Step-Wise Methylation of Histone H3K9 Positions Hete Periphery

Cell 150, 934-947 DOI: 10.1016/j.cell.2012.06.051

Citation Report

#	Article	IF	CITATIONS
1	Histone Lysine Methylation Dynamics: Establishment, Regulation, and Biological Impact. Molecular Cell, 2012, 48, 491-507.	4.5	975
2	Prdm3 and Prdm16 are H3K9me1 Methyltransferases Required for Mammalian Heterochromatin Integrity. Cell, 2012, 150, 948-960.	13.5	271
3	Specific nuclear envelope transmembrane proteins can promote the location of chromosomes to and from the nuclear periphery. Genome Biology, 2013, 14, R14.	13.9	116
4	Segmental folding of chromosomes: A basis for structural and regulatory chromosomal neighborhoods?. BioEssays, 2013, 35, 818-828.	1.2	158
5	Nuclear organization in the nematode C. elegans. Current Opinion in Cell Biology, 2013, 25, 395-402.	2.6	5
6	Open questions: Epigenetics and the role of heterochromatin in development. BMC Biology, 2013, 11, 21.	1.7	2
7	Hutchinson–Gilford progeria syndrome through the lens of transcription. Aging Cell, 2013, 12, 533-543.	3.0	76
8	Imaging Gene Expression. Methods in Molecular Biology, 2013, , .	0.4	3
9	Alterations in replication timing of cancerâ€related genes in malignant human breast cancer cells. Journal of Cellular Biochemistry, 2013, 114, 1074-1083.	1.2	19
10	β-Globin cis-elements determine differential nuclear targeting through epigenetic modifications. Journal of Cell Biology, 2013, 203, 767-783.	2.3	102
11	Nutritional Control of Epigenetic Processes in Yeast and Human Cells. Genetics, 2013, 195, 831-844.	1.2	53
12	Epigenetics of eu- and heterochromatin in inverted and conventional nuclei from mouse retina. Chromosome Research, 2013, 21, 535-554.	1.0	53
13	Lamin A/C-promoter interactions specify chromatin state–dependent transcription outcomes. Genome Research, 2013, 23, 1580-1589.	2.4	157
14	Understanding the regulatory and transcriptional complexity of the genome through structure. Genome Research, 2013, 23, 1081-1088.	2.4	77
15	Chromatin organization and transcriptional regulation. Current Opinion in Genetics and Development, 2013, 23, 89-95.	1.5	156
16	Higher order chromatin organization in cancer. Seminars in Cancer Biology, 2013, 23, 109-115.	4.3	83
17	Chromatin organization: form to function. Current Opinion in Genetics and Development, 2013, 23, 185-190.	1.5	45
18	The Human Protein PRR14 Tethers Heterochromatin to the Nuclear Lamina during Interphase and Mitotic Exit. Cell Reports, 2013, 5, 292-301.	2.9	99

#	Article	IF	CITATIONS
19	Nuclear location and the control of developmental progression. Current Opinion in Genetics and Development, 2013, 23, 104-108.	1.5	4
20	SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends in Biochemical Sciences, 2013, 38, 621-639.	3.7	244
21	LBR and Lamin A/C Sequentially Tether Peripheral Heterochromatin and Inversely Regulate Differentiation. Cell, 2013, 152, 584-598.	13.5	681
22	Spinning the Web of Cell Fate. Cell, 2013, 152, 1213-1217.	13.5	24
23	Genome Architecture: Domain Organization of Interphase Chromosomes. Cell, 2013, 152, 1270-1284.	13.5	659
24	Functional implications of genome topology. Nature Structural and Molecular Biology, 2013, 20, 290-299.	3.6	382
25	Promoter- and RNA polymerase II–dependent <i>hsp-16</i> gene association with nuclear pores in <i>Caenorhabditis elegans</i> . Journal of Cell Biology, 2013, 200, 589-604.	2.3	60
26	Single-Cell Dynamics of Genome-Nuclear Lamina Interactions. Cell, 2013, 153, 178-192.	13.5	609
27	H3K9/HP1 and Polycomb. Current Topics in Developmental Biology, 2013, 104, 243-291.	1.0	45
28	H3K56me3 Is a Novel, Conserved Heterochromatic Mark That Largely but Not Completely Overlaps with H3K9me3 in Both Regulation and Localization. PLoS ONE, 2013, 8, e51765.	1.1	53
29	Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nature Reviews Genetics, 2013, 14, 390-403.	7.7	963
30	Mechanisms of heterochromatin subnuclear localization. Trends in Biochemical Sciences, 2013, 38, 356-363.	3.7	80
31	Stress induces plant somatic cells to acquire some features of stem cells accompanied by selective chromatin reorganization. Developmental Dynamics, 2013, 242, 1121-1133.	0.8	26
32	Building silent compartments at the nuclear periphery: a recurrent theme. Current Opinion in Genetics and Development, 2013, 23, 96-103.	1.5	55
33	Conserved SAMS function in regulating egg-laying in <i>C. elegans</i> . Journal of Receptor and Signal Transduction Research, 2013, 33, 56-62.	1.3	5
34	Physical clustering of <i>FLC</i> alleles during Polycomb-mediated epigenetic silencing in vernalization. Genes and Development, 2013, 27, 1845-1850.	2.7	74
35	Histone Methylation Restrains the Expression of Subtype-Specific Genes during Terminal Neuronal Differentiation in Caenorhabditis elegans. PLoS Genetics, 2013, 9, e1004017.	1.5	25
36	Histone Modifications of Notch1 Promoter Affect Lung CD4 ⁺ T Cell Differentiation in Asthmatic Rats. International Journal of Immunopathology and Pharmacology, 2013, 26, 371-381.	1.0	28

#	Article	IF	CITATIONS
37	Centromeres in nuclear architecture. Cell Cycle, 2013, 12, 3455-3456.	1.3	6
38	The shelterin protein POT-1 anchors <i>Caenorhabditis elegans</i> telomeres through SUN-1 at the nuclear periphery. Journal of Cell Biology, 2013, 203, 727-735.	2.3	44
39	The formation and sequestration of heterochromatin during development. FEBS Journal, 2013, 280, 3212-3219.	2.2	8
40	Histone H3 lysine methylation in cognition and intellectual disability disorders. Learning and Memory, 2013, 20, 570-579.	0.5	52
41	Transcriptional regulation at the yeast nuclear envelope. Nucleus, 2013, 4, 379-389.	0.6	22
42	Nuclear lamins. Nucleus, 2013, 4, 424-430.	0.6	27
43	Alterations of Epigenetic Signatures in Hepatocyte Nuclear Factor 4α Deficient Mouse Liver Determined by Improved ChIP-qPCR and (h)MeDIP-qPCR Assays. PLoS ONE, 2014, 9, e84925.	1.1	15
44	Stochastic genome-nuclear lamina interactions. Nucleus, 2014, 5, 124-130.	0.6	79
45	Specifying peripheral heterochromatin during nuclear lamina reassembly. Nucleus, 2014, 5, 32-39.	0.6	31
46	Transgenerational functions of small RNA pathways in controlling gene expression in <i>C. elegans</i> . Epigenetics, 2014, 9, 37-44.	1.3	15
47	Differential spatial and structural organization of the X chromosome underlies dosage compensation in <i>C. elegans</i> . Genes and Development, 2014, 28, 2591-2596.	2.7	48
48	IncRNA Maturation to Initiate Heterochromatin Formation in the Nucleolus Is Required for Exit from Pluripotency in ESCs. Cell Stem Cell, 2014, 15, 720-734.	5.2	124
49	How the proteome packages the genome for cardiovascular development. Proteomics, 2014, 14, 2115-2126.	1.3	3
50	Modern Tools to Study Nuclear Pore Complexes and Nucleocytoplasmic Transport in Caenorhabditis elegans. Methods in Cell Biology, 2014, 122, 277-310.	0.5	10
51	Implicating SCF Complexes in Organogenesis in <i>Caenorhabditis elegans</i> . Genetics, 2014, 196, 211-223.	1.2	11
52	C. elegans epigenetic regulation in development and aging. Briefings in Functional Genomics, 2014, 13, 223-234.	1.3	28
53	Small Ubiquitin-like Modifier (SUMO)-mediated Repression of the Xenopus Oocyte 5 S rRNA Genes. Journal of Biological Chemistry, 2014, 289, 35468-35481.	1.6	5
54	SWI/SNF Complex Prevents Lineage Reversion and Induces Temporal Patterning in Neural Stem Cells. Cell, 2014, 156, 1259-1273.	13.5	137

