Oceanic and terrestrial sources of continental precipita

Reviews of Geophysics 50, DOI: 10.1029/2012rg000389

Citation Report

#	Article	IF	CITATIONS
1	Role of continental recycling in intraseasonal variations of continental moisture as deduced from model simulations and water vapor isotopic measurements. Water Resources Research, 2013, 49, 4136-4156.	1.7	96
2	Observed and simulated precipitation responses in wet and dry regions 1850–2100. Environmental Research Letters, 2013, 8, 034002.	2.2	154
3	Variability of moisture sources in the Mediterranean region during the period 1980-2000. Water Resources Research, 2013, 49, 6781-6794.	1.7	38
4	Water isotopes as tools to document oceanic sources of precipitation. Water Resources Research, 2013, 49, 7469-7486.	1.7	108
5	Quantifying present and projected future atmospheric moisture transports onto land. Water Resources Research, 2013, 49, 7266-7277.	1.7	13
6	Influence of the intensification of the major oceanic moisture sources on continental precipitation. Geophysical Research Letters, 2013, 40, 1443-1450.	1.5	87
7	Chemical and isotopic characterisation of bulk deposition in the Louros basin (Epirus, Greece). Atmospheric Research, 2013, 132-133, 399-410.	1.8	15
8	Oceanic sources of continental precipitation and the correlation with sea surface temperature. Water Resources Research, 2013, 49, 3993-4004.	1.7	97
9	What controls precipitation δ ¹⁸ O in the southern Tibetan Plateau at seasonal and intra-seasonal scales? A case study at Lhasa and Nyalam. Tellus, Series B: Chemical and Physical Meteorology, 2022, 65, 21043.	0.8	75
10	Probabilistic Seasonal Forecasting of African Drought by Dynamical Models. Journal of Hydrometeorology, 2013, 14, 1706-1720.	0.7	71
11	On the "well-mixed" assumption and numerical 2-D tracing of atmospheric moisture. Atmospheric Chemistry and Physics, 2013, 13, 5567-5585.	1.9	65
12	Tracking atmospheric water pathways by direct evaporation tagging: A case study for West Africa. Journal of Geophysical Research D: Atmospheres, 2013, 118, 12,345.	1.2	47
13	Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking?. Hydrology and Earth System Sciences, 2013, 17, 4869-4884.	1.9	108
14	Explosive development of winter storm Xynthia over the subtropical North Atlantic Ocean. Natural Hazards and Earth System Sciences, 2013, 13, 2239-2251.	1.5	56
15	A vital link: water and vegetation in the Anthropocene. Hydrology and Earth System Sciences, 2013, 17, 3841-3852.	1.9	25
16	Grand challenges in atmospheric science. Frontiers in Earth Science, 2013, 1, .	0.8	19
17	The modulation of oceanic moisture transport by the hemispheric annular modes. Frontiers in Earth Science, 2014, 2, .	0.8	8
18	The role of the Amazon Basin moisture in the atmospheric branch of the hydrological cycle: a Lagrangian analysis. Hydrology and Earth System Sciences, 2014, 18, 2577-2598.	1.9	116

