Mixtures of ionic liquids

Chemical Society Reviews 41, 7780

DOI: 10.1039/c2cs35177c

Citation Report

#	Article	IF	CITATIONS
1	Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure and Applied Chemistry, 2000, 72, 2275-2287.	0.9	2,126
2	Carbon dioxide absorption in the ionic liquid 1-ethylpyridinium ethylsulfate and in its mixtures with another ionic liquid. International Journal of Greenhouse Gas Control, 2013, 18, 296-304.	2.3	36
3	CO2 separation applying ionic liquid mixtures: the effect of mixing different anions on gas permeation through supported ionic liquid membranes. RSC Advances, 2013, 3, 12220.	1.7	88
4	Structural features of ionic liquids: consequences for material preparation and organic reactivity. Green Chemistry, 2013, 15, 2655.	4.6	88
5	Target-oriented analysis of gaseous, liquid and solid chemical systems by mass spectrometry, nuclear magnetic resonance spectroscopy and electron microscopy. Russian Chemical Reviews, 2013, 82, 648-685.	2.5	206
6	LCST‶ype Phase Behavior Induced by Pillar[5]arene/lonic Liquid Host–Guest Complexation. Advanced Materials, 2013, 25, 6864-6867.	11.1	113
7	Polymeric ionic liquids with mixtures of counter-anions: a new straightforward strategy for designing pyrrolidinium-based CO2 separation membranes. Journal of Materials Chemistry A, 2013, 1, 10403 .	5.2	69
8	A Theoretical and Experimental Chemist's Joint View on Hydrogen Bonding in Ionic Liquids and Their Binary Mixtures. Topics in Current Chemistry, 2013, 351, 149-187.	4.0	26
9	Design and evaluation of nano-biphasic ionic liquid systems having highly polar and low polar domains. RSC Advances, 2013, 3, 23222.	1.7	8
10	Monolayer and bilayer structures in ionic liquids and their mixtures confined to nano-films. Faraday Discussions, 2013, 167, 279.	1.6	62
11	Homogenous mixing of ionic liquids: molecular dynamics simulations. Physical Chemistry Chemical Physics, 2013, 15, 21077.	1.3	41
12	Ductile polylactic acid prepared with ionic liquids. Chemical Engineering Journal, 2013, 215-216, 886-893.	6.6	43
13	Steric, hydrogen-bonding and structural heterogeneity effects on the nucleophilic substitution of N-(p-fluorophenyldiphenylmethyl)-4-picolinium chloride in ionic liquids. Organic and Biomolecular Chemistry, 2013, 11, 2534.	1.5	26
14	Absorption of Carbon Dioxide in Two Binary Mixtures of Ionic Liquids. Industrial & Engineering Chemistry Research, 2013, 52, 5975-5984.	1.8	101
15	Electric double layer studies at the interface of mercury–binary ionic liquid mixtures with a common anion. RSC Advances, 2013, 3, 11697.	1.7	25
16	Nonconvective Mixing of Miscible Ionic Liquids. Langmuir, 2013, 29, 10159-10165.	1.6	5
17	Influence of Solvent on Ion Aggregation and Transport in PY ₁₅ TFSI Ionic Liquid–Aprotic Solvent Mixtures. Journal of Physical Chemistry B, 2013, 117, 10581-10588.	1.2	35
18	Surface structures of binary mixtures of imidazolium-based ionic liquids using high-resolution Rutherford backscattering spectroscopy and time of flight secondary ion mass spectroscopy. Journal of Chemical Physics, 2013, 139, 224701.	1.2	30

#	Article	IF	CITATIONS
19	Increased conductivity of polymerized ionic liquids through the use of a nonpolymerizable ionic liquid additive. Journal of Materials Research, 2013, 28, 3086-3093.	1.2	20
21	Two-Stage Prediction of the Effects of Imidazolium and Pyridinium Ionic Liquid Mixtures on Luciferase. Molecules, 2014, 19, 6877-6890.	1.7	10
22	Properties and Green Aspects of Ionic Liquids. , 2014, , 1-93.		4
23	Ternary Imidazolium-Pyrrolidinium-Based Ionic Liquid Electrolytes for Rechargeable Li-O ₂ Batteries. Journal of the Electrochemical Society, 2014, 161, A1969-A1975.	1.3	26
24	An Environmentally Benign Protocol for Aqueous Synthesis of Tetrahydrobenzo[b]Pyrans Catalyzed by Cost-Effective Ionic Liquid. International Journal of Molecular Sciences, 2014, 15, 6897-6909.	1.8	64
25	Ammonium based zwitterions showing both LCST- and UCST-type phase transitions after mixing with water in a very narrow temperature range. Chemical Communications, 2014, 50, 15450-15452.	2.2	35
27	Micellar transitions in catanionic ionic liquid–ibuprofen aqueous mixtures; effects of composition and dilution. RSC Advances, 2014, 4, 64877-64889.	1.7	53
28	Invoking Pairwise Interactions in Waterâ€Promoted Diels–Alder Reactions by using Ionic Liquids as Cosolvents. ChemPhysChem, 2014, 15, 3067-3077.	1.0	8
29	Applications of Ionic Liquids in Spectroscopy. , 2014, , .		1
30	Particle self-assembly at ionic liquid-based interfaces. Advances in Colloid and Interface Science, 2014, 206, 92-105.	7.0	27
31	Evaluation of ionic liquids as absorbents for ammonia absorption refrigeration cycles using COSMO-based process simulations. Applied Energy, 2014, 123, 281-291.	5.1	94
32	Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries. Journal of Power Sources, 2014, 252, 150-155.	4.0	109
33	Density and Viscosity Data for Mixtures of Ionic Liquids with a Common Anion. Journal of Chemical & Liquids with a Common Anion. Journal of Chemical & Liquids with a Common Anion. Journal of Chemical & Liquids with a Common Anion. Journal of Chemical & Liquids with a Common Anion. Journal of Chemical & Liquids with a Common Anion. Journal of Chemical & Liquids with a Common Anion. Journal of Chemical & Liquids with a Common Anion. Journal of Chemical & Liquids with a Common Anion. Journal of Chemical & Liquids with a Common Anion. Journal of Chemical & Liquids with a Common Anion. Journal of Chemical & Liquids with a Common Anion. Journal of Chemical & Liquids with a Common Anion. Journal of Chemical & Liquids with a Common Anion. Journal of Chemical & Liquids with a Common Anion. Journal of Chemical & Liquids with a Common Anion. Journal of Chemical & Liquids with a Common Anion. Journal of Chemical & Liquids with a Common Anion. Journal of Chemical & Liquids with a Common Anion. Journal of Chemical & Liquids with a	1.0	78
34	Di―and Tricationic Organic Salts: An Overview of Their Properties and Applications. European Journal of Organic Chemistry, 2014, 2014, 4201-4223.	1.2	60
35	A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicology and Environmental Safety, 2014, 99, 1-12.	2.9	510
36	Ionic Liquids at Electrified Interfaces. Chemical Reviews, 2014, 114, 2978-3036.	23.0	1,101
37	lonic Liquid Mixturesâ€"An Analysis of Their Mutual Miscibility. Journal of Physical Chemistry B, 2014, 118, 2442-2450.	1.2	38
38	Ionic Liquids and Deep Eutectic Mixtures: Sustainable Solvents for Extraction Processes. ChemSusChem, 2014, 7, 1784-1800.	3.6	349

#	Article	IF	CITATIONS
39	Unique copper–salen complex: an efficient catalyst for N-arylations of anilines and imidazoles at room temperature. Tetrahedron Letters, 2014, 55, 31-35.	0.7	57
40	Mixing ionic liquids – "simple mixtures―or "double salts�. Green Chemistry, 2014, 16, 2051.	4.6	289
41	The importance of timescale for hydrogen bonding in imidazolium chloride ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 3675.	1.3	78
42	On the Formation of a Protic Ionic Liquid in Nature. Angewandte Chemie - International Edition, 2014, 53, 11762-11765.	7.2	26
43	Crystallization in Ionic Liquids: Synthesis, Properties, and Polymorphs of Uranyl Salts. Crystal Growth and Design, 2014, 14, 6421-6432.	1.4	21
44	Tuning of the freezing and melting points of [Hmim][NO3] by the addition of water and nitrate salts. RSC Advances, 2014, 4, 40407-40413.	1.7	1
45	Tuning the electronic environment of cations and anions using ionic liquid mixtures. Chemical Science, 2014, 5, 2573-2579.	3.7	68
46	Free Volume Model for the Unexpected Effect of C2-Methylation on the Properties of Imidazolium Ionic Liquids. Journal of Physical Chemistry B, 2014, 118, 2712-2718.	1.2	49
47	Quaternary ammonium and phosphonium based ionic liquids: a comparison of common anions. Physical Chemistry Chemical Physics, 2014, 16, 15278-15288.	1.3	142
48	A facile route to hydrophilic ionic liquids. RSC Advances, 2014, 4, 30267-30273.	1.7	4
49	Low viscosity highly conductive ionic liquid blends for redox active electrolytes in efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 15326-15336.	5.2	39
50	Playing with ionic liquid mixtures to design engineered CO ₂ separation membranes. Physical Chemistry Chemical Physics, 2014, 16, 17172.	1.3	70
51	Novel Multiple-Acidic Ionic Liquids: Catalysts for Environmentally Friendly Benign Synthesis of $\langle i \rangle$ -frans $\langle i \rangle$ -france in Engineering Chemistry Research, 2014, 53, 547-552.	1.8	27
52	Anion-Based pH Responsive Ionic Liquids: Design, Synthesis, and Reversible Self-Assembling Structural Changes in Aqueous Solution. Langmuir, 2014, 30, 3971-3978.	1.6	54
53	Generating Ionic Liquids from Ionic Solids: An Investigation of the Melting Behavior of Binary Mixtures of Ionic Liquids. Crystal Growth and Design, 2014, 14, 4270-4277.	1.4	38
54	Task Specific Dicationic Ionic Liquids: Recyclable Reaction Media for the Mononuclear Rearrangement of Heterocycles. Journal of Organic Chemistry, 2014, 79, 8678-8683.	1.7	27
55	Transition from non-monotonic to monotonic electrical diffuse layers: impact of confinement on ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 2836.	1.3	29
56	lonic Liquids Entrapped in Reverse Micelles as Nanoreactors for Bimolecular Nucleophilic Substitution Reaction. Effect of the Confinement on the Chloride Ion Availability. Langmuir, 2014, 30, 12130-12137.	1.6	33