ARTICLE IF CITATIONS # Mechanisms and dynamics of nuclear lamina–genome interactions. Current Opinion in Cell Biology, 2.6 103 55 2014, 28, 61-68. Genome-wide analysis links emerin to neuromuscular junction activity in Caenorhabditis elegans. Genome Biology, 2014, 15, R21. 57 HP1a: a structural chromosomal protein regulating transcription. Trends in Genetics, 2014, 30, 103-110. 2.9 150 Nucleolus and nuclear periphery: Velcro for heterochromatin. Current Opinion in Cell Biology, 2014, 148 28, 54-60. The <i>Caenorhabditis elegans</i> HP1 family protein HPL-2 maintains ER homeostasis through the UPR and hormesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 59 3.3 37 111, 5956-5961. Genome regulation at the peripheral zone: lamina associated domains in development and disease. 1.5 Current Opinion in Genetics and Development, 2014, 25, 50-61. 61 Manipulating nuclear architecture. Current Opinion in Genetics and Development, 2014, 25, 1-7. 1.5 25 Closing the (nuclear) envelope on the genome: How nuclear lamins interact with promoters and 1.2 46 modulate gene expression. BioEssays, 2014, 36, 75-83. Redundant Mechanisms to Form Silent Chromatin at Pericentromeric Regions Rely on BEND3 and DNA 63 4.5 185 Methylation. Molecular Cell, 2014, 56, 580-594. Comparative analysis of metazoan chromatin organization. Nature, 2014, 512, 449-452. 13.7 Transcriptional and epigenetic networks of helper T and innate lymphoid cells. Immunological 65 2.8 76 Reviews, 2014, 261, 23-49. Targeted gene suppression by inducing de novo DNA methylation in the gene promoter. Epigenetics and 1.8 Chromatin, 2014, 7, 20. H3K27me and PRC2 transmit a memory of repression across generations and during development. 67 6.0 243 Science, 2014, 345, 1515-1518. From Hypothesis to Mechanism: Uncovering Nuclear Pore Complex Links to Gene Expression. Molecular and Cellular Biology, 2014, 34, 2114-2120. 1.1 Caenorhabditis elegans: An Old Genetic Model Can Learn New Epigenetic Tricks. Integrative and 69 0.9 14 Comparative Biology, 2014, 54, 52-60. Histone lysine methylation and chromatin replication. Biochimica Et Biophysica Acta - Gene Regulatory 74 Mechaniśms, 2014, 1839, 1433-1439. A Histone Methylation Network Regulates Transgenerational Epigenetic Memory in C.Âelegans. Cell 71 2.9 146 Reports, 2014, 7, 113-126. Lamina-associated polypeptide (LAP)21[±] and nucleoplasmic lamins in adult stem cell regulation and 2.3 disease. Seminars in Cell and Developmental Biology, 2014, 29, 116-124.

	CITATION	CITATION REPORT	
#	Article	IF	Citations
73	S-adenosylmethionine Levels Regulate the Schwann Cell DNA Methylome. Neuron, 2014, 81, 1024-1039.	3.8	67
74	Nuclear architecture as an epigenetic regulator of neural development and function. Neuroscience, 2014, 264, 39-50.	1.1	23
75	Gene positioning and genome function. Frontiers in Biology, 2014, 9, 255-268.	0.7	0
76	Repressive histone methylation: A case study in deterministic versus stochastic gene regulation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1373-1384.	0.9	18
77	NET gains and losses: the role of changing nuclear envelope proteomes in genome regulation. Current Opinion in Cell Biology, 2014, 28, 105-120.	2.6	60
78	Hunting for Darwin's gemmules and Lamarck's fluid: Transgenerational signaling and histone methylation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1440-1453.	0.9	12
79	Context-specific regulation of cancer epigenomes by histone and transcription factor methylation. Oncogene, 2014, 33, 1207-1217.	2.6	26
80	Structure and function study of the complex that synthesizes <i>S</i> -adenosylmethionine. IUCrJ, 2014, 1, 240-249.	1.0	36
81	Many paths lead chromatin to the nuclear periphery. BioEssays, 2015, 37, 862-866.	1.2	13
82	Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature, 2015, 523, 240-244.	13.7	787
83	The SUV39H1 inhibitor chaetocin induces differentiation and shows synergistic cytotoxicity with other epigenetic drugs in acute myeloid leukemia cells. Blood Cancer Journal, 2015, 5, e313-e313.	2.8	76
84	The International Nucleome Consortium. Nucleus, 2015, 6, 89-92.	0.6	19
85	Enrichment of H3K9me2 on Unsynapsed Chromatin in Caenorhabditis elegans Does Not Target de Novo Sites. G3: Genes, Genomes, Genetics, 2015, 5, 1865-1878.	0.8	12
86	Linking dosage compensation and X chromosome nuclear organization in <i>C. elegans</i> . Nucleus, 2015, 6, 266-272.	0.6	6
87	Histone variant H3.3 provides the heterochromatic H3 lysine 9 tri-methylation mark at telomeres. Nucleic Acids Research, 2015, 43, gkv847.	6.5	79
88	LMTK3 Represses Tumor Suppressor-like Genes through Chromatin Remodeling in Breast Cancer. Cell Reports, 2015, 12, 837-849.	2.9	21
89	Finding the Middlemen in Genome Organization. Developmental Cell, 2015, 35, 670-671.	3.1	4
90	Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. Journal of Cell Biology, 2015, 208, 33-52.	2.3	266

#	Article	IF	CITATIONS
91	Compartmentalization of the cell nucleus and spatial organization of the genome. Molecular Biology, 2015, 49, 21-39.	0.4	14
92	Nuclear Organization Changes and the Epigenetic Silencing of FLC during Vernalization. Journal of Molecular Biology, 2015, 427, 659-669.	2.0	33
93	Distinct features of lamin A-interacting chromatin domains mapped by ChIP-sequencing from sonicated or micrococcal nuclease-digested chromatin. Nucleus, 2015, 6, 30-39.	0.6	71
94	Lamins: Nuclear Intermediate Filament Proteins with Fundamental Functions in Nuclear Mechanics and Genome Regulation. Annual Review of Biochemistry, 2015, 84, 131-164.	5.0	455
95	Chromatin at the nuclear periphery and the regulation of genome functions. Histochemistry and Cell Biology, 2015, 144, 111-122.	0.8	69
96	Sound of silence: the properties and functions of repressive Lys methyltransferases. Nature Reviews Molecular Cell Biology, 2015, 16, 499-513.	16.1	161
97	The Fun30 Chromatin Remodeler Fft3 Controls Nuclear Organization and Chromatin Structure of Insulators and Subtelomeres in Fission Yeast. PLoS Genetics, 2015, 11, e1005101.	1.5	52
98	Unraveling the 3D genome: genomics tools for multiscale exploration. Trends in Genetics, 2015, 31, 357-372.	2.9	62
99	Defining heterochromatin in <i>C. elegans</i> through genome-wide analysis of the heterochromatin protein 1 homolog HPL-2. Genome Research, 2015, 25, 76-88.	2.4	68
100	Constitutive heterochromatin formation and transcription in mammals. Epigenetics and Chromatin, 2015, 8, 3.	1.8	416
101	Insulin-response epigenetic activation of Egr-1 and JunB genes at the nuclear periphery by A-type lamin-associated pY19-Caveolin-2 in the inner nuclear membrane. Nucleic Acids Research, 2015, 43, 3114-3127.	6.5	17
102	Transcription of tandemly repetitive DNA: functional roles. Chromosome Research, 2015, 23, 463-477.	1.0	114
103	Silencio/CG9754 connects the Piwi–piRNA complex to the cellular heterochromatin machinery. Genes and Development, 2015, 29, 2258-2271.	2.7	144
104	Identification of Gene Positioning Factors Using High-Throughput Imaging Mapping. Cell, 2015, 162, 911-923.	13.5	170
105	CTCF Recruits Centromeric Protein CENP-E to the Pericentromeric/Centromeric Regions of Chromosomes through Unusual CTCF-Binding Sites. Cell Reports, 2015, 12, 1704-1714.	2.9	25
106	H3K23me2 is a new heterochromatic mark in <i>Caenorhabditis elegans</i> . Nucleic Acids Research, 2015, 43, gkv1063.	6.5	37
107	Chromatin states and nuclear organization in development — a view from the nuclear lamina. Genome Biology, 2015, 16, 174.	3.8	67
108	Perturbing Chromatin Structure to Understand Mechanisms of Gene Expression. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 207-212.	2.0	13

