0.4	51

#	Article	IF	CITATIONS
41	Interaction of Radiation Therapy With Molecular Targeted Agents. Journal of Clinical Oncology, 2014, 32, 2886-2893.	0.8	77
42	Intensity-modulated radiotherapy for stage IVA/IVB nasopharyngeal carcinoma. Strahlentherapie Und Onkologie, 2014, 190, 993-1000.	1.0	20
43	Local failure patterns for patients with nasopharyngeal carcinoma after intensity-modulated radiotherapy. Radiation Oncology, 2014, 9, 87.	1.2	54
44	Current controversies in radiotherapy for nasopharyngeal carcinoma (NPC). Oral Oncology, 2014, 50, 907-912.	0.8	16
45	Metronomic Adjuvant Chemotherapy Improves Treatment Outcome in Nasopharyngeal Carcinoma Patients With Postradiation Persistently Detectable Plasma Epstein-Barr Virus Deoxyribonucleic Acid. International Journal of Radiation Oncology Biology Physics, 2014, 89, 21-29.	0.4	87
46	Treatment of nasopharyngeal carcinoma with pulmonary tuberculosis and gout: A case report. Oncology Letters, 2014, 8, 753-757.	0.8	3
48	Posterior Cervical lymph Node Metastasis as the Valuable Prognostic Factor for Stage IVA/IVB Nasopharyngeal Carcinoma Treated with Induction Chemotherapy Followed by Concurrent Chemo-Radiotherapy. International Journal of Biological Markers, 2014, 29, 387-0394.	0.7	3
50	Investigation of the feasibility of elective irradiation to neck level Ib using intensity-modulated radiotherapy for patients with nasopharyngeal carcinoma: a retrospective analysis. BMC Cancer, 2015, 15, 709.	1.1	29
51	Diffusion kurtosis imaging predicts neoadjuvant chemotherapy responses within 4 days in advanced nasopharyngeal carcinoma patients. Journal of Magnetic Resonance Imaging, 2015, 42, 1354-1361.	1.9	50
52	Estimation of the planning organ at risk volume for the lenses during radiation therapy for nasal cavity and paranasal sinus cancer. Journal of Medical Imaging and Radiation Oncology, 2015, 59, 743-750.	0.9	8
53	Combining antiangiogenic therapy and radiation in nasopharyngeal carcinoma. Journal of King Abdulaziz University, Islamic Economics, 2015, 36, 659-664.	0.5	20
54	Bevacizumab plus cisplatin and helical tomotherapy in treatment of locally advanced nasopharyngeal carcinoma. OncoTargets and Therapy, 2015, 8, 1315.	1.0	5
55	Radio-Immunotherapy-Induced Immunogenic Cancer Cells as Basis for Induction of Systemic Anti-Tumor Immune Responses – Pre-Clinical Evidence and Ongoing Clinical Applications. Frontiers in Immunology, 2015, 6, 505.	2.2	86
56	The Impact of Reduced-Volume, Intensity-Modulated Radiation Therapy on Disease Control in Nasopharyngeal Carcinoma. PLoS ONE, 2015, 10, e0125283.	1.1	7
57	Impact of Plasma Epstein-Barr Virus-DNA and Tumor Volume on Prognosis of Locally Advanced Nasopharyngeal Carcinoma. BioMed Research International, 2015, 2015, 1-5.	0.9	25
59	Phase 1 Trial of Bevacizumab With Concurrent Chemoradiation Therapy for Squamous Cell Carcinoma of the Head and Neck With Exploratory Functional Imaging of Tumor Hypoxia, Proliferation, and Perfusion. International Journal of Radiation Oncology Biology Physics, 2015, 91, 942-951.	0.4	44
60	A support vector machine tool for adaptive tomotherapy treatments: Prediction of head and neck patients criticalities. Physica Medica, 2015, 31, 442-451.	0.4	30
61	Ten-year outcomes of a randomised trial for locoregionally advanced nasopharyngeal carcinoma: A single-institution experience from an endemic area. European Journal of Cancer, 2015, 51, 1760-1770.	1.3	43

