CITATION REPORT List of articles citing

Sodium ion insertion in hollow carbon nanowires for battery applications

DOI: 10.1021/nl3016957 Nano Letters, 2012, 12, 3783-7.

Source: https://exaly.com/paper-pdf/53141076/citation-report.pdf

Version: 2024-04-10

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
1428	Chemically Presodiated Hard Carbon Anodes with Enhanced Initial Coulombic Efficiencies for High-Energy Sodium Ion Batteries.		
1427	Facile Strategy to Low-Cost Synthesis of Hierarchically Porous, Active Carbon of High Graphitization for Energy Storage.		
1426	Low-Temperature Catalytic Graphitization to Enhance Na-Ion Transportation in Carbon Electrodes.		
1425	Sulfur-Doped Mesoporous Carbon Nitride with an Ordered Porous Structure for Sodium-Ion Batteries.		
1424	Enhanced Sodium Ion Storage in Interlayer Expanded Multiwall Carbon Nanotubes.		
1423	Revealing the Sodium Storage Mechanism in High-Temperature-Synthesized Silicon Oxycarbides.		
1422	Smaller sulfur molecules promise better lithium-sulfur batteries. 2012 , 134, 18510-3		1317
1421	Single-step scalable conversion of waste natural oils to carbon nanowhiskers and their interaction with mammalian cells. 2013 , 15, 1		10
1420	Update on Na-based battery materials. A growing research path. 2013 , 6, 2312		781
1419	Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. 2013 , 177, 1-47		535
1418	Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. 2013 , 6, 2338	3	2419
1417	Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. 2013 , 1, 10662		309
1416	Nanocolumnar Germanium Thin Films as a High-Rate Sodium-Ion Battery Anode Material. 2013 , 117, 18885-18890		150
1415	High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. 2013 , 27, 85-88		388
1414	Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. 2013 , 49, 8973-5		320
1413	Surface-driven sodium ion energy storage in nanocellular carbon foams. <i>Nano Letters</i> , 2013 , 13, 3909-14	11.5	202
1412	Electrochemical properties of P2-Na2/3[Ni1/3Mn2/3]O2 cathode material for sodium ion batteries when cycled in different voltage ranges. 2013 , 113, 200-204		144

1411	An investigation of spinel NiCo2O4 as anode for Na-ion capacitors. 2013 , 114, 726-735	123
1410	A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation. <i>Nano Letters</i> , 2013 , 13, 4721-7	195
1409	Encapsulation of Sulfur in a Hollow Porous Carbon Substrate for Superior Li-S Batteries with Long Lifespan. 2013 , 30, 321-325	85
1408	A computational study of the insertion of Li, Na, and Mg atoms into Si(111) nanosheets. 2013 , 2, 1149-1157	68
1407	Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. 2013 , 7, 11004-15	705
1406	Low crystallinity VOOH hollow microspheres as an outstanding high-rate and long-life cathode for sodium ion batteries. 2013 , 1, 12404	36
1405	Performance of nanocrystalline Ni3N as a negative electrode for sodium-ion batteries. 2013, 1, 6441	68
1404	Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries. 2013 , 3, 12593	153
1403	Wet milled synthesis of an Sb/MWCNT nanocomposite for improved sodium storage. 2013 , 1, 13727	169
1402	A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: case study of eco-friendly Fe3O4. 2013 , 15, 2945-53	143
1401	SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. 2013 , 29, 8-11	208
1400	Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. 2013 , 6, 56-60	558
1399	Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. 2013 , 57, 202-208	446
1398	Tin-coated viral nanoforests as sodium-ion battery anodes. 2013 , 7, 3627-34	259
1397	Assessment of density functionals for van der Waals complexes of sodium and benzene. 2013 , 111, 1211-1218	3 5
1396	Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials. 2013 , 67,	96
1395	SiCBb© nanocomposites as high-capacity and cycling-stable anode for sodium-ion batteries. 2013 , 87, 41-45	84
1394	SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. 2013 , 49, 3131-3	302

1393	A SnBnSII nanocomposite as anode host materials for Na-ion batteries. 2013, 1, 7181		126
1392	Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. <i>Nano Letters</i> , 2013 , 13, 3093-100	11.5	511
1391	An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. 2013 , 25, 3045-9		685
1390	Charge carriers in rechargeable batteries: Na ions vs. Li ions. 2013 , 6, 2067		635
1389	Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. 2013 , 7, 6378-86		557
1388	Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. 2013 , 7, 11218-26		290
1387	Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. <i>Nano Letters</i> , 2013 , 13, 5480-4	11.5	347
1386	Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. 2013 , 55, 328-334		537
1385	Hydrothermal synthesis of EMnO2 and EMnO2 nanorods as high capacity cathode materials for sodium ion batteries. 2013 , 1, 4845		164
1384	Evaluation of Cu3N and CuO as Negative Electrode Materials for Sodium Batteries. 2014, 118, 29568-29	9573	38
1383	SnS2 nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries. 2014 , 9, 1611-7		157
1382	N-doped ordered mesoporous carbon as a high performance anode material in sodium ion batteries at room temperature. 2014 , 4, 62673-62677		46
1381	Peapod-like composite with nickel phosphide nanoparticles encapsulated in carbon fibers as enhanced anode for li-ion batteries. 2014 , 7, 2000-6		66
	enhanced anode for ti-ion bacteries. 2014 , 7, 2000-6		
1380	Electrochemical Performance of Electrospun carbon nanofibers as free-standing and binder-free anodes for Sodium-Ion and Lithium-Ion Batteries. 2014 , 141, 302-310		139
1380 1379	Electrochemical Performance of Electrospun carbon nanofibers as free-standing and binder-free		139 48
	Electrochemical Performance of Electrospun carbon nanofibers as free-standing and binder-free anodes for Sodium-Ion and Lithium-Ion Batteries. 2014 , 141, 302-310 MOF-derived microporous carbon as a better choice for Na-ion batteries than mesoporous CMK-3.		
1379	Electrochemical Performance of Electrospun carbon nanofibers as free-standing and binder-free anodes for Sodium-Ion and Lithium-Ion Batteries. 2014, 141, 302-310 MOF-derived microporous carbon as a better choice for Na-ion batteries than mesoporous CMK-3. 2014, 4, 64692-64697 Towards more sustainable negative electrodes in Na-ion batteries via nanostructured iron oxide.		48

1375	Porous CuO nanowires as the anode of rechargeable Na-ion batteries. 2014 , 7, 199-208	204
1374	Sodium-ion battery based on an electrochemically converted NaFePO4 cathode and nanostructured tin-carbon anode. 2014 , 15, 2152-5	50
1373	Spatially distributed local fields in the hippocampus encode rat position. 2014 , 344, 626-30	97
1372	In situ TEM observation of a microcrucible mechanism of nanowire growth. 2014 , 344, 623-6	43
1371	P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery. 2014 , 116, 300-305	236
1370	Anodes for sodium ion batteries based on tin-germanium-antimony alloys. 2014 , 8, 4415-29	273
1369	MoS2/graphene composite paper for sodium-ion battery electrodes. 2014 , 8, 1759-70	973
1368	Enhanced storage capability and kinetic processes by pores- and hetero-atoms- riched carbon nanobubbles for lithium-ion and sodium-ion batteries anodes. 2014 , 4, 81-87	198
1367	Fast synthesis of carbon microspheres via a microwave-assisted reaction for sodium ion batteries. 2014 , 2, 1263-1267	120
1366	Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion batteries. 2014 , 2, 11185	132
1365	A high-energy room-temperature sodium-sulfur battery. 2014 , 26, 1261-5	446
1364	Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. 2014 , 6, 1384-9	481
1363	In situ generated FeF 3 in homogeneous iron matrix toward high-performance cathode material for sodium-ion batteries. 2014 , 10, 295-304	90
1362	Controlling Na diffusion by rational design of Si-based layered architectures. 2014 , 16, 4260-7	62
1361	WS@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. 2014 , 50, 4192-5	208
1360	N-doped porous hollow carbon nanofibers fabricated using electrospun polymer templates and their sodium storage properties. 2014 , 4, 16920-16927	47
1359	Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li. 2014 , 2, 19685-19695	146
1358	Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance. 2014 , 2, 4117	238

1357	Recycling chicken eggshell membranes for high-capacity sodium battery anodes. 2014 , 4, 50950-50954	24
1356	Low-cost Nanomaterials. 2014,	11
1355	Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. 2014 , 2, 12733	477
1354	Sb¶ nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. 2014 , 7, 323-328	536
1353	High-performance FeSb-TiC-C nanocomposite anodes for sodium-ion batteries. 2014 , 16, 12884-9	48
1352	4,4?-Biphenyldicarboxylate sodium coordination compounds as anodes for Na-ion batteries. 2014 , 2, 14986-14993	76
1351	The binder effect on an oxide-based anode in lithium and sodium-ion battery applications: the fastest way to ultrahigh performance. 2014 , 50, 13307-10	60
1350	Free-standing Na(2/3)Fe(1/2)Mn(1/2)O(2)@graphene film for a sodium-ion battery cathode. 2014 , 6, 4242-7	76
1349	Sb nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate capability and long cycling stability. 2014 , 50, 12888-91	151
1348	An Electrochemical Study of Sb/Acetylene Black Composite as Anode for Sodium-Ion Batteries. 2014 , 146, 328-334	73
1347	Nanowire electrodes for electrochemical energy storage devices. 2014 , 114, 11828-62	552
1346	Activation with Li enables facile sodium storage in germanium. <i>Nano Letters</i> , 2014 , 14, 5873-82	5 102
1345	Sn4+x P3 @ amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability. 2014 , 26, 4037-42	278
1344	Indanthrone derived disordered graphitic carbon as promising insertion anode for sodium ion battery with long cycle life. 2014 , 146, 218-223	19
1343	In situ transmission electron microscopy observation of electrochemical sodiation of individual CoBFilled carbon nanotubes. 2014 , 8, 3620-7	69
1342	Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na(0.7)CoO2. 2014 , 16, 1987-98	175
1341	Effect of TiC addition on SnSbt composite anodes for sodium-ion batteries. 2014, 269, 848-854	53
1340	Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries. <i>Nano Letters</i> , 2014 , 14, 3539-43	5 210

1339	Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. 2014 , 8, 9606-15	644
1338	Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. 2014 , 2, 529-534	272
1337	An SbOx/Reduced Graphene Oxide Composite as a High-Rate Anode Material for Sodium-Ion Batteries. 2014 , 118, 23527-23534	93
1336	Ultralong Cycle Life Sodium-Ion Battery Anodes Using a Graphene-Templated Carbon Hybrid. 2014 , 118, 22426-22431	63
1335	Recent progress in the preparation of polyaniline nanostructures and their applications in anticorrosive coatings. 2014 , 4, 28195	117
1334	Mesoporous carbon with large pores as anode for Na-ion batteries. 2014 , 59, 2186-2190	34
1333	Sodium-metal halide and sodium-air batteries. 2014 , 15, 1971-82	73
1332	Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. 2014 , 6, 693-8	225
1331	In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers. <i>Nano Letters</i> , 2014 , 14, 3445-52	230
1330	Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries. 2014 , 272, 800-807	207
1329	Electrochemical sodium storage of copper hexacyanoferrate with a well-defined open framework for sodium ion batteries. 2014 , 4, 22768	24
1328	Highly Disordered Carbon as a Superior Anode Material for Room-Temperature Sodium-Ion Batteries. 2014 , 1, 83-86	150
1327	Electrochemical Na-insertion/extraction properties of SnO thick-film electrodes prepared by gas-deposition. 2014 , 248, 378-382	60
1326	Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements. 2014 , 76, 165-174	233
1325	Transition metal oxides for high performance sodium ion battery anodes. 2014 , 5, 60-66	304
1324	Single crystalline VO2 nanosheets: A cathode material for sodium-ion batteries with high rate cycling performance. 2014 , 250, 181-187	65
1323	Comparative computational study of the energetics of Li, Na, and Mg storage in amorphous and crystalline silicon. 2014 , 94, 214-217	56
1322	Hard Carbon and Carbon Nanotube Composites for the Improvement of Low-Voltage Performance in Na Ion Batteries. 2014 , 161, A1045-A1050	39

1321	High-density sodium and lithium ion battery anodes from banana peels. 2014 , 8, 7115-29	665
1320	Expanded graphite as superior anode for sodium-ion batteries. 2014 , 5, 4033	1209
1319	An Organic Pigment as a High-Performance Cathode for Sodium-Ion Batteries. 2014 , 4, 1400554	280
1318	Free-standing and binder-free sodium-ion electrodes based on carbon-nanotube decorated Li4Ti5O12 nanoparticles embedded in carbon nanofibers. 2014 , 4, 25220	24
1317	Understanding hydrothermal transformation from Mn2O3 particles to Na0.55Mn2O4⊡.5H2O nanosheets, nanobelts, and single crystalline ultra-long Na4Mn9O18 nanowires. 2015 , 5, 18275	20
1316	Li-ion batteries: basics, progress, and challenges. 2015 , 3, 385-418	441
1315	Tailoring MoO2/Graphene Oxide Nanostructures for Stable, High-Density Sodium-Ion Battery Anodes. 2015 , 3, 1108-1114	50
1314	Study of the Most Relevant Aspects Related to Hard Carbons as Anode Materials for Na-ion Batteries, Compared with Li-ion Systems. 2015 , 55, 1260-1274	28
1313	Sb Nanoparticles Encapsulated in a Reticular Amorphous Carbon Network for Enhanced Sodium Storage. 2015 , 11, 5381-7	60
1312	Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life. 2015 , 27, 7861-6	892
1311	Ion-Transport Processes in Dual-Ion Cells Utilizing a Pyr1,4TFSI/LiTFSI Mixture as the Electrolyte. 2015 , 2, 1991-2000	20
1310	The Role of Intentionally Introduced Defects on Electrode Materials for Alkali-Ion Batteries. 2015 , 10, 1608-17	56
1309	Hard Carbon Anodes for Na-Ion Batteries: Toward a Practical Use. 2015 , 2, 1917-1920	83
1308	3D Networked Tin Oxide/Graphene Aerogel with a Hierarchically Porous Architecture for High-Rate Performance Sodium-Ion Batteries. 2015 , 8, 2948-55	63
1307	Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries. 2015 , 3, 5708-5713	92
1306	Structural Effect on Electrochemical Performance of Ordered Porous Carbon Electrodes for Na-Ion Batteries. 2015 , 7, 11748-54	51
1305	A facile route to synthesize sheet-like Na2Ti3O7 with improved sodium storage properties. 2015 , 31, 443-446	10
1304	Nanostructured polystyrene/polyaniline/graphene hybrid materials for electrochemical supercapacitor and Na-ion battery applications. 2015 , 50, 5466-5474	34

(2015-2015)

1303	In Situ Investigation of Li and Na Ion Transport with Single Nanowire Electrochemical Devices. <i>Nano Letters</i> , 2015 , 15, 3879-84	49
1302	Highly stable sodium storage in 3-D gradational SbNiSbNi heterostructures. 2015 , 15, 479-489	27
1301	Advances and challenges of sodium ion batteries as post lithium ion batteries. 2015 , 5, 53129-53154	218
1300	Sulfur covalently bonded graphene with large capacity and high rate for high-performance sodium-ion batteries anodes. 2015 , 15, 746-754	144
1299	Uniform Polyaniline Nanotubes Formation via Frozen Polymerization and Application for Oxygen Reduction Reactions. 2015 , 216, 977-984	6
1298	Ether-based nonflammable electrolyte for room temperature sodium battery. 2015 , 284, 222-226	40
1297	Solid-State Fabrication of SnS2/C Nanospheres for High-Performance Sodium Ion Battery Anode. 2015 , 7, 11476-81	161
1296	Electrochemically Expandable Soft Carbon as Anodes for Na-Ion Batteries. 2015 , 1, 516-22	167
1295	Exploration of Na(2.65)Ti(3.35)Fe(0.65)O9 as anode materials for Na-ion batteries. 2015, 51, 3227-30	12
1294	Bismuth: A new anode for the Na-ion battery. 2015 , 12, 88-95	192
1293	Carbonized common filter paper decorated with Sn@C nanospheres as additive-free electrodes for sodium-ion batteries. 2015 , 87, 70-77	39
1292	Wet-Chemical Synthesis of Phase-Pure FeOF Nanorods as High-Capacity Cathodes for Sodium-Ion Batteries. 2015 , 127, 3122-3126	11
1291	N-substituted defective graphene sheets: promising electrode materials for Na-ion batteries. 2015 , 5, 17042-17048	24
1290	Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries. 2015 , 17, 5000-5	118
1289	Electrochemical Conversion of CO2 into Negative Electrode Materials for Li-Ion Batteries. 2015 , 2, 224-230	32
1288	Electrochemical behavior of MgO-templated mesoporous carbons in the propylene carbonate solution of sodium hexafluorophosphate. 2015 , 45, 273-280	6
1287	High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. 2015 , 27, 2042-8	695
1286	Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries. 2015 , 161, 23-31	90

1285	Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery. 2015 , 7, 5598-604	183
1284	A new, cheap, and productive FeP anode material for sodium-ion batteries. 2015 , 51, 3682-5	139
1283	Recent Development on Anodes for Na-Ion Batteries. 2015 , 55, 486-507	151
1282	Wet-chemical synthesis of phase-pure FeOF nanorods as high-capacity cathodes for sodium-ion batteries. 2015 , 54, 3079-83	29
1281	High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. 2015 , 8, 1237-1244	193
1280	Sodium Storage Behavior in Natural Graphite using Ether-based Electrolyte Systems. 2015 , 25, 534-541	502
1279	Ultra-small nanoparticles of MgTi2O5 embedded in carbon rods with superior rate performance for sodium ion batteries. 2015 , 51, 3545-8	21
1278	A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO2/graphene for sodium-ion batteries. 2015 , 7, 3164-72	113
1277	Surface capacitive contributions: Towards high rate anode materials for sodium ion batteries. 2015 , 12, 224-230	301
1276	Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes. <i>Nano Letters</i> , 2015 , 15, 1018-24	5 99
1276 1275	141	5 99 52
	Na3MnCO3PO4 IA High Capacity, Multi-Electron Transfer Redox Cathode Material for Sodium Ion	
1275	Na3MnCO3PO4 IA High Capacity, Multi-Electron Transfer Redox Cathode Material for Sodium Ion Batteries. 2015, 161, 322-328 Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion	52
1275 1274	Na3MnCO3PO4 IA High Capacity, Multi-Electron Transfer Redox Cathode Material for Sodium Ion Batteries. 2015, 161, 322-328 Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. 2015, 9, 3254-64 Synergetic compositional and morphological effects for improved Na+ storage properties of	52 312
1275 1274 1273	Na3MnCO3PO4 IA High Capacity, Multi-Electron Transfer Redox Cathode Material for Sodium Ion Batteries. 2015, 161, 322-328 Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. 2015, 9, 3254-64 Synergetic compositional and morphological effects for improved Na+ storage properties of NilloBireduced graphene oxide composite powders. 2015, 7, 6230-7 Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for	52 312 53
1275 1274 1273 1272	Na3MnCO3PO4 IA High Capacity, Multi-Electron Transfer Redox Cathode Material for Sodium Ion Batteries. 2015, 161, 322-328 Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. 2015, 9, 3254-64 Synergetic compositional and morphological effects for improved Na+ storage properties of NiIIoSIPeduced graphene oxide composite powders. 2015, 7, 6230-7 Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries. 2015, 13, 208-217 Synthesis of lithium titanate nanorods as anode materials for lithium and sodium ion batteries with	52 312 53 160
1275 1274 1273 1272	Na3MnCO3PO4 IA High Capacity, Multi-Electron Transfer Redox Cathode Material for Sodium Ion Batteries. 2015, 161, 322-328 Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. 2015, 9, 3254-64 Synergetic compositional and morphological effects for improved Na+ storage properties of NiItoBireduced graphene oxide composite powders. 2015, 7, 6230-7 Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries. 2015, 13, 208-217 Synthesis of lithium titanate nanorods as anode materials for lithium and sodium ion batteries with superior electrochemical performance. 2015, 283, 243-250	52 312 53 160

1267	Correlations between electrochemical Na+ storage properties and physiochemical characteristics of holey graphene nanosheets. 2015 , 3, 17282-17289	43
1266	Enhanced sodium storage property of copper nitrate hydrate by carbon nanotube. 2015 , 755, 92-99	4
1265	A carbon coated NASICON structure material embedded in porous carbon enabling superior sodium storage performance: NaTi2(PO4)3 as an example. 2015 , 7, 14723-9	56
1264	Porous NaTi2(PO4)3 nanocubes: a high-rate nonaqueous sodium anode material with more than 10 000 cycle life. 2015 , 3, 18718-18726	69
1263	Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. 2015 , 94, 888-894	130
1262	Cobalt phosphide as a new anode material for sodium storage. 2015 , 294, 627-632	137
1261	Self-wrapped Sb/C nanocomposite as anode material for High-performance sodium-ion batteries. 2015 , 16, 479-487	124
1260	Carbon nanotube@layered nickel silicate coaxial nanocables as excellent anode materials for lithium and sodium storage. 2015 , 3, 16551-16559	49
1259	Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. 2015 , 94, 189-195	219
1258	Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material. 2015 , 16, 62-70	104
1257	Three-dimensional hierarchical nitrogen-doped arch and hollow nanocarbons: morphological influences on supercapacitor applications. 2015 , 3, 16242-16250	51
1256	Dual hetero atom containing bio-carbon: Multifunctional electrode material for High Performance Sodium-ion Batteries and Oxygen Reduction Reaction. 2015 , 176, 670-678	18
1255	Update on anode materials for Na-ion batteries. 2015 , 3, 17899-17913	341
1254	Intertwined Cu3V2O7(OH)2DH2O nanowires/carbon fibers composite: A new anode with high rate capability for sodium-ion batteries. 2015 , 294, 193-200	25
1253	Improving the Anode Performance of WS2 through a Self-Assembled Double Carbon Coating. 2015 , 119, 15874-15881	8o
1252	Important Role of Functional Groups for Sodium Ion Intercalation in Expanded Graphite. 2015 , 27, 5402-5406	62
1251	Electrochemical performance of hard carbon negative electrodes for ionic liquid-based sodium ion batteries over a wide temperature range. 2015 , 176, 344-349	55
1250	ZnSb/C composite anode in additive free electrolyte for sodium ion batteries. 2015 , 159, 349-352	17

1249	Na3V2(PO4)3/C nanocomposite synthesized via pre-reduction process as high-performance cathode material for sodium-ion batteries. 2015 , 646, 170-174	39
1248	Improved sodium-storage performance of stannous sulfide@reduced graphene oxide composite as high capacity anodes for sodium-ion batteries. 2015 , 293, 784-789	79
1247	Effects of binders on electrochemical performance of nitrogen-doped carbon nanotube anode in sodium-ion battery. 2015 , 174, 970-977	70
1246	Co9S8Barbon composite as anode materials with improved Na-storage performance. 2015 , 94, 85-90	98
1245	Nonflammable electrolyte for safer non-aqueous sodium batteries. 2015 , 3, 14539-14544	45
1244	Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries. 2015 , 91, 88-95	161
1243	Vanadium-based polyoxometalate as new material for sodium-ion battery anodes. 2015 , 288, 270-277	61
1242	Antimony nanoparticles anchored on interconnected carbon nanofibers networks as advanced anode material for sodium-ion batteries. 2015 , 284, 227-235	94
1241	Improved Electrochemical Performance of Fe-Substituted NaNi0.5Mn0.5O2 Cathode Materials for Sodium-Ion Batteries. 2015 , 7, 8585-91	162
1240	Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries. 2015 , 3, 10320-10326	180
1239	Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance. 2015 , 8, 1660-1681	326
1238	An Amorphous Carbon Nitride Composite Derived from ZIF-8 as Anode Material for Sodium-Ion Batteries. 2015 , 8, 1856-61	76
1237	Gelatin-pyrolyzed mesoporous carbon as a high-performance sodium-storage material. 2015 , 3, 7849-7854	87
1236	Na3V2(PO4)3/C composite as the intercalation-type anode material for sodium-ion batteries with superior rate capability and long-cycle life. 2015 , 3, 8636-8642	81
1235	Improving the capacity of sodium ion battery using a virus-templated nanostructured composite cathode. <i>Nano Letters</i> , 2015 , 15, 2917-21	63
1234	Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries. 2015 , 51, 8261-4	116
1233	Ab initio study of sodium intercalation into disordered carbon. 2015 , 3, 9763-9768	162
1232	Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries. 2015 , 5, 9254	235