#	Article	IF	CITATIONS
109	Differential basal-to-apical accessibility of laminÂA/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension. Nature Materials, 2015, 14, 1252-1261.	13.3	142
110	Identification of lamin B–regulated chromatin regions based on chromatin landscapes. Molecular Biology of the Cell, 2015, 26, 2685-2697.	0.9	53
111	s-Adenosylmethionine Levels Govern Innate Immunity through Distinct Methylation-Dependent Pathways. Cell Metabolism, 2015, 22, 633-645.	7.2	105
112	PARP1- and CTCF-Mediated Interactions between Active and Repressed Chromatin at the Lamina Promote Oscillating Transcription. Molecular Cell, 2015, 59, 984-997.	4.5	120
113	Genome-wide Maps of Nuclear Lamina Interactions in Single Human Cells. Cell, 2015, 163, 134-147.	13.5	399
114	The Nrde Pathway Mediates Small-RNA-Directed Histone H3 Lysine 27 Trimethylation in Caenorhabditis elegans. Current Biology, 2015, 25, 2398-2403.	1.8	109
115	Prepatterning of differentiation-driven nuclear lamin A/C-associated chromatin domains by GlcNAcylated histone H2B. Genome Research, 2015, 25, 1825-1835.	2.4	75
116	Perinuclear Anchoring of H3K9-Methylated Chromatin Stabilizes Induced Cell Fate in C.Âelegans Embryos. Cell, 2015, 163, 1333-1347.	13.5	169
117	Functional Crosstalk Between Lysine Methyltransferases on Histone Substrates: The Case of G9A/GLP and Polycomb Repressive Complex 2. Antioxidants and Redox Signaling, 2015, 22, 1365-1381.	2.5	26
118	Chromatin-Driven Behavior of Topologically Associating Domains. Journal of Molecular Biology, 2015, 427, 608-625.	2.0	95
119	Genome Organization Inside the Nucleus. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2016, 10, .	0.1	0
120	Spatial Genome Organization and Its Emerging Role as a Potential Diagnosis Tool. Frontiers in Genetics, 2016, 7, 134.	1.1	50
121	Anchoring of Heterochromatin to the Nuclear Lamina Reinforces Dosage Compensation-Mediated Gene Repression. PLoS Genetics, 2016, 12, e1006341.	1.5	38
122	GIP Contributions to the Regulation of Centromere at the Interface Between the Nuclear Envelope and the Nucleoplasm. Frontiers in Plant Science, 2016, 7, 118.	1.7	8
123	Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man. EMBO Reports, 2016, 17, 139-155.	2.0	128
124	Tagged Chromosomal Insertion Site System. Methods in Enzymology, 2016, 569, 433-453.	0.4	6
125	Polycomb "polypacks―the chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14878-14880.	3.3	5
127	Genetic and epigenomic mechanisms of mammalian circadian transcription. Nature Structural and Molecular Biology, 2016, 23, 1045-1052.	3.6	80

#	Article	IF	CITATIONS
128	Spatial segregation of heterochromatin: Uncovering functionality in a multicellular organism. Nucleus, 2016, 7, 301-307.	0.6	20
129	Disruption of Methionine Metabolism in <i>Drosophila melanogaster</i> Impacts Histone Methylation and Results in Loss of Viability. G3: Genes, Genomes, Genetics, 2016, 6, 121-132.	0.8	19
130	DamID Analysis of Nuclear Organization in Caenorhabditis elegans. Methods in Molecular Biology, 2016, 1411, 341-358.	0.4	14
131	Mapping the chemical chromatin reactivation landscape identifies BRD4-TAF1 cross-talk. Nature Chemical Biology, 2016, 12, 504-510.	3.9	43
132	Mitochondrial Stress Induces Chromatin Reorganization to Promote Longevity and UPR mt. Cell, 2016, 165, 1197-1208.	13.5	272
133	The Nuclear Envelope. Methods in Molecular Biology, 2016, , .	0.4	1
134	The nuclear lamina in health and disease. Nucleus, 2016, 7, 233-248.	0.6	87
135	Role of Inner Nuclear Membrane Protein Complex Lem2-Nur1 in Heterochromatic Gene Silencing. Journal of Biological Chemistry, 2016, 291, 20021-20029.	1.6	35
136	Histone H3K9 methylation is dispensable for Caenorhabditis elegans development but suppresses RNA:DNA hybrid-associated repeat instability. Nature Genetics, 2016, 48, 1385-1395.	9.4	173
137	Chromatin Control of Developmental Dynamics and Plasticity. Developmental Cell, 2016, 38, 610-620.	3.1	127
138	Tools for <scp>DNA</scp> adenine methyltransferase identification analysis of nuclear organization during <i>C. elegans</i> development. Genesis, 2016, 54, 151-159.	0.8	9
139	Direct interrogation of the role of H3K9 in metazoan heterochromatin function. Genes and Development, 2016, 30, 1866-1880.	2.7	67
140	Undercover: gene control by metabolites and metabolic enzymes. Genes and Development, 2016, 30, 2345-2369.	2.7	192
141	Tissue homogeneity requires inhibition of unequal gene silencing during development. Journal of Cell Biology, 2016, 214, 319-331.	2.3	7
143	Soft X-Ray Tomography Reveals Gradual Chromatin Compaction and Reorganization during Neurogenesis InAVivo. Cell Reports, 2016, 17, 2125-2136.	2.9	85
144	<i>S</i> -Adenosylmethionine Synthetase 3 Is Important for Pollen Tube Growth. Plant Physiology, 2016, 172, 244-253.	2.3	47
145	Light behind the curtain: photoregulation of nuclear architecture and chromatin dynamics in plants. New Phytologist, 2016, 212, 908-919.	3.5	44
146	Role of several histone lysine methyltransferases in tumor development. Biomedical Reports, 2016, 4, 293-299.	0.9	12

#	Article	IF	CITATIONS
147	Spatial Genome Organization and Disease. , 2016, , 101-125.		5
148	Laminopathies disrupt epigenomic developmental programs and cell fate. Science Translational Medicine, 2016, 8, 335ra58.	5.8	91
149	Diseases of the Nucleoskeleton. , 2016, 6, 1655-1674.		4
150	Dangerous R loops form in the absence of H3K9 methylation. Nature Genetics, 2016, 48, 1299-1300.	9.4	0
151	Canonical Wnt signalling regulates nuclear export of Setdb1 during skeletal muscle terminal differentiation. Cell Discovery, 2016, 2, 16037.	3.1	26
152	Beyond Tethering and the LEM domain: MSCellaneous functions of the inner nuclear membrane Lem2. Nucleus, 2016, 7, 523-531.	0.6	11
153	Nucleoporin-mediated regulation of cell identity genes. Genes and Development, 2016, 30, 2253-2258.	2.7	138
154	Mechanism of chromatin segregation to the nuclear periphery in <i>C. elegans</i> embryos. Worm, 2016, 5, e1190900.	1.0	7
155	A streamlined tethered chromosome conformation capture protocol. BMC Genomics, 2016, 17, 274.	1.2	17
156	On TADs and LADs: Spatial Control Over Gene Expression. Trends in Genetics, 2016, 32, 485-495.	2.9	151
157	Plasticity in the Meiotic Epigenetic Landscape of Sex Chromosomes in <i>Caenorhabditis</i> Species. Genetics, 2016, 203, 1641-1658.	1.2	11
158	Tissue-of-origin-specific gene repositioning in breast and prostate cancer. Histochemistry and Cell Biology, 2016, 145, 433-446.	0.8	41
159	Lamin-Binding Proteins in Caenorhabditis elegans. Methods in Enzymology, 2016, 569, 455-483.	0.4	15
160	The Emerging Hallmarks of Cancer Metabolism. Cell Metabolism, 2016, 23, 27-47.	7.2	3,943
161	Control of heterochromatin localization and silencing by the nuclear membrane protein Lem2. Genes and Development, 2016, 30, 133-148.	2.7	105
162	Metabolic control of methylation and acetylation. Current Opinion in Chemical Biology, 2016, 30, 52-60.	2.8	241
163	Dam it's good! DamID profiling of protein-DNA interactions. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 25-37.	5.9	48
164	Inducible DamID systems for genomic mapping of chromatin proteins in <i>Drosophila</i> . Nucleic Acids Research, 2016, 44, 5646-5657.	6.5	42

