Evaporative cooling of the dipolar hydroxyl radical

Nature 492, 396-400 DOI: 10.1038/nature11718

Citation Report

#	Article	IF	CITATIONS
1	Multivalence Resonance-Condensation Model for Electron Pairing and Superconductivity in HighTcSuperconductors: A Possible Novel and Universal Origin of Superconductivity. Japanese Journal of Applied Physics, 1989, 28, 2468-2478.	0.8	4
2	Cool molecules. Nature, 2012, 492, 364-365.	13.7	0
3	Go with the lows. Nature, 2012, 492, 365-365.	13.7	0
4	Quantum degenerate mixtures of strontium and rubidium atoms. Physical Review A, 2013, 88, .	1.0	109
5	Manipulation of molecules with electromagnetic fields. Molecular Physics, 2013, 111, 1648-1682.	0.8	235
6	Laser cooling of rotation and vibration by optical pumping. Molecular Physics, 2013, 111, 1844-1854.	0.8	8
7	Production of translationally cold barium monohalide ions. Physical Review A, 2013, 88, .	1.0	8
8	Experimental methods of molecular matter-wave optics. Reports on Progress in Physics, 2013, 76, 086402.	8.1	50
9	Analytical study of level crossings in the Stark-Zeeman spectrum of ground state OH. European Physical Journal D, 2013, 67, 1.	0.6	2
10	Fine structure of open-shell diatomic molecules in combined electric and magnetic fields. Molecular Physics, 2013, 111, 1865-1878.	0.8	7
11	Multichannel quantum defect theory for cold molecular collisions with a strongly anisotropic potential energy surface. Physical Review A, 2013, 87, .	1.0	3
12	Static Trapping of Polar Molecules in a Traveling Wave Decelerator. Physical Review Letters, 2013, 110, 133003.	2.9	48
13	2D Magneto-Optical Trapping of Diatomic Molecules. Physical Review Letters, 2013, 110, 143001.	2.9	323
14	Sunlight and free radicals. Nature Chemistry, 2013, 5, 637-639.	6.6	16
15	Ground-state OH molecule in combined electric and magnetic fields: Analytic solution of the effective Hamiltonian. Physical Review A, 2013, 88, .	1.0	8
16	Chemical reaction versus vibrational quenching in low energy collisions of vibrationally excited OH with O. Journal of Chemical Physics, 2013, 139, 194305.	1.2	16
17	Controllable surface electrostatic velocity filter for polar molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 145303.	0.6	0
18	Deceleration and trapping of ammonia molecules in a traveling-wave decelerator. Physical Review A, 2013, 88, .	1.0	21

#	Article	IF	CITATIONS
19	Electric-field-induced inelastic collisions between magnetically trapped hydroxyl radicals. Molecular Physics, 2013, 111, 1798-1804.	0.8	13
20	Ultracold molecular collisions in combined electric and magnetic fields. Physical Review A, 2013, 88, .	1.0	18
21	Ultracold Hydrogen Atoms: A Versatile Coolant to Produce Ultracold Molecules. Physical Review Letters, 2013, 111, 203004.	2.9	12
22	Formation of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>N</mml:mi></mml:math> -body polymer molecules through generalized stimulated Raman adiabatic passage. Physical Review A, 2013, 87, .	1.0	12
23	Associative detachment of rubidium hydroxide. Physical Review A, 2013, 88, .	1.0	7
24	Elastic and inelastic collisions of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msup><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msup><mml:mi>ĺ£</mml:mi></mml:mrow></mml:math> molecules in a magnetic field. Physical Review A. 2013. 88	1.0	5
25	Nonadiabatic Effects in Ultracold Molecules via Anomalous Linear and Quadratic Zeeman Shifts. Physical Review Letters, 2013, 111, 243003.	2.9	33
26	Dynamics of an electric dipole moment in a stochastic electric field. Physical Review E, 2013, 88, 022127.	0.8	4
27	Deceleration and trapping of a fast supersonic beam of metastable helium atoms with a 44-electrode chip decelerator. Physical Review A, 2013, 88, .	1.0	18
28	Orbital coupled dipolar fermions in an asymmetric optical ladder. Physical Review A, 2013, 87, .	1.0	4
29	Dipolar radicals in crossed electric and magnetic fields. Molecular Physics, 2013, 111, 1931-1938.	0.8	9
30	Cooling molecules the optoelectric way. Physics Today, 2013, 66, 12-14.	0.3	7
31	Reactions between cold methyl halide molecules and alkali-metal atoms. Journal of Chemical Physics, 2014, 140, 014303.	1.2	3
32	Quantum-defect model of a reactive collision at finite temperature. Physical Review A, 2014, 90, .	1.0	20
33	Low-energy scattering of molecules and ions in a magnetic field. Physical Review A, 2014, 89, .	1.0	4
34	Magnetic Trapping of Molecules via Optical Loading and Magnetic Slowing. Physical Review Letters, 2014, 112, 113006.	2.9	51
35	Spin Waves and Dielectric Softening of Polar Molecule Condensates. Physical Review Letters, 2014, 112, 135301.	2.9	3
36	Laser cooling and slowing of CaF molecules. Physical Review A, 2014, 89, .	1.0	238