#	Article	IF	CITATIONS
62	Non-endemic locoregionally advanced nasopharyngeal carcinoma: long-term outcome after induction plus concurrent chemoradiotherapy in everyday clinical practice. European Archives of Oto-Rhino-Laryngology, 2015, 272, 3491-3498.	0.8	10
63	Pretreatment 18 F-FDG uptake heterogeneity can predict survival in patients with locally advanced nasopharyngeal carcinoma——a retrospective study. Radiation Oncology, 2015, 10, 4.	1.2	55
64	Multiple oncogenic mutations related to targeted therapy in nasopharyngeal carcinoma. Chinese Journal of Cancer, 2015, 34, 177-83.	4.9	10
65	Intensity-Modulated Radiation Therapy. , 2015, , .		7
66	The Prognostic Value of Plasma Epstein-Barr Viral DNA and Tumor Response to Neoadjuvant Chemotherapy in Advanced-Stage Nasopharyngeal Carcinoma. International Journal of Radiation Oncology Biology Physics, 2015, 93, 862-869.	0.4	110
67	The Globalization of Cooperative Groups. Seminars in Oncology, 2015, 42, 693-712.	0.8	6
68	Management of Nasopharyngeal Carcinoma: Current Practice and Future Perspective. Journal of Clinical Oncology, 2015, 33, 3356-3364.	0.8	579
69	Dosimetric Comparison of Craniospinal Irradiation Using Different Tomotherapy Techniques. Technology in Cancer Research and Treatment, 2015, 14, 440-446.	0.8	8
70	Excellent Survival Regardless of Disease Stage in Patients with Advanced Nasopharyngeal Cancer. Tumori, 2016, 102, 381-386.	0.6	4
71	A Phase II Clinical Trial of Concurrent Helical Tomotherapy plus Cetuximab Followed by Adjuvant Chemotherapy with Cisplatin and Docetaxel for Locally Advanced Nasopharyngeal Carcinoma. International Journal of Biological Sciences, 2016, 12, 446-453.	2.6	14
72	Efficacy of BIBF 1120 or BIBF 1120 plus chemotherapy on nasopharyngeal carcinoma in vitro and in vivo. Drug Design, Development and Therapy, 2016, 10, 1173.	2.0	1
73	Nasopharyngeal carcinoma treated with bevacizumab combined with paclitaxel liposome plus cisplatin: a case report and literature review. OncoTargets and Therapy, 2016, Volume 10, 67-72.	1.0	10
74	Induction Chemotherapy Followed by Radiotherapy versus Concurrent Chemoradiotherapy in elderly patients with nasopharyngeal carcinoma: finding from a propensity-matched analysis. BMC Cancer, 2016, 16, 693.	1.1	16
75	Cancer of the Nasopharynx. , 2016, , 51-63.		0
79	Acute toxicity in comprehensive head and neck radiation for nasopharynx and paranasal sinus cancers: cohort comparison of 3D conformal proton therapy and intensity modulated radiation therapy. Radiation Oncology, 2016, 11, 32.	1.2	60
80	Post-radiation Plasma Epstein-Barr Virus DNA and Local Clinical Remission After Radical Intensity-modulated Radiation Therapy forÂNasopharyngeal Carcinoma. Clinical Oncology, 2016, 28, 42-49.	0.6	9
81	Long-term patterns of relapse and survival following definitive intensity-modulated radiotherapy for non-endemic nasopharyngeal carcinoma. Oral Oncology, 2016, 53, 67-73.	0.8	44
82	Integrating chemoradiation and molecularly targeted therapy. Advanced Drug Delivery Reviews, 2017, 109, 74-83.	6.6	22

#	Article	IF	CITATIONS
83	Clinical significance of treatment delivery errors for helical TomoTherapy nasopharyngeal plans – A dosimetric simulation study. Physica Medica, 2017, 33, 159-169.	0.4	8
84	Impact of intravenous contrast used in computed tomography on radiation dose to carotid arteries and thyroid in intensity-modulated radiation therapy planning for nasopharyngeal carcinoma. Medical Dosimetry, 2017, 42, 137-144.	0.4	0
85	Investigational drugs for nasopharyngeal carcinoma. Expert Opinion on Investigational Drugs, 2017, 26, 677-685.	1.9	23
86	Sensitivity evaluation of two commercial dosimeters in detecting Helical TomoTherapy treatment delivery errors. Physica Medica, 2017, 37, 68-74.	0.4	6
87	The Hippocampus Sparing Volume Modulated Arc Therapy does not Influence Plan Quality on Locally Advanced Nasopharyngeal Carcinoma Patients. Scientific Reports, 2017, 7, 3443.	1.6	5
88	The clinical application of angiostatic therapy in combination with radiotherapy: past, present, future. Angiogenesis, 2017, 20, 217-232.	3.7	26
89	Palliative systemic therapy for recurrent or metastatic nasopharyngeal carcinoma – How far have we achieved?. Critical Reviews in Oncology/Hematology, 2017, 114, 13-23.	2.0	39
90	Impact of fraction size on locally advanced oropharyngeal and nasopharyngeal cancers treated with chemoradiation. Oral Oncology, 2017, 68, 27-35.	0.8	3
92	Modeling nasopharyngeal carcinoma in three dimensions. Oncology Letters, 2017, 13, 2034-2044.	0.8	22
93	Voxel-based analysis unveils regional dose differences associated with radiation-induced morbidity in head and neck cancer patients. Scientific Reports, 2017, 7, 7220.	1.6	49
94	An elective radiation dose of 46 Gy is feasible in nasopharyngeal carcinoma treated by intensity-modulated radiotherapy. Medicine (United States), 2017, 96, e6036.	0.4	4
95	Metronomic oral cyclosphosphamide as third-line systemic treatment or beyond in patients with inoperable locoregionally advanced recurrent or metastatic nasopharyngeal carcinoma. Medicine (United States), 2017, 96, e6518.	0.4	5
96	PET/CT-guided dose-painting versus CT-based intensity modulated radiation therapy in locoregional advanced nasopharyngeal carcinoma. Radiation Oncology, 2017, 12, 15.	1.2	36
97	Advanced-Stage Nasopharyngeal Carcinoma: Restaging System after Neoadjuvant Chemotherapy on the Basis of MR Imaging Determines Survival. Radiology, 2017, 282, 171-181.	3.6	11
98	Patterns of nodal failure after intensity modulated radiotherapy for nasopharyngeal carcinoma. Laryngoscope, 2017, 127, 377-382.	1.1	16
99	PFKFB3 promotes proliferation, migration and angiogenesis in nasopharyngeal carcinoma. Journal of Cancer, 2017, 8, 3887-3896.	1.2	46
100	Survival and Toxicities of IMRT Based on the RTOG Protocols in Patients with Nasopharyngeal Carcinoma from the Endemic Regions of China. Journal of Cancer, 2017, 8, 3718-3724.	1.2	25
101	Pathogenic Role of Exosomes in Epstein-Barr Virus (EBV)-Associated Cancers. International Journal of Biological Sciences, 2017, 13, 1276-1286.	2.6	41