#	Article	IF	CITATIONS
165	Spatial Organization of Epigenomes. Current Molecular Biology Reports, 2016, 2, 1-9.	0.8	4
166	The level and distribution pattern of HP1β in the embryonic brain correspond to those of H3K9me1/me2 but not of H3K9me3. Histochemistry and Cell Biology, 2016, 145, 447-461.	0.8	7
167	Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nature Reviews Genetics, 2016, 17, 284-299.	7.7	679
168	Recent advances in understanding nuclear size and shape. Nucleus, 2016, 7, 167-186.	0.6	71
169	From single genes to entire genomes: the search for a function of nuclear organization. Development (Cambridge), 2016, 143, 910-923.	1.2	34
170	How to rule the nucleus: divide et impera. Current Opinion in Cell Biology, 2016, 40, 47-59.	2.6	155
171	Locus-specific gene repositioning in prostate cancer. Molecular Biology of the Cell, 2016, 27, 236-246.	0.9	32
172	The redundancy of the mammalian heterochromatic compartment. Current Opinion in Genetics and Development, 2016, 37, 1-8.	1.5	35
173	Dosage compensation and nuclear organization: cluster to control chromosome-wide gene expression. Current Opinion in Genetics and Development, 2016, 37, 9-16.	1.5	6
174	The Polycomb Repressive Complex 1 Protein BMI1 Is Required for Constitutive Heterochromatin Formation and Silencing in Mammalian Somatic Cells. Journal of Biological Chemistry, 2016, 291, 182-197.	1.6	32
175	Chromosomal aneuploidies induced upon Lamin B2 depletion are mislocalized in the interphase nucleus. Chromosoma, 2017, 126, 223-244.	1.0	24
176	Genome–nuclear lamina interactions: from cell populations to single cells. Current Opinion in Genetics and Development, 2017, 43, 67-72.	1.5	28
177	Repo-Man/PP1 regulates heterochromatin formation in interphase. Nature Communications, 2017, 8, 14048.	5.8	46
178	Soft matrices downregulate FAK activity to promote growth of tumor-repopulating cells. Biochemical and Biophysical Research Communications, 2017, 483, 456-462.	1.0	11
179	Genetic and epigenetic control of the spatial organization of the genome. Molecular Biology of the Cell, 2017, 28, 364-369.	0.9	15
180	Calciumâ€dependent protein kinase <scp>CPK</scp> 28 targets the methionine adenosyltransferases for degradation by the 26S proteasome and affects ethylene biosynthesis and lignin deposition in Arabidopsis. Plant Journal, 2017, 90, 304-318.	2.8	34
181	The Nuclear Option: Evidence Implicating the Cell Nucleus in Mechanotransduction. Journal of Biomechanical Engineering, 2017, 139, .	0.6	57
182	Transgenerational transmission of environmental information in <i>C. elegans</i> . Science, 2017, 356, 320-323.	6.0	360

#	Article	IF	CITATIONS
183	SETDB1 plays an essential role in maintenance of gonocyte survival in pigs. Reproduction, 2017, 154, 23-34.	1.1	7
184	Causes and consequences of nuclear gene positioning. Journal of Cell Science, 2017, 130, 1501-1508.	1.2	47
185	Identifying Novel Transcriptional and Epigenetic Features of Nuclear Lamina-associated Genes. Scientific Reports, 2017, 7, 100.	1.6	30
186	Lamina-Associated Domains: Links with Chromosome Architecture, Heterochromatin, and Gene Repression. Cell, 2017, 169, 780-791.	13.5	798
187	The <scp>RNA</scp> helicase <scp>DHX</scp> 9 establishes nucleolar heterochromatin, and this activity is required for embryonic stem cell differentiation. EMBO Reports, 2017, 18, 1248-1262.	2.0	42
188	Transgenerational Inheritance: Perpetuating RNAi. Current Biology, 2017, 27, R383-R385.	1.8	6
189	MORC-1 Integrates Nuclear RNAi and Transgenerational Chromatin Architecture to Promote Germline Immortality. Developmental Cell, 2017, 41, 408-423.e7.	3.1	69
190	MET-2-Dependent H3K9 Methylation Suppresses Transgenerational Small RNA Inheritance. Current Biology, 2017, 27, 1138-1147.	1.8	102
191	Nonrandom domain organization of the <i>Arabidopsis</i> genome at the nuclear periphery. Genome Research, 2017, 27, 1162-1173.	2.4	96
192	MacroH2A histone variants maintain nuclear organization and heterochromatin architecture. Journal of Cell Science, 2017, 130, 1570-1582.	1.2	64
193	Cell Biology of the <i>Caenorhabditis elegans</i> Nucleus. Genetics, 2017, 205, 25-59.	1.2	46
194	Nicotine affects protein complex rearrangement in <i>Caenorhabditis elegans</i> cells. Drug and Chemical Toxicology, 2017, 40, 470-483.	1.2	4
195	Effect of BIX-01294 on proliferation, apoptosis and histone methylation of acute T lymphoblastic leukemia cells. Leukemia Research, 2017, 62, 34-39.	0.4	20
196	Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction. Cell, 2017, 171, 573-587.e14.	13.5	162
197	A PML/Slit Axis Controls Physiological Cell Migration and Cancer Invasion in the CNS. Cell Reports, 2017, 20, 411-426.	2.9	49
198	Principles of Transgenerational Small RNA Inheritance in Caenorhabditis elegans. Current Biology, 2017, 27, R720-R730.	1.8	135
198 199	Principles of Transgenerational Small RNA Inheritance in Caenorhabditis elegans. Current Biology, 2017, 27, R720-R730. Impaired DNA replication derepresses chromatin and generates a transgenerationally inherited epigenetic memory. Science Advances, 2017, 3, e1701143.	1.8 4.7	135 12

#	Article	IF	CITATIONS
201	Decoupling the downstream effects of germline nuclear RNAi reveals that H3K9me3 is dispensable for heritable RNAi and the maintenance of endogenous siRNA-mediated transcriptional silencing in Caenorhabditis elegans. Epigenetics and Chromatin, 2017, 10, 6.	1.8	67
202	Roles of long noncoding <scp>RNAs</scp> in chromosome domains. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1384.	3.2	12
203	Metabolic interactions with cancer epigenetics. Molecular Aspects of Medicine, 2017, 54, 50-57.	2.7	40
204	Global Functions of PRC2 Complexes. , 2017, , 317-348.		0
205	Why is Lamin B Receptor Downregulated in Senescence?. Advanced Techniques in Biology & Medicine, 2017, 05, .	0.1	0
206	Heterochromatin Reduction Correlates with the Increase of the KDM4B and KDM6A Demethylases and the Expression of Pericentromeric DNA during the Acquisition of a Transformed Phenotype. Journal of Cancer, 2017, 8, 2866-2875.	1.2	26
207	PcG Proteins in Caenorhabditis elegans. , 2017, , 289-315.		1
208	3D Nuclear Architecture and Epigenetic Memories: Regulators of Phenotypic Plasticity in Development, Aging and Cancer. , 2017, , 417-460.		2
209	A team of heterochromatin factors collaborates with small RNA pathways to combat repetitive elements and germline stress. ELife, 2017, 6, .	2.8	87
210	Histone methylation-associated transgenerational inheritance of reproductive defects in Caenorhabditis elegans exposed to crude oil under various exposure scenarios. Chemosphere, 2018, 200, 358-365.	4.2	22
211	Surviving Starvation: AMPK Protects Germ Cell Integrity by Targeting Multiple Epigenetic Effectors. BioEssays, 2018, 40, 1700095.	1.2	4
212	Metabolic intermediates – Cellular messengers talking to chromatin modifiers. Molecular Metabolism, 2018, 14, 39-52.	3.0	37
213	Repressive Chromatin in <i>Caenorhabditis elegans</i> : Establishment, Composition, and Function. Genetics, 2018, 208, 491-511.	1.2	82
216	Caenorhabditis elegans Nuclear Pore Complexes in Genome Organization and Gene Expression. , 2018, , 137-158.		1
217	Functional Redundancy of Variant and Canonical Histone H3 Lysine 9 Modification in <i>Drosophila</i> . Genetics, 2018, 208, 229-244.	1.2	21
218	The Nuclear Lamina and Genome Organization. , 2018, , 321-343.		2
219	Chromosomes and Chromatin in the Nematode Nucleus. , 2018, , 533-556.		0
220	Endothelial cell differentiation is encompassed by changes in long range interactions between inactive chromatin regions. Nucleic Acids Research, 2018, 46, 1724-1740.	6.5	48