1231	Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries. 2015 , 58, 715-766	203
1230	An unexpected large capacity of ultrafine manganese oxide as a sodium-ion battery anode. 2015 , 7, 20075-81	34
1229	A Preliminary Study on Li4Ti5O12 as a Novel Electrode Material for Calcium Ion Batteries. 2015 , 1120-1121, 119-122	2
1228	Potassium Ion Batteries with Graphitic Materials. <i>Nano Letters</i> , 2015 , 15, 7671-7	68o
1227	Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries. 2015 , 6, 8689	322
1226	Composite of K-doped (NH4)2V3O8/graphene as an anode material for sodium-ion batteries. 2015 , 44, 18864-9	14
1225	Two-Dimensional Transition Metal Dichalcogenide Monolayers as Promising Sodium Ion Battery Anodes. 2015 , 119, 26374-26380	210
1224	Is single layer graphene a promising anode for sodium-ion batteries?. 2015 , 178, 392-397	31
1223	A high performance sulfur-doped disordered carbon anode for sodium ion batteries. 2015 , 8, 2916-2921	429
1222	Lattice Breathing Inhibited Layered Vanadium Oxide Ultrathin Nanobelts for Enhanced Sodium Storage. 2015 , 7, 18211-7	76
1221	Na0.56Ti1.72Fe0.28O4: a novel anode material for Na-ion batteries. 2015 , 5, 88556-88559	6
1220	Sulfur-Doped Carbon with Enlarged Interlayer Distance as a High-Performance Anode Material for Sodium-Ion Batteries. 2015 , 2, 1500195	339
1219	Roles of Processing, Structural Defects and Ionic Conductivity in the Electrochemical Performance of Na3MnCO3PO4Cathode Material. 2015 , 162, A1601-A1609	38
1218	Chemically Crushed Wood Cellulose Fiber towards High-Performance Sodium-Ion Batteries. 2015 , 7, 23291-6	101
1217	Three-dimensional hard carbon matrix for sodium-ion battery anode with superior-rate performance and ultralong cycle life. 2015 , 3, 23403-23411	71
1216	Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. 2015 , 3, 20560-20	5 66 4
1215	Sandwich-like cobalt sulfidegraphene composite han anode material with excellent electrochemical performance for sodium ion batteries. 2015 , 5, 71644-71651	66
1214	Honeycomb in honeycomb carbon bubbles: excellent Li- and Na-storage performances. 2015 , 3, 20065-20072	15

1213	Advancement in sodium-ion rechargeable batteries. 2015 , 9, 34-41	37
1212	High energy density sodium-ion capacitors through co-intercalation mechanism in diglyme-based electrolyte system. 2015 , 297, 457-463	48
1211	Nanostructured CuP2/C composites as high-performance anode materials for sodium ion batteries. 2015 , 3, 21754-21759	97
1210	Enhanced cycling performances of hollow Sn compared to solid Sn in Na-ion battery. 2015 , 180, 227-233	36
1209	A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. 2015 , 10, 980-5	1114
1208	Nitrogen-doped bamboo-like carbon nanotubes: promising anode materials for sodium-ion batteries. 2015 , 51, 16045-8	92
1207	Polypyrrole hollow nanospheres: stable cathode materials for sodium-ion batteries. 2015 , 51, 16092-5	57
1206	Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries. 2015 , 8, 3535-3543	64
1205	Fluorine-Doped Carbon Particles Derived from Lotus Petioles as High-Performance Anode Materials for Sodium-Ion Batteries. 2015 , 119, 21336-21344	128
1204	A type of sodium-ion full-cell with a layered NaNi0.5Ti0.5O2 cathode and a pre-sodiated hard carbon anode. 2015 , 5, 106519-106522	61
1203	A Chemically Coupled Antimony/Multilayer Graphene Hybrid as a High-Performance Anode for Sodium-Ion Batteries. 2015 , 27, 8138-8145	121
1202	Nitrogen-Rich Mesoporous Carbon as Anode Material for High-Performance Sodium-Ion Batteries. 2015 , 7, 27124-30	168
1201	Trash to Treasure: From Harmful Algal Blooms to High-Performance Electrodes for Sodium-Ion Batteries. 2015 , 49, 12543-50	72
1200	Micro-nanostructured CuO/C spheres as high-performance anode materials for Na-ion batteries. 2015 , 7, 2770-6	107
1199	A sustainable iron-based sodium ion battery of porous carbon Be3O4/Na2FeP2O7 with high performance. 2015 , 5, 8793-8800	60
1198	The role of graphene for electrochemical energy storage. 2015 , 14, 271-9	1882
1197	Tuning the morphology of electroactive polythiophene nano-structures. 2015 , 86, 60-66	6
1196	Ultrathin MoS2 Nanosheets as Anode Materials for Sodium-Ion Batteries with Superior Performance. 2015 , 5, 1401205	301

(2016-2015)

1195	zinc ion batteries. 2015 , 149-150, 601-606	160
1194	Deflated Carbon Nanospheres Encapsulating Tin Cores Decorated on Layered 3-D Carbon Structures for Low-Cost Sodium Ion Batteries. 2015 , 3, 63-70	34
1193	Porous carbon anodes for a high capacity lithium-ion battery obtained by incorporating silica into benzoxazine during polymerization. 2015 , 21, 1520-5	31
1192	Facile Synthesis of Fe3O4@g-C Nanorods for Reversible Adsorption of Molecules and Absorption of Ions. 2015 , 3, 133-139	19
1191	Peanut shell hybrid sodium ion capacitor with extreme energypower rivals lithium ion capacitors. 2015 , 8, 941-955	622
1190	Carbon coated K(0.8)Ti(1.73)Li(0.27)O4: a novel anode material for sodium-ion batteries with a long cycle life. 2015 , 51, 1608-11	29
1189	Few-Layered SnS2 on Few-Layered Reduced Graphene Oxide as Na-Ion Battery Anode with Ultralong Cycle Life and Superior Rate Capability. 2015 , 25, 481-489	354
1188	Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. 2015 , 3, 71-77	347
1187	One-dimensional nitrogen-containing carbon nanostructures. 2015 , 69, 61-182	85
1186	Sodium ion batteries: a newer electrochemical storage. 2015 , 4, 253-278	122
1185	An advanced MoS2 /carbon anode for high-performance sodium-ion batteries. 2015 , 11, 473-81	348
1184	Recent Progress in Design of Biomass-Derived Hard Carbons for Sodium Ion Batteries. 2016 , 2, 24	38
1183	3D Graphene Decorated NaTi2(PO4)3 Microspheres as a Superior High-Rate and Ultracycle-Stable Anode Material for Sodium Ion Batteries. 2016 , 6, 1502197	177
1182	Hard Carbon Microtubes Made from Renewable Cotton as High-Performance Anode Material for Sodium-Ion Batteries. 2016 , 6, 1600659	488
1181	MoS2 Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodium-Ion Batteries. 2016 , 6, 1502161	402
1180	Green and Facile Fabrication of MWNTs@Sb2S3@PPy Coaxial Nanocables for High-Performance Na-Ion Batteries. 2016 , 33, 493-499	62
1179	Superior Sodium Storage in 3D Interconnected Nitrogen and Oxygen Dual-Doped Carbon Network. 2016 , 12, 2559-66	127
1178	Bismuth Nanoparticles Embedded in Carbon Spheres as Anode Materials for Sodium/Lithium-Ion Batteries. 2016 , 22, 2333-8	90

1177	Ultra-Thick, Low-Tortuosity, and Mesoporous Wood Carbon Anode for High-Performance Sodium-Ion Batteries. 2016 , 6, 1600377	205
1176	Generic Synthesis of Carbon Nanotube Branches on Metal Oxide Arrays Exhibiting Stable High-Rate and Long-Cycle Sodium-Ion Storage. 2016 , 12, 3048-58	377
1175	ReviewIIwo-Dimensional Layered Materials for Energy Storage Applications. 2016 , 5, Q3021-Q3025	45
1174	A Hierarchical N/S-Codoped Carbon Anode Fabricated Facilely from Cellulose/Polyaniline Microspheres for High-Performance Sodium-Ion Batteries. 2016 , 6, 1501929	378
1173	Disordered 3 D Multi-layer Graphene Anode Material from CO2 for Sodium-Ion Batteries. 2016 , 9, 1397-402	21
1172	Understanding Origin of Voltage Hysteresis in Conversion Reaction for Na Rechargeable Batteries: The Case of Cobalt Oxides. 2016 , 26, 5042-5050	54
1171	Free-Standing Nitrogen-Doped Carbon Nanofiber Films: Integrated Electrodes for Sodium-Ion Batteries with Ultralong Cycle Life and Superior Rate Capability. 2016 , 6, 1502217	390
1170	Ultrafine Sb nanoparticles embedded in an amorphous carbon matrix for high-performance sodium ion anode materials. 2016 , 6, 114790-114799	13
1169	Porous Carbon Polyhedrons with High-Level Nitrogen-Doping for High-Performance Sodium-Ion Battery Anodes. 2016 , 1, 6442-6447	10
1168	Ultralong SbSe Nanowire-Based Free-Standing Membrane Anode for Lithium/Sodium Ion Batteries. 2016 , 8, 35219-35226	110
1167	Sodium storage in fluorine-rich mesoporous carbon fabricated by low-temperature carbonization of polyvinylidene fluoride with a silica template. 2016 , 6, 110850-110857	15
1166	Heteroatom enhanced sodium ion capacity and rate capability in a hydrogel derived carbon give record performance in a hybrid ion capacitor. 2016 , 23, 129-137	142
1165	Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. 2016 , 4, 6472-6478	227
1164	Ultrafine Fe3O4 Quantum Dots on Hybrid Carbon Nanosheets for Long-Life, High-Rate Alkali-Metal Storage. 2016 , 3, 38-44	29
1163	Reduced graphene oxide/carbon nanotubes sponge: A new high capacity and long life anode material for sodium-ion batteries. 2016 , 316, 132-138	63
1162	In situ characterization of electrochemical processes in one dimensional nanomaterials for energy storages devices. 2016 , 24, 165-188	81
1161	Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals. 2016 , 113, 3735-9	328
1160	Extraordinary Performance of Carbon-Coated Anatase TiO as Sodium-Ion Anode. 2016 , 6, 1501489	174

(2016-2016)

1159	Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. 2016 , 26, 346-352	225
1158	Interconnected foams of helical carbon nanofibers grown with ultrahigh yield for high capacity sodium ion battery anodes. 2016 , 107, 109-115	21
1157	Nanooctahedra Particles Assembled FeSe2 Microspheres Embedded into Sulfur-Doped Reduced Graphene Oxide Sheets As a Promising Anode for Sodium Ion Batteries. 2016 , 8, 13849-56	105
1156	Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes. 2016 , 318, 41-48	47
1155	Antimony/Graphitic Carbon Composite Anode for High-Performance Sodium-Ion Batteries. 2016 , 8, 13871-8	46
1154	Nitrogen-doped carbon/graphene hybrid anode material for sodium-ion batteries with excellent rate capability. 2016 , 319, 195-201	129
1153	Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes. 2016 , 2, 162-8	116
1152	MnFe2O4@C Nanofibers as High-Performance Anode for Sodium-Ion Batteries. <i>Nano Letters</i> , 2016 , 16, 3321-8	283
1151	Correlation Between Microstructure and Na Storage Behavior in Hard Carbon. 2016 , 6, 1501588	261
1150	Tire-derived carbon composite anodes for sodium-ion batteries. 2016 , 316, 232-238	63
1149	Development of ionic liquid mediated novel polymer electrolyte membranes for application in Na-ion batteries. 2016 , 6, 40199-40210	43
1148	Biotechnology humic acids-based electrospun carbon nanofibers as cost-efficient electrodes for lithium-ion batteries. 2016 , 203, 66-73	11
1147	Synthesis of nitrogen-containing hollow carbon microspheres by a modified template method as anodes for advanced sodium-ion batteries. 2016 , 105, 103-112	64
1146	In situ quantization of ferroferric oxide embedded in 3D microcarbon for ultrahigh performance sodium-ion batteries. 2016 , 4, 8822-8829	39
1145	Long cycle life microporous spherical carbon anodes for sodium-ion batteries derived from furfuryl alcohol. 2016 , 4, 6271-6275	38
1144	Cr2O5 as new cathode for rechargeable sodium ion batteries. 2016 , 242, 96-101	6
1143	Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning. 2016 , 59, 287-321	109
1142	Emerging non-lithium ion batteries. 2016 , 4, 103-129	180

1141	Graphene-based nitrogen-doped carbon sandwich nanosheets: a new capacitive process controlled anode material for high-performance sodium-ion batteries. 2016 , 4, 8630-8635	145
1140	Germanium sulfide nanosheet: a universal anode material for alkali metal ion batteries. 2016 , 4, 8905-8912	139
1139	Highly-ordered microporous carbon nanospheres: a promising anode for high-performance sodium-ion batteries. 2016 , 6, 84149-84154	12
1138	First-principles and experimental study of nitrogen/sulfur co-doped carbon nanosheets as anodes for rechargeable sodium ion batteries. 2016 , 4, 15565-15574	104
1137	Tuning the carbon content on TiO 2 nanosheets for optimized sodium storage. 2016 , 219, 163-169	9
1136	Energy storage capabilities of nitrogen-enriched pyropolymer nanoparticles fabricated through rapid pyrolysis. 2016 , 331, 507-514	8
1135	Electrochemical performance of fulvic acid-based electrospun hard carbon nanofibers as promising anodes for sodium-ion batteries. 2016 , 334, 170-178	38
1134	Polyaniline-based electrodes: recent application in supercapacitors and next generation rechargeable batteries. 2016 , 13, 150-160	31
1133	3D grapheneBarbon nanotubeBickel ensembles as anodes in sodium-ion batteries. 2016 , 6, 99914-99918	5
1132	Hierarchical porous nitrogen-rich carbon nanospheres with high and durable capabilities for lithium and sodium storage. 2016 , 8, 17911-17918	54
1131	Sulfur and nitrogen co-doped hollow carbon spheres for sodium-ion batteries with superior cyclic and rate performance. 2016 , 4, 13223-13227	105
1130	The importance of solid electrolyte interphase formation for long cycle stability full-cell Na-ion batteries. 2016 , 27, 664-672	33
1129	A floral variant of mesoporous carbon as an anode material for high performance sodium and lithium ion batteries. 2016 , 6, 78235-78240	12
1128	A Safer Sodium-Ion Battery Based on Nonflammable Organic Phosphate Electrolyte. 2016 , 3, 1600066	84
1127	Nanoengineering to Achieve High Sodium Storage: A Case Study of Carbon Coated Hierarchical Nanoporous TiO Microfibers. 2016 , 3, 1600013	39
1126	Size-Tunable Olive-Like Anatase TiO Coated with Carbon as Superior Anode for Sodium-Ion Batteries. 2016 , 12, 5554-5563	65
1125	Synthesis of Nitrogen-Doped Electrospun Carbon Nanofibers as Anode Material for High-Performance Sodium-Ion Batteries. 2016 , 4, 1440-1449	44
1124	Polypyrrole-derived nitrogen-doped carbon nanotubes: Template-directed synthesis and enhanced sodium-storage performance. 2016 , 65, 552-557	6

(2016-2016)

1123	In-Situ Raman Study of the Intercalation of Bis(trifluoromethylsulfonyl)imid Ions into Graphite inside a Dual-Ion Cell. 2016 , 211, 679-688	69
1122	Recent progress of silicon composites as anode materials for secondary batteries. 2016 , 6, 87778-87790	48
1121	Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. 2016 , 5, 191-197	173
1120	Cathodic polarization suppressed sodium-ion full cell with a 3.3 V high-voltage. 2016 , 28, 216-223	76
1119	High performance germanium-based anode materials. 2016 , 326, 34-85	67
1118	Hard Carbon Fibers Pyrolyzed from Wool as High-Performance Anode for Sodium-Ion Batteries. 2016 , 68, 2579-2584	19
1117	Sodium ion storage in reduced graphene oxide. 2016 , 214, 319-325	42
1116	Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-ion batteries. 2016 , 5, 180-190	48
1115	Polyaniline (PANi) based electrode materials for energy storage and conversion. 2016 , 1, 225-255	242
1114	Suitability of ionic liquid electrolytes for room-temperature sodium-ion battery applications. 2016 , 52, 10890-3	49
1113	Porous Carbon Induced Anatase TiO2Nanodots/Carbon Composites for High-Performance Sodium-Ion Batteries. 2016 , 163, A3117-A3125	19
1112	Nitrogen-Doped Hollow Carbon Nanospheres Derived from Dopamine as High-Performance Anode Materials for Sodium-Ion Batteries. 2016 , 11, 1650124	15
1111	MgO-templated carbon as a negative electrode material for Na-ion capacitors. 2016 , 99, 167-172	16
1110	Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. 2016 , 116, 9305-74	802
1109	Superior Lithium-Ion Storage at Room and Elevated Temperature in an Industrial Woodchip Derived Porous Carbon. 2016 , 55, 8706-8712	15
1108	Formation of N-doped molybdenum carbide confined in hierarchical and hollow carbon nitride microspheres with enhanced sodium storage properties. 2016 , 4, 13296-13306	69
1107	A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. 2016 , 4, 13046-13052	183
1106	Pinecone-like hierarchical anatase TiO2 bonded with carbon enabling ultrahigh cycling rates for sodium storage. 2016 , 4, 12591-12601	70

1105	In situ analyses for ion storage materials. 2016 , 45, 5717-5770	76
1104	Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. 2016 , 55, 8228-34	138
1103	Recent Progress in Electrode Materials for Sodium-Ion Batteries. 2016 , 6, 1600943	686
1102	Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. 2016 , 128, 8368-8374	25
1101	Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey. 2016 , 335, 20-30	71
1100	Graphitic Carbon-Coated FeSe2 Hollow Nanosphere-Decorated Reduced Graphene Oxide Hybrid Nanofibers as an Efficient Anode Material for Sodium Ion Batteries. 2016 , 6, 23699	111
1099	Analogous graphite carbon sheets derived from corn stalks as high performance sodium-ion battery anodes. 2016 , 6, 106218-106224	23
1098	High lithium and sodium anodic performance of nitrogen-rich ordered mesoporous carbon derived from alfalfa leaves by a ball-milling assisted template method. 2016 , 4, 17491-17502	24
1097	Hierarchical hollow Fe2O3@MIL-101(Fe)/C derived from metal-organic frameworks for superior sodium storage. 2016 , 6, 25556	31
1096	Mesoporous Ni-doped MnCo2O4 hollow nanotubes as an anode material for sodium ion batteries with ultralong life and pseudocapacitive mechanism. 2016 , 4, 18392-18400	53
1095	Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries. 2016 , 6, 35620	47
1094	Synthesis of the Carbon-Coated Nanoparticle CoS and Its Electrochemical Performance as an Anode Material for Sodium-Ion Batteries. 2016 , 32, 12593-12602	67
1093	A Sustainable Route from Biomass Byproduct Okara to High Content Nitrogen-Doped Carbon Sheets for Efficient Sodium Ion Batteries. 2016 , 28, 539-45	331
1092	Integrated Intercalation-Based and Interfacial Sodium Storage in Graphene-Wrapped Porous Li4Ti5O12 Nanofibers Composite Aerogel. 2016 , 6, 1600322	127
1091	One-Dimensional Na3V2(PO4)3/C Nanowires as Cathode Materials for Long-Life and High Rate Na-Ion Batteries. 2016 , 2, 726-731	28
1090	Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. 2016 , 26, 513-523	505
1089	Carbon-coated rutile titanium dioxide derived from titanium-metal organic framework with enhanced sodium storage behavior. 2016 , 325, 25-34	70
1088	Sb2S3 embedded in amorphous P/C composite matrix as high-performance anode material for sodium ion batteries. 2016 , 210, 588-595	47

1087	2016 , 4, 10964-10973	102
1086	In situ X-ray diffraction characterization of NbS2 nanosheets as the anode material for sodium ion batteries. 2016 , 325, 410-416	79
1085	Scalable synthesis of self-standing sulfur-doped flexible graphene films as recyclable anode materials for low-cost sodium-ion batteries. 2016 , 107, 67-73	89
1084	Pyrolyzed bacterial cellulose-supported SnO2 nanocomposites as high-capacity anode materials for sodium-ion batteries. 2016 , 23, 2597-2607	17
1083	Boron-Doped Anatase TiO2 as a High-Performance Anode Material for Sodium-Ion Batteries. 2016 , 8, 16009-15	126
1082	Graphene-Modified TiO2 Microspheres Synthesized by a Facile Spray-Drying Route for Enhanced Sodium-Ion Storage. 2016 , 33, 545-552	36
1081	Boric Acid Assisted Reduction of Graphene Oxide: A Promising Material for Sodium-Ion Batteries. 2016 , 8, 18860-6	77
1080	A CNT cocoon on sodium manganate nanotubes forming a core/branch cathode coupled with a helical carbon nanofibre anode for enhanced sodium ion batteries. 2016 , 4, 11207-11213	80
1079	D-Glucose Derived Nanospheric Hard Carbon Electrodes for Room-Temperature Sodium-Ion Batteries. 2016 , 163, A1619-A1626	49
1078	Ultrafast and Highly Reversible Sodium Storage in Zinc-Antimony Intermetallic Nanomaterials. 2016 , 26, 543-552	72
1077	Alkali-Metal-Ion-Functionalized Graphene Oxide as a Superior Anode Material for Sodium-Ion Batteries. 2016 , 22, 8152-7	17
1076	Facile and creative design of hierarchical vanadium oxides@graphene nanosheet patterns. 2016 , 6, 13323-13	327
1075	Nitrogen-doped carbon microspheres derived from oatmeal as high capacity and superior long life anode material for sodium ion battery. 2016 , 191, 385-391	78
1074	Na-Ion Battery Anodes: Materials and Electrochemistry. 2016 , 49, 231-40	75 ⁰
1073	Superior sodium-ion storage performance of Co3O4@nitrogen-doped carbon: derived from a metalBrganic framework. 2016 , 4, 5428-5435	130
1072	Citrus-Peel-Derived, Nanoporous Carbon Nanosheets Containing Redox-Active Heteroatoms for Sodium-Ion Storage. 2016 , 8, 3175-81	68
1071	Self-assembly of disordered hard carbon/graphene hybrid for sodium-ion batteries. 2016 , 305, 156-160	58
1070	Ultrafast Solvent-Assisted Sodium Ion Intercalation into Highly Crystalline Few-Layered Graphene. Nano Letters, 2016 , 16, 543-8	153

1069	In Situ Electrochemically Activated CoMn-S@NiO/CC Nanosheets Array for Enhanced Hydrogen Evolution. 2016 , 6, 2797-2801	82
1068	A facile synthesis of Fe3O4 nanoparticles/graphene for high-performance lithium/sodium-ion batteries. 2016 , 6, 16624-16633	61
1067	Investigation of the Na Intercalation Mechanism into Nanosized V2O5/C Composite Cathode Material for Na-Ion Batteries. 2016 , 8, 6032-9	67
1066	Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. 2016 , 9, 1430-1438	277
1065	Effect of surface modification on high-surface-area carbon nanosheets anode in sodium ion battery. 2016 , 227, 1-8	30
1064	Enhancing the Anode Performance of Antimony through Nitrogen-Doped Carbon and Carbon Nanotubes. 2016 , 120, 3214-3220	52
1063	Germanium as a Sodium Ion Battery Material: In Situ TEM Reveals Fast Sodiation Kinetics with High Capacity. 2016 , 28, 1236-1242	114
1062	Comparing the structures and sodium storage properties of centrifugally spun SnO2 microfiber anodes with/without chemical vapor deposition. 2016 , 51, 4549-4558	6
1061	Amorphous Phosphorus/Nitrogen-Doped Graphene Paper for Ultrastable Sodium-Ion Batteries. Nano Letters, 2016 , 16, 2054-60	286
1060	Hollow Cobalt Selenide Microspheres: Synthesis and Application as Anode Materials for Na-Ion Batteries. 2016 , 8, 6449-56	105
1059	Building Self-Healing Alloy Architecture for Stable Sodium-Ion Battery Anodes: A Case Study of Tin Anode Materials. 2016 , 8, 7147-55	76
1058	A promising anode material for sodium-ion battery with high capacity and high diffusion ability: graphyne and graphdiyne. 2016 , 6, 25594-25600	87
1057	Excellent energypower characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes. 2016 , 4, 5149-5158	144
1056	First-principles design of a borocarbonitride-based anode for superior performance in sodium-ion batteries and capacitors. 2016 , 4, 5517-5527	22
1055	Cube-shaped Porous Carbon Derived from MOF-5 as Advanced Material for Sodium-Ion Batteries. 2016 , 196, 413-421	92
1054	N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. 2016 , 4, 5973-5983	206
1053	Antimony Nanocrystals Encapsulated in Carbon Microspheres Synthesized by a Facile Self-Catalyzing Solvothermal Method for High-Performance Sodium-Ion Battery Anodes. 2016 , 8, 1337-43	59
1052	Antimony nanoparticles anchored in three-dimensional carbon network as promising sodium-ion battery anode. 2016 , 304, 340-345	96

(2017-2016)