#	Article	IF	CITATIONS
102	Is pretreatment Epstein-Barr virus DNA still associated with 6-year survival outcomes in locoregionally advanced nasopharyngeal carcinoma?. Journal of Cancer, 2017, 8, 976-982.	1.2	29
103	Patient- and treatment-related risk factors associated with neck muscle spasm in nasopharyngeal carcinoma patients after intensity-modulated radiotherapy. BMC Cancer, 2017, 17, 788.	1.1	0
104	Exosomes as the Promising Biomarker for Epstein-Barr Virus (EBV)-Associated Cancers. , 2017, , .		0
105	Longâ€ŧerm outcomes in patients with nasopharyngeal carcinoma treated with reducedâ€volume conformal radiotherapy: A retrospective cohort study. Journal of Medical Imaging and Radiation Oncology, 2018, 62, 562-567.	0.9	4
106	Results of the radiation dose of head, body and tail of hippocampus in nasopharyngeal carcinoma patients treated with intensity modulated radiotherapy. Scientific Reports, 2018, 8, 5595.	1.6	8
107	Improvement of VMAT plan quality for head and neck cancer with high resolution fluences generated by couch shift between arcs. Physica Medica, 2018, 46, 1-6.	0.4	3
108	Neoadjuvant chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy followed by adjuvant chemotherapy in locally advanced nasopharyngeal carcinoma. BMC Cancer, 2018, 18, 329.	1.1	14
109	Phase I Trial Using Induction Ciplatin, Docetaxel, 5-FU and Erlotinib Followed by Cisplatin, Bevacizumab and Erlotinib With Concurrent Radiotherapy for Advanced Head and Neck Cancer. American Journal of Clinical Oncology: Cancer Clinical Trials, 2018, 41, 441-446.	0.6	12
110	International guideline for the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma. Radiotherapy and Oncology, 2018, 126, 25-36.	0.3	214
111	Longâ€ŧerm outcomes after reirradiation in nasopharyngeal carcinoma with intensityâ€modulated radiotherapy: A metaâ€analysis. Head and Neck, 2018, 40, 622-631.	0.9	102
112	Management of Nasopharyngeal Carcinoma: Is Adjuvant Therapy Needed?. Journal of Oncology Practice, 2018, 14, 594-602.	2.5	29
113	Clinical and prognostic analyses of 110 patients with N3 nasopharyngeal carcinoma. Medicine (United) Tj ETQq1	1 0.7843	14 ₅ rgBT /Ov
114	Vasculogenic mimicry formation in EBV-associated epithelial malignancies. Nature Communications, 2018, 9, 5009.	5.8	120
115	Clinical evaluation of vascular normalization induced by recombinant human endostatin in nasopharyngeal carcinoma via dynamic contrast-enhanced ultrasonography. OncoTargets and Therapy, 2018, Volume 11, 7909-7917.	1.0	4
116	Famitinib in combination with concurrent chemoradiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma: a phase 1, openâ€label, doseâ€escalation Study. Cancer Communications, 2018, 38, 1-13.	3.7	20
117	Addition of bevacizumab to systemic therapy for locally advanced and metastatic nasopharyngeal carcinoma. Oncology Letters, 2018, 15, 7799-7805.	0.8	4
118	NCCN Guidelines Insights: Head and Neck Cancers, Version 1.2018. Journal of the National Comprehensive Cancer Network: JNCCN, 2018, 16, 479-490.	2.3	439
119	Blockage of store-operated Ca ²⁺ entry antagonizes Epstein–Barr virus-promoted angiogenesis by inhibiting Ca ²⁺ signaling-regulated VEGF production in nasopharyngeal carcinoma. Cancer Management and Research, 2018, Volume 10, 1115-1124.	0.9	16

#	Article	IF	CITATIONS
120	VEGF Upregulation in Viral Infections and Its Possible Therapeutic Implications. International Journal of Molecular Sciences, 2018, 19, 1642.	1.8	70
121	Induction chemotherapy in the treatment of nasopharyngeal carcinoma: Clinical outcomes and patterns of care. Cancer Medicine, 2018, 7, 3592-3603.	1.3	18
122	Predicting the dose absorbed by organs at risk during intensity modulated radiation therapy for nasopharyngeal carcinoma. British Journal of Radiology, 2018, 91, 20170289.	1.0	5
123	Establishment of prognostic factors in recurrent nasopharyngeal carcinoma patients who received salvage intensity-modulated radiotherapy: A meta-analysis. Oral Oncology, 2018, 81, 81-88.	0.8	26
124	Apolipoprotein A-I Is a Prognosticator of Nasopharyngeal Carcinoma in the Era of Intensity-modulated Radiotherapy. Journal of Cancer, 2018, 9, 702-710.	1.2	22
125	10-Year Results of Therapeutic Ratio by Intensity-Modulated Radiotherapy Versus Two-Dimensional Radiotherapy in Patients with Nasopharyngeal Carcinoma. Oncologist, 2019, 24, e38-e45.	1.9	57
126	IGF-1R Inhibition Suppresses Cell Proliferation and Increases Radiosensitivity in Nasopharyngeal Carcinoma Cells. Mediators of Inflammation, 2019, 2019, 1-9.	1.4	14
127	The Association Between the Development of Radiation Therapy, Image Technology, and Chemotherapy, and the Survival of Patients With Nasopharyngeal Carcinoma: A Cohort Study From 1990 to 2012. International Journal of Radiation Oncology Biology Physics, 2019, 105, 581-590.	0.4	80
128	MDM2 inhibitor RG7388 potently inhibits tumors by activating p53 pathway in nasopharyngeal carcinoma. Cancer Biology and Therapy, 2019, 20, 1328-1336.	1.5	22
129	<p>Chinese expert consensus on diagnosis and treatment of nasopharyngeal carcinoma: evidence from current practice and future perspectives</p> . Cancer Management and Research, 2019, Volume 11, 6365-6376.	0.9	26
130	Evolution and Dosimetric Analysis of Magnetic Resonance Imaging–Detected Brain Stem Injury After Intensity Modulated Radiation Therapy in Nasopharyngeal Carcinoma. International Journal of Radiation Oncology Biology Physics, 2019, 105, 124-131.	0.4	10
131	Modulation of Angiogenic Processes by the Human Gammaherpesviruses, Epstein–Barr Virus and Kaposi's Sarcoma-Associated Herpesvirus. Frontiers in Microbiology, 2019, 10, 1544.	1.5	12
132	Radiation-induced hypoglossal nerve palsy after definitive radiotherapy for nasopharyngeal carcinoma: Clinical predictors and dose–toxicity relationship. Radiotherapy and Oncology, 2019, 138, 93-98.	0.3	25
133	Neoadjuvant chemotherapy improves survival compared with concurrent chemoradiation alone in nasopharyngeal carcinoma patients with N3 disease. Head and Neck, 2019, 41, 4076-4087.	0.9	4
134	Reverberation suppression using non-negative matrix factorization to detect low-Doppler target with continuous wave active sonar. Eurasip Journal on Advances in Signal Processing, 2019, 2019, .	1.0	10
135	Development and validation of a novel MR imaging predictor of response to induction chemotherapy in locoregionally advanced nasopharyngeal cancer: a randomized controlled trial substudy (NCT01245959). BMC Medicine, 2019, 17, 190.	2.3	64
136	Distant Metastasis Risk Definition by Tumor Biomarkers Integrated Nomogram Approach for Locally Advanced Nasopharyngeal Carcinoma. Cancer Control, 2019, 26, 107327481988389.	0.7	7
137	International Guideline on Dose Prioritization and Acceptance Criteria in Radiation Therapy Planning for Nasopharyngeal Carcinoma. International Journal of Radiation Oncology Biology Physics, 2019, 105, 567-580.	0.4	96