#	Article	IF	CITATIONS
221	The lamin code. BioSystems, 2018, 164, 68-75.	0.9	12
223	An actin-based nucleoskeleton involved in gene regulation and genome organization. Biochemical and Biophysical Research Communications, 2018, 506, 378-386.	1.0	20
224	βâ€Actinâ€dependent global chromatin organization and gene expression programs control cellular identity. FASEB Journal, 2018, 32, 1296-1314.	0.2	50
225	LaminA/C regulates epigenetic and chromatin architecture changes upon aging of hematopoietic stem cells. Genome Biology, 2018, 19, 189.	3.8	66
226	Bottom–up modeling of chromatin segregation due to epigenetic modifications. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12739-12744.	3.3	117
227	C.Âelegans Heterochromatin Factor SET-32 Plays an Essential Role in Transgenerational Establishment of Nuclear RNAi-Mediated Epigenetic Silencing. Cell Reports, 2018, 25, 2273-2284.e3.	2.9	38
228	Chromatin Modifiers SET-25 and SET-32 Are Required for Establishment but Not Long-Term Maintenance of Transgenerational Epigenetic Inheritance. Cell Reports, 2018, 25, 2259-2272.e5.	2.9	50
229	A Lamina-Associated Domain Border Governs Nuclear Lamina Interactions, Transcription, and Recombination of the Tcrb Locus. Cell Reports, 2018, 25, 1729-1740.e6.	2.9	37
230	The large fraction of heterochromatin in Drosophila neurons is bound by both B-type lamin and HP1a. Epigenetics and Chromatin, 2018, 11, 65.	1.8	26
231	Transgenerational Epigenetic Inheritance Is Negatively Regulated by the HERI-1 Chromodomain Protein. Genetics, 2018, 210, 1287-1299.	1.2	35
232	Consequences of Lamin B1 and Lamin B Receptor Downregulation in Senescence. Cells, 2018, 7, 11.	1.8	43
233	SETting up Methylation in Mammalian Cells: Role of Histone Methyltransferases in Disease and Development. , 2018, , 197-258.		0
234	Blank spots on the map: some current questions on nuclear organization and genome architecture. Histochemistry and Cell Biology, 2018, 150, 579-592.	0.8	24
235	Mechanisms of allelic and clinical heterogeneity of lamin A/C phenotypes. Physiological Genomics, 2018, 50, 694-704.	1.0	8
236	Multiple Histone Methyl-Lysine Readers Ensure Robust Development and Germline Immortality in <i>Caenorhabditis elegans</i> . Genetics, 2018, 210, 907-923.	1.2	15
237	Epigenetic Regulation of Skin Development and Regeneration. Pancreatic Islet Biology, 2018, , .	0.1	0
239	Integration of Biochemical and Mechanical Signals at the Nuclear Periphery: Impacts on Skin Development and Disease. Pancreatic Islet Biology, 2018, , 263-292.	0.1	1
240	Inverted repeat structures are associated with essential and highly expressed genes onC. elegansautosome distal arms. Rna, 2018, 24, 1634-1646.	1.6	2

#	Article	IF	CITATIONS
241	Capsid-CPSF6 Interaction Licenses Nuclear HIV-1 Trafficking to Sites of Viral DNA Integration. Cell Host and Microbe, 2018, 24, 392-404.e8.	5.1	141
242	An Inducible DamID System for Profiling Interactions of Nuclear Lamina Protein Component Lamin B1 with Chromosomes in Mouse Cells. Biochemistry (Moscow), 2018, 83, 586-594.	0.7	1
243	The Memory of Environmental Chemical Exposure in C.Âelegans Is Dependent on the Jumonji Demethylases jmjd-2 and jmjd-3/utx-1. Cell Reports, 2018, 23, 2392-2404.	2.9	53
244	Editing the Epigenome: Reshaping the Genomic Landscape. Annual Review of Genomics and Human Genetics, 2018, 19, 43-71.	2.5	109
245	The câ€MYC–BMI1 axis is essential for SETDB1â€mediated breast tumourigenesis. Journal of Pathology, 2018, 246, 89-102.	2.1	28
246	Three-dimensional chromatin packing and positioning of plant genomes. Nature Plants, 2018, 4, 521-529.	4.7	100
247	Chromatin, nuclear lamins, and maintenance of the differentiated identity. Current Opinion in Systems Biology, 2018, 11, 1-8.	1.3	5
248	Aberrant DNA Methylation Patterns in Gynecologic Cancers. , 2018, , 751-780.		Ο
249	SET-9 and SET-26 are H3K4me3 readers and play critical roles in germline development and longevity. ELife, 2018, 7, .	2.8	22
250	E3 ubiquitin ligase HECW2 mediates the proteasomal degradation of HP1 isoforms. Biochemical and Biophysical Research Communications, 2018, 503, 2478-2484.	1.0	9
251	Microenvironment-Cell Nucleus Relationship in the Context of Oxidative Stress. Frontiers in Cell and Developmental Biology, 2018, 6, 23.	1.8	27
252	A Simple Method for Visualization of Locus-Specific H4K20me1 Modifications in Living Caenorhabditis elegans Single Cells. G3: Genes, Genomes, Genetics, 2018, 8, 2249-2255.	0.8	2
253	Regulated nuclear accumulation of a histone methyltransferase times the onset of heterochromatin formation in <i>C. elegans</i> embryos. Science Advances, 2018, 4, eaat6224.	4.7	55
254	Extreme nuclear branching in healthy epidermal cells of the <i>Xenopus</i> tail fin. Journal of Cell Science, 2018, 131, .	1.2	6
255	Linker of nucleoskeleton and cytoskeleton complex proteins in cardiomyopathy. Biophysical Reviews, 2018, 10, 1033-1051.	1.5	49
256	Emerging topics in C. elegans aging research: Transcriptional regulation, stress response and epigenetics. Mechanisms of Ageing and Development, 2019, 177, 4-21.	2.2	53
257	Transgenerational Epigenetic Inheritance Is Revealed as a Multi-step Process by Studies of the SET-Domain Proteins SET-25 and SET-32. Epigenetics Insights, 2019, 12, 251686571984421.	0.6	7
258	Roles and regulation of histone methylation in animal development. Nature Reviews Molecular Cell Biology, 2019, 20, 625-641.	16.1	324

#	Article	IF	CITATIONS
259	Nuclear Organization in Stress and Aging. Cells, 2019, 8, 664.	1.8	28
260	Cell Metabolism in Cancer: An Energetic Switch. Learning Materials in Biosciences, 2019, , 97-116.	0.2	0
261	Chromatin Compaction by Small RNAs and the Nuclear RNAi Machinery in C. elegans. Scientific Reports, 2019, 9, 9030.	1.6	19
262	<i>C. elegans</i> synMuv B proteins regulate spatial and temporal chromatin compaction during development. Development (Cambridge), 2019, 146, .	1.2	11
263	Assessment of the Utility of Gene Positioning Biomarkers in the Stratification of Prostate Cancers. Frontiers in Genetics, 2019, 10, 1029.	1.1	6
264	Distinct functions and temporal regulation of methylated histone H3 during early embryogenesis. Development (Cambridge), 2019, 146, .	1.2	13
265	The importance of the nuclear positioning of the PPARG gene for its expression during porcine in vitro adipogenesis. Chromosome Research, 2019, 27, 271-284.	1.0	17
266	Interplay of lamin A and lamin B LADs on the radial positioning of chromatin. Nucleus, 2019, 10, 7-20.	0.6	34
267	Epigenetic Regulation of Toxicity of Environmental Toxicants or Stresses. , 2019, , 351-390.		0
268	Lineage-specific reorganization of nuclear peripheral heterochromatin and H3K9me2 domains. Development (Cambridge), 2019, 146, .	1.2	18
269	Lamin A/C and Emerin depletion impacts chromatin organization and dynamics in the interphase nucleus. BMC Molecular and Cell Biology, 2019, 20, 11.	1.0	43
270	The Polycomb protein Ezl1 mediates H3K9 and H3K27 methylation to repress transposable elements in Paramecium. Nature Communications, 2019, 10, 2710.	5.8	69
271	Molecular and Cell Biology of Cancer. Learning Materials in Biosciences, 2019, , .	0.2	3
272	Piwi/PRG-1 Argonaute and TGF-β Mediate Transgenerational Learned Pathogenic Avoidance. Cell, 2019, 177, 1827-1841.e12.	13.5	199
273	2-hydroxyglutarate inhibits MyoD-mediated differentiation by preventing H3K9 demethylation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12851-12856.	3.3	28
274	Binding of an <i>X</i> -Specific Condensin Correlates with a Reduction in Active Histone Modifications at Gene Regulatory Elements. Genetics, 2019, 212, 729-742.	1.2	12
275	Active chromatin marks drive spatial sequestration of heterochromatin in C. elegans nuclei. Nature, 2019, 569, 734-739.	13.7	97
276	Spatial chromatin organization and gene regulation at the nuclear lamina. Current Opinion in Genetics and Development, 2019, 55, 19-25.	1.5	38