ARTICLE IF CITATIONS # Vibrational quenching of the electronic ground state in ThO in cold collisions withHe3. Physical 37 1.0 4 Review A, 2014, 90, . Magneto-optical trapping of a diatomic molecule. Nature, 2014, 512, 286-289. 13.7 384 Taming molecular collisions using electric and magnetic fields. Chemical Society Reviews, 2014, 43, 39 18.7 47 7279-7294. Molecular cooling via Sisyphus processes. Physical Review A, 2014, 89, . 34 Cold State-Selected Molecular Collisions and Reactions. Annual Review of Physical Chemistry, 2014, 41 4.8 80 65, 501-518. Coherent cancellation of geometric phase for the OH molecule in external fields. Physical Review A, 1.0 2014, 89, . DEGENERATE QUANTUM GASES OF STRONTIUM. Annual Review of Cold Atoms and Molecules, 2014, , 1-80. 43 2.8 14 Cooling, Spectroscopy and Nonâ€Sticking of <i>trans</i>â€Stilbene and Nile Red. ChemPhysChem, 2014, 15, 3800-3804. 1.0 44 28 State purified deceleration of SD radicals by a Stark decelerator. Molecular Physics, 2015, 113, 45 0.8 3 4007-4018. Model for the hyperfine structure of electronically excited KCs molecules. Physical Review A, 2015, 92, 1.0 Dynamics of ultracold dipolar particles in a confined geometry and tilted fields. Physical Review A, 47 1.0 6 2015, 92, . Measuring and manipulating the temperature of cold molecules trapped on a chip. Physical Review A, 1.0 2015, 92, . Two-state Bogoliubov theory of a molecular Bose gas. Physical Review A, 2015, 92, . 49 1.0 1 Spin squeezing a cold molecule. Physical Review A, 2015, 92, . 1.0 Rotational State Microwave Mixing for Laser Cooling of Complex Diatomic Molecules. Physical 51 2.9 77 Review Letters, 2015, 114, 223003. Optimal beam sources for Stark decelerators in collision experiments: a tutorial review. EPJ Techniques and Instrumentation, 2015, 2, 12. Stereochemical properties of the OH molecule in combined electric and magnetic fields: analytic 53 0.6 2 results. European Physical Journal D, 2015, 69, 1. Stark-potential evaporative cooling of polar molecules in a novel optical-access opened electrostatic 54 trap. Chinese Physics B, 2015, 24, 113101.

		CITATION REPORT		
#	Article		IF	CITATIONS
55	Ro-vibrational cooling of molecules and prospects. Journal of Physics B: Atomic, Molecula Optical Physics, 2015, 48, 182001.	ar and	0.6	21
56	Synthesis of nanogranular Fe ₃ O ₄ /biomimetic hydroxyapatite f applications in nanomedicine: structural and magnetic characterization. Materials Resea 2015, 2, 065002.		0.8	20
57	Quantum Magnetism with Ultracold Molecules. , 2015, , 3-37.			12
58	Collisions and Reactions in Ultracold Gases. , 2015, , 241-260.			0
59	The geometric phase controls ultracold chemistry. Nature Communications, 2015, 6, 79	18.	5.8	70
60	Tuning ultracold collisions of excited rotational dipolar molecules. New Journal of Physics 035015.	s, 2015, 17,	1.2	38
61	Realizing unconventional quantum magnetism with symmetric top molecules. New Jourr 2015, 17, 025001.	ial of Physics,	1.2	51
62	Improved magneto–optical trapping of a diatomic molecule. New Journal of Physics, 2	015, 17, 035014.	1.2	63
63	Collisional relaxation of vibrational states of SrOH with He at 2 K. New Journal of Physics 045003.	, 2015, 17,	1.2	31
64	Hyperfine structure of the hydroxyl free radical (OH) in electric and magnetic fields. New Physics, 2015, 17, 045014.	Journal of	1.2	19
65	Prospects for a narrow line MOT in YO. New Journal of Physics, 2015, 17, 055008.		1.2	34
66	Complex formation and internal proton-transfer of hydroxyl-hydrogen anion complexes a temperature. New Journal of Physics, 2015, 17, 075013.	ıt low	1.2	8
68	Simultaneous deceleration of atoms and molecules in a supersonic beam. New Journal of 17, 065015.	Physics, 2015,	1.2	15
70	Importance of Geometric Phase Effects in Ultracold Chemistry. Journal of Physical Chemi 119, 12291-12303.	stry A, 2015,	1.1	18
71	Two-photon pathway to ultracold ground state molecules of ²³ Na ^{40 Journal of Physics, 2015, 17, 075016.}	K. New	1.2	38
72	A switched ring Stark decelerator for both light and heavy polar molecules. Journal of Phy Atomic, Molecular and Optical Physics, 2016, 49, 065301.	ysics B:	0.6	5
73	Laser-assisted Stark deceleration of polar diatomic molecules in the Χ1Σ state. Journal c Atomic, Molecular and Optical Physics, 2016, 49, 135101.	f Physics B:	0.6	4
74	Superfluidity of a dipolar Fermi gas in 2D optical lattices bilayer. Annalen Der Physik, 201	6, 528, 778-784.	0.9	7