IF ARTICLE CITATIONS # Contrast-enhanced Ultrasound in evaluating of angiogenesis and tumor staging of nasopharyngeal carcinoma in nude mice. PLoS ONE, 2019, 14, e0221638. 138 1.1 3 Management of locally recurrent nasopharyngeal carcinoma. Cancer Treatment Reviews, 2019, 79, 101890. 3.4 Toxicity of locoregional radiotherapy in combination with bevacizumab in patients with 140 1.16 non-metastatic breast cancer (TOLÉRAB): Final long-term evaluation. PLoS ONE, 2019, 14, e0221816. Optical-resolution photoacoustic microscopy for monitoring vascular normalization during anti-angiogenic therapy. Photoacoustics, 2019, 15, 100143.

CITATION REPORT

Apatinib monotherapy for advanced VEGFR-2-negative nasopharyngeal carcinoma. Medicine (United) Tj ETQq0 0 0 ggBT /Overlock 10 Tf

143	Individualization of Clinical Target Volume Delineation Based on Stepwise Spread of Nasopharyngeal Carcinoma: Outcome of More Than a Decade of Clinical Experience. International Journal of Radiation Oncology Biology Physics, 2019, 103, 654-668.	0.4	27
144	Advantages of using reduced-volume intensity modulated radiation therapy for the treatment of nasopharyngeal carcinoma: a retrospective paired study. BMC Cancer, 2019, 19, 554.	1.1	11
145	Standard of Care for Nasopharyngeal Carcinoma (2018–2020). , 2019, , 205-238.		1
146	International Consensus on Delineation of Target Volumes and Organs at Risk. , 2019, , 239-261.		2
147	Targeted Therapies and Immune-Checkpoint Inhibition in Head and Neck Squamous Cell Carcinoma: Where Do We Stand Today and Where to Go?. Cancers, 2019, 11, 472.	1.7	24
148	Endothelial Microparticles and Vascular Endothelial Growth Factor in Patients With Head and Neck Cancer Undergoing Radiotherapy or Radiochemotherapy. In Vivo, 2019, 33, 581-586.	0.6	0
149	Current Treatment Landscape of Nasopharyngeal Carcinoma and Potential Trials Evaluating the Value of Immunotherapy. Journal of the National Cancer Institute, 2019, 111, 655-663.	3.0	56
150	Plasma Epstein-Barr Virus DNA Load After Induction Chemotherapy Predicts Outcome in Locoregionally Advanced Nasopharyngeal Carcinoma. International Journal of Radiation Oncology Biology Physics, 2019, 104, 355-361.	0.4	64
151	Management of Metastatic Nasopharyngeal Carcinoma. , 2019, , 313-335.		1
152	Patterns of EBV-positive cervical lymph node involvement in head and neck cancer and implications for the management of nasopharyngeal carcinoma T0 classification. Oral Oncology, 2019, 91, 7-12.	0.8	16
153	Risk factors and distribution features of level IB lymph nodes metastasis in nasopharyngeal carcinoma. Auris Nasus Larynx, 2019, 46, 457-464.	0.5	13
154	Treatment Response Prediction of Nasopharyngeal Carcinoma Based on Histogram Analysis of Diffusional Kurtosis Imaging. American Journal of Neuroradiology, 2019, 40, 326-333.	1.2	11
155	Prognostic value of gross tumor regression and plasma Epstein Barr Virus DNA levels at the end of intensity-modulated radiation therapy in patients with nasopharyngeal carcinoma. Radiotherapy and Oncology, 2019, 132, 223-229.	0.3	34