#	Article	IF	CITATIONS
19	Variability of moisture recycling using a precipitationshed framework. Hydrology and Earth System Sciences, 2014, 18, 3937-3950.	1.9	79
20	Contrasting roles of interception and transpiration in the hydrological cycle – Part 2: Moisture recycling. Earth System Dynamics, 2014, 5, 471-489.	2.7	127
21	Comparing Evaporative Sources of Terrestrial Precipitation and Their Extremes in MERRA Using Relative Entropy. Journal of Hydrometeorology, 2014, 15, 102-116.	0.7	38
22	Tracking the moisture sources of an extreme precipitation event in Shandong, China in July 2007: A computational analysis. Journal of Meteorological Research, 2014, 28, 634-644.	0.9	5
23	Precipitation Recycling in the Indian Subcontinent during Summer Monsoon. Journal of Hydrometeorology, 2014, 15, 2050-2066.	0.7	86
24	Moisture Sources of Semiarid Grassland in China Using the Lagrangian Particle Model FLEXPART. Journal of Climate, 2014, 27, 2457-2474.	1.2	114
25	Future changes to the intensity and frequency of short-duration extreme rainfall. Reviews of Geophysics, 2014, 52, 522-555.	9.0	911
26	Warm Conveyor Belts in the ERA-Interim Dataset (1979–2010). Part II: Moisture Origin and Relevance for Precipitation. Journal of Climate, 2014, 27, 27-40.	1.2	150
27	Temporal evolution of surface humidity in Spain: recent trends and possible physical mechanisms. Climate Dynamics, 2014, 42, 2655-2674.	1.7	71
28	Tracing river chemistry in space and time: Dissolved inorganic constituents of the Fraser River, Canada. Geochimica Et Cosmochimica Acta, 2014, 124, 283-308.	1.6	56
29	Oceanic sources of continental precipitation. Water Resources Research, 2014, 50, 3647-3649.	1.7	12
30	Moisture recycling in the Iberian Peninsula from a regional climate simulation: Spatiotemporal analysis and impact on the precipitation regime. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5895-5912.	1.2	42
31	Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resources Research, 2014, 50, 98-118.	1.7	143
32	A catalog of moisture sources for continental climatic regions. Water Resources Research, 2014, 50, 5322-5328.	1.7	25
33	Comparison of Eulerian and Lagrangian moisture source diagnostics – the flood event in eastern Europe in May 2010. Atmospheric Chemistry and Physics, 2014, 14, 6605-6619.	1.9	55
34	The role of the ENSO cycle in the modulation of moisture transport from major oceanic moisture sources. Water Resources Research, 2014, 50, 1046-1058.	1.7	29
35	Identification of coherent flood regions across Europe by using the longest streamflow records. Journal of Hydrology, 2015, 528, 341-360.	2.3	79
36	Contribution of transpiration and evaporation to precipitation: An ETâ€Tagging study for the Poyang Lake region in Southeast China. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6845-6864.	1.2	27

	CITATION	N REPORT	
#	Article	IF	CITATIONS
37	The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmospheric Chemistry and Physics, 2015, 15, 10723-10776.	1.9	218
38	Atlantic warm and cold water events and impact on African west coast precipitation. International Journal of Climatology, 2015, 35, 128-141.	1.5	32
39	The â€~island effect' in terrestrial global change experiments: a problem with no solution?. AoB PLANTS, 2015, 7, plv092.	1.2	17
40	RECICLAGEM DE PRECIPITAÇÃO NA AMAZÔNIA: UM ESTUDO DE REVISÃO. Revista Brasileira De Meteorologia, 2015, 30, 59-70.	0.2	25
41	Stable Isotope Anatomy of Tropical Cyclone Ita, North-Eastern Australia, April 2014. PLoS ONE, 2015, 10, e0119728.	1,1	49
42	Sea Surface Temperature Influence on Terrestrial Gross Primary Production along the Southern California Current. PLoS ONE, 2015, 10, e0125177.	1.1	13
43	Precipitation over Northern South America and Its Seasonal Variability as Simulated by the CMIP5 Models. Advances in Meteorology, 2015, 2015, 1-22.	0.6	58
44	Stable Water Isotopes in Climatology, Meteorology, and Hydrology: A Review. Journal of the Meteorological Society of Japan, 2015, 93, 513-533.	0.7	57
45	Atmospheric moisture transport: the bridge between ocean evaporation and Arctic ice melting. Earth System Dynamics, 2015, 6, 583-589.	2.7	21
46	Arctic moisture source for Eurasian snow cover variations in autumn. Environmental Research Letters, 2015, 10, 054015.	2.2	73
47	Evaluation of Oceanic and Terrestrial Sources of Moisture for the North American Monsoon Using Numerical Models and Precipitation Stable Isotopes. Journal of Hydrometeorology, 2015, 16, 19-35.	0.7	66
48	Satellite Microwave Retrieval of Total Precipitable Water Vapor and Surface Air Temperature Over Land From AMSR2. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 2520-2531.	2.7	58
49	Daily Precipitation Extreme Events in the Iberian Peninsula and Its Association with Atmospheric Rivers*. Journal of Hydrometeorology, 2015, 16, 579-597.	0.7	150
50	Compound-specific carbon isotope records of vegetation and hydrologic change in central Sulawesi, Indonesia, since 53,000 yr BP. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430, 47-56.	1.0	23
51	Holocene climate variability in Texas, USA: An integration of existing paleoclimate data and modeling with a new, high-resolution speleothem record. Quaternary Science Reviews, 2015, 127, 155-173.	1.4	43
52	Stable isotopic composition of atmospheric water vapor in Patras, Greece: A concentration weighted trajectory approach. Atmospheric Research, 2015, 152, 93-104.	1.8	43
53	The relationship between daily European precipitation and measures of atmospheric water vapour transport. International Journal of Climatology, 2015, 35, 2187-2192.	1.5	13
54	Tracking the Origin of Moisture over the Danube River Basin Using a Lagrangian Approach. Atmosphere, 2016, 7, 162.	1.0	23