ARTICLE IF CITATIONS # Plant lamin-like proteins mediate chromatin tethering at the nuclear periphery. Genome Biology, 2019, 3.8 79 277 20, 87. The Chromatin-Associated Protein PWO1 Interacts with Plant Nuclear Lamin-like Components to 278 3.1 Regulate Nuclear Size. Plant Cell, 2019, 31, 1141-1154. Repression of Germline Genes in <i>Caenorhabditis elegans</i> Somatic Tissues by H3K9 Dimethylation 279 1.2 28 of Their Promoters. Genetics, 2019, 212, 125-140. <scp>KMT</scp> 1 family methyltransferases regulate heterochromatin–nuclear periphery tethering 280 via histone and nonâ€histone protein methylation. EMBO Reports, 2019, 20, . Promoter-Intrinsic and Local Chromatin Features Determine Gene Repression in LADs. Cell, 2019, 177, 281 13.5 108 852-864.e14. Inter-generational consequences for growing <i>Caenorhabditis elegans</i> in liquid. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180125. 1.8 A DNA repair protein and histone methyltransferase interact to promote genome stability in the 283 1.5 19 Caenorhabditis elegans germ line. PLoS Genetics, 2019, 15, e1007992. Cyclin D1 integrates G9a-mediated histone methylation. Oncogene, 2019, 38, 4232-4249. 284 2.6 20 Heterochromatic foci and transcriptional repression by an unstructured MET-2/SETDB1 co-factor 285 2.3 21 LIN-65. Journal of Cell Biology, 2019, 218, 820-838. Direct visualization of cardiac transcription factories reveals regulatory principles of nuclear architecture during pathological remodeling. Journal of Molecular and Cellular Cardiology, 2019, 128, 198-211. Synergistic lethality between BRCA1 and H3K9me2 loss reflects satellite derepression. Genes and 287 2.7 48 Development, 2019, 33, 436-451. Expression and phase separation potential ofÂheterochromatin proteins during early 288 mouseÂdevelopment. EMBO Reports, 2019, 20, e47952. Chromatin architecture and virulence-related gene expression in eukaryotic microbial pathogens. 289 0.8 8 Current Genetics, 2019, 65, 435-443. Identification of a natural inhibitor of methionine adenosyltransferase 2A regulating one-carbon 2.7 metabolism in keratinocytes. EBioMedicine, 2019, 39, 575-590. Coaching from the sidelines: the nuclear periphery in genome regulation. Nature Reviews Genetics, 291 147 7.7 2019, 20, 39-50. Light-microscopy methods in C. elegans research. Current Opinion in Systems Biology, 2019, 13, 82-92. 292 Methionine adenosyltransferase 2A regulates mouse zygotic genome activation and morula to 293 1.2 23 blastocyst transitionâ€. Biology of Reproduction, 2019, 100, 601-617. Transcription-independent TFIIIC-bound sites cluster near heterochromatin boundaries within 294 1.8 lamina-associated domains in C. elegans. Epigenetics and Chromatin, 2020, 13, 1.

ARTICLE IF CITATIONS Wnt-Induced Stabilization of KDM4C Is Required for Wnt/l2-Catenin Target Gene Expression and 295 0.4 40 Glioblastoma Tumorigenesis. Cancer Research, 2020, 80, 1049-1063. Protect-seq: genome-wide profiling of nuclease inaccessible domains reveals physical properties of 6.5 chromatin. Nucleic Acids Research, 2020, 48, e16-e16. A complex interplay between SAM synthetase and the epigenetic regulator SIN3 controls metabolism 297 1.6 14 and transcription. Journal of Biological Chemistry, 2020, 295, 375-389. Tissue-Specific Transcription Footprinting Using RNA Pol DamID (RAPID) in <i>Caenorhabditis 1.2 elegans /i>. Genetics, 2020, 216, 931-945. Emerging Roles for Chromo Domain Proteins in Genome Organization and Cell Fate in C. elegans. 299 7 1.8 Frontiers in Cell and Developmental Biology, 2020, 8, 590195. Sequential peripheral enrichment of H2A.Zac and H3K9me2 during trophoblast differentiation in human embryonic stem cells. Journal of Cell Science, 2020, 133, . 1.2 SAMMY-seq reveals early alteration of heterochromatin and deregulation of bivalent genes in 301 5.8 22 Hutchinson-Gilford Progeria Syndrome. Nature Communications, 2020, 11, 6274. Hydrostatic pressure prevents chondrocyte differentiation through heterochromatin remodeling. 1.2 Journal of Cell Science, 2021, 134, . Nuclear peripheral chromatin-lamin B1 interaction is required for global integrity of chromatin 303 4.8 43 architecture and dynamics in human cells. Protein and Cell, 2022, 13, 258-280. Epigenome signatures landscaped by histone H3K9me3 are associated with the synaptic dysfunction in 304 Alzheimer's disease. Aging Cell, 2020, 19, e13153. The Laminopathies and the Insights They Provide into the Structural and Functional Organization of 305 2.5 48 the Nucleus. Annual Review of Genomics and Human Genetics, 2020, 21, 263-288. Histone H3K9 methylation promotes formation of genome compartments in <i>Caenorhabditis elegans</i> via chromosome compaction and perinuclear anchoring. Proceedings of the National 3.3 Academy of Sciences of the United States of America, 2020, 117, 11459-11470 Nucleoporin 153 links nuclear pore complex to chromatin architecture by mediating CTCF and cohesin 307 5.8 46 binding. Nature Communications, 2020, 11, 2606. Loss of an H3K9me anchor rescues laminopathy-linked changes in nuclear organization and muscle 308 2.7 function in an Emery-Dreifuss muscular dystrophy model. Genes and Development, 2020, 34, 560-579. 309 Systemic effects of mitochondrial stress. EMBO Reports, 2020, 21, e50094. 2.0 54 Dynamic Lamin B1-Gene Association During Oligodendrocyte Progenitor Differentiation. Néurochemical Research, 2020, 45, 606-619. Interactions between metabolism and chromatin in plant models. Molecular Metabolism, 2020, 38, 311 3.049 100951. JMJD1B, a novel player in histone H3 and H4 processing to ensure genome stability. Epigenetics and 1.8 Chromatin, 2020, 13, 6.