#	Article	IF	CITATIONS
156	Clinical immunotherapeutic approaches for the treatment of head and neck cancer. International Journal of Oral and Maxillofacial Surgery, 2019, 48, 419-436.	0.7	10
157	Dosimetric comparison between three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) in the treatment of different stages of nasopharyngeal carcinoma. Journal of Radiotherapy in Practice, 2019, 18, 46-51.	0.2	3
158	Novel treatment planning approaches to enhance the therapeutic ratio: targeting the molecular mechanisms of radiation therapy. Clinical and Translational Oncology, 2020, 22, 447-456.	1.2	4
159	The relations of dosimetric parameters with longâ€term outcomes and late toxicities in advanced Tâ€stage nasopharyngeal carcinoma with IMRT. Head and Neck, 2020, 42, 85-92.	0.9	9
160	Silencing vascular endothelial growth factor C increases the radiosensitivity in nasopharyngeal carcinoma CNE $\hat{a} \in 2$ cells. Journal of Cellular Biochemistry, 2020, 121, 1182-1191.	1.2	5
161	A phase II multicenter randomized controlled trial to compare standard chemoradiation with or without recombinant human endostatin injection (Endostar) therapy for the treatment of locally advanced nasopharyngeal carcinoma: Long-term outcomes update. Current Problems in Cancer, 2020, 44, 100492.	1.0	12
162	IAEA methodology for on-site end-to-end IMRT/VMAT audits: an international pilot study. Acta Oncológica, 2020, 59, 141-148.	0.8	9
163	Label-free quantitative mass spectrometry from formalin-fixed paraffin-embedded samples of nasopharyngeal carcinoma: Preliminary results from a non-endemic European cohort of patients. Reports of Practical Oncology and Radiotherapy, 2020, 25, 746-753.	0.3	1
164	Advances in targeted therapy mainly based on signal pathways for nasopharyngeal carcinoma. Signal Transduction and Targeted Therapy, 2020, 5, 245.	7.1	54
165	Improved long-term results of intensity-modulated radiotherapy for a non-endemic European nasopharyngeal carcinoma cohort: single-center retrospective study. Reports of Practical Oncology and Radiotherapy, 2020, 25, 521-526.	0.3	1
166	Emerging radiotherapy technologies and trends in nasopharyngeal cancer. Cancer Communications, 2020, 40, 395-405.	3.7	18
167	An optimal posttreatment surveillance strategy for cancer survivors based on an individualized risk-based approach. Nature Communications, 2020, 11, 3872.	5.8	23
168	The comparison of prognostic value of tumour volumetric regression ratio and RECIST 1.1 criteria after induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma. Oral Oncology, 2020, 111, 104924.	0.8	6
169	Integration of Antiangiogenic Therapy with Cisplatin and Gemcitabine Chemotherapy in Patients with Nasopharyngeal Carcinoma. Clinical Cancer Research, 2020, 26, 5320-5328.	3.2	14
170	Toxicity and dosimetric analysis of nasopharyngeal carcinoma patients undergoing radiotherapy with IMRT or VMAT: A regional center's experience. Oral Oncology, 2020, 109, 104978.	0.8	10
171	Prognostic value of nutritional impairment on treatmentâ€related toxicity and survival in patients with nasopharyngeal carcinoma taking normal nutrition before radiotherapy. Head and Neck, 2020, 42, 3580-3589.	0.9	12
172	Differences in lower cranial nerve complications predicted by the NTCP model between RTOG and reduced-volume IMRT planning in radiotherapy for nasopharyngeal carcinoma. Translational Cancer Research, 2020, 9, 300-308.	0.4	3
173	Variations of Clinical Target Volume Delineation for Primary Site of Nasopharyngeal Cancer Among Five Centers in China. Frontiers in Oncology, 2020, 10, 1572.	1.3	7

#	Article	IF	Citations
174	Utility of magnetic resonance imaging in determining treatment response and local recurrence in nasopharyngeal carcinoma treated curatively. BMC Cancer, 2020, 20, 193.	1.1	11
175	Dosimetric comparison between RapidArc and HyperArc techniques in salvage stereotactic body radiation therapy for recurrent nasopharyngeal carcinoma. Radiation Oncology, 2020, 15, 164.	1.2	15
176	Current management of stage IV nasopharyngeal carcinoma without distant metastasis. Cancer Treatment Reviews, 2020, 85, 101995.	3.4	28
177	A Prospective 10-Year Observational Study of Reduction of Radiation Therapy Clinical Target Volume and Dose in Early-Stage Nasopharyngeal Carcinoma. International Journal of Radiation Oncology Biology Physics, 2020, 107, 672-682.	0.4	22
178	Thyroid V50 is a risk factor for hypothyroidism in patients with nasopharyngeal carcinoma treated with intensity-modulated radiation therapy: a retrospective study. Radiation Oncology, 2020, 15, 68.	1.2	14
179	Simultaneous Reduction of Volume and Dose in Clinical Target Volume for Nasopharyngeal Cancer Patients. International Journal of Radiation Oncology Biology Physics, 2021, 109, 495-504.	0.4	3
180	The feasibility and efficacy of new SBRT technique HyperArc for recurrent nasopharyngeal carcinoma: noncoplanar cone-based robotic system vs. noncoplanar high-definition MLC based Linac system. Medical Dosimetry, 2021, 46, 164-170.	0.4	2
181	Effects of Cognitive Behavioral Therapy for Depression and Anxiety, Response Rates and Adverse Events in Patients with Locoregional Advanced Nasopharyngeal Carcinoma. Integrative Cancer Therapies, 2021, 20, 153473542110061.	0.8	3
182	Quantitative Comparison of Knowledge-Based and Manual Intensity Modulated Radiation Therapy Planning for Nasopharyngeal Carcinoma. Frontiers in Oncology, 2020, 10, 551763.	1.3	5
183	Clinical and survival analysis of nasopharyngeal carcinoma with consistently negative Epstein–Barr virus DNA. Head and Neck, 2021, 43, 1465-1475.	0.9	2
184	Management of Radiation-Induced Late Complications and Evidence-Based Surveillance for Nasopharyngeal Carcinoma. Practical Guides in Radiation Oncology, 2021, , 155-173.	0.0	0
185	Contralateral Lower Neck Sparing Radiotherapy in Stage N1 Nasopharyngeal Carcinoma: Long-Term Survival Outcomes and Late Toxicities. Frontiers in Oncology, 2021, 11, 628919.	1.3	4
186	Correlation between 3D scanner image and MRI for tracking volume changes in head and neck cancer patients. Journal of Applied Clinical Medical Physics, 2021, 22, 86-93.	0.8	2
187	Contemporary management of the neck in nasopharyngeal carcinoma. Head and Neck, 2021, 43, 1949-1963.	0.9	4
188	Modified reduced-volume intensity-modulated radiation therapy in non-metastatic nasopharyngeal carcinoma: A prospective observation series. Radiotherapy and Oncology, 2021, 156, 251-257.	0.3	15
189	Combing MRI Perfusion and 18F-FDG PET/CT Metabolic Biomarkers Helps Predict Survival in Advanced Nasopharyngeal Carcinoma: A Prospective Multimodal Imaging Study. Cancers, 2021, 13, 1550.	1.7	12
190	Lower neck organs at risk sparing in nasopharyngeal carcinoma using hybrid volumetric-modulated arc therapy (hybrid-VMAT): a case report. Journal of Radiotherapy in Practice, 0, , 1-12.	0.2	1
191	Foxq1 promotes metastasis of nasopharyngeal carcinoma by inducing vasculogenic mimicry via the EGFR signaling pathway. Cell Death and Disease, 2021, 12, 411.	2.7	18