#	Article	IF	CITATIONS
75	Perspective: Ultracold molecules and the dawn of cold controlled chemistry. Journal of Chemical Physics, 2016, 145, 150901.	1.2	204
76	Effects of Electromagnetic Fields on Molecular Scattering. Advances in Chemical Physics, 0, , 313-348.	0.3	1
77	Laser slowing of CaF molecules to near the capture velocity of a molecular MOT. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 174001.	0.6	75
78	The <i>ab initio</i> calculation of spectra of open shell diatomic molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 102001.	0.6	59
79	Ultra-sensitive cavity ring-down spectroscopy in the mid-infrared spectral region. Optics Letters, 2016, 41, 1612.	1.7	27
80	Principles and Design of a Zeeman-Sisyphus Decelerator for Molecular Beams. ChemPhysChem, 2016, 17, 3609-3623.	1.0	27
81	Unraveling Cold Molecular Collisions: Stark Decelerators in Crossedâ€Beam Experiments. ChemPhysChem, 2016, 17, 3583-3595.	1.0	10
82	Shielding <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi mathvariant="normal">l£<mml:mprescripts></mml:mprescripts><mml:none /><mml:mrow><mml:mn></mml:mn></mml:mrow>ultracold</mml:none </mml:mi </mml:mmultiscripts></mml:math 	1.0	45
83	dipolar molecular collisions with electric fields. Physical Review A, 2016, 93, . Analysis of two and three dipolar bosons in a spherical harmonic trap. Physical Review A, 2016, 93, .	1.0	0
84	Submillikelvin Dipolar Molecules in a Radio-Frequency Magneto-Optical Trap. Physical Review Letters, 2016, 116, 063004.	2.9	141
85	Ultracold Nonreactive Molecules in an Optical Lattice: Connecting Chemistry to Many-Body Physics. Physical Review Letters, 2016, 116, 135301.	2.9	22
86	Proposal for Laser Cooling of Complex Polyatomic Molecules. ChemPhysChem, 2016, 17, 3641-3648.	1.0	82
87	Efficient polarization of high-angular-momentum systems. Physical Review A, 2016, 94, .	1.0	11
88	Low-temperature chemistry using the R-matrix method. Faraday Discussions, 2016, 195, 31-48.	1.6	9
89	Stark effect of the hyperfine structure of ICI in its rovibronic ground state: Towards further molecular cooling. Chinese Physics B, 2016, 25, 013301.	0.7	1
90	Strongly interacting ultracold polar molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 152002.	0.6	70
91	Surface Modification of ZnO Layers via Hydrogen Plasma Treatment for Efficient Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 1194-1205.	4.0	35
92	Experimental determination of rotational constants of low-lying vibrational levels in theOgâ^'pure long-range state of ultracold Cs 2 molecule. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 191, 13-18.	1.1	4