#	Article	IF	CITATIONS
313	Chromatin Compaction Leads to a Preference forÂPeripheral Heterochromatin. Biophysical Journal, 2020, 118, 1479-1488.	0.2	19
314	Recent advances in the spatial organization of the mammalian genome. Journal of Biosciences, 2020, 45, 1.	0.5	12
315	Viewing Nuclear Architecture through the Eyes of Nocturnal Mammals. Trends in Cell Biology, 2020, 30, 276-289.	3.6	30
316	Methyl-Metabolite Depletion Elicits Adaptive Responses to Support Heterochromatin Stability and Epigenetic Persistence. Molecular Cell, 2020, 78, 210-223.e8.	4.5	45
317	LSM2-8 and XRN-2 contribute to the silencing of H3K27me3-marked genes through targeted RNA decay. Nature Cell Biology, 2020, 22, 579-590.	4.6	17
318	Abo1 is required for the H3K9me2 to H3K9me3 transition in heterochromatin. Scientific Reports, 2020, 10, 6055.	1.6	8
319	Mechanisms and rejuvenation strategies for aged hematopoietic stem cells. Journal of Hematology and Oncology, 2020, 13, 31.	6.9	59
320	Lamina-associated domains: peripheral matters and internal affairs. Genome Biology, 2020, 21, 85.	3.8	162
321	Close to the edge: Heterochromatin at the nucleolar and nuclear peripheries. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2021, 1864, 194666.	0.9	49
322	Argonaute NRDE-3 and MBT domain protein LIN-61 redundantly recruit an H3K9me3 HMT to prevent embryonic lethality and transposon expression. Genes and Development, 2021, 35, 82-101.	2.7	16
323	Genetic approaches to revealing the principles of nuclear architecture. Current Opinion in Genetics and Development, 2021, 67, 52-60.	1.5	4
324	Nuclear organization and regulation of the differentiated state. Cellular and Molecular Life Sciences, 2021, 78, 3141-3158.	2.4	20
325	Fission Yeast Methylenetetrahydrofolate Reductase Ensures Mitotic and Meiotic Chromosome Segregation Fidelity. International Journal of Molecular Sciences, 2021, 22, 639.	1.8	5
326	Physical constraints in polymer modeling of chromatin associations with the nuclear periphery at kilobase scale. Nucleus, 2021, 12, 6-20.	0.6	7
327	Exploring the nuclear lamina in health and pathology using C. elegans. Current Topics in Developmental Biology, 2021, 144, 91-110.	1.0	1
328	On the origins and conceptual frameworks of natural plasticity—Lessons from single-cell models in C. elegans. Current Topics in Developmental Biology, 2021, 144, 111-159.	1.0	9
329	An Epigenetic Priming Mechanism Mediated by Nutrient Sensing Regulates Transcriptional Output during C.Âelegans Development. Current Biology, 2021, 31, 809-826.e6.	1.8	22
330	Gametes deficient for Pot1 telomere binding proteins alter levels of telomeric foci for multiple generations. Communications Biology, 2021, 4, 158.	2.0	4

#	Article	IF	CITATIONS
331	Mapping the micro-proteome of the nuclear lamina and lamina-associated domains. Life Science Alliance, 2021, 4, e202000774.	1.3	26
332	Stress resets ancestral heritable small RNA responses. ELife, 2021, 10, .	2.8	60
333	An old weapon with a new function: PIWI-interacting RNAs in neurodegenerative diseases. Translational Neurodegeneration, 2021, 10, 9.	3.6	24
334	The Plant Nuclear Envelope and Its Role in Gene Transcription. Frontiers in Plant Science, 2021, 12, 674209.	1.7	4
335	The shifting shape of genomes: dynamics of heterochromatin interactions at the nuclear lamina. Current Opinion in Genetics and Development, 2021, 67, 163-173.	1.5	25
336	RbAp46/48LIN-53 and HAT-1 are required for initial CENP-AHCP-3 deposition and de novo holocentromere formation on artificial chromosomes in Caenorhabditis elegans embryos. Nucleic Acids Research, 2021, 49, 9154-9173.	6.5	6
337	Small RNAs and chromatin in the multigenerational epigenetic landscape of <i>Caenorhabditis elegans</i> . Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200112.	1.8	29
338	Singleâ€cell dynamics of chromatin activity during cell lineage differentiation in <i>Caenorhabditis elegans</i> embryos. Molecular Systems Biology, 2021, 17, e10075.	3.2	5
339	LINC complex regulation of genome organization and function. Current Opinion in Genetics and Development, 2021, 67, 130-141.	1.5	22
340	Induction of protective response to polystyrene nanoparticles associated with methylation regulation in Caenorhabditis elegans. Chemosphere, 2021, 271, 129589.	4.2	35
341	The nuclear periphery is a scaffold for tissue-specific enhancers. Nucleic Acids Research, 2021, 49, 6181-6195.	6.5	28
342	Regulation of the one carbon folate cycle as a shared metabolic signature of longevity. Nature Communications, 2021, 12, 3486.	5.8	37
343	Three-dimensional genome organization in epigenetic regulations: cause or consequence?. Current Opinion in Plant Biology, 2021, 61, 102031.	3.5	4
344	A chromodomain protein mediates heterochromatin-directed piRNA expression. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
345	Prdm16-mediated H3K9 methylation controls fibro-adipogenic progenitors identity during skeletal muscle repair. Science Advances, 2021, 7, .	4.7	30
346	A global chromatin compaction pathway that represses germline gene expression during starvation. Journal of Cell Biology, 2021, 220, .	2.3	13
347	Complete loss of H3K9 methylation dissolves mouse heterochromatin organization. Nature Communications, 2021, 12, 4359.	5.8	41
349	Mating can initiate stable RNA silencing that overcomes epigenetic recovery. Nature Communications, 2021, 12, 4239.	5.8	16

#	Article	IF	CITATIONS
350	EBP1 regulates Suv39H1 stability via the ubiquitin-proteasome system in neural development. BMB Reports, 2021, 54, 413-418.	1.1	6
352	Piwi–piRNA complexes induce stepwise changes in nuclear architecture at target loci. EMBO Journal, 2021, 40, e108345.	3.5	8
353	Identifying distinct heterochromatin regions using combinatorial epigenetic probes in live cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2021, 1864, 194725.	0.9	7
354	The Nuclear Lamina. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040113.	2.3	28
355	Targeting the Transcriptome Through Globally Acting Components. Frontiers in Genetics, 2021, 12, 749850.	1.1	1
356	Mechanisms of Chromosome Folding and Nuclear Organization: Their Interplay and Open Questions. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040147.	2.3	68
357	Trans-generational effects of copper on nerve damage in Caenorhabditis elegans. Chemosphere, 2021, 284, 131324.	4.2	14
358	3D chromatin architecture and epigenetic regulation in cancer stem cells. Protein and Cell, 2021, 12, 440-454.	4.8	26
359	Heterochromatin: A Critical Part of the Genome. , 2014, , 529-552.		5
360	Microscopic Analysis of Chromatin Localization and Dynamics in C. elegans. Methods in Molecular Biology, 2013, 1042, 153-172.	0.4	4
361	D-Type Cyclins and Gene Transcription. Current Cancer Research, 2018, , 61-90.	0.2	2
362	Overview of Histone Modification. Advances in Experimental Medicine and Biology, 2021, 1283, 1-16.	0.8	186
363	The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nature Reviews Molecular Cell Biology, 2018, 19, 109-120.	16.1	451
364	The mouse HP1 proteins are essential for preventing liver tumorigenesis. Oncogene, 2020, 39, 2676-2691.	2.6	17
365	How do histone modifications contribute to transgenerational epigenetic inheritance in <i>C. elegans</i> ?. Biochemical Society Transactions, 2020, 48, 1019-1034.	1.6	19
366	Genome anchoring to nuclear landmarks drives functional compartmentalization of the nuclear space. Briefings in Functional Genomics, 2020, 19, 101-110.	1.3	12
382	The euchromatic histone mark H3K36me3 preserves heterochromatin through sequestration of an acetyltransferase complex in fission yeast. Microbial Cell, 2020, 7, 80-92.	1.4	16
383	Modern techniques for the analysis of chromatin and nuclear organization in C. elegans. WormBook, 2014, , 1-35.	5.3	34