1051	3, 18-23	124
1050	Conversion of uniform graphene oxide/polypyrrole composites into functionalized 3D carbon nanosheet frameworks with superior supercapacitive and sodium-ion storage properties. 2016 , 307, 17-24	21
1049	Investigation of the Effect of Fluoroethylene Carbonate Additive on Electrochemical Performance of Sb-Based Anode for Sodium-Ion Batteries. 2016 , 190, 402-408	54
1048	Expanded graphitic materials prepared from micro- and nanometric precursors as anodes for sodium-ion batteries. 2016 , 187, 496-507	28
1047	Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell. 2016 , 190, 337-345	116
1046	Carbonized-leaf Membrane with Anisotropic Surfaces for Sodium-ion Battery. 2016 , 8, 2204-10	124
1045	Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries. 2016 , 188, 103-110	171
1044	Hydrogen-enriched porous carbon nanosheets with high sodium storage capacity. 2016 , 98, 213-220	65
1043	Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. 2016 , 19, 279-288	289
1042	A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. 2016 , 98, 162-178	432
1041	Bifunctional Nitrogen-Doped Microporous Carbon Microspheres Derived from Poly(o-methylaniline) for Oxygen Reduction and Supercapacitors. 2016 , 8, 3601-8	75
1040	Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. 2016 , 2, 107-138	314
1039	Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries. 2017 , 9, 2585-2595	122
1038	Phosphate Framework Electrode Materials for Sodium Ion Batteries. 2017 , 4, 1600392	200
1037	Porous One-Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage. 2017 , 29, 1602300	435
1036	Sodium-Ion Batteries: Improving the Rate Capability of 3D Interconnected Carbon Nanofibers Thin Film by Boron, Nitrogen Dual-Doping. 2017 , 4, 1600468	132
1035	Improving the sodiation performance of Na2Ti3O7 through Nb-doping. 2017 , 224, 446-451	24
1034	A nitrogen-doped three-dimensional carbon framework for high performance sodium ion batteries. 2017 , 7, 1588-1592	16

1033	A facile solgel route to prepare functional graphene nanosheets anchored with homogeneous cobalt sulfide nanoparticles as superb sodium-ion anodes. 2017 , 5, 3179-3185	61
1032	Low temperature carbonization of cellulose nanocrystals for high performance carbon anode of sodium-ion batteries. 2017 , 33, 37-44	130
1031	Adsorption, intercalation and diffusion of Na on defective bilayer graphene: a computational study. 2017 , 658, 31-37	16
1030	Zeolite-Templated Carbon as an Ordered Microporous Electrode for Aluminum Batteries. 2017 , 11, 1911-1919	119
1029	Mesoporous cobalt 2,5-thiophenedicarboxylic coordination polymer for high performance Na-ion batteries. 2017 , 197, 245-248	12
1028	Bottom-up synthesis of nitrogen-doped porous carbon scaffolds for lithium and sodium storage. 2017 , 9, 1972-1977	36
1027	A two-dimensional conjugated aromatic polymer via C-C coupling reaction. 2017 , 9, 563-570	243
1026	Sodium-intercalated bulk graphdiyne as an anode material for rechargeable batteries. 2017 , 343, 354-363	51
1025	Enhancing Sodium-Ion Storage Behaviors in TiNbO by Mechanical Ball Milling. 2017, 9, 8696-8703	53
1024	Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries. 2017 , 5, 5761-5769	112
1023	Covalent-organic-frameworks derived N-doped porous carbon materials as anode for superior long-life cycling lithium and sodium ion batteries. 2017 , 116, 686-694	195
1022	Review of Nanotechnology for Anode Materials in Batteries. 2017 , 45-82	4
1021	Multilayered Electride CaN Electrode via Compression Molding Fabrication for Sodium Ion Batteries. 2017 , 9, 6666-6669	36
1020	Origin of excellent rate and cycle performance of Na + -solvent cointercalated graphite vs. poor performance of Li + -solvent case. 2017 , 34, 456-462	59
1019	Effect of pyrolysis temperature of 3D graphene/carbon nanotubes anode materials on yield of carbon nanotubes and their electrochemical properties for Na-ion batteries. 2017 , 317, 793-799	18
1018	MoO2@MoS2 Nanoarchitectures for High-Loading Advanced Lithium-Ion Battery Anodes. 2017 , 34, 1600223	44
1017	Free-standing fluorine and nitrogen co-doped graphene paper as a high-performance electrode for flexible sodium-ion batteries. 2017 , 116, 338-346	100
1016	A Few-Layer SnS2/Reduced Graphene Oxide Sandwich Hybrid for Efficient Sodium Storage. 2017 , 121, 3261-3269	99

1015	Two-Fold Anisotropy Governs Morphological Evolution and Stress Generation in Sodiated Black Phosphorus for Sodium Ion Batteries. <i>Nano Letters</i> , 2017 , 17, 2299-2306	38	
1014	Coordination of Surface-Induced Reaction and Intercalation: Toward a High-Performance Carbon Anode for Sodium-Ion Batteries. 2017 , 4, 1600500	64	
1013	Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. 2017 , 10, 2156-2167	127	
1012	Simple synthesis of a porous Sb/Sb2O3 nanocomposite for a high-capacity anode material in Na-ion batteries. 2017 , 10, 1794-1803	53	
1011	Tin nanoparticles embedded in ordered mesoporous carbon as high-performance anode for sodium-ion batteries. 2017 , 21, 1385-1395	17	
1010	Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon. 2017 , 29, 1606860	119	
1009	High-Performance Anode of Sodium Ion Battery from Polyacrylonitrile/Humic Acid Composite Electrospun Carbon Fibers. 2017 , 232, 348-356	28	
1008	Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis. 2017 , 8, 3538-3546	264	
1007	Three-dimensional porous carbon-coated graphene composite as high-stable and long-life anode for sodium-ion batteries. 2017 , 316, 645-654	41	
1006	Appraisal of carbon-coated Li4Ti5O12 acanthospheres from optimized two-step hydrothermal synthesis as a superior anode for sodium-ion batteries. 2017 , 705, 164-175	16	
1005	Sn-MoS -C@C Microspheres as a Sodium-Ion Battery Anode Material with High Capacity and Long Cycle Life. 2017 , 23, 5051-5058	34	
1004	Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials. 2017, 13, 1604181	88	
1003	Creative utilization of natural nanocomposites: nitrogen-rich mesoporous carbon for a high-performance sodium ion battery. 2017 , 5, 9572-9579	57	
1002	Rose-like N-doped Porous Carbon for Advanced Sodium Storage. 2017 , 240, 24-30	39	
1001	Wire-like NiCo2O4 anchored on reduced graphene oxide with enhanced electrochemical performance for sodium-ion batteries. 2017 , 28, 10411-10419	6	
1000	Synthesis of hard carbon from argan shells for Na-ion batteries. 2017 , 5, 9917-9928	151	
999	Mechanism of sodium adsorption on N-doped graphene nanoribbons for sodium ion battery applications: A density functional theory approach. 2017 , 119, 492-501	42	
998	An Initial Review of the Status of Electrode Materials for Potassium-Ion Batteries. 2017 , 7, 1602911	634	

997	Manipulating AdsorptionInsertion Mechanisms in Nanostructured Carbon Materials for High-Efficiency Sodium Ion Storage. 2017 , 7, 1700403	486
996	Sb/C composite as a high-performance anode for sodium ion batteries. 2017 , 242, 159-164	52
995	Evaluating the Storage Behavior of Superior Low-Cost Anode Material from Biomass for High-Rate Sodium-Ion Batteries. 2017 , 164, A1431-A1437	16
994	A Green Route to a NaFePOF-Based Cathode for Sodium Ion Batteries of High Rate and Long Cycling Life. 2017 , 9, 16280-16287	52
993	Low-Cost and High-Performance Hard Carbon Anode Materials for Sodium-Ion Batteries. 2017 , 2, 1687-1695	98
992	Multifunctional bio carbon: a coir pith waste derived electrode for extensive energy storage device applications. 2017 , 7, 23663-23670	19
991	Encapsulation of Metallic Na in an Electrically Conductive Host with Porous Channels as a Highly Stable Na Metal Anode. <i>Nano Letters</i> , 2017 , 17, 3792-3797	191
990	High-rate sodium ion anodes assisted by N-doped carbon sheets. 2017 , 1, 1130-1136	19
989	Carbon-coated Li4Ti5O12 nanoparticles with high electrochemical performance as anode material in sodium-ion batteries. 2017 , 5, 10902-10908	39
988	Research and application progress on key materials for sodium-ion batteries. 2017 , 1, 986-1006	55
987	Spinifex nanocellulose derived hard carbon anodes for high-performance sodium-ion batteries. 2017 , 1, 1090-1097	39
986	Amorphous CoS nanoparticle/reduced graphene oxide composite as high-performance anode material for sodium-ion batteries. 2017 , 43, 9630-9635	28
985	Sulfur-doped carbon spheres with hierarchical micro/mesopores as anode materials for sodium-ion batteries. 2017 , 241, 63-72	66
984	Achieving ultralong life sodium storage in amorphous cobalt E in binary sulfide nanoboxes sheathed in N-doped carbon. 2017 , 5, 10398-10405	39
983	Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries. 2017 , 10, 897-907	115
982	V5S8graphite hybrid nanosheets as a high rate-capacity and stable anode material for sodium-ion batteries. 2017 , 10, 107-113	219
981	Phosphorus-doped pitch-derived soft carbon as an anode material for sodium ion batteries. 2017 , 188, 355-358	26
980	A two-dimensional hybrid of SbOx nanoplates encapsulated by carbon flakes as a high performance sodium storage anode. 2017 , 5, 1160-1167	40

(2017-2017)

979	Hierarchical porous nitrogen doped carbon derived from horn comb as anode for sodium-ion storage with high performance. 2017 , 13, 66-71	7
978	Free-standing, binder-free polyacrylonitrile/asphalt derived porous carbon fiber IA high capacity anode material for sodium-ion batteries. 2017 , 189, 206-209	15
977	Challenges and Perspectives for NASICON-Type Electrode Materials for Advanced Sodium-Ion Batteries. 2017 , 29, 1700431	346
976	Graphene oxide templated nitrogen-doped carbon nanosheets with superior rate capability for sodium ion batteries. 2017 , 122, 82-91	35
975	Enhanced Cycle Performance of Quinone-Based Anodes for Sodium Ion Batteries by Attachment to Ordered Mesoporous Carbon and Use of Ionic Liquid Electrolyte. 2017 , 164, H5093-H5099	21
974	Controlling pseudographtic domain dimension of dandelion derived biomass carbon for excellent sodium-ion storage. 2017 , 358, 85-92	70
973	Interwoven N and P dual-doped hollow carbon fibers/graphitic carbon nitride: An ultrahigh capacity and rate anode for Li and Na ion batteries. 2017 , 122, 54-63	95
972	Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries. 2017 , 5, 13882-13906	101
971	FeSe2 clusters with excellent cyclability and rate capability for sodium-ion batteries. 2017, 10, 3202-3211	69
970	Honeycomb-inspired design of ultrafine SnO2@C nanospheres embedded in carbon film as anode materials for high performance lithium- and sodium-ion battery. 2017 , 359, 340-348	104
969	Liquefied walnut shell-derived carbon nanofibrous mats as highly efficient anode materials for lithium ion batteries. 2017 , 7, 27113-27120	13
968	Porphyringraphene oxide frameworks for long life sodium ion batteries. 2017 , 5, 13204-13211	29
967	Oxygen Vacancies Evoked Blue TiO2(B) Nanobelts with Efficiency Enhancement in Sodium Storage Behaviors. 2017 , 27, 1700856	165
966	Enhanced Lithium- and Sodium-Ion Storage in an Interconnected Carbon Network Comprising Electronegative Fluorine. 2017 , 9, 18790-18798	24
965	Three-dimensional interpenetrating mesoporous carbon confining SnO particles for superior sodiation/desodiation properties. 2017 , 9, 8674-8683	28
964	Template-free synthesis of Sb2S3 micro tubes as the anode materials for sodium-ion batteries. 2017 ,	3
963	In-situ formation of tin-antimony sulfide in nitrogen-sulfur Co-doped carbon nanofibers as high performance anode materials for sodium-ion batteries. 2017 , 120, 380-391	63
962	Emerging Non-Aqueous Potassium-Ion Batteries: Challenges and Opportunities. 2017 , 29, 5031-5042	436

961	Self-assembly of 3D neat porous carbon aerogels with NaCl as template and flux for sodium-ion batteries. 2017 , 359, 529-538	41
960	Tin Sulfide-Based Nanohybrid for High-Performance Anode of Sodium-Ion Batteries. 2017 , 13, 1700767	25
959	Sb-doped SnO2/graphene-CNT aerogels for high performance Li-ion and Na-ion battery anodes. 2017 , 9, 85-95	65
958	Intercalation of solvated Na-ions into graphite. 2017 , 10, 1631-1642	77
957	Spontaneous Weaving of Graphitic Carbon Networks Synthesized by Pyrolysis of ZIF-67 Crystals. 2017 , 129, 8555-8560	31
956	Spontaneous Weaving of Graphitic Carbon Networks Synthesized by Pyrolysis of ZIF-67 Crystals. 2017 , 56, 8435-8440	275
955	Bismuth nano-spheres encapsulated in porous carbon network for robust and fast sodium storage. 2017 , 320, 300-307	46
954	Surface Layer Evolution on Graphite During Electrochemical Sodium-tetraglyme Co-intercalation. 2017 , 9, 12373-12381	38
953	Flexible P-Doped Carbon Cloth: Vacuum-Sealed Preparation and Enhanced Na-Storage Properties as Binder-Free Anode for Sodium Ion Batteries. 2017 , 9, 12518-12527	55
952	Custom designed ZnMn2O4/nitrogen doped graphene composite anode validated for sodium ion battery application. 2017 , 7, 20057-20061	14
951	Sorghum core-derived carbon sheets as electrodes for a lithium-ion capacitor. 2017 , 7, 17178-17183	16
950	Synthesis of flower-like copper sulfides microspheres as electrode materials for sodium secondary batteries. 2017 , 677, 70-74	21
949	A controlled red phosphorus@NiP core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries. 2017 , 10, 1222-1233	146
948	NaV(PO)@nitrogen,sulfur-codoped 3D porous carbon enabling ultra-long cycle life sodium-ion batteries. 2017 , 9, 6048-6055	35
947	Protrusions[br Boles[in graphene: which is the better choice for sodium ion storage?. 2017, 10, 979-986	140
946	Well-ordered mesoporous FeO/C composites as high performance anode materials for sodium-ion batteries. 2017 , 46, 5025-5032	29
945	Carbon Anode Materials for Advanced Sodium-Ion Batteries. 2017 , 7, 1602898	649
944	A Phase-Separation Route to Synthesize Porous CNTs with Excellent Stability for Na Storage. 2017 , 13, 1604045	32

(2017-2017)

943	Hierarchical ball-in-ball structured nitrogen-doped carbon microspheres as high performance anode for sodium-ion batteries. 2017 , 7, 229-235	66
942	N-doped rutile TiO 2 /C with significantly enhanced Na storage capacity for Na-ion batteries. 2017 , 236, 43-52	60
941	High Temperature Carbonized Grass as a High Performance Sodium Ion Battery Anode. 2017 , 9, 391-397	94
940	Porous graphdiyne applied for sodium ion storage. 2017 , 5, 2045-2051	54
939	Ultrathin single-crystalline TiO2 nanosheets anchored on graphene to be hybrid network for high-rate and long cycle-life sodium battery electrode application. 2017 , 342, 405-413	55
938	Transition Metal Oxyfluorides for Next-Generation Rechargeable Batteries. 2017 , 3, 146-159	28
937	Porous carbon spheres as anode materials for sodium - ion batteries with high capacity and long cycling life. 2017 , 43, 4475-4482	23
936	Rich sulfur doped porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage devices. 2017 , 5, 2204-2214	146
935	Graphene highly scattered in porous carbon nanofibers: a binder-free and high-performance anode for sodium-ion batteries. 2017 , 5, 1698-1705	75
934	Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. 2017 , 7, 130-151	351
933	A sustainable synthesis of biomass carbon sheets as excellent performance sodium ion batteries anode. 2017 , 21, 1305-1312	29
932	Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries. <i>Nano Letters</i> , 2017 , 17, 544-550	297
931	Yolk-Shell TiO@C Nanocomposite as High-Performance Anode Material for Sodium-Ion Batteries. 2017 , 9, 345-353	52
930	Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries. 2017 , 8, 1172	255
929	Robust 3D macroporous structures with SnS nanoparticles decorating nitrogen-doped carbon nanosheet networks for high performance sodium-ion batteries. 2017 , 5, 23460-23470	70
928	Sulfur-doped carbon employing biomass-activated carbon as a carrier with enhanced sodium storage behavior. 2017 , 5, 24353-24360	42
927	High Rate Performing in Situ Nitrogen Enriched Spherical Carbon Particles for Li/Na-Ion Cells. 2017 , 9, 39326-39335	21
926	3D hollow porous carbon microspheres derived from Mn-MOFs and their electrochemical behavior for sodium storage. 2017 , 5, 23550-23558	48

925	In-situ electron microscopy observation of electrochemical sodium plating and stripping dynamics on carbon nanofiber current collectors. 2017 , 42, 122-128	41
924	A general strategy towards carbon nanosheets from triblock polymers as high-rate anode materials for lithium and sodium ion batteries. 2017 , 5, 19866-19874	63
923	High-yield humic acid-based hard carbons as promising anode materials for sodium-ion batteries. 2017 , 123, 727-734	47
922	Metallic borophene polytypes as lightweight anode materials for non-lithium-ion batteries. 2017 , 19, 24945-24954	55
921	Heteroatom facilitated preparation of electrodes for sodium ion batteries. 2017 , 7, 12659-12662	3
920	Rhombic Dodecahedron ZIF-8 Precursor: Designing Porous N-Doped Carbon for Sodium-Ion Batteries. 2017 , 4, 3244-3249	17
919	Bio-Inspired Synthesis of an Ordered N/P Dual-Doped Porous Carbon and Application as an Anode for Sodium-Ion Batteries. 2017 , 23, 16051-16058	35
918	A family of microscale 2 🖸 🗗 Pocket Cubes. 2017 , 19, 5422-5431	O
917	Advanced Nanostructured Anode Materials for Sodium-Ion Batteries. 2017, 13, 1701835	149
916	Electrospun cross-linked carbon nanofiber films as free-standing and binder-free anodes with superior rate performance and long-term cycling stability for sodium ion storage. 2017 , 5, 21343-21352	38
915	Synthesis of long hierarchical MoS nanofibers assembled from nanosheets with an expanded interlayer distance for achieving superb Na-ion storage performance. 2017 , 9, 15558-15565	15
914	Perchlorate ion doped polypyrrole coated ZnS sphere composites as a sodium-ion battery anode with superior rate capability enhanced by pseudocapacitance. 2017 , 7, 43636-43641	19
913	Self-adaptive mesoporous CoS@alveolus-like carbon yolk-shell microsphere for alkali cations storage. 2017 , 41, 109-116	64
912	Engineering graphene with red phosphorus quantum dots for superior hybrid anodes of sodium-ion batteries. 2017 , 9, 14722-14729	34
911	Constructing hierarchical sulfur-doped nitrogenous carbon nanosheets for sodium-ion storage. 2017 , 28, 445604	13
910	Effective Interlayer Engineering of Two-Dimensional VOPO Nanosheets via Controlled Organic Intercalation for Improving Alkali Ion Storage. <i>Nano Letters</i> , 2017 , 17, 6273-6279	84
909	Alkaline earth metal vanadates as sodium-ion battery anodes. 2017 , 8, 460	90
908	N/S Co-Doped 3 D Porous Carbon Nanosheet Networks Enhancing Anode Performance of Sodium-lon Batteries. 2017 , 23, 14261-14266	42

(2017-2017)

907	Metal organic frameworks templated sulfur-doped mesoporous carbons as anode materials for advanced sodium ion batteries. 2017 , 123, 250-258	51
906	Engineering tin phosphides@carbon yolk@hell nanocube structures as a highly stable anode material for sodium-ion batteries. 2017 , 5, 16994-17000	70
905	A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode. 2017 , 39, 489-498	132
904	First prototypes of hybrid potassium-ion capacitor (KIC): An innovative, cost-effective energy storage technology for transportation applications. 2017 , 363, 34-43	103
903	Enhanced Electrochemical Performance of Mesocarbon-Microbeads-Based Anodes through Air Oxidation for Sodium-Ion Batteries. 2017 , 4, 2583-2592	6
902	Commercial Prospects of Existing Cathode Materials for Sodium Ion Storage. 2017 , 7, 1700274	83
901	Intertwined Nitrogen-Doped Carbon Nanotubes for High-Rate and Long-Life Sodium-Ion Battery Anodes. 2017 , 4, 2542-2546	20
900	Nitrogen-Doped Carbon for Sodium-Ion Battery Anode by Self-Etching and Graphitization of Bimetallic MOF-Based Composite. 2017 , 3, 152-163	171
899	Highly Reversible Na-Ion Reaction in Nanostructured Sb2Te3-C Composites as Na-Ion Battery Anodes. 2017 , 164, A2056-A2064	29
898	Chemical Synthesis of 3D Graphene-Like Cages for Sodium-Ion Batteries Applications. 2017 , 7, 1700797	91
897	Tailoring the Sodium Storage Performance of Carbon Nanowires by Microstructure Design and Surface Modification with N, O and S Heteroatoms. 2017 , 4, 2877-2883	17
896	Flower-like MoSe /C Composite with Expanded (0 0 2) Planes of Few-layer MoSe as the Anode for High-Performance Sodium-Ion Batteries. 2017 , 23, 14004-14010	62
895	Graphene-based composite electrodes for electrochemical energy storage devices: Recent progress and challenges. 2017 , 6, 48-76	22
894	High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries. 2017 , 5, 19237-19244	159
893	Aerosol synthesis of trivalent titanium doped titania/carbon composite microspheres with superior sodium storage performance. 2017 , 10, 4351-4359	38
892	Preparation of S/N-codoped carbon nanosheets with tunable interlayer distance for high-rate sodium-ion batteries. 2017 , 19, 4622-4632	65
891	Processable and Moldable Sodium-Metal Anodes. 2017 , 56, 11921-11926	141
890	Processable and Moldable Sodium-Metal Anodes. 2017 , 129, 12083-12088	52

889	Molybdenum Phosphide: A Conversion-type Anode for Ultralong-Life Sodium-Ion Batteries. 2017 , 29, 7313-7322	89
888	From lithium-ion to sodium-ion battery. 2017 , 66, 1329-1335	12
887	Reduced graphene oxide wrapped hollow molybdenum trioxide nanorod for high performance lithium-ion batteries. 2017 , 28, 2231-2234	13
886	An All-Phosphate and Zero-Strain Sodium-Ion Battery Based on NaV(PO) Cathode, NaTi(PO) Anode, and Trimethyl Phosphate Electrolyte with Intrinsic Safety and Long Lifespan. 2017 , 9, 43733-43738	31
885	High performance Sb2S3/carbon composite with tailored artificial interface as an anode material for sodium ion batteries. 2017 , 23, 1241-1249	16
884	Cobalt Sulfide Quantum Dot Embedded N/S-Doped Carbon Nanosheets with Superior Reversibility and Rate Capability for Sodium-Ion Batteries. 2017 , 11, 12658-12667	275
883	Nanostructured materials: A progressive assessment and future direction for energy device applications. 2017 , 353, 113-141	29
882	Synthesis of Copper Oxide/Graphite Composite for High-Performance Rechargeable Battery Anode. 2017 , 23, 11629-11635	8
881	Controllable Interlayer Spacing of Sulfur-Doped Graphitic Carbon Nanosheets for Fast Sodium-Ion Batteries. 2017 , 13, 1700762	112
880	A green route to synthesize low-cost and high-performance hard carbon as promising sodium-ion battery anodes from sorghum stalk waste. 2017 , 2, 310-315	42
879	3D free-standing nitrogen-doped reduced graphene oxide aerogel as anode material for sodium ion batteries with enhanced sodium storage. 2017 , 7, 4886	64
878	Superior sodium storage in phosphorus@porous multichannel flexible freestanding carbon nanofibers. 2017 , 9, 112-118	38
877	Nutty Carbon: Morphology Replicating Hard Carbon from Walnut Shell for Na Ion Battery Anode. 2017 , 2, 3601-3609	29
876	Spontaneous Formation of Interwoven Porous Channels in Hard-Wood-Based Hard-Carbon for High-Performance Anodes in Potassium-Ion Batteries. 2017 , 164, A2012-A2016	34
875	Preparation of carbon nanosheets from petroleum asphalt via recyclable molten-salt method for superior lithium and sodium storage. 2017 , 122, 344-351	70
874	Synthesis of phosphorus-doped soft carbon as anode materials for lithium and sodium ion batteries. 2017 , 91, 1152-1155	8
873	Alkali-Metal Insertion Processes on Nanospheric Hard Carbon Electrodes: An Electrochemical Impedance Spectroscopy Study. 2017 , 164, E3429-E3437	21
872	Sodium Carboxymethylcellulose Derived Oxygen-Rich Porous Carbon Anodes for High-Performance Lithium/Sodium-Ion Batteries. 2017 , 4, 500-507	11

(2018-2017)