#	Article	IF	CITATIONS
192	Efficacy and safety of apatinib in recurrent/metastatic nasopharyngeal carcinoma: A pilot study. Oral Oncology, 2021, 115, 105222.	0.8	11
193	Normal tissue complication probability (NTCP) models for predicting temporal lobe injury after intensity-modulated radiotherapy in nasopharyngeal carcinoma: A large registry-based retrospective study from China. Radiotherapy and Oncology, 2021, 157, 99-105.	0.3	16
194	Nasopharyngeal carcinoma: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-upâ€. Annals of Oncology, 2021, 32, 452-465.	0.6	165
195	Intensity-Modulated Proton Therapy for Nasopharynx Cancer: 2-year Outcomes from a Single Institution. International Journal of Particle Therapy, 2021, 8, 28-40.	0.9	8
196	A Systematic Review of Proton Therapy for the Management of Nasopharyngeal Cancer. International Journal of Particle Therapy, 2021, 8, 119-130.	0.9	11
197	Angiogenesis Inhibitors for Head and Neck Squamous Cell Carcinoma Treatment: Is There Still Hope?. Frontiers in Oncology, 2021, 11, 683570.	1.3	19
198	The psychological status in patients with nasopharyngeal carcinoma during radiotherapy. European Archives of Oto-Rhino-Laryngology, 2022, 279, 1035-1042.	0.8	8
199	Long-term follow-up of a phase I/II trial of radiation dose escalation by simultaneous integrated boost for locally advanced esophageal squamous cell carcinoma. Radiotherapy and Oncology, 2021, 159, 190-196.	0.3	3
200	Human papillomavirus E6 and E7: What remains?. Tumour Virus Research, 2021, 11, 200213.	1.5	53
201	Prognostic Relevance of 18F-FDG-PET/CT-Guided Target Volume Delineation in Loco-Regionally Advanced Nasopharyngeal Carcinomas: A Comparative Study. Frontiers in Oncology, 2021, 11, 709622.	1.3	4
202	Improving organ at risk sparing in oropharyngeal treatment planning by increasing target dose heterogeneity: A feasibility study. Medical Dosimetry, 2021, 46, 304-309.	0.4	0
203	Anti-angiogenics and Radiation Therapy. , 2017, , 1-10.		2
204	High-Dose Static and Dynamic Intensity-Modulated Radiotherapy Combined with Chemotherapy for Patients with Locally Advanced Nasopharyngeal Carcinoma Improves Survival and Reduces Brainstem Toxicity. Medical Science Monitor, 2018, 24, 8849-8859.	0.5	8
205	Correlation of PD-L1 Expression of Tumor Cells with Survival Outcomes after Radical Intensity-Modulated Radiation Therapy for Non-Metastatic Nasopharyngeal Carcinoma. PLoS ONE, 2016, 11, e0157969.	1.1	54
206	Prognostic Value of Molecular Markers and Implication for Molecular Targeted Therapies in Nasopharyngeal Carcinoma: An Update in an Era of New Targeted Molecules Development. World Journal of Oncology, 2015, 6, 243-261.	0.6	18
207	Prognostication of serial post-intensity-modulated radiation therapy undetectable plasma EBV DNA for nasopharyngeal carcinoma. Oncotarget, 2017, 8, 5292-5308.	0.8	39
208	Prognostic score models for survival of nasopharyngeal carcinoma patients treated with intensity-modulated radiotherapy and chemotherapy. Oncotarget, 2015, 6, 39373-39383.	0.8	19
209	Propensity score matching analysis of cisplatin-based concurrent chemotherapy in low risk nasopharyngeal carcinoma in the intensity-modulated radiotherapy era. Oncotarget, 2015, 6, 44019-44029.	0.8	21