#	Article	IF	Citations
57	Pyridinium <i>N</i> -Phenolate Betaine Dyes. Chemical Reviews, 2014, 114, 10429-10475.	23.0	244
58	A simple approach to pyrrolylimidazole derivatives by azirine ring expansion with imidazolium ylides. Organic and Biomolecular Chemistry, 2014, 12, 6598-6609.	1.5	20
59	Pointâ€Functionalization of Ionic Liquids: An Overview of Synthesis and Applications. European Journal of Organic Chemistry, 2014, 2014, 6120-6139.	1.2	80
60	A Molecular Dynamics Study of Collective Transport Properties of Imidazolium-Based Room-Temperature Ionic Liquids. Journal of Chemical & Engineering Data, 2014, 59, 3061-3068.	1.0	34
61	Effects of molten-salt/ionic-liquid mixture on extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101. Bioprocess and Biosystems Engineering, 2014, 37, 2199-2204.	1.7	17
62	Nanostructure of an ionic liquid–glycerol mixture. Physical Chemistry Chemical Physics, 2014, 16, 13182-13190.	1.3	37
63	Spatial Structure of Electrical Diffuse Layers in Highly Concentrated Electrolytes: A Modified Poisson–Nernst–Planck Approach. Journal of Physical Chemistry C, 2014, 118, 5716-5724.	1.5	32
64	Quantitative Prediction of Physical Properties of Imidazolium Based Room Temperature Ionic Liquids through Determination of Condensed Phase Site Charges: A Refined Force Field. Journal of Physical Chemistry B, 2014, 118, 3409-3422.	1.2	106
65	The Materials Genome Initiative, the interplay of experiment, theory and computation. Current Opinion in Solid State and Materials Science, 2014, 18, 99-117.	5.6	160
66	Effects of ionic liquid mixtures on lipid extraction from Chlorella vulgaris. Renewable Energy, 2014, 65, 169-174.	4.3	114
67	A review on the transport properties of ionic liquids. Journal of Molecular Liquids, 2014, 193, 262-266.	2.3	162
68	Lipid extraction from Chlorella vulgaris by molten-salt/ionic-liquid mixtures. Algal Research, 2014, 3, 44-48.	2.4	60
69	Shaping micro- and macroscopic properties of ionic liquid–solute systems: Multi-functional task-specific agents. Journal of Molecular Liquids, 2014, 192, 144-152.	2.3	7
70	Dynamics of RTILs: A comparative dielectric and OKE study. Journal of Molecular Liquids, 2014, 192, 19-25.	2.3	72
71	Are ionic liquids a proper solution to current environmental challenges?. Green Chemistry, 2014, 16, 2375.	4.6	240
72	Densities and viscosities for ionic liquids mixtures containing [eOHmim][BF4], [bmim][BF4] and [bpy][BF4]. Journal of Chemical Thermodynamics, 2014, 77, 137-143.	1.0	56
73	Combined physical and chemical absorption of carbon dioxide in a mixture of ionic liquids. Journal of Chemical Thermodynamics, 2014, 77, 197-205.	1.0	65
74	Efficient and Versatile Anion Metathesis Reaction for Ionic Liquid Preparation by Using Conjugate Acid and Ortho Ester. Bulletin of the Chemical Society of Japan, 2014, 87, 974-981.	2.0	5

#	Article	IF	Citations
75	Nonaqueous Lyotropic Ionic Liquid Crystals: Preparation, Characterization, and Application in Extraction. Chemistry - A European Journal, 2015, 21, 9150-9156.	1.7	29
76	Chiral Discrimination by Ionic Liquids: Impact of Ionic Solutes. Chirality, 2015, 27, 320-325.	1.3	7
77	Properties modification by eutectic formation in mixtures of ionic liquids. RSC Advances, 2015, 5, 22178-22187.	1.7	21
78	Manipulation of ionic liquid anion–solute–antisolvent interactions for the purification of acetaminophen. Chemical Communications, 2015, 51, 4294-4297.	2.2	34
79	Electrochemical and spectroscopic study of Zn(<scp>ii</scp>) coordination and Zn electrodeposition in three ionic liquids with the trifluoromethylsulfonate anion, different imidazolium ions and their mixtures with water. Physical Chemistry Chemical Physics, 2015, 17, 15945-15952.	1.3	36
80	Eutectic ionic liquid mixtures and their effect on CO ₂ solubility and conductivity. RSC Advances, 2015, 5, 51407-51412.	1.7	15
81	Ionic liquid/water mixture promoted organic transformations. RSC Advances, 2015, 5, 51035-51054.	1.7	47
82	Structure and Nanostructure in Ionic Liquids. Chemical Reviews, 2015, 115, 6357-6426.	23.0	1,793
83	Novel multi-responsive polymer materials: When ionic liquids step in. European Polymer Journal, 2015, 69, 441-448.	2.6	28
84	Triphilic Ionicâ€Liquid Mixtures: Fluorinated and Nonâ€fluorinated Aprotic Ionicâ€Liquid Mixtures. ChemPhysChem, 2015, 16, 3325-3333.	1.0	107
85	A reciprocal binary mixture of protic/aprotic ionic liquids as a deep eutectic solvent: physicochemical behaviour and application towards agarose processing. RSC Advances, 2015, 5, 99245-99252.	1.7	25
86	Effect of Temperature on Salt–Salt Aqueous Biphasic Systems: Manifestations of Upper Critical Solution Temperature. Journal of Solution Chemistry, 2015, 44, 454-468.	0.6	12
88	Ionic Fluids Containing Both Strongly and Weakly Interacting Ions of the Same Charge Have Unique Ionic and Chemical Environments as a Function of Ion Concentration. ChemPhysChem, 2015, 16, 993-1002.	1.0	27
89	Order in the chaos: the secret of the large negative entropy of dissolving 1-alkyl-3-methylimidazolium chloride in trihexyltetradecylphosphonium chloride. Physical Chemistry Chemical Physics, 2015, 17, 4034-4037.	1.3	6
90	Hydrogen bonding in a mixture of protic ionic liquids: a molecular dynamics simulation study. Physical Chemistry Chemical Physics, 2015, 17, 8431-8440.	1.3	74
91	Green solvents for green technologies. Journal of Chemical Technology and Biotechnology, 2015, 90, 1631-1639.	1.6	306
92	Influence of Different Inorganic Salts on the Ionicity and Thermophysical Properties of 1-Ethyl-3-methylimidazolium Acetate Ionic Liquid. Journal of Chemical & Engineering Data, 2015, 60, 781-789.	1.0	18
93	Hydrogen bonding in ionic liquids. Chemical Society Reviews, 2015, 44, 1257-1288.	18.7	626

#	Article	IF	Citations
94	Prediction of the binary surface tension of mixtures containing ionic liquids using Support Vector Machine algorithms. Journal of Molecular Liquids, 2015, 211, 534-552.	2.3	51
95	A magnetic nanoparticle catalyzed eco-friendly synthesis of cyanohydrins in a deep eutectic solvent. RSC Advances, 2015, 5, 61191-61198.	1.7	17
96	Fine tuning the ionic liquid–vacuum outer atomic surface using ion mixtures. Chemical Communications, 2015, 51, 5367-5370.	2.2	20
97	Atomistic Insight into Tetraalkylphosphonium-Bis(oxalato)borate Ionic Liquid/Water Mixtures. I. Local Microscopic Structure. Journal of Physical Chemistry B, 2015, 119, 5251-5264.	1.2	38
98	Computational approaches to understanding reaction outcomes of organic processes in ionic liquids. RSC Advances, 2015, 5, 35709-35729.	1.7	34
99	Effect of the physicochemical properties of binary ionic liquids on lipase activity and stability. International Journal of Biological Macromolecules, 2015, 77, 243-249.	3.6	8
100	Size Control of Monodisperse Metal Nanocrystals in Ionic Liquids. Topics in Organometallic Chemistry, 2015, , 55-78.	0.7	1
101	lonic liquid functionalized polymer composite nanotubes toward dye decomposition. Chinese Chemical Letters, 2015, 26, 942-945.	4.8	7
102	Residual water in ionic liquids: clustered or dissociated?. Physical Chemistry Chemical Physics, 2015, 17, 14710-14718.	1.3	54
103	Coupling Bulk and Near-Electrode Interfacial Nanostructuring in Ionic Liquids. Chemistry of Materials, 2015, 27, 4169-4179.	3.2	27
104	Application of optically active chiral bis(imidazolium) salts as potential receptors of chiral dicarboxylate salts of biological relevance. Organic and Biomolecular Chemistry, 2015, 13, 5450-5459.	1.5	24
105	Effect of [C n mim][Br] Based Ionic Liquids on the Aggregation Behavior of Tetradecyltrimethylammonium Bromide in Aqueous Medium. Journal of Solution Chemistry, 2015, 44, 850-874.	0.6	19
106	The Use of Cooling Crystallization in an Ionic Liquid System for the Purification of Pharmaceuticals. Crystal Growth and Design, 2015, 15, 4946-4951.	1.4	35
107	Anion exchange in ionic liquid mixtures. Physical Chemistry Chemical Physics, 2015, 17, 29786-29792.	1.3	32
108	pH triggered self-assembly structural transition of ionic liquids in aqueous solutions: smart use of pH-responsive additives. RSC Advances, 2015, 5, 65583-65590.	1.7	13
109	Toward Prediction of the Chemistry in Ionic Liquids: An Accurate Computation of Absolute p <i>K</i> <cub>a Values of Benzoic Acids and Benzenethiols. Journal of Organic Chemistry, 2015, 80, 8997-9006.</cub>	1.7	19
110	Multi-ion ionic liquids and a direct, reproducible, diversity-oriented way to make them. Chemical Communications, 2015, 51, 15914-15916.	2.2	5
111	Segregation of ions at the interface: molecular dynamics studies of the bulk and liquid–vapor interface structure of equimolar binary mixtures of ionic liquids. Physical Chemistry Chemical Physics, 2015, 17, 19919-19928.	1.3	22

#	Article	IF	CITATIONS
112	Intrinsic Structure of the Interface of Partially Miscible Fluids: An Application to Ionic Liquids. Journal of Physical Chemistry C, 2015, 119, 28448-28461.	1.5	15
113	Role of organic solvent addition to ionic liquid electrolytes for lithium–sulphur batteries. RSC Advances, 2015, 5, 2122-2128.	1.7	21
114	Association in ethylammonium nitrate–dimethyl sulfoxide mixtures: First structural and dynamical evidences. Journal of Non-Crystalline Solids, 2015, 407, 333-338.	1.5	27
115	Photoliquefiable Ionic Crystals: A Phase Crossover Approach for Photon Energy Storage Materials with Functional Multiplicity. Angewandte Chemie - International Edition, 2015, 54, 1532-1536.	7.2	149
116	Nonâ€ideal Mixing Behaviour of Hydrogen Bonding in Mixtures of Protic Ionic Liquids. ChemPhysChem, 2015, 16, 299-304.	1.0	50
117	The effect of an ionic liquid on the rate of reaction at a phosphorus centre. New Journal of Chemistry, 2015, 39, 213-219.	1.4	23
118	A physicochemical investigation of ionic liquid mixtures. Chemical Science, 2015, 6, 1101-1114.	3.7	171
119	Mixing and decomposition behavior of {[4bmpy][Tf2N]+[emim][EtSO4]} and {[4bmpy][Tf2N]+[emim][TFES]} ionic liquid mixtures. Journal of Chemical Thermodynamics, 2015, 82, 58-75.	1.0	34
120	Apparent molar properties of benzyldimethylammonium based protic ionic liquids in water and ethanol at different temperatures. Fluid Phase Equilibria, 2015, 385, 92-104.	1.4	37
121	Key Developments in Ionic Liquid Crystals. International Journal of Molecular Sciences, 2016, 17, 731.	1.8	68
122	Influence of Ionic Liquids on an Iron(III) Catalyzed Three-Component Coupling/Hydroarylation/Dehydrogenation Tandem Reaction. International Journal of Molecular Sciences, 2016, 17, 860.	1.8	9
123	Sodium-ion electrolytes based on ionic liquids: a role of cation-anion hydrogen bonding. Journal of Molecular Modeling, 2016, 22, 172.	0.8	8
124	Synthesis of Crystalline Chalcogenides in Ionic Liquids. Angewandte Chemie - International Edition, 2016, 55, 876-893.	7.2	128
125	Phase Transitions, Decomposition Temperatures, Viscosities, and Densities of Phosphonium, Ammonium, and Imidazolium Ionic Liquids with Aprotic Heterocyclic Anions. Journal of Chemical & Engineering Data, 2016, 61, 2897-2914.	1.0	43
126	The effect of the structure of the cation of an ionic liquid on the rate of reaction at a phosphorus centre. Journal of Physical Organic Chemistry, 2016, 29, 700-708.	0.9	12
127	Review of the aldol reaction. Synthetic Communications, 2016, 46, 1327-1342.	1.1	66
128	Preferential Ionic Interactions and Microscopic Structural Changes Drive Nonideality in Binary Ionic Liquid Mixtures as Revealed from Molecular Simulations. Industrial & Digineering Chemistry Research, 2016, 55, 13132-13146.	1.8	25
129	Experimental Insight into the Thermodynamics of the Dissolution of Electrolytes in Room-Temperature Ionic Liquids: From the Mass Action Law to the Absolute Standard Chemical Potential of a Proton. ACS Omega, 2016, 1, 1393-1411.	1.6	16