871	Corelinell-structured hollow carbon nanofiber@nitrogen-doped porous carbon composite materials as anodes for advanced sodium-ion batteries. 2017 , 52, 2356-2365	7
870	Exfoliated MoS2 nanosheets confined in 3-D hierarchical carbon nanotube@graphene architecture with superior sodium-ion storage. 2017 , 5, 355-363	62
869	Composite of nonexpansion reduced graphite oxide and carbon derived from pitch as anodes of Na-ion batteries with high coulombic efficiency. 2017 , 309, 674-681	23
868	Antimony/Porous Biomass Carbon Nanocomposites as High-Capacity Anode Materials for Sodium-Ion Batteries. 2017 , 12, 116-121	23
867	Large-Area Carbon Nanosheets Doped with Phosphorus: A High-Performance Anode Material for Sodium-Ion Batteries. 2017 , 4, 1600243	356
866	Heteroatom Doping Combined with Microstructured Carbon to Enhance the Performance of Sodium-Ion Batteries. 2017 , 5, 481-488	16
865	A low-cost attempt to improve electrochemical performances of pitch-based hard carbon anodes in lithium-ion batteries by oxidative stabilization. 2017 , 21, 555-562	14
864	The mechanism of the sodiation and desodiation in Super P carbon electrode for sodium-ion battery. 2017 , 340, 14-21	29
863	S-Doped N-Rich Carbon Nanosheets with Expanded Interlayer Distance as Anode Materials for Sodium-Ion Batteries. 2017 , 29, 1604108	468
862	Nitrogen-doped porous carbon derived from horn as an advanced anode material for sodium ion batteries. 2017 , 237, 23-30	42
861	N, S co-doped porous carbon nanospheres with a high cycling stability for sodium ion batteries. 2017 , 32, 517-526	21
860	On the Reliability of Sodium Co-Intercalation in Expanded Graphite Prepared by Different Methods as Anodes for Sodium-Ion Batteries. 2017 , 164, A3804-A3813	33
859	Commercial Carbon Molecular Sieves as a Na+-Storage Anode Material in Dual-Ion Batteries. 2017 , 164, A3649-A3656	17
858	C/Sn/RGO Nanocomposites as Higher Initial Coulombic Efficiency Anode for Sodium-Ion Batteries. 2017 , 2, 11739-11746	11
857	Hard Carbons Prepared by Pyrolyzing Date's Pits for Sodium Ion Batteries. 2017,	
856	Insights into the Na+ Storage Mechanism of Phosphorus-Functionalized Hard Carbon as Ultrahigh Capacity Anodes. 2018 , 8, 1702781	124
855	A novel carbon-decorated hollow flower-like MoS2 nanostructure wrapped with RGO for enhanced sodium-ion storage. 2018 , 343, 180-188	35
854	A new sodium ferrous orthophosphate Na x Fe4(PO4)3 as anode materials for sodium-ion batteries. 2018 , 53, 8385-8397	4

853	A high energy and power sodium-ion hybrid capacitor based on nitrogen-doped hollow carbon nanowires anode. 2018 , 382, 116-121	30
852	Defect Sites-Rich Porous Carbon with Pseudocapacitive Behaviors as an Ultrafast and Long-Term Cycling Anode for Sodium-Ion Batteries. 2018 , 10, 9353-9361	63
851	Porous Hard Carbon Derived from Walnut Shell as an Anode Material for Sodium-Ion Batteries. 2018 , 70, 1387-1391	15
850	Engineering Anisotropically Curved Nitrogen-Doped Carbon Nanosheets with Recyclable Binary Flux for Sodium-Ion Storage. 2018 , 11, 1334-1343	9
849	Rubber-based carbon electrode materials derived from dumped tires for efficient sodium-ion storage. 2018 , 47, 4885-4892	6
848	Electrochemical characterization of highly abundant, low cost iron (III) oxide as anode material for sodium-ion rechargeable batteries. 2018 , 269, 367-377	22
847	Hydrogenated defective graphene as an anode material for sodium and calcium ion batteries: A density functional theory study. 2018 , 136, 73-84	36
846	Pyrolytic carbon derived from spent coffee grounds as anode for sodium-ion batteries. 2018 , 1, 104-108	26
845	Dual Carbon-Confined SnO Hollow Nanospheres Enabling High Performance for the Reversible Storage of Alkali Metal Ions. 2018 , 10, 15642-15651	70
844	Multidimensional Synergistic Nanoarchitecture Exhibiting Highly Stable and Ultrafast Sodium-Ion Storage. 2018 , 30, e1707122	94
843	Graphene-like porous carbon from sheet cellulose as electrodes for supercapacitors. 2018 , 346, 104-112	48
842	Adsorption contributions of graphene to sodium ion storage performance. 2018 , 51, 205501	8
841	Hierarchical assembly and superior sodium storage properties of a sea-sponge structured C/SnS@C nanocomposite. 2018 , 6, 7631-7638	31
840	Tailoring graphitic nanostructures in hard carbons as anode materials achieving efficient and ultrafast sodium storage. 2018 , 53, 10313-10326	3
839	Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries. 2018 , 15, 234-241	122
838	Binding MoSe2 with carbon constrained in carbonous nanosphere towards high-capacity and ultrafast Li/Na-ion storage. 2018 , 12, 310-323	144
837	N-rich carbon coated CoSnO3 derived from in situ construction of a CoMOF with enhanced sodium storage performance. 2018 , 6, 4839-4847	70
836	A yolkBhelled Co9S8/MoS2IIN nanocomposite derived from a metalDrganic framework as a high performance anode for sodium ion batteries. 2018 , 6, 4776-4782	100

835	S-doped carbon@TiO2 to store Li+/Na+ with high capacity and long life-time. 2018 , 13, 215-222	41
834	Tailoring Highly N-Doped Carbon Materials from Hexamine-Based MOFs: Superior Performance and New Insight into the Roles of N Configurations in Na-Ion Storage. 2018 , 14, e1703548	62
833	Old-loofah-derived hard carbon for long cyclicity anode in sodium ion battery. 2018 , 43, 3253-3260	37
832	Understanding the Cyclic (In)stability and the Effects of Presence of a Stable Conducting Network on the Electrochemical Performances of Na2Ti3O7. 2018 , 5, 1219-1229	17
831	Engraving Electrolyte and Ion-Transport Tunnels in a Holey Carbon Nanosheet Array for Fast Sodium Ion Storage. 2018 , 4, 379-386	6
830	Heterostructured BiS-BiO Nanosheets with a Built-In Electric Field for Improved Sodium Storage. 2018 , 10, 7201-7207	109
829	Structural design of anode materials for sodium-ion batteries. 2018 , 6, 6183-6205	97
828	A mesoporous antimony-based nanocomposite for advanced sodium ion batteries. 2018 , 13, 247-256	53
827	Long cycle life and high rate sodium-ion chemistry for hard carbon anodes. 2018, 13, 274-282	93
826	Flexible anode materials for lithium-ion batteries derived from waste biomass-based carbon nanofibers: I. Effect of carbonization temperature 2018 , 8, 7102-7109	25
825	Magnetic Field Facilitated Resilient Chain-like FeO/C/Red P with Superior Sodium Storage Performance. 2018 , 10, 6441-6452	17
824	Green and facile fabrication of hierarchical N-doped porous carbon from water hyacinths for high performance lithium/sodium ion batteries. 2018 , 2, 855-861	28
823	Effect of Ti-doping on the electrochemical performance of sodium vanadium(iii) phosphate 2018 , 8, 5523-5531	23
822	Low-surface-area nitrogen doped carbon nanomaterials for advanced sodium ion batteries. 2018 , 54, 2142-2145	19
821	Three-dimensional macroporous graphene monoliths with entrapped MoS nanoflakes from single-step synthesis for high-performance sodium-ion batteries 2018 , 8, 2477-2484	10
820	Recent advances in three-dimensional graphene based materials for catalysis applications. 2018 , 47, 2165-2216	326
819	Elucidation of the Sodium-Storage Mechanism in Hard Carbons. 2018 , 8, 1703217	138
818	High-energy sodium-ion capacitor assembled by hierarchical porous carbon electrodes derived from Enteromorpha. 2018 , 53, 6763-6773	25

817	Nanospace confined N,P co-doped carbon foams as anode for highly reversible and high capacity sodium ions batteries. 2018 , 810, 207-215	11
816	Nitrogen-rich graphene hollow microspheres as anode materials for sodium-ion batteries with super-high cycling and rate performance. 2018 , 130, 574-583	53
815	Readiness Level of Sodium-Ion Battery Technology: A Materials Review. 2018 , 2, 1700153	103
814	Pore-size-tunable nitrogen-doped polymeric frameworks for high performance sodium ion storage and supercapacitors. 2018 , 25, 1407-1416	3
813	Self-standing Na-storage anode of Fe2O3 nanodots encapsulated in porous N-doped carbon nanofibers with ultra-high cyclic stability. 2018 , 11, 4026-4037	35
812	Two-dimensional nanostructures for sodium-ion battery anodes. 2018 , 6, 3284-3303	169
811	Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries. 2018 , 45, 220-228	134
810	Carbon-Supported Nickel Selenide Hollow Nanowires as Advanced Anode Materials for Sodium-Ion Batteries. 2018 , 14, 1702669	64
809	A porous biomass-derived anode for high-performance sodium-ion batteries. 2018 , 129, 695-701	102
808	Electrochemical intercalation of fullerene and hydrofullerene with sodium. 2018, 130, 11-18	16
807	Significantly improved performance of red phosphorus sodium-ion anodes with the addition of iron. 2018 , 266, 178-184	15
806	Nitrogen/sulfur co-doped hollow carbon nanofiber anode obtained from polypyrrole with enhanced electrochemical performance for Na-ion batteries. 2018 , 63, 126-132	19
805	A confined thicroreactor synthesis strategy to three dimensional nitrogen-doped graphene for high-performance sodium ion battery anodes. 2018 , 378, 105-111	31
804	Recent Progress in Porous Graphene and Reduced Graphene Oxide-Based Nanomaterials for Electrochemical Energy Storage Devices. 2018 , 5, 1701212	68
803	Micro/Nanostructured Materials for Sodium Ion Batteries and Capacitors. 2018, 14, 1702961	173
802	Optimized hard carbon derived from starch for rechargeable seawater batteries. 2018 , 129, 564-571	36
801	Boosting the Sodiation Capability and Stability of FeP by In Situ Anchoring on the Graphene Conductive Framework. 2018 , 4, 309-315	16
800	Facile synthesis of three-dimensional porous carbon networks for highly stable sodium storage. 2018 , 24, 3065-3073	3

(2018-2018)

799	N-Doping and Defective Nanographitic Domain Coupled Hard Carbon Nanoshells for High Performance Lithium/Sodium Storage. 2018 , 28, 1706294	268
798	What is the promising anode material for Na ion batteries?. 2018 , 63, 146-148	20
797	A sustainable route from corn stalks to N, P-dual doping carbon sheets toward high performance sodium-ion batteries anode. 2018 , 130, 664-671	91
796	Carbon embedded SnSb composite tailored by carbothermal reduction process as high performance anode for sodium-ion batteries. 2018 , 60, 451-457	15
795	Recent Progress in Iron-Based Electrode Materials for Grid-Scale Sodium-Ion Batteries. 2018, 14, 1703116	118
794	Engineering capacitive contribution in nitrogen-doped carbon nanofiber films enabling high performance sodium storage. 2018 , 130, 145-152	48
793	Ultrafine CoS nanoparticles embedded in a nitrogen-doped porous carbon hollow nanosphere composite as an anode for superb sodium-ion batteries and lithium-ion batteries. 2018 , 10, 2804-2811	47
792	Multidimensional Evolution of Carbon Structures Underpinned by Temperature-Induced Intermediate of Chloride for Sodium-Ion Batteries. 2018 , 5, 1800080	86
791	Superior initial coulombic efficiency through graphene quantum dot decorated on MoS2. 2018 , 9, 8-14	7
790	Accordion-like nanoporous carbon derived from Al-MOF as advanced anode material for sodium ion batteries. 2018 , 270, 67-74	14
789	Three-dimensional carbon framework anode improves sodiation desodiation properties in ionic liquid electrolyte. 2018 , 49, 515-522	17
788	Graphene layer reinforcing mesoporous molybdenum disulfide foam as high-performance anode for sodium-ion battery. 2018 , 8, 151-156	8
787	KTiOPO4 as a novel anode material for sodium-ion batteries. 2018 , 754, 147-152	5
786	Internal structure [Na storage mechanisms Œlectrochemical performance relations in carbons. 2018 , 97, 170-203	72
7 ⁸ 5	Semimetallic 1T? WTe2 Nanorods as Anode Material for the Sodium Ion Battery. 2018, 32, 6371-6377	30
7 ⁸ 4	High-capacity FeTiO3/C negative electrode for sodium-ion batteries with ultralong cycle life. 2018 , 388, 19-24	13
783	Graphene-bound Na3V2(PO4)3 film electrode with excellent cycle and rate performance for Na-ion batteries. 2018 , 269, 282-290	30
782	Free-Standing Nitrogen-Doped Cup-Stacked Carbon Nanotube Mats for Potassium-Ion Battery Anodes. 2018 , 1, 1703-1707	71

781	Sodium-Ion Batteries (a Review). 2018 , 54, 113-152	57
780	Low-Defect and Low-Porosity Hard Carbon with High Coulombic Efficiency and High Capacity for Practical Sodium Ion Battery Anode. 2018 , 8, 1703238	262
779	3D nanocomposite archiecture constructed by reduced graphene oxide, thermally-treated protein and mesoporous NaTi2(PO4)3 nanocrystals as free-standing electrodes for advanced sodium ion battery. 2018 , 29, 9258-9267	7
778	Porous carbon-free SnSb anodes for high-performance Na-ion batteries. 2018 , 386, 34-39	28
777	SnS2 nanoparticles anchored on three-dimensional reduced graphene oxide as a durable anode for sodium ion batteries. 2018 , 339, 78-84	44
776	Computational Studies of Electrode Materials in Sodium-Ion Batteries. 2018 , 8, 1702998	87
775	From Charge Storage Mechanism to Performance: A Roadmap toward High Specific Energy Sodium-Ion Batteries through Carbon Anode Optimization. 2018 , 8, 1703268	244
774	Sulfur/Oxygen Codoped Porous Hard Carbon Microspheres for High-Performance Potassium-Ion Batteries. 2018 , 8, 1800171	272
773	High-performance anode materials for Na-ion batteries. 2018 , 37, 167-180	40
772	Li-ion storage in an amorphous, solid, spheroidal carbon anode produced by dry-autoclaving of coffee oil. 2018 , 133, 62-68	30
771	Recent advances in energy materials by electrospinning. 2018 , 81, 1825-1858	144
770	Hard Carbons for Sodium-Ion Battery Anodes: Synthetic Strategies, Material Properties, and Storage Mechanisms. 2018 , 11, 506-526	105
769	Conjugated polymer-mediated synthesis of sulfur- and nitrogen-doped carbon nanotubes as efficient anode materials for sodium ion batteries. 2018 , 11, 2573-2585	34
768	Nitrogen and sulfur dual-doped carbon films as flexible free-standing anodes for Li-ion and Na-ion batteries. 2018 , 126, 9-16	98
767	Short-Range Order in Mesoporous Carbon Boosts Potassium-Ion Battery Performance. 2018 , 8, 1701648	351
766	Fabrication of porous carbon sphere@SnO 2 @carbon layer coating composite as high performance anode for sodium-ion batteries. 2018 , 433, 713-722	16
765	Fast sodium storage kinetics of lantern-like Ti0.25Sn0.75S2 connected via carbon nanotubes. 2018 , 11, 100-111	29
764	A review of nitrogen-doped graphene catalysts for proton exchange membrane fuel cells-synthesis, characterization, and improvement. 2018 , 15, 140-152	28

(2018-2018)

763	Sodium-Ion Battery Anodes Comprising Carbon Sheets: Stable Cycling in Half- and Full-Pouch Cell Configuration. 2018 , 6, 213-220	12
762	Enhanced sodium storage performance in flexible free-standing multichannel carbon nanofibers with enlarged interlayer spacing. 2018 , 11, 2256-2264	21
761	Carbonyl polymeric electrode materials for metal-ion batteries. 2018 , 29, 232-244	61
760	Facile synthesis of MoS2/graphite intercalated composite with enhanced electrochemical performance for sodium ion battery. 2018 , 27, 1208-1213	24
759	Integrated carbon nanospheres arrays as anode materials for boosted sodium ion storage. 2018, 3, 50-55	13
758	Hard carbon derived from corn straw piths as anode materials for sodium ion batteries. 2018 , 24, 1075-1081	30
757	3D spongy CoS2 nanoparticles/carbon composite as high-performance anode material for lithium/sodium ion batteries. 2018 , 332, 370-376	125
756	Sodium storage mechanism of N, S co-doped nanoporous carbon: Experimental design and theoretical evaluation. 2018 , 11, 274-281	83
755	Spherical FeF3 D .33H2O/MWCNTs nanocomposite with mesoporous structure as cathode material of sodium ion battery. 2018 , 27, 573-581	19
754	Insights on the Na+ ion storage mechanism in hard carbon: Discrimination between the porosity, surface functional groups and defects. 2018 , 44, 327-335	154
753	Metal-Organic Framework-Derived Materials for Sodium Energy Storage. 2018 , 14, 1702648	102
75 ²	1D Nanomaterials: Design, Synthesis, and Applications in Sodium-Ion Batteries. 2018 , 14, 1703086	135
751	BEYOND LI ION: ELECTRODE MATERIALS FOR SODIUMAND MAGNESIUM-ION BATTERIES. 2018 , 639-755	
750	High-performance red phosphorus/carbon nanofibers/graphene free-standing paper anode for sodium ion batteries. 2018 , 6, 1574-1581	48
749	Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries. 2018 , 6, 1513-1522	130
748	Multi-hierarchical nanosheet-assembled chrysanthemum-structured Na3V2(PO4)3/C as electrode materials for high-performance sodium-ion batteries. 2018 , 24, 1663-1673	5
747	Nanotube-like hard carbon as high-performance anode material for sodium ion hybrid capacitors. 2018 , 61, 285-295	24
746	Fallen leaves derived honeycomb-like porous carbon as a metal-free and low-cost counter electrode for dye-sensitized solar cells with excellent tri-iodide reduction. 2018 , 513, 843-851	26

745	3D Amorphous Carbon with Controlled Porous and Disordered Structures as a High-Rate Anode Material for Sodium-Ion Batteries. 2018 , 8, 1702434	343
744	Commercial activated carbon as a novel precursor of the amorphous carbon for high-performance sodium-ion batteries anode. 2018 , 129, 85-94	49
743	Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. 2018 , 127, 658-666	204
742	Solid State and Materials Chemistry for Sodium-Ion Batteries. 2018 , 1-36	
741	Adsorption of Sodium on Doped Graphene: A vdW-DF Study. 2018 , 2, 35-44	7
740	MoS2 nanosheets with expanded interlayer spacing for enhanced sodium storage. 2018 , 5, 3099-3105	27
739	A new strategy for the construction of 3D TiO2 nanowires/reduced graphene oxide for high-performance lithium/sodium batteries. 2018 , 6, 24256-24266	33
738	Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries. 2018 , 6, 24317-24323	129
737	Biomass Derived N-doped Carbon Nanoworm for Improved Sodium-ion in Battery Anode. 2018 , 5, 23358-233	61
736	Na-Ion Storage Behaviors of Quadrangular Herringbone-Carbon Nanotubes in Ether- and Ester-Based Electrolyte Systems. 2018 , 6, 17184-17193	9
735	Layered-Structure SbPO/Reduced Graphene Oxide: An Advanced Anode Material for Sodium Ion Batteries. 2018 , 12, 12869-12878	60
734	Two-Dimensional Unilamellar Cation-Deficient Metal Oxide Nanosheet Superlattices for High-Rate Sodium Ion Energy Storage. 2018 , 12, 12337-12346	83
733	Marriage of an Ether-Based Electrolyte with Hard Carbon Anodes Creates Superior Sodium-Ion Batteries with High Mass Loading. 2018 , 10, 41380-41388	44
73 ²	Controlled Synthesis of FeSe2 Nanoflakes Toward Advanced Sodium Storage Behavior Integrated with Ether-Based Electrolyte. 2018 , 13, 1850141	4
731	Electrospun Kraft Lignin/Cellulose Acetate-Derived Nanocarbon Network as an Anode for High-Performance Sodium-Ion Batteries. 2018 , 10, 44368-44375	19
730	Ultraviolet Irradiation Treatment for Enhanced Sodium Storage Performance Based on Wide-Interlayer-Spacing Hollow C@MoS@CN Nanospheres. 2018 , 10, 38084-38092	24
729	Surface-Dominated Sodium Storage Towards High Capacity and Ultrastable Anode Material for Sodium-Ion Batteries. 2018 , 28, 1805371	101
728	Facile hydrothermal treatment route of reed straw-derived hard carbon for high performance sodium ion battery. 2018 , 291, 188-196	50

(2018-2018)

7 2 7	Fabrication of Microporous Sulfur-Doped Carbon Microtubes for High-Performance Sodium-Ion Batteries. 2018 , 1, 6638-6645	60
726	Understanding the Electrochemical Compatibility and Reaction Mechanism on Na Metal and Hard Carbon Anodes of PC-Based Electrolytes for Sodium-Ion Batteries. 2018 , 10, 39651-39660	22
725	Promise and Challenge of Phosphorus in Science, Technology, and Application. 2018 , 28, 1803471	49
724	Complete Utilization of Waste Pomegranate Peels To Produce a Hydrocolloid, Punicalagin Rich Phenolics, and a Hard Carbon Electrode. 2018 , 6, 16363-16374	24
723	High Capacity and Cycle-Stable Hard Carbon Anode for Nonflammable Sodium-Ion Batteries. 2018 , 10, 38141-38150	35
722	High-power sodium titanate anodes; a comparison of lithium vs sodium-ion batteries. 2018, 408, 28-37	16
721	Edge-Nitrogen-Rich Carbon Dots Pillared Graphene Blocks with Ultrahigh Volumetric/Gravimetric Capacities and Ultralong Life for Sodium-Ion Storage. 2018 , 8, 1802042	66
720	Achieving a High-Performance Carbon Anode through the P-O Bond for Lithium-Ion Batteries. 2018 , 10, 34245-34253	35
719	Jahn-Teller distortions in molybdenum oxides: An achievement in exploring high rate supercapacitor applications and robust photocatalytic potential. 2018 , 53, 982-992	30
718	Phoenix tree leaves-derived biomass carbons for sodium-ion batteries. 2018 , 11, 1840008	5
717	NaTi2(PO4)3@C nanoparticles embedded in 2D sulfur-doped graphene sheets as high-performance anode materials for sodium energy storage. 2018 , 289, 131-138	19
716	N-Rich carbon-coated CoS ultrafine nanocrystals derived from ZIF-67 as an advanced anode for sodium-ion batteries. 2018 , 10, 18786-18794	70
715	Recent Advances of Cellulose-Based Materials and Their Promising Application in Sodium-Ion Batteries and Capacitors. 2018 , 14, e1802444	55
714	An Attempt to Improve Electrochemical Performances of Lignin-Based Hard Carbon Microspheres Anodes in Sodium-Ion Batteries by Using Hexamethylenetetramine. 2018 , 3, 9518-9525	8
713	Exploring Sodium-Ion Storage Mechanism in Hard Carbons with Different Microstructure Prepared by Ball-Milling Method. 2018 , 14, e1802694	74
712	SnS Nanosheets Coating on Nanohollow Cubic CoS /C for Ultralong Life and High Rate Capability Half/Full Sodium-Ion Batteries. 2018 , 14, e1802716	77
711	Impact of the Morphology of V2O5Electrodes on the Electrochemical Na+-Ion Intercalation. 2018 , 165, A2709-A2717	9
710	A High-Performance Sodium-Ion Hybrid Capacitor Constructed by Metal@rganic FrameworkDerived Anode and Cathode Materials. 2018 , 28, 1800757	151

709	Rational Design and General Synthesis of S-Doped Hard Carbon with Tunable Doping Sites toward Excellent Na-Ion Storage Performance. 2018 , 30, e1802035	151
708	Disordered carbon tubes based on cotton cloth for modulating interface impedance in Pr-Al2O3-based solid-state sodium metal batteries. 2018 , 6, 12623-12629	15
707	Evaluating the influences of the sulfur content in precursors on the structure and sodium storage performances of carbon materials. 2018 , 6, 11488-11495	19
706	2D Zn-Hexamine Coordination Frameworks and Their Derived N-Rich Porous Carbon Nanosheets for Ultrafast Sodium Storage. 2018 , 8, 1800569	115
705	Facile synthesis of free-standing, flexible hard carbon anode for high-performance sodium ion batteries using graphene as a multi-functional binder. 2018 , 137, 475-483	37
704	Fe2O3 embedded in the nitrogen-doped carbon matrix with strong C-O-Fe oxygen-bridge bonds for enhanced sodium storages. 2018 , 216, 58-63	23
703	Hard carbons issued from date palm as efficient anode materials for sodium-ion batteries. 2018 , 137, 165-173	70
702	The Non-Ignorable Impact of Surface Oxygen Groups on the Electrochemical Performance of N/O Dual-Doped Carbon Anodes for Sodium Ion Batteries. 2018 , 165, A1447-A1454	26
701	Enhanced amperometric detection of paracetamol by immobilized cobalt ion on functionalized MWCNTs - Chitosan thin film. 2018 , 551, 29-36	24
700	First-principles study of dual-doped graphene: towards promising anode materials for Li/Na-ion batteries. 2018 , 42, 10842-10851	36
699	Mechanism of Sodium Ion Storage in Na7[H2PV14O42] Anode for Sodium-Ion Batteries. 2018 , 5, 1800491	9
698	Iron-Modified Graphites toward Boosted Lithium/Sodium Storage Performance and Long-Term Cyclability. 2018 , 57, 9420-9429	4
697	Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium. 2018 , 118, 6457-6498	504
696	Self-regulation in chemical and bio-engineering materials for intelligent systems. 2018 , 3, 40-48	7
695	Facile synthesis of N,O-codoped hard carbon on the kilogram scale for fast capacitive sodium storage. 2018 , 6, 16465-16474	39
694	Enhanced Sodium Ion Storage in Interlayer Expanded Multiwall Carbon Nanotubes. <i>Nano Letters</i> , 2018 , 18, 5688-5696	34
693	Structural Engineering of Multishelled Hollow Carbon Nanostructures for High-Performance Na-Ion Battery Anode. 2018 , 8, 1800855	78
692	A Flexible Sulfur-Enriched Nitrogen Doped Multichannel Hollow Carbon Nanofibers Film for High Performance Sodium Storage. 2018 , 14, e1802218	73