#	Article	IF	CITATIONS
93	Molecular collisions and reactive scattering in external fields: Are field-induced couplings important at short range?. Journal of Chemical Physics, 2017, 146, 024102.	1.2	2
94	Avoiding ambient air and light induced degradation in high-efficiency polymer solar cells by the use of hydrogen-doped zinc oxide as electron extraction material. Nano Energy, 2017, 34, 500-514.	8.2	45
95	Magnetic Trapping of Cold Methyl Radicals. Physical Review Letters, 2017, 118, 093201.	2.9	48
96	Multicomponent correlated-basis-function method and its application to multilayered dipolar Bose gases. Physical Review A, 2017, 95, .	1.0	5
97	One-dimensional magneto-optical compression of a cold CaF molecular beam. New Journal of Physics, 2017, 19, 033035.	1.2	15
98	Optical trapping of ultracold dysprosium atoms: transition probabilities, dynamic dipole polarizabilities and van der Waals <i>C</i> ₆ coefficients. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 014005.	0.6	28
99	New frontiers for quantum gases of polar molecules. Nature Physics, 2017, 13, 13-20.	6.5	167
100	Adimensional theory of shielding in ultracold collisions of dipolar rotors. Physical Review A, 2017, 96, .	1.0	36
101	Measurements of trap dynamics of cold OH molecules using resonance-enhanced multiphoton ionization. Physical Review A, 2017, 96, .	1.0	5
102	Microscopic derivation of multichannel Hubbard models for ultracold nonreactive molecules in an optical lattice. Physical Review A, 2017, 95, .	1.0	14
103	Lattice-model parameters for ultracold nonreactive molecules: Chaotic scattering and its limitations. Physical Review A, 2017, 95, .	1.0	9
104	An intense, cold, velocity-controlled molecular beam by frequency-chirped laser slowing. New Journal of Physics, 2017, 19, 022001.	1.2	58
105	Bimolecular Reactions. Lecture Notes in Quantum Chemistry II, 2017, , 351-365.	0.3	0
106	Molecular beam brightening by shock-wave suppression. Science Advances, 2017, 3, e1602258.	4.7	10
107	Cold molecules: Progress in quantum engineering of chemistry and quantum matter. Science, 2017, 357, 1002-1010.	6.0	320
108	Trapping of Molecular Oxygen together with Lithium Atoms. Physical Review Letters, 2017, 119, 073204.	2.9	49
109	No evaporative cooling of nitric oxide in its ground state. Physical Review A, 2017, 96, .	1.0	2
110	Controlling spin flips of molecules in an electromagnetic trap. Physical Review A, 2017, 96, .	1.0	27

ARTICLE IF CITATIONS # Zeeman Effect of the Rovibronic Ground State of I ³⁵ Cl at Hyperfine Level. Chinese Physics 111 1.3 3 Letters, 2017, 34, 103302. Optimizing the density of Stark decelerated radicals at low final velocities: a tutorial review. EPJ Techniques and Instrumentation, 2017, 4, . Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Scattering of 113 2.9 25 Molecules. Physical Review Letters, 2018, 120, 143401. Optimized cell geometry for buffer-gas-cooled molecular-beam sources. Physical Review A, 2018, 97, . 114 1.0 Laser cooling of molecules. Contemporary Physics, 2018, 59, 356-376. 115 0.8 68 Quo vadis now, cold molecules?. Nature Physics, 2018, 14, 873-874. 6.5 Stochastic laser cooling enabled by many-body effects. Journal of Physics B: Atomic, Molecular and 118 0.6 2 Optical Physics, 2018, 51, 135002. Rotational Friction and Diffusion of Quantum Rotors. Physical Review Letters, 2018, 121, 040401. 119 2.9 36 NO evaporative cooling in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi 120 mathvariant="normal">î</mml:mi><mml:mrow><mml:mn>3</mml:mo>/</mml:mo>/</mml:mo> <mml:mn>2</mml:muo> </mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml:mo>/</mml: /><mml:mprescripts/><mml:none/><mml:mn>2</mml:mn></mml:mmultiscripts></mml:math> state. Physical Review A, 2018, 97, Collisions between cold molecules in a superconducting magnetic trap. Nature, 2019, 572, 189-193. 13.7 Long-term trapping of Stark-decelerated molecules. Communications Physics, 2019, 2, . 122 2.0 11 Quantum control of molecular rotation. Reviews of Modern Physics, 2019, 91, . 16.4 211 Low temperature scattering with the R-matrix method: argon-argon scattering. Molecular Physics, 124 0.8 6 2019, 117, 3158-3170. Multistage Zeeman deceleration of NH XΣâ^'3 radicals. Physical Review A, 2019, 99, . 1.0 14 Differential Cross Sections for State-to-State Collisions of NO(<i>v</i> = 10) in Near-Copropagating 126 2.1 17 Beams. Journal of Physical Chemistry Letters, 2019, 10, 2422-2427. Direct excitation of the spin-orbit forbidden $X2\ddot{i}\in 3/2$ $\hat{a}^{\dagger}\cdot X2\ddot{i}\in 1/2$ transition in NO using the intra-cavity free 127 electron laser FELICE. Molecular Physics, 2019, 117, 2941-2946. Spectroscopic characterization of aluminum monofluoride with relevance to laser cooling and 128 1.0 41 trapping. Physical Review A, 2019, 100, . Focusing of a cold PbO molecular beam with a superconducting microwave resonator. Journal of 129 Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 035101.