#	Article	IF	CITATIONS
130	Ionic liquid crystals with novel thermal properties formed by the gemini surfactants containing four hydroxyl groups. RSC Advances, 2016, 6, 99361-99366.	1.7	4
131	Solvation structures of water in trihexyltetradecylphosphonium-orthoborate ionic liquids. Journal of Chemical Physics, 2016, 145, .	1.2	25
132	Electrochemical and structural properties of the electrical double layer of two-component electrolytes in response to varied electrode potential. Journal of Chemical Physics, 2016, 144, 134701.	1.2	9
133	Effect of water on structure and dynamics of [BMIM][PF6] ionic liquid: An all-atom molecular dynamics simulation investigation. Journal of Chemical Physics, 2016, 144, 114505.	1.2	42
134	Electrochemical Stability of Functionalized Cyclic Phosphonium (<i>CylP</i> ⁺ _{<i>n</i>} <i>A</i> ^{â^²}) Ionic Liquid Based Battery Electrolytes. Journal of the Electrochemical Society, 2016, 163, A1057-A1063.	1.3	5
135	Liquid-liquid equilibria of mutually immiscible ionic liquids with a common anion of basic character. Journal of Chemical Thermodynamics, 2016, 102, 12-21.	1.0	29
136	Surface Structure and Dynamics of lons at the Liquid–Vapor Interface of Binary Ionic Liquid Mixtures: Molecular Dynamics Studies. Journal of Physical Chemistry C, 2016, 120, 5430-5441.	1.5	30
137	Ionic Liquid Crystals: Versatile Materials. Chemical Reviews, 2016, 116, 4643-4807.	23.0	617
138	Physicochemical properties of fatty acid based ionic liquids. Journal of Chemical Thermodynamics, 2016, 100, 156-164.	1.0	34
139	Different roles of ionic liquids in lithium batteries. Journal of Power Sources, 2016, 334, 221-239.	4.0	164
140	Effect of anion type in the performance of ionic liquid/poly(vinylidene fluoride) electromechanical actuators. Journal of Non-Crystalline Solids, 2016, 453, 8-15.	1.5	78
141	Synthesis of new ionic liquids from \hat{l}_{\pm} -, \hat{l}^2 -alanine and \hat{l}_{\pm} -iodo ketones. Mendeleev Communications, 2016, 26, 360-361.	0.6	3
142	Solid–liquid equilibria of binary mixtures of fluorinated ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 25741-25750.	1.3	23
143	Tailoring the properties of acetate-based ionic liquids using the tricyanomethanide anion. Physical Chemistry Chemical Physics, 2016, 18, 23285-23295.	1.3	28
144	Molecular dynamics simulations of mixtures of protic and aprotic ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 23932-23943.	1.3	25
145	Current Stage and Perspectives of pH Measurements by Use of Ionic Liquid Salt Bridge. Bunseki Kagaku, 2016, 65, 181-191.	0.1	4
146	Formation of large nanodomains in liquid solutions near the phase boundary. Chemical Communications, 2016, 52, 14286-14289.	2.2	6
147	Selective Ion Transporting Polymerized Ionic Liquid Membrane Separator for Enhancing Cycle Stability and Durability in Secondary Zinc–Air Battery Systems. ACS Applied Materials & Diterfaces, 2016, 8, 26298-26308.	4.0	69

#	Article	IF	CITATIONS
148	lonic liquid binary mixtures: how different factors contribute to determine their effect on the reactivity. RSC Advances, 2016, 6, 90165-90171.	1.7	18
149	Lewis acidic ionic liquids of crown ether complex cations: preparation and applications in organic reactions. RSC Advances, 2016, 6, 93546-93550.	1.7	25
150	Double Salt Ionic Liquids Based on Ammonium Cations and Their Application for CO ₂ Capture. Journal of Physical Chemistry C, 2016, 120, 17829-17844.	1.5	28
151	Densities and Viscosities of Mixtures of Two Ionic Liquids Containing a Common Cation. Journal of Chemical & C	1.0	117
152	Structure and Dynamics of Ionic Liquid [MMIM][Br] Confined in Hydrophobic and Hydrophilic Porous Matrices: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2016, 120, 11790-11799.	1.2	3
153	Imidazolium-based ionic liquid type dependence of the bending response of polymer actuators. European Polymer Journal, 2016, 85, 445-451.	2.6	39
154	Induction of bicontinuous cubic liquid-crystalline assemblies for polymerizable amphiphiles via tailor-made design of ionic liquids. Chemical Communications, 2016, 52, 13861-13864.	2.2	16
155	Influence of the Anion on the Equilibrium and Transport Properties of 1-Butyl-3-methylimidazolium Based Room Temperature Ionic Liquids. Journal of Solution Chemistry, 2016, 45, 1641-1658.	0.6	28
156	Surface segregation in a binary mixture of ionic liquids: Comparison between high-resolution RBS measurements and moleculardynamics simulations. Journal of Chemical Physics, 2016, 145, 184704.	1.2	14
157	Predictive thermodynamics for ionic solids and liquids. Physical Chemistry Chemical Physics, 2016, 18, 21226-21240.	1.3	67
158	Active chemisorption sites in functionalized ionic liquids for carbon capture. Chemical Society Reviews, 2016, 45, 4307-4339.	18.7	356
159	Highly selective separation of individual platinum group metals (Pd, Pt, Rh) from acidic chloride media using phosphonium-based ionic liquid in aromatic diluent. RSC Advances, 2016, 6, 62717-62728.	1.7	49
160	Synthese kristalliner Chalkogenide in ionischen Flüssigkeiten. Angewandte Chemie, 2016, 128, 886-904.	1.6	41
161	Physical properties and intermolecular interaction of eutectic solvents binary mixtures: reline and ethaline. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 549-557.	0.8	54
162	A new insight into the nanostructure of alkylammonium alkanoates based ionic liquids in water. Physical Chemistry Chemical Physics, 2016, 18, 11497-11502.	1.3	14
163	Protonic Ammonium Nitrate Ionic Liquids and Their Mixtures: Insights into Their Thermophysical Behavior. Journal of Physical Chemistry B, 2016, 120, 2397-2406.	1.2	39
164	A protic ionic liquid, when entrapped in cationic reverse micelles, can be used as a suitable solvent for a bimolecular nucleophilic substitution reaction. Organic and Biomolecular Chemistry, 2016, 14, 3170-3177.	1.5	18
165	Nature of Mesoscopic Organization in Protic Ionic Liquid–Alcohol Mixtures. Journal of Physical Chemistry B, 2016, 120, 2638-2643.	1.2	43

#	ARTICLE	IF	CITATIONS
166	Selective recovery of aliphatics from aromatics in the presence of the {[4empy][Tf 2 N] + [emim][DCA]} ionic liquid mixture. Journal of Chemical Thermodynamics, 2016, 96, 134-142.	1.0	33
167	Azoniaspiro salts: towards bridging the gap between room-temperature ionic liquids and molten salts. Physical Chemistry Chemical Physics, 2016, 18, 3339-3351.	1.3	13
168	The study of molecular interactions in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate+1-pentanol from density, speed of sound and refractive index measurements. Journal of Chemical Thermodynamics, 2016, 98, 298-308.	1.0	25
169	A structural investigation of ionic liquid mixtures. Physical Chemistry Chemical Physics, 2016, 18, 8608-8624.	1.3	93
170	CO2 solubility in and physical properties for ionic liquid mixtures of 1-butyl-3-methylimidazolium acetate and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide. Journal of Molecular Liquids, 2016, 217, 112-119.	2.3	55
171	Models for the thermodynamic properties of molten salt systems: Perspectives for ionic liquids. Fluid Phase Equilibria, 2016, 409, 482-494.	1.4	7
172	Eutectic mixtures of pyrrolidinium-based ionic liquids. Fluid Phase Equilibria, 2016, 408, 1-9.	1.4	26
173	How mixing tetraglyme with the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide changes volumetric and transport properties: An experimental and computational study. Chemical Engineering Science, 2017, 159, 43-57.	1.9	20
174	Surface structures of binary mixture of ionic liquids. Journal of Molecular Liquids, 2017, 230, 542-549.	2.3	16
175	Understanding Polymorphic Control of Pharmaceuticals Using Imidazolium-Based Ionic Liquid Mixtures as Crystallization Directing Agents. Crystal Growth and Design, 2017, 17, 428-432.	1.4	19
176	Mean Activity Coefficients for NaCl in the Mixtures Containing Ionic Liquids [Emim][MeSO ₃] + H ₂ O and [Emim][EtSO ₄] + H ₂ O at 298.15 K. Journal of Chemical & Data, 2017, 62, 752-761.	1.0	7
177	Mixing cations with different alkyl chain lengths markedly depresses the melting point in deep eutectic solvents formed from alkylammonium bromide salts and urea. Chemical Communications, 2017, 53, 2375-2377.	2.2	45
178	Thermophysical and transport properties of blends of an ether-derivatized imidazolium ionic liquid and a Li+-based solvate ionic liquid. Journal of Materials Science, 2017, 52, 3719-3740.	1.7	10
179	A Binary Mixture of Ionic Liquids as a New Approach for an Experimental Diffusion Correction in the Study of Activated Processes. ChemPhysChem, 2017, 18, 1288-1292.	1.0	4
180	Emerging Evidences of Mesoscopic-Scale Complexity in Neat Ionic Liquids and Their Mixtures. Journal of Physical Chemistry Letters, 2017, 8, 1197-1204.	2.1	79
181	Molecular dynamics study of nanoscale organization and hydrogen bonding in binary mixtures of butylammonium nitrate ionic liquid and primary alcohols. Journal of Chemical Physics, 2017, 146, 064503.	1.2	9
182	lonic liquid solvents: the importance of microscopic interactions in predicting organic reaction outcomes. Pure and Applied Chemistry, 2017, 89, 745-757.	0.9	37
183	Measurement and PC-SAFT modeling of solid-liquid equilibrium of deep eutectic solvents of quaternary ammonium chlorides and carboxylic acids. Fluid Phase Equilibria, 2017, 448, 69-80.	1.4	88