691	Self-Polymerized Disordered Carbon Enabling High Sodium Storage Performance through Expanded Interlayer Spacing by Bound Sulfur Atoms. 2018 , 5, 3206-3212	5
690	Zero-strain K0.6Mn1F2.7 hollow nanocubes for ultrastable potassium ion storage. 2018 , 11, 3033-3042	67
689	Template-assisted in situ confinement synthesis of nitrogen and oxygen co-doped 3D porous carbon network for high-performance sodium-ion battery anode. 2018 , 42, 14410-14416	11
688	Coal-Based Amorphous Carbon as Economical Anode Material for Sodium-Ion Battery. 2018 , 165, A2225-A223	213
687	Hierarchical porous nitrogen-doped carbon material for high performance sodium ion batteries. 2018 , 29, 16478-16485	6
686	Mesoporous Graphitic Carbon-Encapsulated Fe O Nanocomposite as High-Rate Anode Material for Sodium-Ion Batteries. 2018 , 24, 14786-14793	21
685	Free Energy Landscape of Sodium Solvation into Graphite. 2018, 122, 20064-20072	7
684	Designing MOFs-Derived FeS@Carbon Composites for High-Rate Sodium Ion Storage with Capacitive Contributions. 2018 , 10, 33097-33104	94
683	Flexible Sodium Ion Batteries: From Materials to Devices. 2018 , 97-125	
682	Graphitic Carbon Nanocage as a Stable and High Power Anode for Potassium-Ion Batteries. 2018 , 8, 1801149	315
681	Cross-Linking Hollow Carbon Sheet Encapsulated CuP Nanocomposites for High Energy Density Sodium-Ion Batteries. 2018 , 12, 7018-7027	86
68o	Expanding Interlayer Spacing of Hard Carbon by Natural K Doping to Boost Na-Ion Storage. 2018 , 10, 27030-27038	64
679	NiS Hollow Spheres and Cages as Superhigh Rate Capacity and Stable Anode Materials for Half/Full Sodium-Ion Batteries. 2018 , 12, 8277-8287	98
678	Transition metal oxides based on conversion reaction for sodium-ion battery anodes. 2018 , 9, 114-132	27
677	Cu2S@ N, S Dual-Doped Carbon Matrix Hybrid as Superior Anode Materials for Lithium/Sodium ion Batteries. 2018 , 5, 2135-2141	35
676	Advanced Hierarchical Vesicular Carbon Co-Doped with S, P, N for High-Rate Sodium Storage. 2018 , 5, 1800241	177
675	Self-supporting soft carbon fibers as binder-free and flexible anodes for high-performance sodium-ion batteries. 2018 , 33, 810-814	7
674	Effect of oxidizer in the synthesis of NiO anchored nanostructure nickel molybdate for sodium-ion battery. 2018 , 10, 1-14	14

673	Biomass-derived nitrogen/oxygen co-doped hierarchical porous carbon with a large specific surface area for ultrafast and long-life sodium-ion batteries. 2018 , 462, 713-719	27
672	Synergistic Role of Electrolyte and Binder for Enhanced Electrochemical Storage for Sodium-Ion Battery. 2018 , 3, 9945-9955	12
671	Nickel Chelate Derived NiS2 Decorated with Bifunctional Carbon: An Efficient Strategy to Promote Sodium Storage Performance. 2018 , 28, 1803690	72
670	Hierarchical Interconnected Expanded Graphitic Ribbons Embedded with Amorphous Carbon: An Advanced Carbon Nanostructure for Superior Lithium and Sodium Storage. 2018 , 14, e1802221	28
669	Fe1-xC decorated porous nitrogen doped carbon matrix as anode for sodium ion battery. 2018 , 530, 66-72	1
668	FeS Nanoparticles Anchored on Nitrogen-Doped Graphene Nanosheets as Anode Materials for High-Performance Sodium-Ion Batteries. 2018 , 10, 29476-29485	52
667	Facile Strategy to Low-Cost Synthesis of Hierarchically Porous, Active Carbon of High Graphitization for Energy Storage. 2018 , 10, 21573-21581	20
666	Phosphorus-Doped Hard Carbon Nanofibers Prepared by Electrospinning as an Anode in Sodium-Ion Batteries. 2018 , 10, 21335-21342	119
665	Hollow NiNiO nanoparticles embedded in porous carbon nanosheets as a hybrid anode for sodium-ion batteries with an ultra-long cycle life. 2018 , 6, 12663-12671	42
664	Onion-like carbon microspheres as long-life anodes materials for Na-ion batteries. 2018 , 53, 12421-12431	16
663	Recent Advances in Sodium-Ion Battery Materials. 2018, 1, 294-323	154
662	Nitrogen and phosphorous dual-doped graphene aerogel with rapid capacitive response for sodium-ion batteries. 2018 , 139, 1117-1125	44
661	Defective Hard Carbon Anode for Na-Ion Batteries. 2018 , 30, 4536-4542	103
660	First-principles calculations on lithium and sodium adsorption on graphene edges. 2018 , 282, 205-212	9
659	The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries. 2018 , 6, 12932-12944	149
658	Electrospun vanadium-based oxides as electrode materials. 2018 , 395, 414-429	26
657	Porous carbon nanofiber derived from a waste biomass as anode material in lithium-ion batteries. 2019 , 95, 217-226	33
656	2D material as anode for sodium ion batteries: Recent progress and perspectives. 2019 , 16, 323-343	148

655	Precise carbon structure control by salt template for high performance sodium-ion storage. 2019 , 31, 101-106	34
654	The Application of Hollow Structured Anodes for Sodium-Ion Batteries: From Simple to Complex Systems. 2019 , 31, e1800492	96
653	Nanomaterials for Electrical Energy Storage. 2019 , 165-206	10
652	1D Carbon-Based Nanocomposites for Electrochemical Energy Storage. 2019 , 15, e1902348	46
651	Sulfur-/Nitrogen-Rich Albumen Derived "Self-Doping" Graphene for Sodium-Ion Storage. 2019 , 25, 14358-143	36 3
650	N-Doped Carbon Nanonecklaces with Encapsulated Sb as a Sodium-Ion Battery Anode. 2019 , 1, 720-733	43
649	Architectural design and promises of carbon materials for energy conversion and storage: in laboratory and industry. 2019 , 25-61	3
648	Carbon nanomaterials for advanced lithium and sodium-ion batteries. 2019 , 335-355	
647	Influence of beads-on-string on Na-Ion storage behavior in electrospun carbon nanofibers. 2019 , 154, 219-229	13
646	Chemical Bonding Construction of Reduced Graphene Oxide-Anchored Few-Layer Bismuth Oxychloride for Synergistically Improving Sodium-Ion Storage. 2019 , 31, 7311-7319	24
645	Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. 2019 , 65, 104038	180
644	S-Doped Carbon Fibers Uniformly Embedded with Ultrasmall TiO for Na /Li Storage with High Capacity and Long-Time Stability. 2019 , 15, e1902201	31
643	Domestic Food Waste Derived Porous Carbon for Energy Storage Applications. 2019 , 4, 8007-8014	3
642	Intercalation chemistry of graphite: alkali metal ions and beyond. 2019 , 48, 4655-4687	275
641	Valorizing low cost and renewable lignin as hard carbon for Na-ion batteries: Impact of lignin grade. 2019 , 153, 634-647	37
640	Carbon nanonion-assembled microspheres for excellent gravimetric and volumetric Na-Ion storage. 2019 , 153, 298-307	18
639	Engineering Al2O3 atomic layer deposition: Enhanced hard carbon-electrolyte interface towards practical sodium ion batteries. 2019 , 64, 103903	58
638	All-Cellulose-Based Quasi-Solid-State Sodium-Ion Hybrid Capacitors Enabled by Structural Hierarchy. 2019 , 29, 1903895	55

637	Extended Adsorption Insertion I Model: A New Insight into the Sodium Storage Mechanism of Hard Carbons. 2019 , 9, 1901351	165
636	Nanostructured Electrode Materials for Advanced Sodium-Ion Batteries. 2019 , 1, 90-114	159
635	Metal-organic framework derived N-doped CNT@ porous carbon for high-performance sodium- and potassium-ion storage. 2019 , 319, 541-551	47
634	Facile synthesis of carbon nanobranches towards cobalt ion sensing and high-performance micro-supercapacitors. 2019 , 1, 3614-3620	3
633	Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency. 2019 , 64, 103937	57
632	Sodium-ion battery anodes: Status and future trends. 2019 , 1, 100012	116
631	Facile synthesis of macroporus SnS microspheres as a potential anode material for enhanced sodium ion batteries. 2019 , 80, 130-135	7
630	A Large Scalable and Low-Cost Sulfur/Nitrogen Dual-Doped Hard Carbon as the Negative Electrode Material for High-Performance Potassium-Ion Batteries. 2019 , 9, 1901379	125
629	N, S co-doped porous carbon microtubes with high charge/discharge rates for sodium-ion batteries. 2019 , 6, 2104-2111	27
628	Hard carbons derived from pine nut shells as anode materials for Na-ion batteries. 2019 , 28, 068203	5
627	Sulfur-Doped Mesoporous Carbon Nitride with an Ordered Porous Structure for Sodium-Ion Batteries. 2019 , 11, 27192-27199	36
626	Fabrication of Porous Carbon with Controllable Nitrogen Doping as Anode for High-Performance Potassium-Ion Batteries. 2019 , 6, 3699-3707	20
625	Review Article: Layer-structured carbonaceous materials for advanced Li-ion and Na-ion batteries: Beyond graphene. 2019 , 37, 040803	14
624	Boosting the sodium storage behaviors of carbon materials in ether-based electrolyte through the artificial manipulation of microstructure. 2019 , 66, 104177	11
623	(001) Facet-Dominated Hierarchically Hollow NaTiO as a High-Rate Anode Material for Sodium-Ion Capacitors. 2019 , 11, 42197-42205	17
622	Electrochemistry of Rechargeable Batteries Beyond Lithium-Based Systems. 2019 , 1-66	
621	Rocking-chair Na-ion hybrid capacitor: a high energy/power system based on Na3V2O2(PO4)2F@PEDOT coreBhell nanorods. 2019 , 7, 1030-1037	38
620	Characterization of the complete plastome of (Chenopodiaceae), an annual halophytic herb. 2019 , 4, 2475-2476	5

(2019-2019)

619	Nanosheet Arrays Converted Directly from Hydrothermally Processed CoMoO Nanosheet Arrays by Plasma-Assisted Selenization Process Toward Excellent Anode Material in Sodium-Ion Battery. 2019 , 14, 213	9
618	RSSD-based 3-D localization of an unknown radio transmitter using weighted least square and factor graph. 2019 , 2019,	3
617	Multi-Power Joint Peak-Shaving Optimization for Power System Considering Coordinated Dispatching of Nuclear Power and Wind Power. 2019 , 11, 4801	1
616	Oxygen Functional Group Modification of Cellulose-Derived Hard Carbon for Enhanced Sodium Ion Storage. 2019 , 7, 18554-18565	31
615	Graphene and Graphene-Based Hybrid Composites for Advanced Rechargeable Battery Electrodes. 2019 , 147-196	
614	Effect of Vapor Carbon Coating on the Surface Structure and Sodium Storage Performance of Hard Carbon Spheres. 2019 , 7, 1900779	7
613	Continuous/reversible phase transition behaviors and their effect on the hysteresis energy loss of the anodes in Na-ion batteries. 2019 , 328, 135106	3
612	Revealing the sodium storage of surface C O structure in high performance Na-ion battery. 2019 , 854, 113554	3
611	Integrated metabolomics and network toxicology to reveal molecular mechanism of celastrol induced cardiotoxicity. 2019 , 383, 114785	13
610	Struvite image analysis and its application for product purity prediction. 2019 , 7, 103349	3
609	Synthetic control of Prussian blue derived nano-materials for energy storage and conversion application. 2019 , 14, 100332	21
608	Facile spray drying approach to synthesize Sb2Se3/rGO composite anode for lithium-ion battery. 2019 , 21, 1	13
607	N/S-Co-Doped Porous Carbon Sheets Derived from Bagasse as High-Performance Anode Materials for Sodium-Ion Batteries. 2019 , 9,	12
606	Flexible Na/K-Ion Full Batteries from the Renewable Cotton Cloth D erived Stable, Low-Cost, and Binder-Free Anode and Cathode. 2019 , 9, 1902056	50
605	Efficient Surface Modulation of Single-Crystalline Na2Ti3O7 Nanotube Arrays with Ti3+ Self-Doping toward Superior Sodium Storage. 2019 , 1, 389-398	15
604	Study on Street Space Microclimate Measurement and Improvement Strategy in Yangmeizhu Street in Beijing. 2019 , 267, 062002	1
603	Correlation of Structure and Performance of Hard Carbons as Anodes for Sodium Ion Batteries. 2019 , 31, 7288-7299	43
602	Enhancing the cycling stability of Na-ion batteries by bonding MoS2 on assembled carbon-based materials. 2019 , 1, 310-317	6

601	Out-of-plane ion transport makes nitrogenated holey graphite a promising high-rate anode for both Li and Na ion batteries. 2019 , 11, 18758-18768	16
600	Two-dimensional NaSiS as a promising anode material for rechargeable sodium-based batteries: ab initio material design. 2019 , 21, 24326-24332	7
599	Design of meso/macro porous 2D Mn-vanadate as potential novel anode materials for sodium-ion storage. 2019 , 26, 100915	6
598	Hierarchical porous carbon sheets with compressed framework and optimized pore configuration for high-rate and long-term sodium and lithium ions storage. 2019 , 155, 166-175	18
597	Nanowires for Electrochemical Energy Storage. 2019 , 119, 11042-11109	167
596	Metal-Organic Framework/Polythiophene Derivative: Neuronlike S-Doped Carbon 3D Structure with Outstanding Sodium Storage Performance. 2019 , 11, 37850-37858	12
595	Granular molybdenum dioxide precipitated on N-doped carbon nanorods with multistage architecture for ultralong-life sodium-ion batteries. 2019 , 325, 134903	12
594	Stibium: A Promising Electrode toward Building High-Performance Na-Ion Full-Cells. 2019 , 5, 3096-3126	15
593	Bio-oil derived hierarchical porous hard carbon from rubber wood sawdust via a template fabrication process as highly stable anode for sodium-ion batteries. 2019 , 14, 100346	16
592	Molecular Cooperative Assembly-Mediated Synthesis of Ultra-High-Performance Hard Carbon Anodes for Dual-Carbon Sodium Hybrid Capacitors. 2019 , 13, 11935-11946	24
591	Carbon dioxide to solid carbon at the surface of iron nanoparticle: Hollow nanocarbons for sodium ion battery anode application. 2019 , 34, 588-595	3
590	Manganese nitride stabilized on reduced graphene oxide substrate for high performance sodium ion batteries, super-capacitors and EMI shielding. 2019 , 808, 151748	14
589	A high-energy sodium-ion capacitor enabled by a nitrogen/sulfur co-doped hollow carbon nanofiber anode and an activated carbon cathode. 2019 , 1, 746-756	18
588	Unveiling the mechanism of sodium ion storage for needle-shaped ZnCoO nanosticks as anode materials. 2019 , 11, 1065-1073	12
587	Metallic P3C monolayer as anode for sodium-ion batteries. 2019 , 7, 405-411	49
586	Vanadium-based nanowires for sodium-ion batteries. 2019 , 30, 192001	6
585	A hybrid energy storage mechanism of carbonous anodes harvesting superior rate capability and long cycle life for sodium/potassium storage. 2019 , 7, 3673-3681	55
584	Low-Temperature Growth of Hard Carbon with Graphite Crystal for Sodium-Ion Storage with High Initial Coulombic Efficiency: A General Method. 2019 , 9, 1803648	74

583	Highly Selective and Pollution-Free Electrochemical Extraction of Lithium by a Polyaniline/Li Mn O Cell. 2019 , 12, 1361-1367	27
582	Advances in three-dimensional graphene-based materials: configurations, preparation and application in secondary metal (Li, Na, K, Mg, Al)-ion batteries. 2019 , 12, 2030-2053	113
581	Atomic Sulfur Covalently Engineered Interlayers of Ti3C2 MXene for Ultra-Fast Sodium-Ion Storage by Enhanced Pseudocapacitance. 2019 , 29, 1808107	138
580	Self-tunable ultrathin carbon nanocups as the electrode material of sodium-ion batteries with unprecedented capacity and stability. 2019 , 364, 578-588	30
579	Constructing Conductive Graphitic Structure on Hard Carbon as an Efficient Free-Standing Anode for Sodium-Ion Batteries. 2019 , 166, A390-A397	3
578	High Capacity Na-Ion Battery Anodes by Coating Multi-walled Carbon Nanotubes on the Ni-Sn Foam Substrate. 2019 , 48, 2487-2494	1
577	Sodium storage in hard carbon with curved graphene platelets as the basic structural units. 2019 , 7, 3327-333	35 76
576	Carbon nanofoam paper enables high-rate and high-capacity Na-ion storage. 2019 , 21, 481-486	7
575	Electrode Materials for High-Performance Sodium-Ion Batteries. 2019 , 12,	27
574	Chitin and Chitosan Structurally Related Precursors of Dissimilar Hard Carbons for Na-Ion Battery. 2019 , 2, 4841-4852	20
573	Theoretical prediction of germanium selenium nanosheet as a potential anode material for high-performance alkali-metal based battery. 2019 , 277, 17-24	7
572	Advanced Carbon Materials for Electrochemical Energy Storage. 2019 , 385-418	1
571	3D Nanowire Arrayed Cu Current Collector toward Homogeneous Alloying Anode Deposition for Enhanced Sodium Storage. 2019 , 9, 1900673	21
570	One-Pot Synthesis of Novel B, N CoDoped Carbon Materials for High-Performance Sodium-Ion Batteries. 2019 , 4, 6445-6450	9
569	Two-dimensional SnS2 nanosheets on Prussian blue template for high performance sodium ion batteries. 2019 , 13, 493-500	3
568	Extended flat voltage profile of hard carbon synthesized using a two-step carbonization approach as an anode in sodium ion batteries. 2019 , 430, 157-168	28
567	Understanding the improved electrochemical performance of nitrogen-doped hard carbons as an anode for sodium ion battery. 2019 , 317, 164-172	32
566	Understanding the boosted sodium storage behavior of a nanoporous bismuth-nickel anode using operando X-ray diffraction and density functional theory calculations. 2019 , 7, 13602-13613	13

565	Rod-like NaV3O8 as cathode materials with high capacity and stability for sodium storage. 2019 , 372, 1056-1065	42
564	Ultrafast Sodium Storage through Capacitive Behaviors in Carbon Nanosheets with Enhanced Ion Transport. 2019 , 6, 3043-3048	2
563	Nanostructures and Nanomaterials for Sodium Batteries. 2019 , 265-312	1
562	Synthesis of nitrogen-doped porous carbon nanofibers as an anode material for high performance sodium-ion batteries. 2019 , 337, 170-177	11
561	Monolayer boron-arsenide as a perfect anode for alkali-based batteries with large storage capacities and fast mobilities. 2019 , 119, e25975	8
560	Honeycomb-like Porous Carbon with Nanographitic Domains, Supported on Graphene Layers: Applicability for Lithium/Sodium Storage. 2019 , 7, 10986-10994	17
559	Activated Carbon from E-Waste Plastics as a Promising Anode for Sodium-Ion Batteries. 2019 , 7, 10310-10322	17
558	Nanostructures and Nanomaterials for Batteries. 2019 ,	9
557	Rational Design of Carbon Nanomaterials for Electrochemical Sodium Storage and Capture. 2019 , 31, e1803444	74
556	Sulfur and nitrogen dual-doped porous carbon nanosheet anode for sodium ion storage with a self-template and self-porogen method. 2019 , 481, 473-483	10
555	Understanding the Charge Storage Mechanism to Achieve High Capacity and Fast Ion Storage in Sodium-Ion Capacitor Anodes by Using Electrospun Nitrogen-Doped Carbon Fibers. 2019 , 29, 1902858	54
554	3D Sulfur and Nitrogen Codoped Carbon Nanofiber Aerogels with Optimized Electronic Structure and Enlarged Interlayer Spacing Boost Potassium-Ion Storage. 2019 , 15, e1900816	71
553	Graphitic Carbon Nitride (g-C N)-Derived N-Rich Graphene with Tuneable Interlayer Distance as a High-Rate Anode for Sodium-Ion Batteries. 2019 , 31, e1901261	232
552	Effects of Different Atmosphere on Electrochemical Performance of Hard Carbon Electrode in Sodium Ion Battery. 2019 , 15, 428-436	6
551	Effect of eutectic accelerator in selenium-doped sulfurized polyacrylonitrile for high performance room temperature sodiumBulfur batteries. 2019 , 7, 12732-12739	56
550	Layer-structured NbSe2 anode material for sodium-ion and potassium-ion batteries. 2019 , 25, 4171-4177	12
549	Morphological adaptability of graphitic carbon nanofibers to enhance sodium insertion in a diglyme-based electrolyte. 2019 , 48, 5417-5424	3
548	Carbon Anode Materials for Sodium-Ion Batteries. 2019 , 1-86	

(2019-2019)

547	3D well-ordered porous phosphorus doped carbon as an anode for sodium storage: structure design, experimental and computational insights. 2019 , 7, 11400-11407	42
546	Multi-channel-contained few-layered MoSe2 nanosheet/N-doped carbon hybrid nanofibers prepared using diethylenetriamine as anodes for high-performance sodium-ion batteries. 2019 , 75, 100-107	26
545	Ultra-high performance of Li/Na ion batteries using N/O dual dopant porous hollow carbon nanocapsules as an anode. 2019 , 7, 11117-11126	25
544	A novel flexible fiber-shaped dual-ion battery with high energy density based on omnidirectional porous Al wire anode. 2019 , 60, 285-293	30
543	Surface-Driven Energy Storage Behavior of Dual-Heteroatoms Functionalized Carbon Material. 2019 , 29, 1900941	47
542	Adsorption dominant sodium storage in three-dimensional coal-based graphite microcrystal/graphene composites. 2019 , 7, 7565-7572	23
541	Doped Graphene for Electrochemical Energy Storage Systems. 2019 , 511-612	1
540	Heteroatom-Doped Mesoporous Hollow Carbon Spheres for Fast Sodium Storage with an Ultralong Cycle Life. 2019 , 9, 1900036	142
539	General Synthesis of Heteroatom-Doped Hierarchical Carbon toward Excellent Electrochemical Energy Storage. 2019 , 2, 712-722	19
538	Catalytic Synthesis of Hard/Soft Carbon Hybrids with Heteroatom Doping for Enhanced Sodium Storage. 2019 , 4, 3551-3558	3
537	Disordered, Large Interlayer Spacing, and Oxygen-Rich Carbon Nanosheets for Potassium Ion Hybrid Capacitor. 2019 , 9, 1803894	177
536	Lotus Seedpod-Derived Hard Carbon with Hierarchical Porous Structure as Stable Anode for Sodium-Ion Batteries. 2019 , 11, 12554-12561	84
535	The bond evolution mechanism of covalent sulfurized carbon during electrochemical sodium storage process. 2019 , 62, 1127-1138	44
534	Experimental design and theoretical calculation for sulfur-doped carbon nanofibers as a high performance sodium-ion battery anode. 2019 , 7, 10239-10245	55
533	. 2019,	2
532	Real-Time TEM Study of Nanopore Evolution in Battery Materials and Their Suppression for Enhanced Cycling Performance. <i>Nano Letters</i> , 2019 , 19, 3074-3082	18
531	Porous hydrogen substituted graphyne for high capacity and ultra-stable sodium ion storage. 2019 , 7, 11186-11194	21
530	Titanium Glycolate@Polythiophene Derivative: Waxberry-Like TiO2@Carbon Composites with High-Pseudo-Capacitive Performance for Sodium Storage. 2019 , 166, A1096-A1102	6