#	Article	IF	CITATIONS
384	Polycomb and Notch signaling regulate cell proliferation potential during <i>Caenorhabditis elegans</i> life cycle. Life Science Alliance, 2019, 2, e201800170.	1.3	6
385	Capsid-CPSF6 interaction: Master regulator of nuclear HIV-1 positioning and integration. Journal of Life Sciences (Westlake Village, Calif), 2019, 1, 39-45.	1.8	12
386	Into the chromatin world: Role of nuclear architecture in epigenome regulation. AIMS Biophysics, 2015, 2, 585-612.	0.3	8
387	Coordinated control of terminal differentiation and restriction of cellular plasticity. ELife, 2017, 6, .	2.8	70
388	H3K9me3 is required for inheritance of small RNAs that target a unique subset of newly evolved genes. ELife, 2019, 8, .	2.8	36
389	Repressive H3K9me2 protects lifespan against the transgenerational burden of COMPASS activity in C. elegans. ELife, 2019, 8, .	2.8	47
390	Caenorhabditis elegans nuclear RNAi factor SET-32 deposits the transgenerational histone modification, H3K23me3. ELife, 2020, 9, .	2.8	32
391	Caenorhabditis elegans methionine/S-adenosylmethionine cycle activity is sensed and adjusted by a nuclear hormone receptor. ELife, 2020, 9, .	2.8	44
406	A Nuclear RNA Degradation Pathway Helps Silence Polycomb/H3K27me3-Marked Loci in Caenorhabditis elegans. Cold Spring Harbor Symposia on Quantitative Biology, 2019, 84, 141-153.	2.0	0
418	G9a/GLP-sensitivity of H3K9me2 Demarcates Two Types of Genomic Compartments. Genomics, Proteomics and Bioinformatics, 2020, 18, 359-370.	3.0	4
424	H3K9me selectively blocks transcription factor activity and ensures differentiated tissue integrity. Nature Cell Biology, 2021, 23, 1163-1175.	4.6	37
429	Tissue-specific DamID protocol using nanopore sequencing. Journal of Biological Methods, 2021, 8, e152.	1.0	0
430	Epigenetic regulation of neural stem cells: The emerging role of nucleoporins. Stem Cells, 2021, 39, 1601-1614.	1.4	4
431	Transmission of chromatin states across generations in C. elegans. Seminars in Cell and Developmental Biology, 2022, 127, 133-141.	2.3	7
432	Lamin C is required to establish genome organization after mitosis. Genome Biology, 2021, 22, 305.	3.8	24
433	Spreading-dependent or independent Sir2-mediated gene silencing in budding yeast. Genes and Genomics, 2022, 44, 359-367.	0.5	4
434	SETDB1-like MET-2 promotes transcriptional silencing and development independently of its H3K9me-associated catalytic activity. Nature Structural and Molecular Biology, 2022, 29, 85-96.	3.6	11
436	Nuclear lamins: Structure and function in mechanobiology. APL Bioengineering, 2022, 6, 011503.	3.3	29

#	Article	IF	CITATIONS
437	Principles and functions of pericentromeric satellite DNA clustering into chromocenters. Seminars in Cell and Developmental Biology, 2022, 128, 26-39.	2.3	22
439	Recent advances in the spatial organization of the mammalian genome. Journal of Biosciences, 2020, 45,	0.5	4
440	CTCF supports preferentially short lamina-associated domains. Chromosome Research, 2022, 30, 123-136.	1.0	6
441	Genetic and Epigenetic Inheritance at Telomeres. Epigenomes, 2022, 6, 9.	0.8	4
443	The zinc-finger transcription factor LSL-1 is a major regulator of the germline transcriptional program in <i>Caenorhabditis elegans</i> . Genetics, 2022, 221, .	1.2	2
444	Dosage compensation in <i>Bombyx mori</i> is achieved by partial repression of both Z chromosomes in males. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113374119.	3.3	11
445	Histone post-translational modifications — cause and consequence of genome function. Nature Reviews Genetics, 2022, 23, 563-580.	7.7	253
446	Mechanisms of epigenetic regulation by C. elegans nuclear RNA interference pathways. Seminars in Cell and Developmental Biology, 2022, 127, 142-154.	2.3	13
448	Accessible Region Conformation Capture (ARC-C) gives high-resolution insights into genome architecture and regulation. Genome Research, 2022, 32, 357-366.	2.4	6
449	When Down Is Up: Heterochromatin, Nuclear Organization and X Upregulation. Cells, 2021, 10, 3416.	1.8	6
450	Lamina-associated domains: Tethers and looseners. Current Opinion in Cell Biology, 2022, 74, 80-87.	2.6	34
451	The nuclear lamina binds the EBV genome during latency and regulates viral gene expression. PLoS Pathogens, 2022, 18, e1010400.	2.1	6
461	Tissue-specific DamID protocol using nanopore sequencing. Journal of Biological Methods, 2021, 8, e152.	1.0	1
463	Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nature Reviews Molecular Cell Biology, 2022, 23, 623-640.	16.1	145
464	3D chromatin architecture and transcription regulation in cancer. Journal of Hematology and Oncology, 2022, 15, 49.	6.9	22
465	<i>Plasmodium falciparum</i> PfRUVBL proteins bind at the TARE region and <i>var</i> gene promoter located in the subtelomeric region. Pathogens and Disease, 2022, 80, .	0.8	3
466	Interspecies effectors of a transgenerational memory of bacterial infection in Caenorhabditis elegans. IScience, 2022, 25, 104627.	1.9	5
468	Polycomb-lamina antagonism partitions heterochromatin at the nuclear periphery. Nature Communications, 2022, 13, .	5.8	8

# 469	ARTICLE 3D genome, on repeat: Higher-order folding principles of the heterochromatinized repetitive genome. Cell, 2022, 185, 2690-2707.	IF 13.5	CITATIONS
470	Defect-buffering cellular plasticity increases robustness of metazoan embryogenesis. Cell Systems, 2022, 13, 615-630.e9.	2.9	11
471	Epigenetic Regulation of Stem Cells. , 2022, , .		0
472	Molecular Toxicology in Caenorhabditis elegans. , 2022, , 244-275.		0
474	Mechanisms of Histone Modifications. , 2023, , 27-54.		1
476	H3K9me1/2 methylation limits the lifespan of daf-2 mutants in C. elegans. ELife, 0, 11, .	2.8	8
477	Histone modification and histone modification-targeted anti-cancer drugs in breast cancer: Fundamentals and beyond. Frontiers in Pharmacology, 0, 13, .	1.6	9
478	Emerin interacts with histone methyltransferases to regulate repressive chromatin at the nuclear periphery. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1
480	Dp71 Point Mutations Induce Protein Aggregation, Loss of Nuclear Lamina Integrity and Impaired Braf35 and Ibraf Function in Neuronal Cells. International Journal of Molecular Sciences, 2022, 23, 11876.	1.8	0
482	DDIT3 regulates key enzymes in the methionine cycle and flux during embryonic development. Journal of Nutritional Biochemistry, 2023, 111, 109176.	1.9	1
483	DNA methylation 6ÂmA and histone methylation involved in multi-/trans-generational reproductive effects in Caenorhabditis elegans induced by Atrazine. Ecotoxicology and Environmental Safety, 2023, 249, 114348.	2.9	6
484	Functional dissection of N-terminal nuclear trafficking signals of SETDB1. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	0
485	The Role of the m6A RNA Methyltransferase METTL16 in Gene Expression and SAM Homeostasis. Genes, 2022, 13, 2312.	1.0	0
486	Targets of histone H3 lysine 9 methyltransferases. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
487	Hypoxia induces transgenerational epigenetic inheritance of small RNAs. Cell Reports, 2022, 41, 111800.	2.9	11
488	Nuclear envelope, chromatin organizers, histones, and DNA: The many achilles heels exploited across cancers. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	7
491	Histone modifications in germline development and maintenance. , 2023, , 47-69.		0
492	S-adenosylmethionine synthases specify distinct H3K4me3 populations and gene expression patterns during heat stress. ELife, 0, 12, .	2.8	4

#	Article	IF	CITATIONS
493	Cell context-dependent CFI-1/ARID3 functions control neuronal terminal differentiation. Cell Reports, 2023, 42, 112220.	2.9	1
494	Chromatin landscape, DSB levels, and cKU-70/80 contribute to patterning of meiotic DSB processing along chromosomes in C. elegans. PLoS Genetics, 2023, 19, e1010627.	1.5	6
495	Heterochromatin and RNAi act independently to ensure genome stability in Mucorales human fungal pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120,	3.3	3
496	The epigenetic landscape of oligodendrocyte lineage cells. Annals of the New York Academy of Sciences, 2023, 1522, 24-41.	1.8	3
497	Systematic characterization of chromodomain proteins reveals an H3K9me1/2 reader regulating aging in C. elegans. Nature Communications, 2023, 14, .	5.8	1
498	Lem2 is essential for cardiac development by maintaining nuclear integrity. Cardiovascular Research, 2023, 119, 2074-2088.	1.8	2
499	Lamin B1 overexpression alters chromatin organization and gene expression. Nucleus, 2023, 14, .	0.6	4
500	A small RNA system ensures accurate homologous pairing and unpaired silencing of meiotic chromosomes. EMBO Journal, 0, , .	3.5	1
501	The nuclear Argonaute HRDE-1 directs target gene re-localization and shuttles to nuage to promote small RNA-mediated inherited silencing. Cell Reports, 2023, 42, 112408.	2.9	5
508	DamID-seq: A Genome-WideÂDNA Methylation Method that Captures Both Transient and Stable TF-DNA Interactions in Plant Cells. Methods in Molecular Biology, 2023, , 87-107.	0.4	0