#	Article	IF	CITATIONS
55	Atmospheric rivers moisture sources from a Lagrangian perspective. Earth System Dynamics, 2016, 7, 371-384.	2.7	65
56	Discussing the role of tropical and subtropical moisture sources in cold season extreme precipitation events in the Mediterranean region from a climate change perspective. Natural Hazards and Earth System Sciences, 2016, 16, 269-285.	1.5	19
57	A Lagrangian analysis of the present-day sources of moisture for major ice-core sites. Earth System Dynamics, 2016, 7, 549-558.	2.7	14
58	Impacts of Climate and Land Use/Cover Change on Streamflow Using SWAT and a Separation Method for the Xiying River Basin in Northwestern China. Water (Switzerland), 2016, 8, 192.	1.2	36
59	Anomalous patterns of SST and moisture sources in the South Atlantic Ocean associated with dry events in southeastern Brazil. International Journal of Climatology, 2016, 36, 4913-4928.	1.5	15
60	Precipitation recycling and soil-precipitation interaction across the arid and semi-arid regions of China. International Journal of Climatology, 2016, 36, 3708-3722.	1.5	26
61	A mathematical framework for analysis of water tracers: Part 1: Development of theory and application to the preindustrial mean state. Journal of Advances in Modeling Earth Systems, 2016, 8, 991-1013.	1.3	27
62	Contribution of water-limited ecoregions to their own supply of rainfall. Environmental Research Letters, 2016, 11, 124007.	2.2	47
63	Evaporation tagging and atmospheric water budget analysis with WRF: A regional precipitation recycling study for West Africa. Water Resources Research, 2016, 52, 1544-1567.	1.7	41
64	North Atlantic salinity as a predictor of Sahel rainfall. Science Advances, 2016, 2, e1501588.	4.7	31
65	Atmospheric controls on the precipitation isotopes over the Andaman Islands, Bay of Bengal. Scientific Reports, 2016, 6, 19555.	1.6	71
66	Atmospheric Moisture Sources, Paths, and the Quantitative Importance to the Eastern Asian Monsoon Region. Journal of Hydrometeorology, 2016, 17, 637-649.	0.7	25
67	A synoptic overview and moisture trajectory analysis of the "7.21―heavy rainfall event in Beijing. Journal of Meteorological Research, 2016, 30, 103-116.	0.9	9
68	Contribution of glacial melt to river runoff as determined by stable isotopes at the source region of the Yangtze River, China. Hydrology Research, 2016, 47, 442-453.	1.1	13
69	Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annual Review of Environment and Resources, 2016, 41, 117-141.	5.6	177
70	Increased Drought and Pluvial Risk over California due to Changing Oceanic Conditions. Journal of Climate, 2016, 29, 8269-8279.	1.2	19
71	Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Reviews of Geophysics, 2016, 54, 809-865.	9.0	241
72	Moisture transport into the Arctic: Sourceâ€receptor relationships and the roles of atmospheric circulation and evaporation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,493.	1.2	40