#	Article	IF	CITATIONS
184	Can the tricyanomethanide anion improve CO ₂ absorption by acetate-based ionic liquids?. Physical Chemistry Chemical Physics, 2017, 19, 12431-12440.	1.3	26
185	The Effect of Water upon Deep Eutectic Solvent Nanostructure: An Unusual Transition from Ionic Mixture to Aqueous Solution. Angewandte Chemie, 2017, 129, 9914-9917.	1.6	59
186	On the prediction of transport properties of ionic liquid using 1-n-butylmethylpyridinium tetrafluoroborate as an example. Molecular Simulation, 2017, 43, 1502-1512.	0.9	17
187	Viscosity of Ionic Liquid–Ionic Liquid Mixtures. Journal of Chemical & Description (2017), 62, 1884-1901.	1.0	63
188	lon distribution and selectivity of ionic liquids in microporous electrodes. Journal of Chemical Physics, 2017, 146, 174701.	1.2	25
189	The Effect of Water upon Deep Eutectic Solvent Nanostructure: An Unusual Transition from Ionic Mixture to Aqueous Solution. Angewandte Chemie - International Edition, 2017, 56, 9782-9785.	7.2	497
190	Multiscale Studies on Ionic Liquids. Chemical Reviews, 2017, 117, 6636-6695.	23.0	584
191	Thermophysical Characterization of Ionic Liquids Based on the Perfluorobutanesulfonate Anion: Experimental and Soft‧AFT Modeling Results. ChemPhysChem, 2017, 18, 2012-2023.	1.0	23
192	Nanosegregation and Structuring in the Bulk and at the Surface of Ionic-Liquid Mixtures. Journal of Physical Chemistry B, 2017, 121, 6002-6020.	1.2	82
193	Carbon quantum dots in ionic liquids: a new generation of environmentally benign photoluminescent inks. Journal of Materials Chemistry C, 2017, 5, 4951-4958.	2.7	39
194	Sustainable extraction and separation of precious metals from hydrochloric media using novel ionic liquid-in-water microemulsion. Hydrometallurgy, 2017, 171, 344-354.	1.8	27
195	Synthesis and Characterization of Bromoaluminate Ionic Liquids. Chemistry - A European Journal, 2017, 23, 9821-9830.	1.7	7
196	Long-Chain Carboxylate Ionic Liquids Combining High Solubility and Low Viscosity for Light Hydrocarbon Separations. Industrial & Engineering Chemistry Research, 2017, 56, 7336-7344.	1.8	25
197	lonic Liquids for Supercapacitor Applications. Topics in Current Chemistry, 2017, 375, 63.	3.0	105
198	Prospects of ionic liquids application in electronic and bioelectronic nose instruments. TrAC - Trends in Analytical Chemistry, 2017, 93, 23-36.	5.8	37
200	Imaging of intracellular behavior of polymeric nanoparticles in Staphylococcus epidermidis biofilms by slit-scanning confocal Raman microscopy and scanning electron microscopy with energy-dispersive X-ray spectroscopy. Materials Science and Engineering C, 2017, 76, 1066-1074.	3.8	8
201	Microscopic characterization of amino acid ionic liquids - water mixtures. Journal of Molecular Liquids, 2017, 236, 81-92.	2.3	10
202	Hydrothermal and Solvothermal Syntheses. , 2017, , 73-104.		107

#	Article	IF	CITATIONS
203	X-ray and molecular dynamics studies of butylammonium butanoate–water binary mixtures. Physical Chemistry Chemical Physics, 2017, 19, 1975-1981.	1.3	13
204	Dynamic phase change and local structures in IL-containing mixtures: classical MD simulations and experiments. Physical Chemistry Chemical Physics, 2017, 19, 3028-3038.	1.3	5
205	Green synthetic approaches for biologically relevant organic compounds. Synthetic Communications, 2017, 47, 2139-2173.	1.1	18
206	Alkylation of 4,5-dihydro-1H-imidazole-2-thiol with iodomethylsilanes and -siloxanes. Russian Journal of Organic Chemistry, 2017, 53, 1066-1070.	0.3	4
207	Mixtures of ionic liquids as more efficient media for cellulose dissolution. Carbohydrate Polymers, 2017, 178, 277-285.	5.1	58
208	How Does the Addition of a Third Ion Affect the Molecular Interactions and the Thermodynamic Properties of Acetate-Based Ionic Liquids?. Journal of Physical Chemistry B, 2017, 121, 9725-9736.	1.2	13
209	Exploring the Use of Ionic Liquid Mixtures to Enhance the Performance of Dicationic Ionic Liquids. Journal of the Electrochemical Society, 2017, 164, H5150-H5159.	1.3	9
210	Separate mechanisms of ion oligomerization tune the physicochemical properties of n-butylammonium acetate: cation-base clusters vs. anion-acid dimers. Physical Chemistry Chemical Physics, 2017, 19, 25544-25554.	1.3	18
211	Non-ideal behavior of ionic liquid mixtures to enhance CO2 capture. Fluid Phase Equilibria, 2017, 450, 175-183.	1.4	36
212	Designing the thermal behaviour of aqueous biphasic systems composed of ammonium-based zwitterions. Green Chemistry, 2017, 19, 4012-4016.	4.6	23
213	Dielectric study on mixtures of ionic liquids. Scientific Reports, 2017, 7, 7463.	1.6	38
214	Effect of temperature on the viscosities and the volumetric properties of the binary mixtures of the ionic liquids [bmim] [PF6] and [bmim] [CF3SO3]. Journal of Molecular Liquids, 2017, 243, 78-84.	2.3	15
216	Revisiting OPLS Force Field Parameters for Ionic Liquid Simulations. Journal of Chemical Theory and Computation, 2017, 13, 6131-6145.	2.3	296
217	Linking the structures, free volumes, and properties of ionic liquid mixtures. Chemical Science, 2017, 8, 6359-6374.	3.7	74
218	N,N-Dimethylpyridin-4-amine (DMAP) based ionic liquids: evaluation of physical properties via molecular dynamics simulations and application as a catalyst for Fisher indole and 1H-tetrazole synthesis. RSC Advances, 2017, 7, 34197-34207.	1.7	14
219	Self-Oxidation of Lignin to Aromatic Acids with High Selectivity Catalyzed by Designed Acidic Mesoporous Molecular Sieves Incorporating Heteroatoms. ACS Sustainable Chemistry and Engineering, 2017, 5, 382-391.	3.2	8
220	Sustainable and chemoselective N-Boc protection of amines in biodegradable deep eutectic solvent. Monatshefte Fýr Chemie, 2017, 148, 1069-1074.	0.9	12
221	Implementation of soft computing approaches for prediction of physicochemical properties of ionic liquid mixtures. Korean Journal of Chemical Engineering, 2017, 34, 425-439.	1.2	28

#	Article	IF	Citations
222	A joint experimental and computational study on ethylammonium nitrate-ethylene glycol 1:1 mixture. Structural, kinetic, dynamic and spectroscopic properties. Journal of Molecular Liquids, 2017, 226, 2-8.	2.3	15
223	Dielectric relaxation of nitromethane and its mixtures with ethylammonium nitrate: Evidence for strong ion association induced by hydrogen bonding. Journal of Molecular Liquids, 2017, 228, 81-90.	2.3	12
224	Ionic Liquids and Neutron Scattering. Experimental Methods in the Physical Sciences, 2017, 49, 213-278.	0.1	7
225	Properties of Ionic Liquids., 2017,, 45-110.		3
226	The Role of Ionic Liquids in Protein Folding/Unfolding Studies. , 2017, , .		1
227	Change of hydrogen bonding structure in ionic liquid mixtures by anion type. Journal of Chemical Physics, 2018, 148, 193827.	1.2	20
228	Systematic comparison of force fields for molecular dynamic simulation of $Au(111)/Ionic$ liquid interfaces. Fluid Phase Equilibria, 2018, 463, 106-113.	1.4	23
229	Mixed Ionic Liquid Improves Electrolyte Dynamics in Supercapacitors. Journal of Physical Chemistry C, 2018, 122, 10476-10481.	1.5	53
230	Accurate prediction of the structure and vibrational spectra of ionic liquid clusters with the generalized energy-based fragmentation approach: critical role of ion-pair-based fragmentation. Physical Chemistry Chemical Physics, 2018, 20, 13547-13557.	1.3	18
231	Electrostatic interactions in soft particle systems: mesoscale simulations of ionic liquids. Soft Matter, 2018, 14, 4252-4267.	1.2	21
232	An Ultrastable Ionic Chemiresistor Skin with an Intrinsically Stretchable Polymer Electrolyte. Advanced Materials, 2018, 30, e1706851.	11.1	75
233	Ionic and conformational mobility in poly(vinylidene fluoride)/ionic liquid blends: Dielectric and electrical conductivity behavior. Polymer, 2018, 143, 164-172.	1.8	32
234	The effect of alkyl chain length on the structure and thermodynamics of protic–aprotic ionic liquid mixtures: a molecular dynamics study. Physical Chemistry Chemical Physics, 2018, 20, 9938-9949.	1.3	20
235	Phase equilibrium and physical properties of biobased ionic liquid mixtures. Physical Chemistry Chemical Physics, 2018, 20, 6469-6479.	1.3	18
236	Surface structure evolution in a homologous series of ionic liquids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1100-E1107.	3.3	42
237	A BrÃ,nstedâ€Acidic Ionic Liquid Gel as an Efficient and Recyclable Heterogeneous Catalyst for the Synthesis of Bis(indolyl)methanes under Solventâ€Free Sonication. Asian Journal of Organic Chemistry, 2018, 7, 232-239.	1.3	31
238	Molecular and Thermodynamic Properties of Zwitterions versus Ionic Liquids: A Comprehensive Computational Analysis to Develop Advanced Separation Processes. ChemPhysChem, 2018, 19, 801-815.	1.0	10
239	Syntheses, characterizations and functions of cationic polyethers with imidazolium-based ionic liquid moieties. Polymer Chemistry, 2018, 9, 948-960.	1.9	13

#	Article	IF	CITATIONS
240	Density, Viscosity, and CO ₂ Solubility in the Ionic Liquid Mixtures of [bmim][PF ₆] and [bmim][TFSA] at 313.15 K. Journal of Chemical & Engineering Data, 2018, 63, 1036-1043.	1.0	20
241	Theoretical Study of Low Viscous Ionic Liquids at the Graphene Interface. Journal of Physical Chemistry C, 2018, 122, 1645-1656.	1.5	15
242	Greener route for the synthesis of photo- and thermochromic spiropyrans using a highly efficient, reusable, and biocompatible choline hydroxide in an aqueous medium. Synthetic Communications, 2018, 48, 208-215.	1.1	11
243	Isotropic ordering of ions in ionic liquids on the sub-nanometer scale. Chemical Science, 2018, 9, 1464-1472.	3.7	12
244	Predicting ionic liquid melting points using machine learning. Journal of Molecular Liquids, 2018, 264, 318-326.	2.3	64
245	A theoretical study on mixtures of amino acid-based ionic liquids. Physical Chemistry Chemical Physics, 2018, 20, 10213-10223.	1.3	11
246	Phosphonium acidic ionic liquid: an efficient and recyclable homogeneous catalyst for the synthesis of 2-arylbenzoxazoles, 2-arylbenzimidazoles, and 2-arylbenzothiazoles. RSC Advances, 2018, 8, 11834-11842.	1.7	22
247	Innovative aspects of protein stability in ionic liquid mixtures. Biophysical Reviews, 2018, 10, 841-846.	1.5	35
248	Thermophysical Properties of Imidazolium-Based Binary Ionic Liquid Mixtures Using Molecular Dynamics Simulations. Journal of Chemical & Engineering Data, 2018, 63, 2512-2521.	1.0	25
249	Carbon capture and storage (CCS): the way forward. Energy and Environmental Science, 2018, 11, 1062-1176.	15.6	2,378
250	Dynamics of binary mixtures of an ionic liquid and ethanol by NMR. Magnetic Resonance in Chemistry, 2018, 56, 108-112.	1.1	3
251	Disentangling chemical effects in ionic-liquid-based Cu leaching from chalcopyrite. Journal of Electroanalytical Chemistry, 2018, 819, 130-135.	1.9	10
252	COSMO-based/Aspen Plus process simulation of the aromatic extraction from pyrolysis gasoline using the {[4empy][NTf 2] + [emim][DCA]} ionic liquid mixture. Separation and Purification Technology, 2018, 190, 211-227.	3.9	67
253	1-Ethyl-3-methylimidazolium Diethylphosphate Based Extraction of Bioplastic "Polyhydroxyalkanoates― from Bacteria: Green and Sustainable Approach. ACS Sustainable Chemistry and Engineering, 2018, 6, 766-773.	3.2	50
254	From Solvent-Free to Dilute Electrolytes: Essential Components for a Continuum Theory. Journal of Physical Chemistry Letters, 2018, 9, 36-42.	2.1	57
255	Solid–liquid equilibria for a pyrrolidinium-based common-cation ternary ionic liquid system, and for a pyridinium-based ternary reciprocal ionic liquid system: an experimental study and a thermodynamic model. Physical Chemistry Chemical Physics, 2018, 20, 637-657.	1.3	9
256	Ternary Mixtures of Sulfolanes and Ionic Liquids for Use in High-Temperature Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 2612-2620.	3.2	10
257	New crown ether complex cation ionic liquids with N-heterocycle anions: preparation and application in CO ₂ fixation. Organic Chemistry Frontiers, 2018, 5, 741-748.	2.3	21