#	Article	IF	CITATIONS
210	Plasma Epstein-Barr viral DNA complements TNM classification of nasopharyngeal carcinoma in the era of intensity-modulated radiotherapy. Oncotarget, 2016, 7, 6221-6230.	0.8	37
211	Combining Bevacizumab with Radiation or Chemoradiation for Solid Tumors: A Review of the Scientific Rationale, and Clinical Trials. Current Angiogenesis, 2012, 1, 169-179.	0.1	19
212	Rationally combining anti-VEGF therapy with radiation in NF2 schwannoma. Journal of Rare Diseases Research & Treatment, 2016, 1, 51-55.	1.1	5
213	Patterns of failure after the reduced volume approach for elective nodal irradiation in nasopharyngeal carcinoma. Radiation Oncology Journal, 2016, 34, 10-17.	0.7	2
214	Chemically enhanced radiotherapy: visions for the future. Annals of Translational Medicine, 2016, 4, 52.	0.7	8
215	Prognostic significance of standardized uptake value on 18fluorine-fluorodeoxyglucose positron emission tomography/computed tomography in patients with nasopharyngeal carcinoma. World Journal of Nuclear Medicine, 2017, 16, 33-38.	0.3	4
216	The Prognostic Value of Treatment-Related Lymphopenia in Nasopharyngeal Carcinoma Patients. Cancer Research and Treatment, 2018, 50, 19-29.	1.3	56
217	Feasibility of Selective Neck Irradiation with Lower Elective Radiation Dose in Treating Nasopharynx Cancer Patients. Cancer Research and Treatment, 2019, 51, 603-610.	1.3	18
218	Locoregional extension patterns of nasopharyngeal carcinoma and suggestions for clinical target volume delineation. Chinese Journal of Cancer, 2012, 31, 579-587.	4.9	94
219	Palliative Chemotherapy and Targeted Therapy for Recurrent and Metastatic Nasopharyngeal Carcinoma: Reminiscences and the Future. Hong Kong Journal of Radiology, 2013, 16, 252-260.	0.1	0
220	Nasopharyngeal carcinoma: Current treatment options and future directions. Journal of Nasopharyngeal Carcinoma, 2014, , .	0.0	0
221	Cancer of the Head and Neck. , 2014, , 1037-1070.e6.		1
223	Nasopharyngeal Cancer. , 2015, , 153-169.		0
224	Head and Neck Tumors: Viewpoint—Fractionated Radiation Therapy and Chemotherapy. , 2015, , 549-562.		0
225	Analysis of the Curative Effect of the Treatment of the Three-dimensional Conformal Radiotherapy Combination with the Induction Chemotherapy in the Middle-late Nasopharyngeal Carcinoma. , 0, , .		0
227	Hypoxia in Head and Neck Cancers: Clinical Relevance and Treatment. , 2016, , 229-242.		0
228	Molecular Targeted Therapies in Head and Neck Cancer. , 2016, , 349-372.		0
229	Intensity-Modulated Radiation Therapy for Head and Neck Cancer. , 2016, , 301-315.		Ο

#	Article	IF	CITATIONS
231	How Histopathologic Tumor Extent and Patterns of Recurrence Data Inform the Development of Radiation Therapy Treatment Volumes in Solid Malignancies. Seminars in Radiation Oncology, 2018, 28, 218-237.	1.0	1
232	Literatur zu Giordano/Wenz: Strahlentherapie kompakt, 3. Auflage. , 2019, , e.1-e.39.		0
233	Anti-angiogenics and Radiation Therapy. , 2019, , 349-358.		0
234	The hunt for the perfect biomarker in nasopharyngeal carcinoma—the RRAS "race―beyond Epstein-Barr virus?. Translational Cancer Research, 2019, 8, 1659-1662.	0.4	0
235	Hematological Indexes Can Be Used to Predict the Incidence of Hypothyroidism in Nasopharyngeal Carcinoma Patients after Radiotherapy. BioMed Research International, 2020, 2020, 1-10.	0.9	2
236	Implementación de una aplicación para el análisis dosimétrico de planes de radioterapia externa basada en la API de Eclipse. Revista Española De FÃsica Médica, 2021, 2, 37-42.	0.1	0
238	Rationally combining anti-VEGF therapy with radiation in NF2 schwannoma. , 2016, 1, 51-55.		2
239	A low dose of AZD8055 enhances radiosensitivity of nasopharyngeal carcinoma cells by activating autophagy and apoptosis. American Journal of Cancer Research, 2019, 9, 1922-1937.	1.4	3
240	Liquid biopsy posttreatment surveillance in endemic nasopharyngeal carcinoma: a cost-effective strategy to integrate circulating cell-free Epstein-Barr virus DNA. BMC Medicine, 2021, 19, 193.	2.3	1
241	Nasopharyngeal Carcinoma: Clinical Achievements and Considerations Among Treatment Options. Frontiers in Oncology, 2021, 11, 635737.	1.3	19
242	Bevacizumab versus placebo in combination with paclitaxel and carboplatin as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma: a multicentre, randomised, open-label, phase II trial. ESMO Open, 2021, 6, 100313.	2.0	8
243	Liquid biopsy posttreatment surveillance in endemic nasopharyngeal carcinoma: a cost-effective strategy to integrate circulating cell-free Epstein-Barr virus DNA. BMC Medicine, 2021, 19, 193.	2.3	8
244	Diffusion-Weighted Magnetic Resonance Imaging-Guided Dose Painting in Patients With Locoregionally Advanced Nasopharyngeal Carcinoma Treated With Induction Chemotherapy Plus Concurrent Chemoradiotherapy: A Randomized, Controlled Clinical Trial. International Journal of Radiation Oncology Biology Physics, 2022, 113, 101-113.	0.4	17
245	Level lb sparing intensity-modulated radiation therapy in selected nasopharyngeal carcinoma patients based on the International Guideline. Radiotherapy and Oncology, 2022, 167, 239-243.	0.3	10
246	Long-term survival rates of patients with nasopharyngeal carcinoma treated by radiochemotherapy: a retrospective cohort study. The Egyptian Journal of Otolaryngology, 2022, 38, .	0.1	3
247	Dosimetric analysis of radiation-induced brainstem necrosis for nasopharyngeal carcinoma treated with IMRT. BMC Cancer, 2022, 22, 178.	1.1	4
248	Long-Term Evaluation and Normal Tissue Complication Probability (NTCP) Models for Predicting Radiation-Induced Optic Neuropathy after Intensity-Modulated Radiation Therapy (IMRT) for Nasopharyngeal Carcinoma: A Large Retrospective Study in China. Journal of Oncology, 2022, 2022, 1-10.	0.6	1
249	Nasopharyngeal Carcinoma and Its Microenvironment: Past, Current, and Future Perspectives. Frontiers in Oncology, 2022, 12, 840467.	1.3	11