#	Article	IF	CITATIONS
73	A Simple Moisture Advection Model of Specific Humidity Change over Land in Response to SST Warming. Journal of Climate, 2016, 29, 7613-7632.	1.2	52
74	Deuterium excess in precipitation and water vapor origins over Japan: A review. Journal of Japanese Association of Hydrological Sciences, 2016, 46, 101-115.	0.2	3
75	Evaluation of historical and future simulations of precipitation and temperature in central Africa from CMIP5 climate models. Journal of Geophysical Research D: Atmospheres, 2016, 121, 130-152.	1.2	116
76	Different atmospheric moisture divergence responses to extreme and moderate El Niños. Climate Dynamics, 2016, 47, 393-410.	1.7	13
77	Spatiotemporal structure of the moisture sources feeding heavy precipitation events over the Sichuan Basin. International Journal of Climatology, 2016, 36, 3446-3457.	1.5	20
78	WRF with Water Vapor Tracers: A Study of Moisture Sources for the North American Monsoon. Journal of Hydrometeorology, 2016, 17, 1915-1927.	0.7	58
79	Source of atmospheric moisture and precipitation over China's major river basins. Frontiers of Earth Science, 2016, 10, 159-170.	0.9	23
80	Implications of North Atlantic Sea Surface Salinity for Summer Precipitation over the U.S. Midwest: Mechanisms and Predictive Value. Journal of Climate, 2016, 29, 3143-3159.	1.2	42
81	Characteristics of the precipitation recycling ratio and its relationship with regional precipitation in China. Theoretical and Applied Climatology, 2017, 127, 513-531.	1.3	47
82	Twentieth-century atmospheric river activity along the west coasts of Europe and North America: algorithm formulation, reanalysis uncertainty and links to atmospheric circulation patterns. Climate Dynamics, 2017, 48, 2771-2795.	1.7	61
83	Responses of European precipitation distributions and regimes to different blocking locations. Climate Dynamics, 2017, 48, 1141-1160.	1.7	69
84	The Global Ocean Water Cycle in Atmospheric Reanalysis, Satellite, and Ocean Salinity. Journal of Climate, 2017, 30, 3829-3852.	1.2	37
85	The effect of moisture source and synoptic conditions on precipitation isotopes in arid central Asia. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2667-2682.	1.2	89
86	Impact of moisture source variation on decadalâ€scale changes of precipitation in North China from 1951 to 2010. Journal of Geophysical Research D: Atmospheres, 2017, 122, 600-613.	1.2	71
87	Sources of Water Vapor to Economically Relevant Regions in Amazonia and the Effect of Deforestation. Journal of Hydrometeorology, 2017, 18, 1643-1655.	0.7	15
88	Role of Oceanic and Land Moisture Sources and Transport in the Seasonal and Interannual Variability of Summer Monsoon in India. Journal of Climate, 2017, 30, 1839-1859.	1.2	82
89	Drought episodes in the climatological sinks of the Mediterranean moisture source: The role of moisture transport. Global and Planetary Change, 2017, 151, 4-14.	1.6	30
90	Estimation of the Isotopic Composition and Origins of Winter Precipitation Over Japan Using a Regional Isotope Circulation Model. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,621.	1.2	12