#	ARTICLE	IF	Citations
258	Exploring the bulk-phase structure of ionic liquid mixtures using small-angle neutron scattering. Faraday Discussions, 2018, 206, 265-289.	1.6	42
261	New nano-Fe ₃ O ₄ -supported Lewis acidic ionic liquid as a highly effective and recyclable catalyst for the preparation of benzoxanthenes and pyrroles under solvent-free sonication. RSC Advances, 2018, 8, 35681-35688.	1.7	34
262	Simulation and measurement of water-induced liquid-liquid phase separation of imidazolium ionic liquid mixtures. Journal of Chemical Physics, 2018, 149, 164503.	1.2	5
263	Anion Enhancement at the Liquid–Vacuum Interface of an Ionic Liquid Mixture. Journal of Physical Chemistry C, 2018, 122, 27392-27401.	1.5	19
264	Affinity Ionic Liquids for Chemoselective Gas Sensing. Molecules, 2018, 23, 2380.	1.7	8
265	Molecular Origins of the Apparent Ideal CO ₂ Solubilities in Binary Ionic Liquid Mixtures. Journal of Physical Chemistry B, 2018, 122, 9763-9774.	1.2	16
266	Binary Alkoxide Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2018, 6, 13676-13680.	3.2	19
267	Ionâ€Reagent Interactions Contributing to Ionic Liquid Solvent Effects on a Condensation Reaction. ChemPhysChem, 2018, 19, 3279-3287.	1.0	7
268	In silico prediction and experimental verification of ionic liquid refractive indices. Journal of Molecular Liquids, 2018, 264, 563-570.	2.3	17
269	The physicochemical properties of a room-temperature liquidus binary ionic liquid mixture of [HNMP][CH ₃ SO ₃]/[Bmim]Cl and its application for fructose conversion to 5-hydroxymethylfurfural. RSC Advances, 2018, 8, 18784-18791.	1.7	16
270	Mixed metal double salt ionic liquids comprised of [HN ₂₂₂] ₂ [ZnCl ₄] and AlCl ₃ provide tunable Lewis acid catalysts related to the ionic environment. Dalton Transactions, 2018, 47, 7795-7803.	1.6	27
271	Solvatochromic behavior of substituted 4-(nitrostyryl)phenolate dyes in pure solvents and in binary solvent mixtures composed of water and alcohols. Journal of Molecular Liquids, 2018, 264, 327-336.	2.3	17
272	Acetate- and lactate-based ionic liquids: Synthesis, characterisation and electrochemical properties. Journal of Molecular Liquids, 2018, 264, 233-241.	2.3	36
273	Studying Interaction, Ion-Pair Formation, and Mixing Behavior of Protic Ionic Liquids by Means of Far-Infrared Spectroscopy., 2018,, 527-567.		1
274	Aggregation behavior and antimicrobial activity of a micellar system of binary ionic liquids. Journal of Molecular Liquids, 2018, 266, 568-576.	2.3	41
275	Thermal behaviour of mixtures of 1-alkylpyridinium halides with and without a common ion. Journal of Molecular Liquids, 2018, 268, 781-790.	2.3	13
276	Hydrophilic Ionic Liquid Mixtures of Weakly and Strongly Coordinating Anions with and without Water. ACS Omega, 2018, 3, 8567-8582.	1.6	35
277	lonic Liquids in the Field of Metal Electrodeposition. , 2018, , 690-700.		4

#	Article	IF	CITATIONS
278	Mass Spectroscopy of a Multi-Mode Propellant in Anion and Cation Mode. , 2018, , .		5
279	Designing Explosive Poly(Ionic Liquid)s as Novel Energetic Polymers. Chemistry - A European Journal, 2018, 24, 15897-15902.	1.7	18
280	A tailor-made design of lipidic bicontinuous cubic matrices using amino acid ionic liquids as self-assembly media. Molecular Systems Design and Engineering, 2018, 3, 668-676.	1.7	10
281	Effect of alcohols on the structure and dynamics of [BMIM][PF6] ionic liquid: A combined molecular dynamics simulation and Voronoi tessellation investigation. Journal of Chemical Physics, 2018, 148, 204514.	1.2	15
282	Insights into the Nature of Eutectic and Deep Eutectic Mixtures. Journal of Solution Chemistry, 2019, 48, 962-982.	0.6	603
283	Structure and Dynamics of an Ionic Liquid Mixture Film Confined by Mica. Journal of Physical Chemistry C, 2019, 123, 20971-20979.	1.5	7
284	Poly(ionic liquid)-Modified Magnetic Janus Particles for Dye Degradation. Langmuir, 2019, 35, 11435-11442.	1.6	27
285	Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes. Energy Storage Materials, 2019, 22, 346-375.	9.5	225
286	Viscosity of Typical Room-Temperature Ionic Liquids: A Critical Review. Journal of Physical and Chemical Reference Data, 2019, 48, .	1.9	46
287	Densities and viscosities for ionic liquids [BMIM][BF4] and [BMIM][Cl] and their binary mixtures at various temperatures and atmospheric pressure. Chinese Journal of Chemical Engineering, 2019, 27, 2994-2999.	1.7	14
288	On the Regular Behavior of a Binary Mixture of Ionic Liquids. Journal of Physical Chemistry B, 2019, 123, 6579-6587.	1.2	13
289	A combined experimental and theoretical study on the structures, interactions and volumetric properties of guanidinium-based ionic liquid mixtures. Physical Chemistry Chemical Physics, 2019, 21, 17720-17728.	1.3	2
290	High Performance Liâ€ion battery Anodes based on Si Nano core in an LATP Matrix with better Electrolyte Compatibility and Temperature Resistance. ChemistrySelect, 2019, 4, 7090-7095.	0.7	4
291	The Ionic Liquid Property Explorer: An Extensive Library of Task-Specific Solvents. Data, 2019, 4, 88.	1.2	15
292	The Role of Charge Transfer in the Formation of Type I Deep Eutectic Solvent-Analogous Ionic Liquid Mixtures. Molecules, 2019, 24, 3687.	1.7	21
293	Solid–Liquid Equilibria for Hexafluorophosphate-Based Ionic Liquid Quaternary Mixtures and Their Corresponding Subsystems. Journal of Physical Chemistry B, 2019, 123, 8954-8969.	1.2	3
294	Electrochemical, Surface and 1018-steel Corrosion Product Characterization in Sulfuric Acid with New Imidazole-Derived Inhibitors. International Journal of Electrochemical Science, 2019, 14, 9255-9272.	0.5	6
295	Effect of water on the electrodeposition of copper on nickel in deep eutectic solvents. Transactions of the Institute of Metal Finishing, 2019, 97, 321-329.	0.6	30

#	Article	IF	CITATIONS
296	Insight into the Relationship between Viscosity and Hydrogen Bond of a Series of Imidazolium Ionic Liquids: A Molecular Dynamics and Density Functional Theory Study. Industrial & Density Functional Theory Study. Industrial & Density Functional Chemistry Research, 2019, 58, 18848-18854.	1.8	28
297	Remarkable Effect of [Li(G4)]TFSI Solvate Ionic Liquid (SIL) on the Regio- and Stereoselective Ring Opening of α-Gluco Carbasugar 1,2-Epoxides. Molecules, 2019, 24, 2946.	1.7	4
298	Enhanced Acidity and Activity of Aluminum/Gallium-Based Ionic Liquids Resulting from Dynamic Anionic Speciation. ACS Catalysis, 2019, 9, 9789-9793.	5.5	5
299	Poly(ionic liquids) in solid phase microextraction: Recent advances and perspectives. Progress in Polymer Science, 2019, 98, 101148.	11.8	38
300	Physicochemical Characterization of Ionic Liquid Binary Mixtures Containing 1-Butyl-3-methylimidazolium as the Common Cation. Journal of Chemical & Engineering Data, 2019, 64, 4891-4903.	1.0	17
301	Understanding of structures, dynamics, and hydrogen bonds of imidazolium-based ionic liquid mixture from molecular dynamics simulation. Chemical Physics, 2019, 525, 110391.	0.9	10
302	Anomalous and Not-So-Common Behavior in Common Ionic Liquids and Ionic Liquid-Containing Systems. Frontiers in Chemistry, 2019, 7, 450.	1.8	24
303	Ultraslow Relaxation in Aprotic Double Salt Ionic Liquids. Journal of Physical Chemistry B, 2019, 123, 5577-5587.	1.2	3
304	Hexadecyl-Containing Organic Salts as Novel Organogelators for Ionic, Eutectic, and Molecular Liquids. ACS Omega, 2019, 4, 9400-9406.	1.6	13
305	Computational analysis of conductivity contributions in an ionic liquid mixture of 1-ethyl-3-methylimidazolium dicyanamide and tetrafluoroborate. Journal of Molecular Liquids, 2019, 288, 110993.	2.3	9
306	DESs: Green solvents for transition metal catalyzed organic reactions. Chinese Chemical Letters, 2019, 30, 2151-2156.	4.8	33
307	Rational design of double salt ionic liquids as extraction solvents: Separation of thiophene/ <i>n</i> i>a€octane as example. AICHE Journal, 2019, 65, e16625.	1.8	48
308	Can cholinium chloride form eutectic solvents with organic chloride-based salts?. Fluid Phase Equilibria, 2019, 493, 120-126.	1.4	16
309	Molecular dynamics simulations of mixed deep eutectic solvents and their interaction with nanomaterials. Journal of Molecular Liquids, 2019, 283, 147-154.	2.3	43
310	lonic Liquids and their Polymers in Lithiumâ€Sulfur Batteries. Israel Journal of Chemistry, 2019, 59, 832-842.	1.0	15
311	Recent advances in molecular simulations of ionic liquid–ionic liquid mixtures. Current Opinion in Green and Sustainable Chemistry, 2019, 18, 90-97.	3.2	14
312	Thermal storage density of ionic liquid mixtures: A preliminary study as thermal fluid. Journal of Molecular Liquids, 2019, 282, 221-225.	2.3	18
313	Molecular dynamics simulations of novel electrolytes based on mixtures of protic and aprotic ionic liquids at the electrochemical interface: Structure and capacitance of the electric double layer. Electrochimica Acta, 2019, 305, 223-231.	2.6	16