#	Article	IF	CITATIONS
250	Dosimetric Accuracy of MR-Guided Online Adaptive Planning for Nasopharyngeal Carcinoma Radiotherapy on 1.5 T MR-Linac. Frontiers in Oncology, 2022, 12, 858076.	1.3	2
251	Which evaluation criteria of the short-term efficacy can better reflect the long-term outcomes for patients with nasopharyngeal carcinoma?. Translational Oncology, 2022, 20, 101412.	1.7	0
252	FGF-2 signaling in nasopharyngeal carcinoma modulates pericyte-macrophage crosstalk and metastasis. JCI Insight, 2022, 7, .	2.3	20
254	Necrosis in a Biomarker-driven, Phase 2 Trial of Adjuvant Apatinib in Patients of Nasopharyngeal Carcinoma with Residual Epstein–Barr Virus DNA after Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2022, , .	0.4	4
255	Reflecting on the utility of standardized uptake values on 18F-FDG PET in nasopharyngeal carcinoma. BMC Cancer, 2022, 22, 495.	1.1	3
256	Dose escalation based on 18F-FDG PET/CT response in definitive chemoradiotherapy of locally advanced esophageal squamous cell carcinoma: a phase III, open-label, randomized, controlled trial (ESO-Shanghai 12). Radiation Oncology, 2022, 17, .	1.2	4
257	Radiation therapy and antiangiogenic therapy: Opportunities and challenges. Cancer Radiotherapie: Journal De La Societe Francaise De Radiotherapie Oncologique, 2022, 26, 962-967.	0.6	4
258	Lenvatinib for effectively treating antiangiogenic drug-resistant nasopharyngeal carcinoma. Cell Death and Disease, 2022, 13, .	2.7	6
259	A dynamic nomogram combining tumor stage and magnetic resonance imaging features to predict the response to induction chemotherapy in locally advanced nasopharyngeal carcinoma. European Radiology, 2023, 33, 2171-2184.	2.3	3
260	Neck level Ib-sparing versus level Ib-irradiation in intensity-modulated radiotherapy for the treatment of nasopharyngeal carcinoma with high-risk factors: A propensity score-matched cohort study. Radiotherapy and Oncology, 2022, 177, 205-213.	0.3	8
261	Contouring the accessory parotid gland and major parotid glands as a single organ at risk during nasopharyngeal carcinoma radiotherapy. Frontiers in Oncology, 0, 12, .	1.3	0
262	<scp>Postâ€induction</scp> lymph node delineation in nasopharyngeal <scp>cancer: A singleâ€center</scp> experience. Head and Neck, 0, , .	0.9	1
263	Targeted therapy for head and neck cancer: signaling pathways and clinical studies. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	27
264	Upper-neck versus whole-neck irradiation at the contralateral uninvolved neck in patients with unilateral N3 nasopharyngeal carcinoma. International Journal of Radiation Oncology Biology Physics, 2022, , .	0.4	1
265	Medial retropharyngeal nodal region sparing radiotherapy versus standard radiotherapy in patients with nasopharyngeal carcinoma: open label, non-inferiority, multicentre, randomised, phase 3 trial. BMJ, The, 0, , e072133.	3.0	6
266	Impact of Radiotherapy Combined With Chemotherapy on Long-Term Outcomes of Patients With Recurrent Nasopharyngeal Carcinoma. Technology in Cancer Research and Treatment, 2023, 22, 153303382311557.	0.8	1
267	Why subclinical involvement is prescribed the same high dose as gross tumor volume: A study on highâ€dose clinical target volume in intensityâ€modulated radiotherapy plan of nasopharyngeal carcinoma. Head and Neck, 2023, 45, 1206-1214.	0.9	1
268	Comprehensive prognostic modeling of locoregional recurrence after radiotherapy for patients with locoregionally advanced hypopharyngeal squamous cell carcinoma. Frontiers in Oncology, 0, 13, .	1.3	0

#	Article	IF	CITATIONS
269	Unraveling the patterns and pathways of local recurrence of nasopharyngeal carcinoma: evidence for individualized clinical target volume delineation. Radiation Oncology, 2023, 18, .	1.2	0
270	Difference after radiotherapy observed in patients with nasopharyngeal carcinoma. Bulletin Du Cancer, 2023, , .	0.6	ο
271	Monoclonal antibodies for the treatment of squamous cell carcinoma: A literature review. Cancer Reports, 2023, 6, .	0.6	4
272	Review of Osteoradionecrosis of the Jaw: Radiotherapy Modality, Technique, and Dose as Risk Factors. Journal of Clinical Medicine, 2023, 12, 3025.	1.0	12