529	The dual capacity of the NiSn alloy/MWCNT nanocomposite for sodium and hydrogen ions storage using porous Cu foam as a current collector. 2019 , 44, 6674-6686	3
528	Rod-Like Sb2MoO6: Structure Evolution and Sodium Storage for Sodium-Ion Batteries. 2019 , 3, 1800533	18
527	Hierarchically Interconnected Ni3S2 Nanofibers as Binder-Free Electrodes for High-Performance Sodium-Ion Energy-Storage Devices. 2019 , 2, 2634-2641	30
526	Lignin-Derived Nitrogen-Doped Porous Carbon as a High-Rate Anode Material for Sodium Ion Batteries. 2019 , 166, A423-A428	19
525	High-yield microstructure-controlled amorphous carbon anode materials through a pre-oxidation strategy for sodium ion batteries. 2019 , 786, 468-474	15
524	Nitrogen and oxygen co-doping carbon microspheres by a sustainable route for fast sodium-ion batteries. 2019 , 303, 140-147	27
523	MoSe2 nanosheets embedded in mesoporous carbon as anode materials for sodium ion batteries. 2019 , 25, 3143-3152	5
522	Advanced carbon electrode for electrochemical capacitors. 2019 , 23, 1061-1081	23
521	Novel Method of Fabricating Free-Standing and Nitrogen-Doped 3D Hierarchically Porous Carbon Monoliths as Anodes for High-Performance Sodium-Ion Batteries by Supercritical CO Foaming. 2019 , 11, 9125-9135	12
520	2, 3-Dicyano-5, 6-dichloro-1, 4-benzoquinone as a novel organic anode for sodium-ion batteries. 2019 , 837, 226-229	7
519	Mesoporous ZnCoO/rGO nanocomposites enhancing sodium storage. 2019 , 30, 234005	5
518	Reduced graphene oxide aerogel as stable host for dendrite-free sodium metal anode. 2019 , 22, 376-383	54
517	The transport properties of sodium-ion in the low potential platform region of oatmeal-derived hard carbon for sodium-ion batteries. 2019 , 787, 229-238	29
516	Hierarchical N/S co-doped carbon anodes fabricated through a facile ionothermal polymerization for high-performance sodium ion batteries. 2019 , 7, 6363-6373	40
515	Rhombohedral Potassium-Zinc Hexacyanoferrate as a Cathode Material for Nonaqueous Potassium-Ion Batteries. 2019 , 58, 3065-3072	19
514	Nitrogen and phosphorus co-doped 3D hierarchical porous carbon network with highly-reversible performance in sodium storage. 2019 , 45, 24500-24507	9
513	A N/S-codoped disordered carbon with enlarged interlayer distance derived from cirsium setosum as high-performance anode for sodium ion batteries. 2019 , 30, 21323-21331	0
512	N-Enriched carbon nanofibers for high energy density supercapacitors and Li-ion batteries 2019 , 9, 36075-36	60841

511	its porous analogue cathode. 2019 , 11, 20715-20724	27
510	Hollow carbon nanofibers as high-performance anode materials for sodium-ion batteries. 2019 , 11, 21999-220	0 250
509	Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries. 2019 , 7, 26954-26965	24
508	Lotus rhizome-like S/NII with embedded WS2 for superior sodium storage. 2019 , 7, 25932-25943	24
507	Unveiling the role of hydrothermal carbon dots as anodes in sodium-ion batteries with ultrahigh initial coulombic efficiency. 2019 , 7, 27567-27575	39
506	Triconstituent co-assembly to hierarchically porous carbons as high-performance anodes for sodium-ion batteries. 2019 , 771, 140-146	7
505	Graphitic Carbon Materials for Advanced Sodium-Ion Batteries. 2019 , 3, 1800227	56
504	Partially Reduced Holey Graphene Oxide as High Performance Anode for Sodium-Ion Batteries. 2019 , 9, 1803215	68
503	Lithium Ion Capacitor with Identical Carbon Electrodes Yields 6 s Charging and 100 000 Cycles Stability with 1% Capacity Fade. 2019 , 7, 2867-2877	28
502	Nanowire-Templated Synthesis of FeN -Decorated Carbon Nanotubes as Highly Efficient, Universal-pH, Oxygen Reduction Reaction Catalysts. 2019 , 25, 2637-2644	14
501	Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries. 2019 , 12, 2211-2217	21
500	Emergence of graphene as a promising anode material for rechargeable batteries: a review. 2019 , 11, 225-243	55
499	Revealing sodium ion storage mechanism in hard carbon. 2019 , 145, 67-81	100
498	Hybrid energy storage devices: Advanced electrode materials and matching principles. 2019 , 21, 22-40	105
497	Monocrystal Cu3Mo2O9 Confined in Polyaniline Protective Layer: an Effective Strategy for Promoting Lithium Storage Stability. 2019 , 6, 1688-1695	9
496	Molecular Engineering of Monodisperse SnO2 Nanocrystals Anchored on Doped Graphene with High-Performance Lithium/Sodium-Storage Properties in Half/Full Cells. 2019 , 9, 1802993	92
495	Carbon quantum dots from glucose oxidation as a highly competent anode material for lithium and sodium-ion batteries. 2019 , 297, 250-257	48
494	TiNb2O7/carbon nanotube composites as long cycle life anode for sodium-ion batteries. 2019 , 25, 1679-1688	11

493	Investigation of electrochemical reaction mechanism for antimony selenide nanocomposite for sodium-ion battery electrodes. 2019 , 49, 207-216	11
492	Ultrafast Sodium/Potassium-Ion Intercalation into Hierarchically Porous Thin Carbon Shells. 2019 , 31, e1805430	148
491	Study on the effect of liquid nitrogen cold-quenching on electrochemical characteristic of TiO2 complex flakes with edged-curled derived from MAX as anode for lithium ion batteries. 2019 , 780, 482-490	3
490	Bi2S3 Nanorods Bonding on Reduced Graphene Oxide Surface as Advanced Anode Materials for Sodium-Ion Batteries. 2019 , 7, 1800876	5
489	The effect of carbonization temperature of waste cigarette butts on Na-storage capacity of N-doped hard carbon anode. 2019 , 73, 1237-1246	13
488	High-Capacity Hard Carbon Pyrolyzed from Subbituminous Coal as Anode for Sodium-Ion Batteries. 2019 , 2, 729-735	15
487	Controllable Chain-Length for Covalent Sulfur©arbon Materials Enabling Stable and High-Capacity Sodium Storage. 2019 , 9, 1803478	110
486	Chrysanthemum derived hierarchically porous nitrogen-doped carbon as high performance anode material for Lithium/Sodium ion batteries. 2019 , 344, 89-95	18
485	A facile strategy toward sodium-ion batteries with ultra-long cycle life and high initial Coulombic Efficiency: Free-standing porous carbon nanofiber film derived from bacterial cellulose. 2019 , 22, 105-112	52
484	Hierarchical mesoporous MoSe2@CoSe/N-doped carbon nanocomposite for sodium ion batteries and hydrogen evolution reaction applications. 2019 , 21, 97-106	73
483	Low-cost water caltrop shell-derived hard carbons with high initial coulombic efficiency for sodium-ion battery anodes. 2019 , 775, 1028-1035	37
482	Synergistic Coupling of Ether Electrolyte and 3D Electrode Enables Titanates with Extraordinary Coulombic Efficiency and Rate Performance for Sodium-Ion Capacitors. 2019 , 3, 1800371	33
481	Heteroatom-doped hierarchically porous carbons derived from cucumber stem as high-performance anodes for sodium-ion batteries. 2019 , 54, 5641-5657	22
480	Defect-Rich Soft Carbon Porous Nanosheets for Fast and High-Capacity Sodium-Ion Storage. 2019 , 9, 1803260	143
479	Antimony Nanorod Encapsulated in Cross-Linked Carbon for High-Performance Sodium Ion Battery Anodes. <i>Nano Letters</i> , 2019 , 19, 538-544	81
478	Hexagonal boron phosphide as a potential anode nominee for alkali-based batteries: A multi-flavor DFT study. 2019 , 471, 134-141	32
477	Monodisperse nitrogen-doped carbon spheres with superior rate capacities for lithium/sodium ion storage. 2019 , 297, 365-371	32
476	Mussel-Inspired Nitrogen-Doped Porous Carbon as Anode Materials for Sodium-Ion Batteries. 2019 , 7, 1800763	7

(2020-2019)

475	Facile preparation of robust porous MoS2/C nanosheet networks as anode material for sodium ion batteries. 2019 , 54, 2472-2482	16
474	Heteroatom-Doped Carbon Materials: Synthesis, Mechanism, and Application for Sodium-Ion Batteries. 2019 , 3, 1800323	102
473	Hard carbon derived from rice husk as low cost negative electrodes in Na-ion batteries. 2019 , 29, 17-22	70
472	Fabricating high-performance sodium ion capacitors with P2-Na0.67Co0.5Mn0.5O2 and MOF-derived carbon. 2019 , 28, 79-84	22
471	Synthesis Strategies and Structural Design of Porous Carbon-Incorporated Anodes for Sodium-Ion Batteries. 2020 , 4, 1900163	30
470	Materials and engineering endeavors towards practical sodium-ion batteries. 2020 , 25, 520-536	27
469	Mesoporous MnO2 based composite electrode for efficient alkali-metal-ion storage. 2020 , 380, 122487	12
468	A Functionalized Carbon Surface for High-Performance Sodium-Ion Storage. 2020 , 16, e1902603	28
467	Fe7Se8 nanoparticles anchored on N-doped carbon nanofibers as high-rate anode for sodium-ion batteries. 2020 , 24, 439-449	66
466	Recent advances in graphene based materials as anode materials in sodium-ion batteries. 2020 , 42, 91-107	59
465	TiC/C core/shell nanowires arrays as advanced anode of sodium ion batteries. 2020, 31, 846-850	10
464	Adsorption and Fenton-like removal of chelated nickel from Zn-Ni alloy electroplating wastewater using activated biochar composite derived from Taihu blue algae. 2020 , 379, 122372	46
463	A flexible and free-standing FeS/sulfurized polyacrylonitrile hybrid anode material for high-rate sodium-ion storage. 2020 , 385, 123453	23
462	Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. 2020 , 31, 583-588	101
461	Rational design of a PC3 monolayer: A high-capacity, rapidly charging anode material for sodium-ion batteries. 2020 , 157, 420-426	21
460	Effective preparation of Ni1.4Co0.6P@C micro-spheres with prolonged cycling lives for high performance hybrid supercapacitors. 2020 , 818, 152828	16
459	Strongly coupled sulfur nanoparticles on graphene-carbon nanotube hybrid electrode for multifunctional sodium and aluminium ion storage. 2020 , 818, 152864	5
458	Enhanced cycling stability of antimony anode by downsizing particle and combining carbon nanotube for high-performance sodium-ion batteries. 2020 , 55, 81-88	5

457	Optimizing the Crystallite Structure of Lignin-Based Nanospheres by Resinification for High-Performance Sodium-Ion Battery Anodes. 2020 , 8, 1900694	5
456	Sustainability of One-Dimensional Nanostructures. 2020 , 83-113	22
455	Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries. 2020 , 67, 104219	75
454	Lignin-Derived Hard Carbon Microspheres Synthesized via Emulsion-Solvent Evaporation as Anode for Sodium Storage. 2020 , 8, 1901423	6
453	Carbon nanotube linked NaTi2(PO4)3/C composite with three-dimensional conductive network as superior electrode for sodium ion battery. 2020 , 26, 2883-2890	5
452	Recent advances in nanostructured carbon for sodium-ion batteries. 2020 , 8, 1604-1630	60
451	Improving the cyclic stability of MoO2 anode for sodium ion batteries via film-forming electrolyte additive. 2020 , 822, 153530	6
450	Reducing Interfacial Resistance by Na-SiO2 Composite Anode for NASICON-Based Solid-State Sodium Battery. 2020 , 2, 127-132	36
449	Capacitive and diffusion-controlled mechanism of strontium oxide based symmetric and asymmetric devices. 2020 , 27, 101056	32
448	Observably improving initial coulombic efficiency of C/SiOx anode using -C-O-PO3Li2 groups in lithium ion batteries. 2020 , 447, 227400	19
447	Sodium battery nanomaterials. 2020 , 115-160	
446	Transition metal chalcogenides for energy storage and conversion. 2020 , 355-391	6
445	High-performance nitrogen and sulfur co-doped nanotube-like carbon anodes for sodium ion hybrid capacitors. 2020 , 31, 2219-2224	11
444	Hard carbon micro-nano tubes derived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism. 2020 , 56, 778-781	30
443	Holey graphene: an emerging versatile material. 2020 , 8, 918-977	36
442	Mechanism of Sodium Storage in Hard Carbon: An X-Ray Scattering Analysis. 2020 , 10, 1903176	54
441	Manipulation of carbon framework from the microporous to nonporous via a mechanical-assisted treatment for structure-oriented energy storage. 2020 , 159, 140-148	15
440	Achieving Slope-Reigned Na-Ion Storage in Carbon Nanofibers by Constructing Defect-Rich Texture by a Cu-Activation Strategy. 2020 , 12, 2407-2416	3

(2020-2020)

439	Hierarchical Porous Carbon Anode Materials Derived from Rice Husks with High Capacity and Long Cycling Stability for Sodium-Ion Batteries. 2020 , 7, 631-641	12
438	Flexible Membrane Consisting of MoP Ultrafine Nanoparticles Highly Distributed Inside N and P Codoped Carbon Nanofibers as High-Performance Anode for Potassium-Ion Batteries. 2020 , 16, e1905301	51
437	Retarding graphitization of soft carbon precursor: From fusion-state to solid-state carbonization. 2020 , 26, 577-584	25
436	Exploits, advances and challenges benefiting beyond Li-ion battery technologies. 2020 , 817, 153261	79
435	Hard carbon for sodium batteries: Wood precursors and activation with first group hydroxide. 2020 , 449, 227555	11
434	Diffusion coefficient and electrochemical performance of NaVO3 anode in Li/Na batteries. 2020 , 331, 135293	24
433	MXene derived TiS2 nanosheets for high-rate and long-life sodium-ion capacitors. 2020 , 26, 550-559	57
432	Electrospun Nanofibers for New Generation Flexible Energy Storage. 2020,	13
431	MOF-derived carbon and composites as advanced anode materials for potassium ion batteries: A review. 2020 , 26, e00217	8
430	Structural Engineering of SnS Encapsulated in Carbon Nanoboxes for High-Performance Sodium/Potassium-Ion Batteries Anodes. 2020 , 16, e2005023	50
429	Facile synthesis of hard carbon microspheres from polyphenols for sodium-ion batteries: insight into local structure and interfacial kinetics. 2020 , 18, 100505	12
428	Cost-effective and renewable paper derived hard carbon microfibers as superior anode for sodium-ion batteries. 2020 , 364, 137313	10
427	Entangled reduced graphene oxide nanosheets as an insertion anode with large interlayer spacing for high rate Na-ion batteries. 2020 , 46, 27711-27716	8
426	Nanohollow Carbon for Rechargeable Batteries: Ongoing Progresses and Challenges. 2020 , 12, 183	26
425	Synchronous sulfurization and carbonization using sulfur-rich metal-organic frameworks for fast-charge sodium-ion batteries. 2020 , 478, 228778	3
424	Laser-Assisted Fabrication of Nanostructured Substrate Supported Electrodes for Highly Active Supercapacitors. 2020 , 7,	3
423	Hard carbons for sodium-ion batteries and beyond. 2020 , 2, 042002	38
422	A review on recent advances in carbon aerogels: their preparation and use in alkali-metal ion batteries. 2020 , 35, 486-507	7

421	Carbon block anodes with columnar nanopores constructed from amine-functionalized carbon nanosheets for sodium-ion batteries. 2020 , 8, 24393-24400	5
420	Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries. 2020 , 26, 5535-5542	9
419	State-of-the-Art Electrode Materials for Sodium-Ion Batteries. 2020 , 13,	19
418	Extended low-voltage plateau capacity of hard carbon spheres anode for sodium ion batteries. 2020 , 476, 228550	22
417	Recent Advances in Atomic-scale Storage Mechanism Studies of Two-dimensional Nanomaterials for Rechargeable Batteries Beyond Li-ion. 2020 , 36, 560-583	9
416	Enhanced sodium storage kinetics of nitrogen rich cellulose-derived hierarchical porous carbon via subsequent boron doping. 2020 , 531, 147302	13
415	From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries. 2020 , 356, 136856	36
414	Mo-modified P/C composite as anode for high-performance sodium ion batteries. 2020 , 877, 114536	2
413	Resol and urea derived N-doped porous carbon for Na-ion storage. 2020 , 254, 123535	5
412	Enhanced Pseudo-Capacitive Contributions to High-Performance Sodium Storage in TiO/C Nanofibers via Double Effects of Sulfur Modification. 2020 , 12, 165	15
411	Supercapacitive performance of nitrogen doped porous carbon based material for supercapacitor application. 2020 , 132, 1	
410	From wood pulp fibers to tubular SiO2/C composite as anode for Li-ion battery: in-situ regulation of cellulose microfibrils by alkali solution. 2020 , 158, 113022	5
409	Toward high-performance hard carbon as an anode for sodium-ion batteries: Demineralization of biomass as a critical step. 2020 , 91, 317-329	12
408	Advanced Battery-Type Anode Materials for High-Performance Sodium-Ion Capacitors. 2020 , 4, 2000401	30
407	Synthesis of Nitrogen and Phosphorus Dual-Doped Graphene Oxide as High-Performance Anode Material for Lithium-Ion Batteries. 2020 , 20, 7673-7679	7
406	Novel Approach Through the Harmonized Sulfur in Disordered Carbon Structure for High-Efficiency Sodium-Ion Exchange. 2020 , 12, 43750-43760	7
405	Recent Advances on Mixed Metal Sulfides for Advanced Sodium-Ion Batteries. 2020 , 32, e2002976	113
404	Gas sorption porosimetry for the evaluation of hard carbons as anodes for Li- and Na-ion batteries. 2020 , 11, 1217-1229	1

(2020-2020)

403	Highly Stable Basswood Porous Carbon Anode Activated by Phosphoric Acid for a Sodium Ion Battery. 2020 , 34, 11565-11573	7
402	Thermodynamically Metal Atom Trapping in Van der Waals Layers Enabling Multifunctional 3D Carbon Network. 2020 , 30, 2002626	8
401	Effect of Hematite Doping with Aliovalent Impurities on the Electrochemical Performance of FeO@rGO-Based Anodes in Sodium-Ion Batteries. 2020 , 10,	4
400	Construction of nitrogen-sulfur co-doped porous carbon to boost, integrate Li/Na/K ion storage. 2020 , 356, 115451	3
399	Nickel-Embedded Carbon Materials Derived from Wheat Flour for Li-Ion Storage. 2020 , 13,	1
398	Switching between Local and Global Aromaticity in a Conjugated Macrocycle for High-Performance Organic Sodium-Ion Battery Anodes. 2020 , 59, 12958-12964	22
397	Recent Advances in Developing Hybrid Materials for Sodium-Ion Battery Anodes. 2020 , 5, 1939-1966	82
396	Porous quasi-graphitic carbon sheets for unprecedented sodium storage. 2020 , 7, 2443-2450	1
395	Hard carbon anode derived from camellia seed shell with superior cycling performance for sodium-ion batteries. 2020 , 53, 414002	6
394	Pseudocapacitive Trimetal Fe0.8CoMnO4 Nanoparticles@Carbon Nanofibers as High-Performance Sodium Storage Anode with Self-Supported Mechanism. 2020 , 30, 2001718	10
393	Hard carbon microspheres derived from resorcinol formaldehyde resin as high-performance anode materials for sodium-ion battery. 2020 , 26, 4523-4532	17
392	Structure-dependent sodium ion storage mechanism of cellulose nanocrystal-based carbon anodes for highly efficient and stable batteries. 2020 , 468, 228371	16
391	Flexible Batteries. 2020 , 41-60	
390	Direct Pyrolysis of Supermolecules: An Ultrahigh Edge-Nitrogen Doping Strategy of Carbon Anodes for Potassium-Ion Batteries. 2020 , 32, e2000732	78
389	Breaking the limitation of sodium-ion storage for nanostructured carbon anode by engineering desolvation barrier with neat electrolytes. 2020 , 74, 104895	20
388	High capacitive sodium-ion storage in N, P co-doped carbon supported on carbon nanotubes. 2020 , 870, 114200	5
387	sp3-Defect and pore engineered carbon framework for high energy density supercapacitors. 2020 , 464, 228203	14
386	Peat-derived hard carbon electrodes with superior capacity for sodium-ion batteries 2020 , 10, 20145-20154	11

385	Double carbon-embedded Na3V2(PO4)3 as a superior anode for sodium ion batteries. 2020, 22, 1	3
384	Carbon nano-beads collected from candle soot as an anode material with a highly pseudocapacitive Na+ storage capability for dual-ion batteries. 2020 , 26, 4533-4542	5
383	Nanoporous Carbon Derived from Green Material by an Ordered Activation Method and Its High Capacitance for Energy Storage. 2020 , 10,	8
382	Heteroatom Doping: An Effective Way to Boost Sodium Ion Storage. 2020 , 10, 2000927	134
381	Facile synthesis of graphene-like carbon-coated Ni3S2 nanoparticles self-assembled on 3D dendritic nanostructure as high-performance anode materials of sodium-ion batteries. 2020 , 26, 4511-4522	6
380	Binder less-integrated freestanding carbon film derived from pitch as light weight and high-power anode for sodium-ion battery. 2020 , 353, 136566	7
379	Exploring the Possibility of EPhase Arsenic-Phosphorus Polymorph Monolayer as Anode Materials for Sodium-Ion Batteries. 2020 , 3, 2000023	8
378	Hierarchically Structured Nitrogen-Doped Carbon Microspheres for Advanced Potassium Ion Batteries. 2020 , 2, 853-860	49
377	Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. 2020 , 39, 1019-1033	60
376	Codoped Holey Graphene Aerogel by Selective Etching for High-Performance Sodium-Ion Storage. 2020 , 10, 2000099	29
375	Fast Sodium Storage with Ultralong Cycle Life for Nitrogen Doped Hollow Carbon Nanofibers Anode at Elevated Temperature. 2020 , 7, 1901922	9
374	Two-dimensional materials as anodes for sodium-ion batteries. 2020 , 6, 100054	25
373	Development and challenge of advanced nonaqueous sodium ion batteries. 2020 , 2, 100031	18
372	Chemically Presodiated Hard Carbon Anodes with Enhanced Initial Coulombic Efficiencies for High-Energy Sodium Ion Batteries. 2020 , 12, 17620-17627	39
371	Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity. 2020 , 163, 288-296	19
370	Recent advances in dual-carbon based electrochemical energy storage devices. 2020 , 72, 104728	50
369	An in Situ Prepared Covalent Sulfur © arbon Composite Electrode for High-Performance Room-Temperature Sodium B ulfur Batteries. 2020 , 5, 1307-1315	30
368	Carbon-Microcuboid-Supported Phosphorus-Coordinated Single Atomic Copper with Ultrahigh Content and Its Abnormal Modification to Na Storage Behaviors. 2020 , 10, 2000400	24

(2020-2020)

367	Bottom-Up Synthesis of Advanced Carbonaceous Anode Materials Containing Sulfur for Na-Ion Batteries. 2020 , 30, 2000592	16
366	Insight into the effects of microstructure and nitrogen doping configuration for hollow graphene spheres on oxygen reduction reaction and sodium-ion storage performance. 2020 , 45, 16569-16582	7
365	Facile and scalable synthesis of a sulfur, selenium and nitrogen co-doped hard carbon anode for high performance Na- and K-ion batteries. 2020 , 8, 14993-15001	29
364	Efficient and Facile Electrochemical Process for the Production of High-Quality Lithium Hexafluorophosphate Electrolyte. 2020 , 12, 32771-32777	1
363	Unveiling pseudocapacitive behavior of hard carbon anode materials for sodium-ion batteries. 2020 , 354, 136647	21
362	Recent progress and perspective on electrolytes for sodium/potassium-based devices. 2020 , 31, 328-343	32
361	Nitrogen and sulfur co-doped mesoporous carbon derived from ionic liquid as high-performance anode material for sodium ion batteries. 2020 , 306, 110433	11
360	N-doped carbon/ultrathin 2D metallic cobalt selenide core/sheath flexible framework bridged by chemical bonds for high-performance potassium storage. 2020 , 388, 124396	59
359	In situ nitrogen-doped, defect-induced carbon nanotubes as an efficient anode for sodium-ion batteries. 2020 , 31, 235403	4
358	Rationally Designed Three-Layered Cu2S@Carbon@MoS2 Hierarchical Nanoboxes for Efficient Sodium Storage. 2020 , 132, 7245-7250	20
357	The recycling of the expired donkey-hide gelatin pulp for N/S co-doped hollow carbon nano-spheres anode in sodium ion battery. 2020 , 27, 13467-13476	4
356	Bacterial cellulose-derived carbon nanofibers as both anode and cathode for hybrid sodium ion capacitor 2020 , 10, 7780-7790	13
355	Self-supported binder-free hard carbon electrodes for sodium-ion batteries: insights into their sodium storage mechanisms. 2020 , 8, 5558-5571	28
354	Biomass-Derived Carbons for Sodium-Ion Batteries and Sodium-Ion Capacitors. 2020 , 13, 1275-1295	51
353	A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures. 2020 , 11, 927	44
352	Superresilient Hard Carbon Nanofabrics for Sodium-Ion Batteries. 2020 , 16, e1906883	27
351	In-situ growth of hybrid NaTi8O13/NaTiO2 nanoribbons on layered MXene Ti3C2 as a competitive anode for high-performance sodium-ion batteries. 2020 , 31, 2254-2258	14
350	Rationally Designed Three-Layered Cu S@Carbon@MoS Hierarchical Nanoboxes for Efficient Sodium Storage. 2020 , 59, 7178-7183	127