		CITATION REPO	ORT	
#	Article	I	F	CITATIONS
91	Recurrence measure of conditional dependence and applications. Physical Review E, 2017, 95, 05	2206. (0.8	31
92	Testing a Novel Method for Initializing Air Parcel Back Trajectories in Precipitating Clouds Using Reanalysis Data. Journal of Atmospheric and Oceanic Technology, 2017, 34, 2393-2405.		0.5	4
93	Rapid termination of the African Humid Period triggered by northern high-latitude cooling. Nature Communications, 2017, 8, 1372.	Ę	5.8	62
94	An Introduction to an Algorithm for Extracting Precipitable Water Vapor Over Land From AMSR2 Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 3975-3984.	10, 2	2.3	20
95	Decadal Transition of Moisture Sources and Transport in Northwestern China During Summer Fro 1982 to 2010. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,522.	m :	1.2	42
96	Wet Spells and Associated Moisture Sources Anomalies across Danube River Basin. Water (Switzerland), 2017, 9, 615.		1.2	10
97	Extreme Sea Ice Loss over the Arctic: An Analysis Based on Anomalous Moisture Transport. Atmosphere, 2017, 8, 32.	I	L.O	9
98	The Niger River Basin Moisture Sources: A Lagrangian Analysis. Atmosphere, 2017, 8, 38.		L.O	10
99	The Impacts of Atmospheric Moisture Transportation on Warm Sector Torrential Rains over South China. Atmosphere, 2017, 8, 116.	' I	L.O	8
100	Moisture Transport Anomalies over the Danube River Basin during Two Drought Events: A Lagrang Analysis. Atmosphere, 2017, 8, 193.	gian 1	L.O	18
101	Diagnosis of the Tropical Moisture Exports to the Mid-Latitudes and the Role of Atmospheric Stee in the Extreme Precipitation. Atmosphere, 2017, 8, 256.	ring _	L.O	18
102	Role of moisture transport for Central American precipitation. Earth System Dynamics, 2017, 8, 1	47-161. 2	2.7	68
103	The residence time of water in the atmosphere revisited. Hydrology and Earth System Sciences, 20 779-790.)17, 21,	L.9	162
104	The atmospheric branch of the hydrological cycle over the Indus, Ganges, and Brahmaputra river basins. Hydrology and Earth System Sciences, 2017, 21, 6379-6399.		L.9	11
105	Precipitable water characteristics during the 2013 Colorado flood using ground-based GPS measurements. Atmospheric Measurement Techniques, 2017, 10, 4055-4066.	1	1.2	9
106	A Lagrangian perspective of the hydrological cycle in the Congo River basin. Earth System Dynami 2017, 8, 653-675.	cs,	2.7	52
107	Source apportionment of atmospheric water over East Asia – a source tracer study in CAM5.1. Geoscientific Model Development, 2017, 10, 673-688.	I	L.3	24
108	Estimates of land and sea moisture contributions to the monsoonal rain over Kolkata, deduced ba on isotopic analysis of rainwater. Earth System Dynamics, 2017, 8, 313-321.	sed	2.7	15

.

#	Article	IF	CITATIONS
109	Current state and future challenges in stable isotope applications of the tropical hydrologic cycle (<i>Invited Commentary</i>). Hydrological Processes, 2018, 32, 1313-1317.	1.1	10
110	Conjoint Analysis of Surface and Atmospheric Water Balances in the Andesâ€Amazon System. Water Resources Research, 2018, 54, 3472-3489.	1.7	38
111	Quantitative diagnosis of moisture sources and transport pathways for summer precipitation over the mid-lower Yangtze River Basin. Journal of Hydrology, 2018, 559, 252-265.	2.3	28
112	Quantifying oceanic moisture exports to mainland China in association with summer precipitation. Climate Dynamics, 2018, 51, 4271-4286.	1.7	12
113	Understanding the Dominant Sources and Tracks of Moisture for Summer Rainfall in the Southwest United States. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4850-4870.	1.2	45
114	Forests, atmospheric water and an uncertain future: the new biology of the global water cycle. Forest Ecosystems, 2018, 5, .	1.3	99
115	Atmospheric moisture transport versus precipitation across the Tibetan Plateau: A mini-review and current challenges. Atmospheric Research, 2018, 209, 50-58.	1.8	56
116	Chemical evidence of inter-hemispheric air mass intrusion into the Northern Hemisphere mid-latitudes. Scientific Reports, 2018, 8, 4669.	1.6	11
117	A Lagrangian analysis of the moisture budget over the Fertile Crescent during two intense drought episodes. Journal of Hydrology, 2018, 560, 382-395.	2.3	20
118	The contributions of local and remote atmospheric moisture fluxes to East Asian precipitation and its variability. Climate Dynamics, 2018, 51, 4139-4156.	1.7	45
119	The role of the subtropical North Atlantic water cycle in recent US extreme precipitation events. Climate Dynamics, 2018, 50, 1291-1305.	1.7	21
120	Nonlinear interactions between the Amazon River basin and the Tropical North Atlantic at interannual timescales. Climate Dynamics, 2018, 50, 2951-2969.	1.7	35
121	Tagging moisture sources with Lagrangian and inertial tracers: application to intense atmospheric river events. Earth System Dynamics, 2018, 9, 785-795.	2.7	4
122	From climatological to small-scale applications: simulating water isotopologues with ICON-ART-Iso (version 2.3). Geoscientific Model Development, 2018, 11, 5113-5133.	1.3	10
123	Analysis of atmospheric moisture transport to the Upper ParanÃ _i River basin. International Journal of Climatology, 2018, 38, 5153-5167.	1.5	7
124	New Insights on Land Surface-Atmosphere Feedbacks over Tropical South America at Interannual Timescales. Water (Switzerland), 2018, 10, 1095.	1.2	12
125	A stalagmite test of North Atlantic SST and Iberian hydroclimate linkages over the last two glacial cycles. Climate of the Past, 2018, 14, 1893-1913.	1.3	21
126	Interannual Variation and Regime Shift of the Evaporative Moisture Sources for Wintertime Precipitation Over Southern China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,168.	1.2	8