#	Article	IF	CITATIONS
314	Ionic Liquids/Water Binary Mixtures Mediated Organic Reactions., 2019, , 1-13.		0
315	Using hydrogenated and perfluorinated gases to probe the interactions and structure of fluorinated ionic liquids. Physical Chemistry Chemical Physics, 2019, 21, 8865-8873.	1.3	18
316	On the structural origin of free volume in 1-alkyl-3-methylimidazolium ionic liquid mixtures: a SAXS and 129Xe NMR study. Physical Chemistry Chemical Physics, 2019, 21, 5999-6010.	1.3	21
317	Integrative Assessment of Mixture Toxicity of Three Ionic Liquids on Acetylcholinesterase Using a Progressive Approach from 1D Point, 2D Curve, to 3D Surface. International Journal of Molecular Sciences, 2019, 20, 5330.	1.8	8
318	Ionic liquids with polychloride anions as effective oxidants for the dissolution of UO2. Dalton Transactions, 2019, 48, 16249-16257.	1.6	13
319	Insights into Nonâ€Ideal Behavior of Double Salt Ionic Liquids with Common Cation: Volumetric Behaviour, Molecular Dynamics Simulations and NMR ExperimentsÂ. ChemistrySelect, 2019, 4, 12861-12870.	0.7	1
320	Neat ionic liquids versus ionic liquid mixtures: a combination of experimental data and molecular simulation. Physical Chemistry Chemical Physics, 2019, 21, 23305-23309.	1.3	12
321	Strategic planning of proteins in ionic liquids: future solvents for the enhanced stability of proteins against multiple stresses. Physical Chemistry Chemical Physics, 2019, 21, 23269-23282.	1.3	26
322	Direct extraction of copper from copper sulfide minerals using deep eutectic solvents. Green Chemistry, 2019, 21, 6502-6512.	4.6	57
323	"Water-in-deep eutectic solvent―electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy, 2019, 57, 625-634.	8.2	467
324	Simulation Study of the Capacitance and Charging Mechanisms of Ionic Liquid Mixtures near Carbon Electrodes. Journal of Physical Chemistry C, 2019, 123, 1610-1618.	1.5	32
325	A comprehensive review on the rheological behavior of imidazolium based ionic liquids and natural deep eutectic solvents. Journal of Molecular Liquids, 2019, 277, 932-958.	2.3	65
326	Densities, Viscosities, and Refractive Indices of Binary Room-Temperature Ionic Liquids with Common Cations/Anions. Journal of Chemical & Engineering Data, 2019, 64, 433-441.	1.0	14
327	Microheterogeneity in Ionic Liquid Mixtures: Hydrogen Bonding, Dispersed Ions, and Dispersed Ion Clusters. Australian Journal of Chemistry, 2019, 72, 106.	0.5	8
328	The effect of the structure of the anion of an ionic liquid on the rate of reaction at a phosphorus centre. Journal of Physical Organic Chemistry, 2019, 32, e3819.	0.9	8
329	Compatibility of sustainable solvents ionic liquid, 1-ethyl-3-methylimidazolium ethyl sulfate in some choline chloride based deep eutectic solvents: thermodynamics study. Journal of Chemical Thermodynamics, 2020, 141, 105961.	1.0	19
330	Temperatureâ€Dependent Surface Enrichment Effects in Binary Mixtures of Fluorinated and Nonâ€Fluorinated Ionic Liquids. Chemistry - A European Journal, 2020, 26, 1117-1126.	1.7	17
331	Impact of water on the hydrogen bonding between halideâ€based ionâ€pairs investigated by Raman scattering and density functional theory calculations. Journal of Raman Spectroscopy, 2020, 51, 147-164.	1.2	26

#	Article	IF	CITATIONS
332	Single-step synthesis of novel chloroaluminate ionic liquid for green Friedel–Crafts alkylation reaction. Clean Technologies and Environmental Policy, 2020, 22, 59-71.	2.1	11
333	Synthesis and characterization of ternary metallic oxide electrodes containing (SnO ₂) ₉₃ Sb ₅ M ₂ (M = Ce, ta, Bi, Gd) using an ionic liquid as the precursor solvent. Chemical Engineering Communications, 2020, 207, 1736-1754.	1.5	6
334	Selective extraction of female hormones using aqueous two-phase system composed of double protic ionic liquidÂ+ acetonitrile. Fluid Phase Equilibria, 2020, 508, 112443.	1.4	16
335	Comparing the void space and long-range structure of an ionic liquid with a neutral mixture of similar sized molecules. Journal of Molecular Liquids, 2020, 299, 112121.	2.3	9
336	Effect of immidazolium-based green solvents on the moisture absorption and thickness swelling behavior of wood flour/polyethylene composites. Journal of Thermoplastic Composite Materials, 2022, 35, 2162-2176.	2.6	4
337	Sugar-urea-salt eutectic mixture as an efficient green solvent for N-alkylation of heterocyclic secondary amines. Chemical Data Collections, 2020, 29, 100536.	1.1	1
338	Review of multimode space propulsion. Progress in Aerospace Sciences, 2020, 118, 100627.	6.3	49
339	Different Hydrogen Bond Changes Driven by Surface Segregation Behavior of Imidazolium-Based Ionic Liquid Mixture at the Liquid–Vacuum Interface. Langmuir, 2020, 36, 11798-11808.	1.6	3
340	Surface Propensity of Anions in a Binary Ionicâ€Liquid Mixture Assessed by Fullâ€Range Angleâ€Resolved Xâ€ray Photoelectron Spectroscopy and Surfaceâ€Tension Measurements. ChemPhysChem, 2020, 21, 2397-2401.	1.0	3
341	Ionic liquid-promoted green synthesis of biologically relevant diaryl thioethers. Green Chemistry Letters and Reviews, 2020, 13, 295-302.	2.1	5
342	Physical properties and solid-liquid equilibria for hexafluorophosphate-based ionic liquid ternary mixtures and their corresponding subsystems. Journal of Molecular Liquids, 2020, 316, 113742.	2.3	4
343	Neoteric Solvent Systems as Sustainable Media for Dissolution and Film Preparation of Poly-[(R)-3-hydroxybutyrate]. ACS Sustainable Chemistry and Engineering, 2020, 8, 12005-12013.	3.2	14
344	Cosolvent polarity dependence of solution structure in [BMIM] [PF6]Â+Âacetonitrile/1, 4-dioxane/hexane binary mixtures: Insights from composition dependent Voronoi polyhedra analyses, iso-surfaces and radial distribution functions. Journal of Molecular Liquids, 2020, 317, 113746.	2.3	8
345	Ionic liquids in gas sensors and biosensors. , 2020, , 287-318.		2
346	Molecular Interactions in Ionic Liquids: The NMR Contribution towards Tailored Solvents., 0,,.		3
347	The Role of Binary Mixtures of Ionic Liquids in ZIF-8 for Selective Gas Storage and Separation: A Perspective from Computational Approaches. Journal of Physical Chemistry C, 2020, 124, 26203-26213.	1.5	14
348	Separation of precious metals by split-anion extraction using water-saturated ionic liquids. Green Chemistry, 2020, 22, 8375-8388.	4.6	41
349	Aqueous solutions of binary ionic liquids: insight into structure, dynamics, and interface properties by molecular dynamics simulations and DFT methods. Physical Chemistry Chemical Physics, 2020, 22, 27882-27895.	1.3	8

#	Article	IF	CITATIONS
350	Macroscopic Differentiators for Microscopic Structural Nonideality in Binary Ionic Liquid Mixtures. Journal of Physical Chemistry B, 2020, 124, 7849-7856.	1.2	6
351	Surface Tension and Viscosity of Binary Mixtures of the Fluorinated and Non-fluorinated Ionic Liquids [PFBMIm][PF6] and [C4C1Im][PF6] by the Pendant Drop Method and Surface Light Scattering. International Journal of Thermophysics, 2020, 41, 1.	1.0	17
352	Predicting ionic liquid melting points using machine learning. Journal of Molecular Liquids, 2020, , 114686.	2.3	2
353	Hydrolysis Reactions of Two Benzoyl Chlorides as a Probe to Investigate Reverse Micelles Formed by the Ionic Liquid-Surfactant bmim–AOT. Journal of Organic Chemistry, 2020, 85, 15006-15014.	1.7	3
354	Mechanism of emulsification and demulsification for temperature-sensitive ionic liquid microemulsion. Journal of Molecular Liquids, 2020, 319, 114352.	2.3	19
355	Use of phosphonium ionic liquids for highly efficient extraction of phenolic compounds from water. Separation and Purification Technology, 2020, 248, 117069.	3.9	43
356	Viscosity of a Ternary Reciprocal System Consisting of 1-Alkylpyridinium Halides. Industrial & Engineering Chemistry Research, 2020, 59, 11823-11838.	1.8	3
357	Catalytic hydrogenation of levulinic acid in ionic liquid mixtures using hydrogen gas in high-pressure CO2. Journal of Supercritical Fluids, 2020, 164, 104891.	1.6	10
358	Insights on Betaine + Lactic Acid Deep Eutectic Solvent. Industrial & Engineering Chemistry Research, 2020, 59, 11880-11892.	1.8	21
359	lonic liquid–based colloidal nanoparticles: applications in organic synthesis. , 2020, , 279-299.		7
360	Understanding of Competitive Hydrogen Bond Behavior of Imidazolium-Based Ionic Liquid Mixture around Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2020, 124, 6634-6645.	1.5	17
361	Simultaneous capture of acid gases from natural gas adopting ionic liquids: Challenges, recent developments, and prospects. Renewable and Sustainable Energy Reviews, 2020, 123, 109771.	8.2	70
362	Anions as Dynamic Probes for Ionic Liquid Mixtures. Journal of Physical Chemistry B, 2020, 124, 2879-2891.	1.2	19
363	Choline hydroxide promoted sustainable one-pot three-component synthesis of 1H-pyrazolo[1,2-a]pyridazine-2-carbonitriles under solvent-free conditions. Synthetic Communications, 2020, 50, 1147-1158.	1.1	3
364	The wetting behavior of aqueous imidazolium based ionic liquids: a molecular dynamics study. Physical Chemistry Chemical Physics, 2020, 22, 8595-8605.	1.3	12
365	Pronounced surface enrichment of fluorinated ionic liquids in binary mixtures with methoxy-functionalized ionic liquids. Journal of Molecular Liquids, 2020, 305, 112783.	2.3	10
366	lonic Liquid–Polymer Composites: A New Platform for Multifunctional Applications. Advanced Functional Materials, 2020, 30, 1909736.	7.8	197
367	Electroactive poly(vinylidene fluoride)-based materials: recent progress, challenges, and opportunities. , 2020, , 1-43.		7