349	Theoretical identification of layered MXene phase NaxTi4C2O4 as superb anodes for rechargeable sodium-ion batteries. 2020 , 8, 11177-11187	12
348	Toward efficient and high rate sodium-ion storage: A new insight from dopant-defect interplay in textured carbon anode materials. 2020 , 28, 55-63	41
347	Stone Wales Defect Induced Performance Improvement of BC3 Monolayer for High Capacity Lithium-Ion Rechargeable Battery Anode Applications. 2020 , 124, 5910-5919	29
346	Hyperaccumulation Route to Ca-Rich Hard Carbon Materials with Cation Self-Incorporation and Interlayer Spacing Optimization for High-Performance Sodium-Ion Batteries. 2020 , 12, 10544-10553	37
345	Insights into the Surface Oxygen Functional Group-Driven Fast and Stable Sodium Adsorption on Carbon. 2020 , 12, 6991-7000	27
344	Pore structure regulation of hard carbon: Towards fast and high-capacity sodium-ion storage. 2020 , 566, 257-264	23
343	Solid electrolyte interface stabilization via surface oxygen species functionalization in hard carbon for superior performance sodium-ion batteries. 2020 , 8, 3606-3612	21
342	Two-dimensional materials for energy conversion and storage. 2020 , 111, 100637	73
341	Polyanion-type electrode materials for advanced sodium-ion batteries. 2020 , 10, 100072	26
340	Rational growth of thin and crinkled MoS2 nanosheets on carbon fiber cloth for enhanced sodium-ion storage. 2020 , 7, 025022	2
339	Synthesis of CoS2 Nanoparticles/Nitrogen-Doped Graphitic Carbon/Carbon Nanotubes Composite as an Advanced Anode for Sodium-Ion Batteries. 2020 , 7, 2752-2761	5
338	A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries. 2020 , 8, 4996-5048	65
337	Integrated N, P co-doped and dense carbon networks produced by a chemical crosslinking strategy: Facilitating high gravimetric/volumetric performance sodium ion batteries. 2020 , 165, 204-215	17
336	Candle soot carbon nanoparticles as high-performance universal anode for M-ion (M = Li+, Na+ and K+) batteries. 2020 , 458, 228064	12
335	Rich nitrogen-doped carbon on carbon nanotubes for high-performance sodium-ion supercapacitors. 2020 , 459, 228104	13
334	Bio-inspired heteroatom-doped hollow aurilave-like structured carbon for high-performance sodium-ion batteries and supercapacitors. 2020 , 461, 228128	16
333	Anodes and Sodium-Free Cathodes in Sodium Ion Batteries. 2020 , 10, 2000288	51
332	Full pseudocapacitive behavior hypoxic graphene for ultrafast and ultrastable sodium storage. 2020 , 8, 9911-9918	3

Sn substitution endows NaTi2(PO4)3/C with remarkable sodium storage performances. 2020, 46, 12921-129273 331 Sandwich-like, potassium(I) doped q-CN with tunable interlayer distance as a high selective 330 7 extractant for the determination of Ba(II). 2020, 215, 120916 Revealing the Intercalation Mechanisms of Lithium, Sodium, and Potassium in Hard Carbon. 2020, 329 79 10, 2000283 Cotton Cloth-Induced Flexible Hierarchical Carbon Film for Sodium-Ion Batteries. 2020, 7, 2136-2144 328 Insights into Lithium and Sodium Storage in Porous Carbon. Nano Letters, 2020, 20, 3836-3843 327 11.5 44 Boosting the Potassium-Ion Storage Performance in Soft Carbon Anodes by the Synergistic Effect 326 42 of Optimized Molten Salt Medium and N/S Dual-Doping. 2020, 12, 20838-20848 Nitrogen-doped lignin based carbon microspheres as anode material for high performance sodium 9 325 ion batteries. **2021**, 6, 220-228 Recent advances in electrospun electrode materials for sodium-ion batteries. 2021, 54, 225-241 324 34 MXenes for Non-Lithium-Ion (Na, K, Ca, Mg, and Al) Batteries and Supercapacitors. 2021, 11, 2000681 323 74 Pampas grass-inspired FeOOH nanobelts as high performance anodes for sodium ion batteries. 322 15 **2021**, 54, 138-142 The recent progress of pitch-based carbon anodes in sodium-ion batteries. 2021, 55, 34-47 321 32 Integration of cobalt selenide nanocrystals with interlayer expanded 3D Se/N Co-doped carbon 320 10 networks for superior sodium-ion storage. 2021, 55, 169-175 Free standing copper incorporated carbon nanofibers based flexible anodes for high performance 319 1 sodium ion batteries. 2021, 27, 1359-1369 Natural mushroom spores derived hard carbon plates for robust and low-potential sodium ion 318 12 storage. 2021, 365, 137356 Layered materials for supercapacitors and batteries: Applications and challenges. 2021, 118, 100763 317 15 Untra-high pseudocapacitance enhanced anode of N, P dual-doped carbon nanosheet derived from 316 biomass toward high performance sodium ion battery. **2021**, 2, 129-139 High-effective preparation of 3D hierarchical nanoporous interpenetrating network structure carbon membranes as flexible free-standing anodes for stable lithium and sodium storage. 2021, 315 5 608, 125593 Effects of carbon on electrochemical performance of red phosphorus (P) and carbon composite as 314 10 anode for sodium ion batteries. 2021, 68, 140-146

313	In situ simultaneous encapsulation of defective MoS2 nanolayers and sulfur nanodots into SPAN fibers for high rate sodium-ion batteries. 2021 , 404, 126430	35
312	Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries. 2021 , 55, 499-508	24
311	Vanadium-based polyanionic compounds as cathode materials for sodium-ion batteries: Toward high-energy and high-power applications. 2021 , 55, 361-390	28
310	Hard carbon derived from coconut shells, walnut shells, and corn silk biomass waste exhibiting high capacity for Na-ion batteries. 2021 , 58, 207-218	23
309	Diamine molecules double lock-link structured graphene oxide sheets for high-performance sodium ions storage. 2021 , 34, 45-52	20
308	Sb-based intermetallics and nanocomposites as stable and fast Na-ion battery anodes. 2021 , 409, 127380	8
307	Conversion of tannery solid waste to an adsorbent for high-efficiency dye removal from tannery wastewater: A road to circular utilization. 2021 , 263, 127987	18
306	Nitrogen-doped three-dimensional porous carbon anode derived from hard halloysite template for sodium-ion batteries. 2021 , 200, 105916	3
305	Functionalized MTiCT MXenes (M = Cr and Mo; T = F, O, and OH) as high performance electrode materials for sodium ion batteries. 2021 , 23, 1038-1049	6
304	Mesocarbon microbeads with superior anode performance for sodium-ion batteries. 2021 , 27, 677-682	1
303	A core-shell structured metal-organic frameworks-derived porous carbon nanowires as a superior anode for alkaline metal-ion batteries. 2021 , 541, 148473	5
302	Carboxyl-Dominant Oxygen Rich Carbon for Improved Sodium Ion Storage: Synergistic Enhancement of Adsorption and Intercalation Mechanisms. 2021 , 11, 2002981	36
301	Green energy application technology of litchi pericarp-derived carbon material with high performance. 2021 , 286, 124960	9
300	PVP-assisted synthesis of gt3N4derived N-doped graphene with tunable interplanar spacing as high-performance lithium/sodium ions battery anodes. 2021 , 174, 98-109	27
299	Advancement in graphene-based nanocomposites as high capacity anode materials for sodium-ion batteries. 2021 , 9, 2628-2661	17
298	Hollow Carbon-Based Nanoarchitectures Based on ZIF: Inward/Outward Contraction Mechanism and Beyond. 2021 , 17, e2004142	21
297	Single Li ion conducting solid-state polymer electrolytes based on carbon quantum dots for Li-metal batteries. 2021 , 82, 105698	22
296	Carbon materials for ion-intercalation involved rechargeable battery technologies. 2021 , 50, 2388-2443	79

(2021-2021)

295	Self-templated synthesis of hollow hierarchical porous olive-like carbon toward universal high-performance alkali (Li, Na, K)-ion storage. 2021 , 174, 317-324	12
294	Phosphorus-doping-induced kinetics modulation for nitrogen-doped carbon mesoporous nanotubes as superior alkali metal anode beyond lithium for high-energy potassium-ion hybrid capacitors. 2021 , 13, 692-699	22
293	Enhanced sodium storage performance of silk fibroin-derived hollow iron sulfide with potential window control. 2021 , 45, 4755-4764	1
292	Boosting sodium storage performance of Mo2C via nitrogen-doped carbon sphere encapsulation and rGO wrapping. 2021 , 413, 127471	11
291	A review on biomass-derived hard carbon materials for sodium-ion batteries. 2021 , 2, 5881-5905	7
290	Waste utilization of crab shell: 3D hierarchical porous carbon towards high-performance Na/Li storage. 2021 ,	2
289	Sodium storage with high plateau capacity in nitrogen doped carbon derived from melaminellerephthalaldehyde polymers. 2021 , 9, 8711-8720	3
288	Controllable deposition of FeV2S4 in carbon fibers for sodium-ion storage with high capacity and long lifetime. 2021 , 64, 1355-1366	6
287	Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization. 2021 , 14, 2244-2262	35
286	Insights into the sodiation mechanism of hard carbon-like materials from electrochemical impedance spectroscopy. 2021 , 23, 11488-11500	6
285	Porous structure O-rich carbon nanotubes as anode material for sodium-ion batteries. 2021 , 27, 667-675	O
284	Application of an inorganic sulfur-modified expanded graphite anode for sodium storage at low temperatures.	1
283	Carbon Anode Materials: A Detailed Comparison between Na-ion and K-ion Batteries. 2021, 11, 2003640	52
282	Fast and stable K-ion storage enabled by synergistic interlayer and pore-structure engineering. 2021 , 14, 4502	11
281	Dendrite-Free and Long-Cycling Sodium Metal Batteries Enabled by Sodium-Ether Cointercalated Graphite Anode. 2021 , 31, 2009778	5
280	Nitrogen-enriched carbon nanofibers with tunable semi-ionic CF bonds as a stable long cycle anode for sodium-ion batteries. 2021 , 583, 535-543	10
279	A modified reduced graphite oxide anode for sodium ion storage in ether-based electrolyte. 2021 , 51, 753-760	
278	Sycamore fruit seed-based hard carbon anode material with high cycle stability for sodium-ion battery. 2021 , 32, 5645-5654	3

277	Lithium-Ion and Sodium-Ion Hybrid Capacitors: From Insertion-Type Materials Design to Devices Construction. 2021 , 31, 2100455	28
276	Maximized pseudo-graphitic content in self-supported hollow interconnected carbon foam boosting ultrastable Na-ion storage. 2021 , 371, 137776	2
275	Heteroatom-doped nanoporous carbon with high rate performance as anode for sodium-ion batteries. 2021 , 32, 8295-8303	O
274	Nanoengineering of Advanced Carbon Materials for Sodium-Ion Batteries. 2021 , 17, e2007431	13
273	Prussian Blue Analogues as Electrodes for Aqueous Monovalent Ion Batteries. 1	8
272	Towards stable and high-capacity anode materials for sodium-ion batteries by embedding of Sb/Sn nanoparticles into electrospun mesoporous carbon fibers. e2100010	O
271	Comparative effects of electrospinning ways for fabricating green, sustainable, flexible, porous, nanofibrous cellulose/chitosan carbon mats as anode materials for lithium-ion batteries. 2021 , 11, 50-61	14
270	Engineered Carbon Electrodes for High Performance Capacitive and Hybrid Energy Storage. 2021 , 35, 102340	O
269	Realizing High-Performance Li/Na-Ion Half/Full Batteries via the Synergistic Coupling of Nano-Iron Sulfide and S-doped Graphene. 2021 , 14, 1936-1947	3
268	From Micropores to Ultra-micropores inside Hard Carbon: Toward Enhanced Capacity in Room-/Low-Temperature Sodium-Ion Storage. 2021 , 13, 98	11
267	Directional Oxygen Functionalization by Defect in Different Metamorphic-Grade Coal-Derived Carbon Materials for Sodium Storage.	4
266	Pure carbon-based electrodes for metal-ion batteries. 2021 , 3, 100035	1
265	Restacked nanohybrid graphene layers with expanded interlayer distance enabled by inorganic spacer for highly efficient, flexible Na-ion battery anodes. 2021 , 886, 115137	2
264	Electrochemical Insight into the Sodium-Ion Storage Mechanism on a Hard Carbon Anode. 2021 , 13, 18914-18	39 % 2
263	Fullerene-Intercalated Graphitic Carbon Nitride as a High-Performance Anode Material for Sodium-Ion Batteries.	2
262	Ultrahigh Phosphorus Doping of Carbon for High-Rate Sodium Ion Batteries Anode. 2021 , 11, 2003911	22
261	ReviewEnergy Storage through Graphite Intercalation Compounds. 2021 , 168, 040541	4
260	Hard Carbon for Na-ion Batteries: From Synthesis to Performance and Storage Mechanism. 2021 , 101-146	O

(2021-2021)

259	Controllable construction of yolk@hell Snfto@void@C and its advantages in Na-ion storage. 2021 , 40, 2392-2401	6
258	Engineering hard carbon with high initial coulomb efficiency for practical sodium-ion batteries. 2021 , 492, 229656	12
257	Ionic liquid-induced low temperature graphitization of cellulose-derived biochar for high performance sodium storage. 2021 , 412, 127034	6
256	Boost sodium-ion batteries to commercialization: Strategies to enhance initial Coulombic efficiency of hard carbon anode. 2021 , 82, 105738	36
255	Rational Design and Engineering of One-Dimensional Hollow Nanostructures for Efficient Electrochemical Energy Storage. 2021 , 60, 20102-20118	38
254	Elucidating electrochemical intercalation mechanisms of biomass-derived hard carbon in sodium-/potassium-ion batteries. 2021 , 3, 541-553	13
253	Rational Design and Engineering of One-Dimensional Hollow Nanostructures for Efficient Electrochemical Energy Storage. 2021 , 133, 20262-20278	6
252	Flexible Carbon Nanofibrous Membranes with Adjustable Hierarchical Porous Structure as High-Capacity Anodes for Sodium-Ion Batteries. 2021 , 9, 2100049	1
251	Potential Applications of MoS2/M2CS2 (M = Ti, V) Heterostructures as Anode Materials for Metal-Ion Batteries. 2021 , 125, 10226-10234	4
250	Controllable Insertion Mechanism of Expanded Graphite Anodes Employing Conversion Reaction Pillars for Sodium-Ion Batteries. 2021 , 13, 24070-24080	8
249	Vitreum Etching-Assisted Fabrication of Porous Hollow Carbon Architectures for Enhanced Capacitive Sodium and Potassium-Ion Storage. 2021 , 17, e2100538	10
248	Biomass-derived Carbon Quantum Dots 🖪 Review. Part 2: Application in Batteries. 2021 , 8, 302	6
247	Expanded Graphite Inserted by Few Red Phosphorus for Improved Sodium Storage at Room Temperature and Low Temperatures. 2021 , 7, 1020-1024	2
246	Enhanced electrochemical production and facile modification of graphite oxide for cost-effective sodium ion battery anodes. 2021 , 177, 71-78	14
245	Understanding acid pretreatment of lotus leaves to prepare hard carbons as anodes for sodium ion batteries. 2021 , 415, 127125	3
244	Local Structures of Soft Carbon and Electrochemical Performance of Potassium-Ion Batteries. 2021 , 13, 28261-28269	5
243	Enabling superior rate capability and reliable sodium ion batteries by employing galvanostatic-potentiostatic operation mode. 2021 , 496, 229834	O
242	Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. 2021 , 5,	40

241	Spartina alterniflora-derived porous carbon using as anode material for sodium-ion battery. 2021 , 777, 146120	2
240	Recent Progresses on Applications of Conducting Polymers for Modifying Electrode of Rechargeable Batteries. 2021 , 2, 2100088	3
239	Engineered Polymeric Carbon Nitride Additive for Energy Storage Materials: A Review. 2021 , 31, 2102300	6
238	Enhancing Lithium-Storage Performance via Graphdiyne/Graphene Interface by Self-Supporting Framework Synthesized. 2021 , 13, 34332-34340	1
237	In Situ (Operando) Electrochemical Dilatometry as a Method to Distinguish Charge Storage Mechanisms and Metal Plating Processes for Sodium and Lithium Ions in Hard Carbon Battery Electrodes. 2100596	2
236	Microstructure-Dependent Charge/Discharge Behaviors of Hollow Carbon Spheres and its Implication for Sodium Storage Mechanism on Hard Carbon Anodes. 2021 , 17, e2102248	9
235	Disordered carbon anodes for Na-ion batteriesquo vadis?. 2021 , 64, 1679	9
234	Nitrogen-Doped Porous Carbon Nanosheets with Ultrahigh Capacity and Quasicapacitive Energy Storage Performance for Lithium and Sodium Storage Applications. 2021 , 9, 2100309	1
233	One-pot fabrication of pitch-derived soft carbon with hierarchical porous structure and rich sp2 carbon for sodium-ion battery. 2021 , 32, 21944-21956	
232	Recent Progress in Amorphous Carbon-Based Materials for Anodes of Sodium-Ion Batteries: Synthesis Strategies, Mechanisms, and Performance. 2021 , 14, 3693-3723	3
231	Palmyra Palm tree biomass-derived carbon low-voltage plateau region capacity on Na-ion battery and its full cell performance. 2021 , 9, 105698	8
230	Recent advances in emerging nonaqueous K-ion batteries: from mechanistic insights to practical applications. 2021 , 39, 305-346	9
229	A Facile Process to Fabricate Phosphorus/Carbon Xerogel Composite as Anode for Sodium Ion Batteries. 2021 , 168, 080529	O
228	Superior carbon black: High-performance anode and conducting additive for rechargeable Li- and Na-ion batteries. 2021 , 417, 129242	2
227	Methods of improving the initial Coulombic efficiency and rate performance of both anode and cathode materials for sodium-ion batteries. 2021 ,	4
226	Increasing Accessible Subsurface to Improving Rate Capability and Cycling Stability of Sodium-Ion Batteries. 2021 , 33, e2100808	24
225	Storage Mechanism of Alkali Metal Ions in the Hard Carbon Anode: an Electrochemical Viewpoint. 2021 , 13, 38441-38449	8
224	Ultrafast presodiation of graphene anodes for high-efficiency and high-rate sodium-ion storage.	6

223	A conjugated plier-linked nano-spacing graphite network for sodium-ion battery. 2021, 39, 70-80	2
222	Black phosphorus-based materials for energy storage and electrocatalytic applications. 2021 , 3, 042002	1
221	Realizing Improved Sodium-Ion Storage by Introducing Carbonyl Groups and Closed Micropores into a Biomass-Derived Hard Carbon Anode. 2021 , 13, 47728-47739	2
220	Superior Sodium Storage Properties in the Anode Material NiCr S for Sodium-Ion Batteries: An X-ray Diffraction, Pair Distribution Function, and X-ray Absorption Study Reveals a Conversion Mechanism via Nickel Extrusion. 2021 , 33, e2101576	3
219	Regulating microstructures of soft carbon anodes by terminations of Ti3C2T MXene toward fast and stable sodium storage. 2021 , 87, 106097	8
218	Graphene-based hybrid aerogels for energy and environmental applications. 2021 , 420, 129700	13
217	Rational design of carbon anodes by catalytic pyrolysis of graphitic carbon nitride for efficient storage of Na and K mobile ions. 2021 , 87, 106184	10
216	Progress in one-dimensional nanostructures. 2021 , 179, 111373	4
215	Electrochemical storage mechanism of sodium in carbon materials: A study from soft carbon to hard carbon. 2021 , 182, 758-769	11
214	Rational design of black phosphorene/g-C3B heterostructures as high-performance electrodes for Li and Na-ion batteries. 2021 , 561, 150093	1
213	Sodium Superionic Conductors (NASICONs) as Cathode Materials for Sodium-Ion Batteries. 1	11
212	Design principles of high-voltage aqueous supercapacitors. 2021 , 21, 100739	8
211	Changes of porosity of hard carbons during mechanical treatment and the relevance for sodium-ion anodes. 2021 , 186, 55-55	4
210	Sulfur/oxygen-doped porous carbon via NaCl-assisted thermolysis of molecular precursor for CO2 capture. 2021 , 125288	3
209	Facile synthesis of WS2/Ni3S2 encapsulated in N-doped carbon hybrid electrode with high rate performance as anode for sodium-ion batteries. 2021 , 899, 115681	2
208	Boosting Sodium Storage Performance of Hard Carbon Anodes by Pore Architecture Engineering. 2021 , 13, 47671-47683	7
207	Role of electrolyte in stabilizing hard carbon as an anode for rechargeable sodium-ion batteries with long cycle life. 2021 , 42, 78-87	7
206	New insights into carbon-based and MXene anodes for Na and K-ion storage: A review. 2021 , 62, 660-691	10

205	Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries. 2021 , 87, 100929	8
204	Pyrolysis of sulfonic acid substituted benzenes and investigation of CO2 capture capability of resulting carbons. 2021 , 303, 122546	1
203	Hollow porous carbon spheres for high initial coulombic efficiency and low-potential sodium ion storage. 2021 , 604, 168-177	3
202	Ultra-stable Sb/hard carbon composite anodes with synergistic alkali-ion storage performances. 2021 , 144, 111491	2
201	Constructing NiS/NiSe heteroboxes with phase boundaries for Sodium-Ion batteries. 2022, 607, 752-759	8
200	Hierarchical 1IT-MoS2/MoOx@NC microspheres as advanced anode materials for potassium/sodium-ion batteries. 2022 , 428, 131113	14
199	Conjugated polymers templated carbonization to design N, S co-doped finely tunable carbon for enhanced synergistic catalysis. 2022 , 300, 120732	1
198	Synthesis of presodiated B, N Co-doped carbon materials and application in sodium ions batteries with enhanced initial coulombic efficiency. 2022 , 427, 131951	5
197	Temperature-regulated biomass-derived hard carbon as a superior anode for sodium-ion batteries.	4
196	Exploring the effect of interlayer distance of expanded graphite for sodium ion storage using first principles calculations. 2021 , 23, 3063-3070	7
195	A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by in situ transmission electron microscopy. 2021 , 14, 2670-2707	10
194	Sodium-lon Batteries: Current Understanding of the Sodium Storage Mechanism in Hard Carbons. 2021 ,	O
193	Nitrogen, Sulfur, and Phosphorus Codoped Hollow Carbon Microtubes Derived from Silver Willow Blossoms as a High-Performance Anode for Sodium-Ion Batteries. 2021 , 35, 2795-2804	8
192	Rapid simultaneous removal of cationic dyes and Cr(VI) by boron cluster polyaniline with a target site. 2021 , 57, 7569-7572	3
191	Enhanced Reversible Sodium-Ion Intercalation by Synergistic Coupling of Few-Layered MoS2 and S-Doped Graphene. 2017 , 27, 1702562	116
190	Few-Layer Bismuthene with Anisotropic Expansion for High-Areal-Capacity Sodium-Ion Batteries. 2019 , 31, e1807874	98
189	Highly Doped 3D Graphene Na-Ion Battery Anode by Laser Scribing Polyimide Films in Nitrogen Ambient. 2018 , 8, 1800353	61
188	Effect of Intrinsic Defects of Carbon Materials on the Sodium Storage Performance. 2020 , 10, 1903652	95

187	Switching between Local and Global Aromaticity in a Conjugated Macrocycle for High-Performance Organic Sodium-Ion Battery Anodes. 2020 , 132, 13058-13064	7
186	Phosphorus and phosphide nanomaterials for sodium-ion batteries. 2017 , 10, 4055-4081	90
185	Upgrading agricultural biomass for sustainable energy storage: Bioprocessing, electrochemistry, mechanism. 2020 , 31, 274-309	17
184	Two-dimensional tetragonal transition-metal carbide anodes for non-lithium-ion batteries. 2020 , 22, 13680-13688	2
183	Carbon Anode Materials for Rechargeable Alkali Metal Ion Batteries and Characterization Techniques. 2020 , 8, 607504	4
182	Effect of Vinylene Carbonate Electrolyte Additive on the Surface Chemistry and Pseudocapacitive Sodium-Ion Storage of TiO2 Nanosheet Anodes. 2021 , 7, 1	4
181	Materials and Electrochemistry: Present and Future Battery. 2016 , 7, 115-131	10
180	Recent Progress and Perspectives on Alloying Anodes for Potassium-Ion Batteries.	2
179	Intergrowth of Graphite-Like Crystals in Hard Carbon for Highly Reversible Na-Ion Storage. 2106980	4
178	X-Ray Spectromicroscopy Investigation of Heterogeneous Sodiation in Hard Carbon Nanosheets with Vertically Oriented (002) Planes. 2021 , 17, e2102109	1
177	River driftwood pretreated via hydrothermal carbonization as a sustainable source of hard carbon for Na-ion battery anodes. 2021 , 9, 106604	1
176	Fast-Charging Nonaqueous Potassium-Ion Batteries Enabled by Rational Construction of Oxygen-Rich Porous Nanofiber Anodes. 2021 , 13, 50005-50016	5
175	Leading strategies and research advances for the restoration of graphite from expired Li+ energy storage devices. 2021 , 9, 106455	1
174	C10F as a potential anode material for alkali-ion batteries; a quantum chemical approach. 2021 , 1206, 113470	O
173	Cathode and Anode Materials for Na-Ion Battery. 2014 , 395-424	
172	Materials and Electrochemistry: Present and Future Battery. 2016 , 7, 115-131	4
171	General Introduction. 2019 , 1-28	
170	Scalable, colloidal synthesis of SnSb nanoalloy-decorated mesoporous 3D NiO microspheres as a sodium-ion battery anode.	1