#	Article	IF	CITATIONS
130	Biomimetic Antigravity Water Transport and Remote Harvesting Powered by Sunlight. Global Challenges, 2020, 4, 2000043.	1.8	9
131	Observation of Collisions between Two Ultracold Ground-State CaF Molecules. Physical Review Letters, 2020, 125, 043401.	2.9	65
132	Patterning Graphene Films by H2O-Based Magnetic-Assisted UV Photolysis. ACS Applied Materials & Interfaces, 2020, 12, 55382-55389.	4.0	6
133	Morphing radial molecular property functions of hydroxyl. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 254, 107211.	1.1	6
134	Speeding up particle slowing using shortcuts to adiabaticity. Physical Review A, 2020, 102, .	1.0	7
135	Effects of conical intersections on hyperfine quenching of hydroxyl OH in collision with an ultracold Sr atom. Scientific Reports, 2020, 10, 14130.	1.6	1
136	Buffer-gas cooling, high-resolution spectroscopy, and optical cycling of barium monofluoride molecules. Physical Review A, 2020, 101, .	1.0	32
137	Collisional cooling of ultracold molecules. Nature, 2020, 580, 197-200.	13.7	75
138	Cold and controlled chemical reaction dynamics. Physical Chemistry Chemical Physics, 2020, 22, 9180-9194.	1.3	42
139	Simultaneous Zeeman deceleration of polyatomic free radical with lithium atoms. Frontiers of Physics, 2021, 16, 1.	2.4	2
140	Mechanistic Insights into Ultracold Chemical Reactions under the Control of the Geometric Phase. Journal of Physical Chemistry Letters, 2021, 12, 2160-2165.	2.1	6
141	Molecular collisions: From near-cold to ultra-cold. Frontiers of Physics, 2021, 16, 1.	2.4	13
142	Simulation of cryogenic buffer gas beams. Physical Review Research, 2021, 3, .	1.3	9
143	Quantum-State Control and Manipulation of Paramagnetic Molecules with Magnetic Fields. Annual Review of Physical Chemistry, 2021, 72, 353-373. Spectroscopy on the <mni:math< td=""><td>4.8</td><td>11</td></mni:math<>	4.8	11
144	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>A</mml:mi><mml:mmultiscripts><mathematical and="" secon<="" second="" td="" the=""><td></td><td>mi20</td></mathematical></mml:mmultiscripts></mml:mrow>		mi20
145	/> <mml:mn>1</mml:mn> transition of huffer gas coole CHAPTER 11. Controlling a Quantum Gas of Polar Molecules in an Optical Lattice. RSC Theoretical and Computational Chemistry Series, 2017, , 537-578.	0.7	3
146	Polyatomic molecules as quantum sensors for fundamental physics. Quantum Science and Technology, 2020, 5, 044011.	2.6	54
147	Introduction and Conceptual Background. Physical Chemistry in Action, 2014, , 1-30.	0.1	1

#	Article	IF	CITATIONS
148	Chip-based controllable loffe-typed electrostatic mirotrap for cold molecules. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 113701.	0.2	0
150	A superconducting Fabry–Perot cavity for trapping cold molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 015101.	0.6	0
151	Optical–optical double resonance process in free-jet supersonic expansion of van der Waals molecules: characteristics of the expansion, number of excited molecules and emitted photons. Molecular Physics, 0, , .	0.8	1
152	Formation of high-density cold molecules via electromagnetic trap. Chinese Physics B, 2022, 31, 103201.	0.7	1
153	Dipolar physics: a review of experiments with magnetic quantum gases. Reports on Progress in Physics, 2023, 86, 026401.	8.1	96
154	Globally Accurate Gaussian Process Potential Energy Surface and Quantum Dynamics Studies on the Li(2S) + Na2 → LiNa + Na Reaction at Low Collision Energies. Molecules, 2023, 28, 2938.	1.7	2
155	Quantum state–resolved molecular dipolar collisions over four decades of energy. Science, 2023, 379, 1031-1036.	6.0	5
156	Measurement of Doppler effects in a cryogenic buffer-gas cell. Physical Review A, 2023, 107, .	1.0	2
159	Cold collisions of hot molecules. Physical Chemistry Chemical Physics, 2023, 25, 22595-22606.	1.3	1