#	Article	IF	CITATIONS
368	Intercalation of copper salt to montmorillonite Kâ€10 and its application as a reusable catalyst for Chan–Lam crossâ€coupling reaction. Applied Organometallic Chemistry, 2020, 34, e5554.	1.7	14
369	Lightâ€Emitting Devices Based on Electrochemiluminescence Gels. Advanced Functional Materials, 2020, 30, 1907936.	7.8	62
370	Solvation properties of protic ionic liquid–molecular solvent mixtures. Physical Chemistry Chemical Physics, 2020, 22, 10995-11011.	1.3	22
371	Ordering and Nonideality of Air–Ionic Liquid Interfaces in Surface Second Harmonic Generation. Journal of Physical Chemistry B, 2020, 124, 3954-3961.	1.2	7
372	Influence of eco-friendly pretreatment of lignocellulosic biomass using ionic liquids on the interface adhesion and characteristics of polymer composite boards. Journal of Composite Materials, 2020, 54, 3717-3729.	1.2	8
373	Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chemical Reviews, 2020, 120, 5798-5877.	23.0	277
374	Imidazolium-based ionic liquids for asphaltene dispersion; experimental and computational studies. Journal of Molecular Liquids, 2021, 324, 114698 .	2.3	32
375	Polar/apolar domains' dynamics in alkylimidazolium ionic liquids unveiled by the dual receiver NMR 1H and 19F relaxation experiment. Journal of Molecular Liquids, 2021, 322, 114567.	2.3	12
376	Recent advances and challenges of inter-disciplinary biomass valorization by integrating hydrothermal and biological techniques. Renewable and Sustainable Energy Reviews, 2021, 135, 110370.	8.2	108
377	Viscosity models for ionic liquids and their mixtures. Physical Chemistry Chemical Physics, 2021, 23, 733-752.	1.3	35
378	Breakdown of the linear physical behavior in a solid solution of a halometallate molten salt, (dimim)[Fe(Cl1â^²xBrx)4] O â‰â€¯x â‰â€¯1. Journal of Molecular Liquids, 2021, 325, 114570.	2.3	2
379	Micellar Catalysis and Reactivity in Nanostructured Ionic Liquids: Two Sides of the Same Coin?. Australian Journal of Chemistry, 2022, 75, 9-23.	0.5	7
380	Molecular-dynamics simulations on the mesophase transition induced by oscillatory shear in imidazolium-based ionic liquid crystals. Physical Chemistry Chemical Physics, 2021, 23, 6496-6508.	1.3	3
381	Overcoming the phase separation within high-entropy metal carbide by poly(ionic liquid)s. Chemical Communications, 2021, 57, 3676-3679.	2.2	10
382	Molecular dynamics simulations of ionic liquids. , 2021, , 87-104.		0
383	A redox-active ionic liquid manifesting charge-transfer interaction between a viologen and carbazole and its effect on the viscosity, ionic conductivity, and redox process of the viologen. Chemical Science, 2021, 12, 4872-4882.	3.7	8
384	A review on machine learning algorithms for the ionic liquid chemical space. Chemical Science, 2021, 12, 6820-6843.	3.7	80
385	Mixing divalent ionic liquids: effects of charge and side-chains. Physical Chemistry Chemical Physics, 2021, 23, 4624-4635.	1.3	7

#	Article	IF	CITATIONS
386	Molecular-level insights into composition-dependent structure, dynamics, and hydrogen bonds of binary ionic liquid mixture from molecular dynamics simulations. Chemical Physics, 2021, 542, 111051.	0.9	7
387	Permeability of Vesicles for Imidazolium-Based Ionic Liquids in Aqueous Solution: A Molecular Dynamic Simulation Study. Industrial & Engineering Chemistry Research, 2021, 60, 3174-3183.	1.8	12
388	Imidazolium Triflate Ionic Liquid Improves the Activity of ZnCl2 in the Synthesis of Pyrroles and Ketones. Organic Preparations and Procedures International, 2021, 53, 157-165.	0.6	0
389	A green and highly efficient synthesis of 5-hydroxymethylfurfural from monosaccharides using a novel binary ionic liquid mixture. Molecular Catalysis, 2021, 503, 111428.	1.0	14
390	Group Contribution Estimation of Ionic Liquid Melting Points: Critical Evaluation and Refinement of Existing Models. Molecules, 2021, 26, 2454.	1.7	10
391	pH of Single and Double Salt SO3H-Functionalized Brønsted Acidic Ionic Liquids. Journal of Chemical & Engineering Data, 2021, 66, 1947-1955.	1.0	1
392	Interaction–Deletion: A Composite Energy Method for the Optimization of Molecular Systems Selectively Removing Specific Nonbonded Interactions. Journal of Physical Chemistry A, 2021, 125, 4668-4682.	1.1	0
393	Recent Advances in Nanotribology of Ionic Liquids. Experimental Mechanics, 2021, 61, 1093-1107.	1.1	13
394	Prediction of saltingâ€out in liquidâ€liquid twoâ€phase systems with ePCâ€SAFT: Effect of the Born term and of a concentrationâ€dependent dielectric constant. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1305-1314.	0.6	19
395	Binary mixtures of ionic liquids: Ideal, non-ideal, or quasi-ideal?. Journal of Chemical Physics, 2021, 154, 224507.	1.2	6
396	Hypergolic ionic mixtures with task-specific ions: A new strategy to improve performances of ionic liquids as propellant fuels. Combustion and Flame, 2021, 228, 107-113.	2.8	4
397	Greener synthetic approach for the preparation of substituted flexible dimeric pyridinium salts and its importance. Journal of Heterocyclic Chemistry, 2021, 58, 1749-1754.	1.4	2
398	Highly Soluble Supertetrahedra upon Selective Partial Butylation of Chalcogenido Metalate Clusters in Ionic Liquids. Angewandte Chemie, 2021, 133, 17763-17769.	1.6	1
399	Recent advances of the ionic chiral selectors for chiral resolution by chromatography, spectroscopy and electrochemistry. Journal of Separation Science, 2022, 45, 325-337.	1.3	13
400	Highly Soluble Supertetrahedra upon Selective Partial Butylation of Chalcogenido Metalate Clusters in Ionic Liquids. Angewandte Chemie - International Edition, 2021, 60, 17622-17628.	7.2	18
401	Experimental and molecular modeling study on the binary mixtures of [EMIM][BF4] and [EMIM][TFSI] ionic liquids. Journal of Molecular Liquids, 2021, 334, 116049.	2.3	14
402	Quantitative Control Factors of Double Salt Ionic Liquids Catalysis in the Coupling Reaction of Epoxied and Methanol. Industrial & Epoxied Epoxied and Methanol. Industrial & Epoxied Epox	1.8	1
403	Recovery of Rare Earth Elements (REEs) Using Ionic Solvents. Processes, 2021, 9, 1202.	1.3	40

#	Article	lF	CITATIONS
404	Bi(III) halometallate ionic liquids: Interactions and speciation. Journal of Chemical Physics, 2021, 155, 014501.	1.2	10
405	Search for the origin of synergistic solvation in methanol/chloroform mixture using optical Kerr effect spectroscopy. Journal of Molecular Liquids, 2022, 345, 117013.	2.3	8
406	Synthetic auxin-based double salt ionic liquids as herbicides with improved physicochemical properties and biological activity. Journal of Molecular Liquids, 2021, 334, 116452.	2.3	15
407	lsobaric vapor–liquid equilibrium for methyl acetateÂ+Âmethanol with double salt ionic liquid [EMIM][Cl]0.5[DCA]0.5 as entrainer at 101.3ÂkPa. Fluid Phase Equilibria, 2021, 541, 113086.	1.4	12
408	Binary Mixtures of Proton-Conducting Ionic Liquids as Electrolytes for Medium-Temperature Polymer Electrolyte Membrane Fuel Cells. Journal of Physical Chemistry C, 2021, 125, 21588-21594.	1.5	3
409	High throughput study of ionic liquids in controlled environments with FTIR spectroscopic imaging. Journal of Molecular Liquids, 2021, 337, 116412.	2.3	6
410	Insights into the Structure and Dynamics of Imidazolium Ionic Liquid and Tetraethylene Glycol Dimethyl Ether Cosolvent Mixtures: A Molecular Dynamics Approach. Nanomaterials, 2021, 11, 2512.	1.9	3
411	Binary mixtures of homologous room-temperature ionic liquids: Temperature and composition evolution of the nanoscale structure. Journal of Molecular Liquids, 2021, 338, 116587.	2.3	5
412	Phase equilibria and volumetric and viscosity behavior of the aqueous double salt ionic liquid [EMIM][SCN] [MeSO3](1-). Fluid Phase Equilibria, 2021, 548, 113199.	1.4	3
413	Applications of a preferential–solvation index (PSI) for the comparison of binary mixtures with ionic liquids. Journal of Molecular Liquids, 2021, 343, 117644.	2.3	8
414	Developing machine learning models for ionic conductivity of imidazolium-based ionic liquids. Fluid Phase Equilibria, 2021, 549, 113208.	1.4	27
415	Double-salt ionic liquid derived facilitated transport membranes for ethylene/ethane separation. Journal of Membrane Science, 2021, 639, 119773.	4.1	13
416	Molecular dynamics simulation of ionic liquid electrospray: Microscopic presentation of the effects of mixed ionic liquids. International Journal of Heat and Mass Transfer, 2022, 182, 121983.	2.5	11
417	Selection and characterization of non-ideal ionic liquids mixtures to be used in CO2 capture. Fluid Phase Equilibria, 2020, 518, 112621.	1.4	23
418	How to Detect Possible Pitfalls in ePC-SAFT Modeling. 2. Extension to Binary Mixtures of 96 Ionic Liquids with CO2, H2S, CO, O2, CH4, N2, and H2. Industrial & Engineering Chemistry Research, 2020, 59, 21579-21591.	1.8	12
419	Br \tilde{A}_i nsted acidic ionic liquid-promoted direct C3-acylation of <i>N</i> -unsubstituted indoles with acid anhydrides under microwave irradiation. RSC Advances, 2017, 7, 54399-54406.	1.7	10
421	Polymer/Graphene Composites for Energy Storage. Engineering Materials and Processes, 2017, , 337-364.	0.2	0
422	Electron Microscopy of Wet Materials Using Ionic Liquids. RSC Smart Materials, 2017, , 30-52.	0.1	0

#	Article	IF	CITATIONS
423	Molecular Simulation of Ionic Liquids: Complex Dynamics and Structure. Springer Proceedings in Mathematics and Statistics, 2017, , 297-312.	0.1	0
424	Ionic Liquids. RSC Energy and Environment Series, 2019, , 69-105.	0.2	0
425	Ionic Liquid Effect in Catalysed Multicomponent Reactions. RSC Catalysis Series, 2019, , 377-392.	0.1	0
426	lonic Liquids as "Green Solvents― Are they Safe?. Nanotechnology in the Life Sciences, 2020, , 1-25.	0.4	2
427	Binary Mixture of Double Protic Ionic Liquid: Density, Viscosity, Refractive Index, Surface Tension, and Derivative Properties. Journal of Chemical & Engineering Data, 2021, 66, 4309-4325.	1.0	3
428	Fullerene C60 spectroscopy in [BMIM][PF6] ionic liquid: Molecular dynamics study using polarization effects. Journal of Molecular Structure, 2022, 1250, 131887.	1.8	5
429	Spectroscopic techniques using ionic liquids. , 2022, , 297-328.		0
430	Molecular dynamics simulations of structures, dynamics, competitive interaction mechanisms for CH4, CO2, and SO2 in ionic liquid mixtures of [Cnmim][Nf2T] and [Cnmim][BF4]. Fluid Phase Equilibria, 2022, 554, 113342.	1.4	5
431	Tuning the properties of ionic liquids by mixing with organic solvents: The case of 1-butyl-3-methylimidazolium glutamate with alkanols. Journal of Molecular Liquids, 2022, 347, 117953.	2.3	4
432	Solvation Effects in Organic Chemistry: A Short Historical Overview. Journal of Organic Chemistry, 2022, 87, 1616-1629.	1.7	36
434	Emerging impacts of ionic liquids on eco-environmental safety and human health. Chemical Society Reviews, 2021, 50, 13609-13627.	18.7	35
435	Engineering encapsulated ionic liquids for next-generation applications. RSC Advances, 2021, 11, 36273-36288.	1.7	16
436	Optimal computer-aided molecular design of ionic liquid mixtures for post-combustion carbon dioxide capture. Computers and Chemical Engineering, 2022, 157, 107622.	2.0	7
437	Molecular dynamics simulations of ionic liquid/poly(vinylidene fluoride) systems: Ion transport with different anions. Solid State Ionics, 2022, 375, 115798.	1.3	3
438	Halide based ionic liquid mixture for a sustainable electrochemical recovery of precious metals. Journal of Environmental Chemical Engineering, 2022, 10, 107063.	3.3	5
439	Application of a phosphonium-based ionic liquid for reactive textile dye removal: Extraction study and toxicological evaluation. Journal of Environmental Management, 2022, 304, 114322.	3.8	6
440	Synthesis and Structural Characterization of Imidazolium-Based Dicationic Ionic Liquids. Chemistry Proceedings, 2020, 3, .	0.1	3
441	<i>In situ</i> nanoscale evaluation of pressure-induced changes in structural morphology of phosphonium phosphate ionic liquid at single-asperity contacts. RSC Advances, 2021, 12, 413-419.	1.7	5