169	Mass Balancing of Hybrid Ion Capacitor Electrodes: A Simple and Generalized Semiempirical Approach. 2021 ,	O
168	Pre-doping iodine to restrain formation of low-active graphitic-N in hard carbon for significantly boosting sodium storage performance. 2022 , 186, 193-204	3
167	Interlayer gap widened TiS2 for highly efficient sodium-ion storage. 2022 , 107, 64-69	10
166	Spiral self-assembly of lamellar micelles into multi-shelled hollow nanospheres with unique chiral architecture. 2021 , 7, eabi7403	8
165	Advances and Prospects of Dual-Ion Batteries. 2021 , 11, 2102498	8
164	Application of polyaniline and polypyrrole in electronics. 2020 , 28-31	
163	Dense SnS2 nanoplates vertically anchored on a graphene aerogel for pseudocapacitive sodium storage.	7
162	Understanding the role of nitrogen and sulfur doping in promoting kinetics of oxygen reduction reaction and sodium ion battery performance of hollow spherical graphene. 2022 , 187, 230-240	6
161	Tannin-based hard carbons as high-performance anode materials for sodium-ion batteries. 2022 , 23, 100614	1
160	P2-Na0.55[Mg0.25Mn0.75]O2: An SEI-free anode for long-life and high-rate Na-ion batteries. 2022 , 45, 92-100	1
159	Microcrystalline regulation of bituminous coal derived hard carbon by pre-oxidation strategy for improved sodium-ion storage. 2021 , 122072	1
158	Wood for Application in Electrochemical Energy Storage Devices. 2021 , 2, 100654	1
157	Fabrication and testing of sodium-ion full cell with P2-Na0.67 Ni0.167Co0.167 Mn0.67O2 (Na-NCM) and hard carbon in coin cell and 2 Ah prismatic cell configuration. 2021 ,	
156	Rationally designed hierarchical N, P co-doped carbon connected 1T/2H-MoS2 heterostructures with cooperative effect as ultrafast and durable anode materials for efficient sodium storage. 2021 , 433, 133778	4
155	Regulating the Interlayer Spacings of Hard Carbon Nanofibers Enables Enhanced Pore Filling Sodium Storage. 2021 , e2105303	6
154	In-situ Li+ Insertion Induced Lithiophilic Expansion Graphite for Dendrite-Free Lithium Metal Anode. 2021 , 139646	O
153	Copper-Stabilized P'2-Type Layered Manganese Oxide Cathodes for High-Performance Sodium-Ion Batteries. 2021 ,	1
152	A comparative overview of carbon anodes for nonaqueous alkali metal-ion batteries. 2021 , 9, 27140-27169	1

151	Plasma-Promoted Surface Regulation of a Novel Integrative Carbon Network for Boosting the Long-Cycle Capability of Sodium-Ion Storage.	
150	Sodium Storage Mechanism and Optimization Strategies for Hard Carbon Anode of Sodium Ion Batteries. 2021 , 79, 1461	О
149	Elucidating the charge storage mechanism of carbonaceous and organic electrode materials for sodium ion batteries. 2021 ,	2
148	Graphene inducing graphitization: Towards a hard carbon anode with ultrahigh initial coulombic efficiency for sodium storage. 2022 , 434, 134503	2
147	One-step sonochemical fabrication of biomass-derived porous hard carbons; towards tuned-surface anodes of sodium-ion batteries 2021 , 611, 578-587	6
146	Nanostructured materials for sodium-ion batteries. 2021 , 165-197	
145	Molecular Tuning of Sulfur Doped Quinoline Oligomer Derived Soft Carbon for Superior Potassium Storage.	
144	An Overview of Graphene-Based 2D/3D Nanostructures for Photocatalytic Applications. 1	O
143	Sulfur/Nitrogen Co-Doped In-Plane Porous Carbon Nanosheets as Superior Anode of Potassium-Ion Batteries.	
142	Porous carbons for energy storage and conversion. 2022 , 239-540	
142	Porous carbons for energy storage and conversion. 2022, 239-540 Hierarchical Porous and Sandwich-like Sulfur-Doped Carbon Nanosheets as High-Performance Anodes for Sodium-Ion Batteries. 2022, 61, 2126-2135	1
·	Hierarchical Porous and Sandwich-like Sulfur-Doped Carbon Nanosheets as High-Performance	1
141	Hierarchical Porous and Sandwich-like Sulfur-Doped Carbon Nanosheets as High-Performance Anodes for Sodium-Ion Batteries. 2022 , 61, 2126-2135 Conductivity mechanism in ionic 2D carbon nitrides: from hydrated ion motion to enhanced	
141	Hierarchical Porous and Sandwich-like Sulfur-Doped Carbon Nanosheets as High-Performance Anodes for Sodium-Ion Batteries. 2022, 61, 2126-2135 Conductivity mechanism in ionic 2D carbon nitrides: from hydrated ion motion to enhanced photocatalysis. 2021, e2107061 Nitrogen-doped porous carbon derived from bimetallic zeolitic imidazolate frameworks for	10
141 140 139	Hierarchical Porous and Sandwich-like Sulfur-Doped Carbon Nanosheets as High-Performance Anodes for Sodium-Ion Batteries. 2022, 61, 2126-2135 Conductivity mechanism in ionic 2D carbon nitrides: from hydrated ion motion to enhanced photocatalysis. 2021, e2107061 Nitrogen-doped porous carbon derived from bimetallic zeolitic imidazolate frameworks for electrochemical Li+/Na+ storage. 2022, 26, 683-693 Bacterial cellulose-derived micro/mesoporous carbon anode materials controlled by poly(methyl	10
141 140 139	Hierarchical Porous and Sandwich-like Sulfur-Doped Carbon Nanosheets as High-Performance Anodes for Sodium-Ion Batteries. 2022, 61, 2126-2135 Conductivity mechanism in ionic 2D carbon nitrides: from hydrated ion motion to enhanced photocatalysis. 2021, e2107061 Nitrogen-doped porous carbon derived from bimetallic zeolitic imidazolate frameworks for electrochemical Li+/Na+ storage. 2022, 26, 683-693 Bacterial cellulose-derived micro/mesoporous carbon anode materials controlled by poly(methyl methacrylate) for fast sodium ion transport 2022, Enabling Fast Na Transfer Kinetics in the Whole-Voltage-Region of Hard Carbon Anodes for	0
141 140 139 138	Hierarchical Porous and Sandwich-like Sulfur-Doped Carbon Nanosheets as High-Performance Anodes for Sodium-Ion Batteries. 2022, 61, 2126-2135 Conductivity mechanism in ionic 2D carbon nitrides: from hydrated ion motion to enhanced photocatalysis. 2021, e2107061 Nitrogen-doped porous carbon derived from bimetallic zeolitic imidazolate frameworks for electrochemical Li+/Na+ storage. 2022, 26, 683-693 Bacterial cellulose-derived micro/mesoporous carbon anode materials controlled by poly(methyl methacrylate) for fast sodium ion transport 2022, Enabling Fast Na Transfer Kinetics in the Whole-Voltage-Region of Hard Carbon Anodes for Ultrahigh Rate Sodium Storage 2022, e2109282 Cation-Dependent Hydrogel Template-Activation Strategy: Constructing 3D Anode and High	10 0 3 11

133	CoS2/MnS2 co-doped ZIF-derived nitrogen doped high surface area carbon-based electrode for high-performance supercapacitors. 2022 , 407, 139914	1
132	Molecular tuning of sulfur doped quinoline oligomer derived soft carbon for superior potassium storage. 2022 , 191, 10-18	3
131	Plasma-promoted surface regulation of a novel integrative carbon network for boosting the long-cycle capability of sodium-ion storage. 2022 , 191, 112-121	1
130	One-step fabrication of nitrogen-doped laser-induced graphene derived from melamine/polyimide for enhanced flexible supercapacitors.	o
129	A Reanalysis of the Diverse Sodium Species in Carbon Anodes for Sodium Ion Batteries: A Thermodynamic View. 2021 , 11, 2102489	7
128	Ultralong Cycle Life and High Rate Sodium-Ion Batteries Enabled by Surface-Dominated Storage of 3d Hollow Carbon Spheres.	
127	Assessment on the Stable and High-Capacity Na-Se Batteries with Carbonate Electrolytes.	
126	Application of rich-defect expanded graphite with improved ion transport and kinetics for sodium storage at low temperature. 2022 , 6, 1727-1732	
125	N/O Co-doped Hard Carbon derived from Cocklebur Fruit for Sodium-Ion Storage.	2
124	Current advancement on anode materials for Na-ion batteries: Review. 2022,	О
123	Introducing the Solvent Co-Intercalation Mechanism for Hard Carbon with Ultrafast Sodium Storage 2022 , e2108092	3
122	High-performance Sn-based anode with robust lignin-derived hard carbon support for sodium-ion batteries.	О
121	Sodium Storage Mechanism of Nongraphitic Carbons: A General Model and the Function of Accessible Closed Pores.	1
120	Recent Advances in Biomass-Derived Carbon Materials for Sodium-Ion Energy Storage Devices 2022 , 12,	O
119	Vegetal-Extracted Polyphenols as a Natural Hard Carbon Anode Source for Na-Ion Batteries.	О
118	Ordered sodium zeolite-templated carbon with high first discharge capacity for sodium battery application. 2022 , 336, 111853	2
117	Unexpected Selective Absorption of Lithium in Thermally Reduced Graphene Oxide Membranes. 2021 , 38, 116802	О
116	Multilayer Load and Fast Diffusion of Metal Ions on a Ti2CS2/Blue Phosphorene Heterostructure Anode. 2022 , 126, 91-101	О

115	Modulating the Graphitic Domains of Hard Carbons Derived from Mixed Pitch and Resin to Achieve High Rate and Stable Sodium Storage. 2021 , e2105568	7
114	Rechargeable Batteries: Regulating Electronic and Ionic Transports for High Electrochemical Performance. 2101107	1
113	Assessment on the Stable and High-Capacity Na-Se Batteries with Carbonate Electrolytes.	
112	Inhibiting the cyclization of PAN by carboxyl groups for carbon nanofibers with balanced Na+storage performance and ICE. 2022 , 153447	
111	Sustainable Synthesis of N/S-Doped Porous Carbon from Waste-Biomass as Electroactive Material for Energy Harvesting. 2022 , 12, 436	2
110	In Situ Electrochemical Derivation of Sodium-Tin Alloy as Sodium-Ion Energy Storage Devices Anode with Overall Electrochemical Characteristics. 2022 , 12, 575	O
109	Towards Enhanced Sodium Storage of Hard Carbon Anodes: Regulating the Oxygen Content in Precursor by Low-Temperature Hydrogen Reduction.	
108	Electrode materials for reversible sodium ions de/intercalation. 2022,	
107	Tailoring the Surface Chemistry of Hard Carbon Towards High-Efficiency Sodium Ion Storage.	0
106	Effect of Sintering Temperature on the Microstructure of Green Petroleum Coke and Performance Verification by Sodium-Ion Battery.	
105	Architecting Braided Porous Carbon Fibers Based on High-Density Catalytic Crystal Planes to Achieve Highly Reversible Sodium-Ion Storage 2022 , e2104780	2
104	Tea-derived carbon materials as anode for high-performance sodium ion batteries. 2022,	1
103	Hard-Carbon Anodes for Sodium-Ion Batteries: Recent Status and Challenging Perspectives. 2200009	2
102	Porous Microspheres Comprising CoSe Nanorods Coated with N-Doped Graphitic C and Polydopamine-Derived C as Anodes for Long-Lived Na-Ion Batteries 2022 , 14, 113	3
101	Microcrystalline Hybridization Enhanced Coal-Based Carbon Anode for Advanced Sodium-Ion Batteries 2022 , e2200023	4
100	Engineering Stress-Release Structures Based on Biological Swelling in Carbon Fibers for Stable Sodium Ion Storage.	
99	Gradient Supramolecular Preorganization Endows the Derived N/P Dual-Doped Carbon Nanosheets with Tunable Storage Performance toward Sodium-Ion Batteries.	0
98	An Overall Understanding of Sodium Storage Behaviors in Hard Carbons by an Adsorption-Intercalation/Filling[Hybrid Mechanism. 2200886	15

97	Nanocasting construction of few-graphene-layers carbon with tunable layer spacing as ultra-stable anode for sodium-ion batteries. 2022 , 419, 140423	О
96	Insights into Synergistic Effect of g-C3N4/Graphite Heterostructures for Boosting Sodium Ion Storage with Long Cycle Stability.	O
95	Replacing Alkyllwith Aryllfor inducing accessible channels to closed pores as plateau-dominated sodium-ion battery anode.	2
94	Freestanding niobium pentoxide-decorated multiwalled carbon nanotube electrode: Charge storage mechanism in sodium-ion pseudocapacitor and battery. 2022 , 52, 104793	2
93	Sulfur-Doped®iomass Based Hard Carbon as High Performance Anode Material for Sodium-Ion Batteries.	
92	Coal-based hierarchically porous carbon nanofibers as high-performance anode for sodium-ion batteries.	1
91	Vanadium-modified hard carbon spheres with sufficient pseudographitic domains as high-performance anode for sodium-ion batteries.	1
90	Understanding of the sodium storage mechanism in hard carbon anodes.	12
89	Hard carbon derived from hazelnut shell with facile HCl treatment as high-initial-coulombic-efficiency anode for sodium ion batteries. 2022 , e00446	0
88	Richly electron-deficient BCxO3N anodes with enhanced reaction kinetics for sodium/potassium-ion batteries.	O
87	Recent Advances in Carbon Anodes for Sodium-Ion Batteries.	3
86	Advances in Carbon Materials for Sodium and Potassium Storage. 2203117	10
85	Hard carbon derived for lignin with robust and low-potential sodium ion storage. 2022, 116526	2
84	A 3D-Printed, Freestanding Carbon Lattice for Sodium Ion Batteries. 2202277	1
83	Assessment on the Stable and High-Capacity Na-Se Batteries with Carbonate Electrolytes.	
82	Understanding of Sodium Storage Mechanism in Hard Carbons: Ongoing Development under Debate. 2200715	10
81	Carbohydrate assisted preparation of N-doped hierarchically porous carbons from melamine resin via high internal phase emulsion template. 2022 , 341, 112039	0
80	Activated carbon derived from cherry flower biowaste with a self-doped heteroatom and large specific surface area for supercapacitor and sodium-ion battery applications. 2022 , 303, 135290	5

79	Constructing high-performance N-doped carbon nanotubes anode by tuning interlayer spacing and the compatibility mechanism with ether electrolyte for sodium-ion batteries. 2022 , 446, 137427	1
78	Plant-derived hard carbon as anode for sodium-ion batteries: A comprehensive review to guide interdisciplinary research. 2022 , 447, 137468	3
77	Origin of enhanced reversible Na ion storage in hard carbon anodes through p-type molecular doping.	О
76	Advances and Challenges in Metal Selenides Enabled by Nanostructures for Electrochemical Energy Storage Applications.	Ο
75	Multi-scale structure optimization of boron-doped hard carbon nanospheres boosting plateau capacity for high performance sodium ion battery.	1
74	ZIF -67 derived ternary NiMnCo -based nanoporous carbon material for methanol oxidation reaction.	
73	3D Hierarchical Graphene-CNT Anode for Sodium-Ion Batteries: a First-Principles Assessment. 2200227	
72	Review of electrolyte strategies for competitive dual-ion batteries. 2022 , 100188	1
71	Research progress on carbon materials as negative electrodes in sodium- and potassium-ion batteries.	4
70	Effect of ultramicropores and inner space of carbon materials on the capacitive sodium storage performance. 2022 , 73, 35-40	
69	Towards enhanced sodium storage of hard carbon anodes: Regulating the oxygen content in precursor by low-temperature hydrogen reduction. 2022 , 51, 620-629	3
68	Metallic Penta-BN2 monolayer: A novel platform for non-lithium-ion batteries with high capacity and splendid cyclicity. 2022 , 149, 106849	O
67	Unraveling the Key Atomic Interactions in Determining the Varying Li/Na/K Storage Mechanism of Hard Carbon Anodes. 2201734	1
66	Completely crystalline carbon containing graphite-like crystal enables 99.5% initial coulombic efficiency for Na-ion batteries. 2022 ,	1
65	Eco-Friendly Synthesis of 3D Disordered Carbon Materials for High-Performance Dual Carbon Na-Ion Capacitors.	О
64	Na ion batteries: An India centric review. 2022 , 8, e10013	O
63	Insight into the Effects of Operation Temperature on the Electrochemical Reactions of SnO2 as an Anode in Sodium-Ion Batteries.	
62	Pineapple leaf fibers (PALF) as the sustainable carbon anode material for lithium-ion batteries. 2022 , 33, 18961-18981	Ο

61	Facile synthesis of N/O dual-doped carbon spheres with excellent electrochemical performance. 2022 , 132, 106980	0
60	Ultralong cycle life and high rate sodium-ion batteries enabled by surface-dominated storage of 3D hollow carbon spheres. 2022 , 926, 166646	o
59	Sulfur-doping biomass based hard carbon as high performance anode material for sodium-ion batteries. 2022 , 923, 116769	O
58	MetalBrganic framework-derived heteroatom-doped nanoarchitectures for electrochemical energy storage: Recent advances and future perspectives. 2022 , 52, 685-735	2
57	Assembly and electrochemical testing of renewable carbon-based anodes in SIBs: A practical guide. 2022 , 75, 457-477	0
56	Tuning the structural stability and electrochemical properties in graphene anode materials by B doping: a first-principles study. 2022 , 24, 21452-21460	o
55	Carbon nanostructures and 2D transition metal dichalcogenides. 2022 , 537-556	0
54	Recent advances in novel graphene: new horizons in renewable energy storage technologies. 2022 , 10, 11472-11531	1
53	Bioinspired redox-coupled conversion reaction in FeOOH-acetate hybrid nanoplatelets for Na ion battery. 2022 , 10, 17740-17751	0
52	Advanced carbon nanomaterialBased anodes for sodium-ion batteries. 2022 , 251-272	o
51	Sulfur-Doping Biomass Based Hard Carbon as High Performance Anode Material for Sodium-Ion Batteries.	0
50	Carbon-Based Nanomaterials for Metal-Ion Batteries. 2022 , 209-226	О
49	Edge-enriched and S-doped carbon nanorods to accelerate electrochemical kinetics of sodium/potassium storage. 2023 , 201, 776-784	2
48	Chitin-Derived Heteroatom-Doped Porous Carbon for High-Performance Room-Temperature Na-S Batteries. 2022 , 5, 11825-11834	o
47	Rechargeable Dual-Carbon Batteries: A Sustainable Battery Technology. 2202450	1
46	Sb/N-Doped Carbon Nanofiber as a Sodium-Ion Battery Anode. 2200746	О
45	Comparative Electrochemical Study of Li+, Na+ and Mg2+-ion Insertion into VO2(B) from Aqueous Nitrate Solutions.	O
44	Mechanism of Efficient Adsorption of Na Atoms on Electron-Deficient Doped MoS2 for Battery Electrodes. 2022 , 18,	1

43	Constructing porous lignin-based carbon nanofiber anodes with flexibility for high-performance lithium/sodium-ion batteries. 2022 , 100234	O
42	Rechargeable Batteries for Grid Scale Energy Storage.	14
41	P-Doped Cotton Stalk Carbon for High-Performance Lithium-Ion Batteries and LithiumBulfur Batteries. 2022 , 38, 11610-11620	1
40	Materials synthesis for Na-ion batteries. 2022,	O
39	Structural engineering of bimetallic selenides for high-energy density sodium-ion half/full batteries.	1
38	Hard Carbons as Anodes in Sodium-Ion Batteries: Sodium Storage Mechanism and Optimization Strategies. 2022 , 27, 6516	0
37	Is There a Ready Recipe for Hard Carbon Electrode Engineering to Enhance Na-Ion Battery Performance?. 2022 , 5, 12373-12387	0
36	Edge-Nitrogen Enriched Porous Carbon Nanosheets Anodes with Enlarged Interlayer Distance for Fast Charging Sodium-Ion Batteries. 2204375	O
35	Recent Progress in Surface Coatings for Sodium-Ion Battery Electrode Materials. 2022, 5,	0
34	Mechanochemistry induced pore regulation and pyridinic nitrogen doping in anthracite derived carbon for sodium storage. 2022 , 130, 109481	O
33	Are Na-ion batteries nearing the energy storage tipping point? © urrent status of non-aqueous, aqueous, and solid-sate Na-ion battery technologies for sustainable energy storage. 2022, 56, 105961	0
32	Biomass derived erythrocyte-like hard carbon as anodes for high performing full sodium-ion batteries. 2022 , 286, 116064	O
31	Recent advances in chemical vapour deposition techniques for graphene-based nanoarchitectures: From synthesis to contemporary applications. 2023 , 475, 214910	2
30	Weak coulomb interaction between anions and Na+ during solvation enabling desirable solid electrolyte interphase and superior kinetics for HC-based sodium ion batteries. 2023 , 453, 139932	1
29	Biomass-derived hard carbon microtubes with tunable apertures for high-performance sodium-ion batteries.	О
28	A Novel Membrane-like 2D AEMoS2 as Anode for Lithium- and Sodium-Ion Batteries. 2022 , 12, 1156	O
27	Electrode/Electrolyte Interphases of Sodium-Ion Batteries. 2022, 15, 8615	О
26	Current progresses in two-dimensional MXene-based framework: prospects from superficial synthesis to energy conversion and storage applications. 2023 , 27, 101238	O

25	Electrospun Fe1-xS@nitrogen-doped carbon fibers as anode material for sodium-ion batteries. 2023 , 929, 117095	O
24	Sodium storage behavior and long cycle stability of boron-doped carbon nanofibers for sodium-ion battery anodes. 2023 , 439, 141730	O
23	Synthesis and electrochemical properties of multi-layered SnO/rGO composite as anode materials for sodium ion batteries. 2023 , 612, 155859	0
22	Regulating microstructure of walnut shell-derived hard carbon for high rate and long cycling sodium-based dual-ion batteries. 2022 , 140434	O
21	Tuning Nitrogen-Doped Carbon Electrodes via Synthesis Temperature Adjustment to Improve Sodium- and Lithium-Ion Storage. 2023 , 9, 45	O
20	Thermo-mechanical and opto-electrical study of Cr-doped-ZnO-based polyvinyl chloride nanocomposites. 2023 , 34,	O
19	Simple and efficient synthesis methods for fabricating anode materials of sodium-ion batteries and their sodium-ion storage mechanism study.	0
18	Heteroatom dopant strategy triggered high-potential plateau to non-graphitized carbon with highly disordered microstructure for high-performance sodium ion storage. 2023 ,	O
17	Electro-oxidation of solid CaC2 to carbon powder in molten salt. 2023 , 416, 118214	O
16	Agricultural Wastes for Full-Cell Sodium-Ion Batteries: Engineering Biomass Components to Maximize the Performance and Economic Prospects. 2023 , 11, 536-546	O
15	Hard carbon anodes derived from phenolic resin/sucrose cross-linking network for high-performance sodium-ion batteries. 20220054	1
14	Noncrystalline Carbon Anodes for Advanced Sodium-Ion Storage. 2201508	O
13	Design advanced nitrogen/oxygen co-doped hard carbon microspheres from phenolic resin with boosted Na-storage performance. 2023 , 564, 232879	O
12	Epoxy phenol novolac resin: A novel precursor to construct high performance hard carbon anode toward enhanced sodium-ion batteries. 2023 , 205, 353-364	1
11	Boosting sodium storage performance of hard carbons by regulating oxygen functionalities of the cross-linked asphalt precursor. 2023 , 206, 94-104	O
10	Smart Graphene-Based Electrochemical Nanobiosensor for Clinical Diagnosis: Review. 2023 , 23, 2240	O
9	Boosting the Initial Coulomb Efficiency of Sisal Fiber-Derived Carbon Anode for Sodium Ion Batteries by Microstructure Controlling. 2023 , 13, 881	0
8	Biomass-derived carbon anodes for sodium-ion batteries. 2023 , 38, 40-66	O

CITATION REPORT

7	Design of High-Performance Defective Graphite-Type Anodes for Sodium-Ion Batteries. 2023 , 6, 3854-3861	0
6	Improving the Initial Coulombic Efficiency of Carbonaceous Materials for Li/Na-Ion Batteries: Origins, Solutions, and Perspectives. 2023 , 6,	O
5	Pyrolysis temperature dependence of sodium storage mechanism in non-graphitizing carbons. 2023 , 208, 216-226	O
4	The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries. 2023 , 28, 3134	O
3	Recent Progress and Prospects of NASICON Framework Electrodes for Na-ion Batteries. 2023, 101128	O
2	Modulating the Graphitic Domains and Pore Structure of Corncob-Derived Hard Carbons by Pyrolysis to Improve Sodium Storage. 2023 , 28, 3595	O
1	Advances in sulfur-doped carbon materials for use as anodes in sodium-ion batteries. 2023 , 38, 305-316	0