#	Article	IF	CITATIONS
442	The Influences of [EMIm]Ac Ionic Liquid for the Characteristics of Liâ€lon Batteries' Solid Biopolymer Blend Electrolyte Based on Cellulose Derivatives of MC/CMC Blend. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	7
443	Energy and power performances of binary mixtures of ionic liquids in planar and porous electrodes by molecular dynamics simulations. Electrochimica Acta, 2022, 410, 139982.	2.6	8
444	Gel Electrolytes and Aerogel Electrodes from Oil-in-Water Emulsions for Supercapacitor Applications. SSRN Electronic Journal, 0, , .	0.4	0
445	Surface Structure of Alkyl/Fluoroalkylimidazolium Ionic–Liquid Mixtures. Journal of Physical Chemistry B, 2022, 126, 1962-1979.	1.2	8
446	Structures and properties of ionic crystals and condensed phase ionic liquids predicted with the generalized energyâ€based fragmentation method. Journal of Computational Chemistry, 2022, 43, 704-716.	1.5	6
447	Experimental Study of the Thermal Decomposition Properties of Binary Imidazole Ionic Liquid Mixtures. Molecules, 2022, 27, 1357.	1.7	1
448	Ion Transport in the EMITFSI/PVDF System at Different Temperatures: A Molecular Dynamics Simulation. ACS Omega, 2022, 7, 9333-9342.	1.6	3
449	Binary mixtures of homologous room-temperature ionic liquids: Nanoscale structure evolution with alkyl lengths' difference. Journal of Molecular Liquids, 2022, 355, 118874.	2.3	3
450	Estimation of a eutectic composition of imidazolium chloride ionic liquids using video imaging and impedance methods. Fluid Phase Equilibria, 2022, 558, 113442.	1.4	0
451	Inventory of biodegradation data of ionic liquids. Chemosphere, 2022, 299, 134385.	4.2	16
452	Why Do Liquids Mix? The Mixing of Protic Ionic Liquids Sharing the Same Cation Is Apparently Driven by Enthalpy, Not Entropy. Journal of Physical Chemistry Letters, 2022, 13, 3556-3561.	2.1	2
453	A Theoretical Model for the Charging Dynamics of Associating Ionic Liquids. Frontiers in Chemical Engineering, 2022, 4, .	1.3	4
454	Trihexyl(tetradecyl)phosphonium bis-2,4,4-(trimethylpentyl)phosphinate micellar behavior in the extraction of Ag(I) from acidic nitrate media. Journal of Molecular Liquids, 2022, 358, 119132.	2.3	6
455	Hydrogen bond redistribution effects in mixtures of protic ionic liquids sharing the same cation: non-ideal mixing with large negative mixing enthalpies. Physical Chemistry Chemical Physics, 2022, 24, 14740-14750.	1.3	2
456	Influence of amphiphilic drugs on the micellization behavior of imidazolium based ionic liquids: A review. AIP Conference Proceedings, 2022, , .	0.3	0
457	Rheological scaling of ionic-liquid-based polyelectrolytes in ionic liquid solutions: the effect of the ion diameter of ionic liquids. Soft Matter, 2022, 18, 4197-4204.	1.2	4
458	Thermodynamic descriptors of sensible heat driven liquid-liquid phase separation. Journal of Molecular Liquids, 2022, 360, 119440.	2.3	5
459	Understanding the Electric Double-Layer Structure, Capacitance, and Charging Dynamics. Chemical Reviews, 2022, 122, 10821-10859.	23.0	186

#	Article	IF	CITATIONS
460	Enhanced oxidative depolymerization of lignin in cooperative imidazolium-based ionic liquid binary mixtures. Bioresource Technology, 2022, 357, 127333.	4.8	7
461	Gel electrolytes and aerogel electrodes from ILs-based emulsions for supercapacitor applications. Chemical Engineering Journal, 2022, 446, 137328.	6.6	14
462	2-Hydroxyethylammonium Bisulfate (2-HEAS) as a Brønsted Acidic Ionic Liquid Catalyst for Esterification. Industrial & Engineering Chemistry Research, 2022, 61, 7874-7880.	1.8	7
463	Small-angle neutron scattering from mixtures of long- and short-chain 3-alkyl-1-methyl imidazolium bistriflimides. Physical Chemistry Chemical Physics, 2022, 24, 15811-15823.	1.3	7
464	Ionic Liquids Assisted Topical Drug Delivery for Permeation Enhancement: Formulation Strategies, Biomedical Applications, and Toxicological Perspective. AAPS PharmSciTech, 2022, 23, .	1.5	9
465	Electrodialytic Universal Synthesis of Highly Pure and Mixed Ionic Liquids. ACS Omega, 0, , .	1.6	2
466	Ionic liquid-immobilized silica gel as a new sorbent for solid-phase extraction of heavy metal ions in water samples. RSC Advances, 2022, 12, 19741-19750.	1.7	13
467	Unravelling free volume in branched-cation ionic liquids based on silicon. Chemical Science, 2022, 13, 9062-9073.	3.7	3
468	Hydrogen bonds in aqueous choline chloride solutions by DFT calculations and X-ray scattering. Journal of Molecular Liquids, 2022, 362, 119742.	2.3	5
469	Cooperative catalytic effects between aqueous acidic ionic liquid solutions and polyoxometalate-ionic liquid in the oxidative depolymerization of alkali lignin. Journal of Environmental Chemical Engineering, 2022, 10, 108260.	3.3	4
470	Effects of Anion and Cross-Linker on the Surface Hydrophilicity and Selective Solvent-Induced Swelling of Poly(ionic liquid) Elastomers. ACS Applied Polymer Materials, 2022, 4, 6623-6629.	2.0	4
471	Deep eutectic behavior in binary mixtures of protic ionic liquids. Journal of Molecular Liquids, 2022, 366, 120251.	2.3	2
472	The structuring effect of the alkyl domains on the polar network of ionic liquid mixtures: a molecular dynamics study. Physical Chemistry Chemical Physics, 2022, 24, 18783-18792.	1.3	5
473	Molecular simulations explain the exceptional thermal stability, solvent tolerance and solubility of protein–polymer surfactant bioconjugates in ionic liquids. Physical Chemistry Chemical Physics, 2022, 24, 21904-21915.	1.3	7
474	Separation and Preconcentration of Pb2+, Cd2+, and Cr3+ in Water Samples by Solid-Phase Extraction Using a Novel Ionic Liquid-Modified Silica Sorbent. SSRN Electronic Journal, 0, , .	0.4	0
475	Catalytic performance of pyridinium dihydrogen phosphate ionic liquid for butyl acetate production: theoretical insights and reaction kinetic studies. Reaction Kinetics, Mechanisms and Catalysis, 0, , .	0.8	0
476	Revealing hydrogen bond dynamics between ion pairs in binary and reciprocal ionic liquid mixtures. Journal of Molecular Liquids, 2022, 368, 120515.	2.3	3
477	Structural microheterogeneity and hydrogen bonding properties in the mixtures of two ionic liquids with a common imidazolium cation. Journal of Molecular Liquids, 2022, 368, 120594.	2.3	8

#	Article	IF	CITATIONS
478	Modulating water cluster formation by the hydrophilicity of mixed ionic liquids. Journal of Molecular Liquids, 2022, 368, 120766.	2.3	1
479	lonic Liquid Mixtures for Direct Air Capture: High CO ₂ Permeation Driven by Superior CO ₂ Absorption with Lower Absolute Enthalpy. ACS Omega, 2022, 7, 42155-42162.	1.6	2
480	Molecular interactions of (ionic liquid butylammonium methanoateÂ+Âalcohols) at several temperatures. Part II: sec-Butylammonium methanoate (S4Met). Journal of Chemical Thermodynamics, 2023, 178, 106970.	1.0	1
481	Direct Correlation of Surface Tension and Surface Composition of Ionic Liquid Mixtures—A Combined Vacuum Pendant Drop and Angle-Resolved X-ray Photoelectron Spectroscopy Study. Molecules, 2022, 27, 8561.	1.7	4
482	Selective and Efficient Gold Extraction from E-Waste by Pyrrolidinium-Based Ionic Liquids with Various N-Substituents. ACS Sustainable Chemistry and Engineering, 2023, 11, 638-648.	3.2	9
483	Ionic Liquids/Water Binary Mixtures Mediated Organic Reactions. , 2022, , 789-801.		0
484	Comparison of physicochemical properties of choline chloride-based deep eutectic solvents for CO2 capture: Progress and outlook. Journal of Molecular Liquids, 2023, 376, 121436.	2.3	7
485	Mixing behavior of 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide and 1-Ethyl-3-methylimidazolium tetrafluoroborate binary ionic liquids mixtures. Chemical Physics, 2023, 569, 111858.	0.9	2
486	A new era of chitin synthesis and dissolution using deep eutectic solvents- comparison with ionic liquids. Journal of Molecular Liquids, 2023, 380, 121794.	2.3	12
487	Study on the structural characteristics and interaction mechanisms of ionic liquid mixtures with a common imidazolium cation. Journal of Molecular Liquids, 2023, 380, 121743.	2.3	8
488	Facilitated solvent screening for membrane-based extraction of chiral amines via a priori simulations. Journal of Molecular Liquids, 2023, 375, 121351.	2.3	0
489	[BMIm][BARF] imidazolium salt solutions in alkyl carbonate solvents: Structure and interactions. Applied Materials Today, 2023, 31, 101741.	2.3	0
490	Viscosity of Ionic Liquids. , 2022, , 1351-1361.		1
491	Size-Polydisperse Model Ionic Liquid in Bulk. Journal of Physical Chemistry B, 2023, 127, 2739-2748.	1.2	0
492	Evaluation of Ionic Liquids for the Sustainable Fractionation of Essential Oils. Industrial & Engineering Chemistry Research, 2023, 62, 6749-6758.	1.8	2
493	Properties of interfaces between metal–organic frameworks and ionic liquids. , 2024, , 776-790.		0
500	Surfactants and Colloidal Properties of Ionic Liquids. , 2023, , 55-76.		0
501	The Development of Hierarchical Ion Models and Multiscale Modeling of Tetraalkylphosphonium and Imidazolium Ionic Liquids. , 2024, , 674-691.		0

#	Article	IF	CITATIONS
503	A physicochemical investigation of ionic liquid mixtures. , 2023, , 289-312.		0
510	Nanomagnetic Oxide: A Versatile Green Catalyst. Contemporary Education and Teaching Research, 2023, , 92-118.	0.2	O
520	Substitution of Solvents by Safer Products. , 2024, , 1545-1655.		0