#	Article	lF	CITATIONS
127	The Role of Moisture Sources and Climatic Teleconnections in Northeastern and South-Central Iran's Hydro-Climatology. Water (Switzerland), 2018, 10, 1550.	1.2	17
128	The Identification of Iran's Moisture Sources Using a Lagrangian Particle Dispersion Model. Atmosphere, 2018, 9, 408.	1.0	24
129	Variations in Moisture Supply from the Mediterranean Sea during Meteorological Drought Episodes over Central Europe. Atmosphere, 2018, 9, 278.	1.0	15
130	Extending seasonal predictability of Yangtze River summer floods. Hydrology and Earth System Sciences, 2018, 22, 4201-4211.	1.9	17
131	A new pattern of the moisture transport for precipitation related to the drastic decline in Arctic sea ice extent. Earth System Dynamics, 2018, 9, 611-625.	2.7	24
132	Atmosphere-Land Bridge between the Pacific and Tropical North Atlantic SST's through the Amazon River basin during the 2005 and 2010 droughts. Chaos, 2018, 28, 085705.	1.0	6
133	A Climatology of Strong Large-Scale Ocean Evaporation Events. Part I: Identification, Global Distribution, and Associated Climate Conditions. Journal of Climate, 2018, 31, 7287-7312.	1.2	34
134	Contribution of Moisture from Mediterranean Sea to Extreme Precipitation Events over Danube River Basin. Water (Switzerland), 2018, 10, 1182.	1.2	8
135	Scaling properties reveal regulation of river flows in the Amazon through a "forest reservoir― Hydrology and Earth System Sciences, 2018, 22, 1735-1748.	1.9	23
136	Understanding weather and climate of the last 300 years from ships' logbooks. Wiley Interdisciplinary Reviews: Climate Change, 2018, 9, e544.	3.6	17
137	A new moisture tagging capability in the Weather Research and Forecasting model: formulation, validation and application to the 2014 Great Lake-effect snowstorm. Earth System Dynamics, 2018, 9, 167-185.	2.7	49
138	Geostatistical assessment of warm-season precipitation observations in Korea based on the composite precipitation and satellite water vapor data. Hydrology and Earth System Sciences, 2018, 22, 3435-3452.	1.9	8
139	Analysis of the Long-term Precipitation Trend in Illinois and Its Implications for Agricultural Production. Water (Switzerland), 2018, 10, 433.	1.2	15
140	Anomalies in Moisture Supply during the 2003 Drought Event in Europe: A Lagrangian Analysis. Water (Switzerland), 2018, 10, 467.	1.2	19
141	The Mediterranean Moisture Contribution to Climatological and Extreme Monthly Continental Precipitation. Water (Switzerland), 2018, 10, 519.	1.2	19
142	Human Water Use Impacts on the Strength of the Continental Sink for Atmospheric Water. Geophysical Research Letters, 2018, 45, 4068-4076.	1.5	36
143	Lagged influence of Atlantic and Pacific climate patterns on European extreme precipitation. Scientific Reports, 2018, 8, 5748.	1.6	58
144	Carbon-optimised land management strategies for southern Amazonia. Regional Environmental Change, 2018, 18, 1-9.	1.4	9

#	Article	IF	CITATIONS
145	The Effects of Tropical Vegetation on Rainfall. Annual Review of Environment and Resources, 2018, 43, 193-218.	5.6	87
146	Super Storm Desmond: a process-based assessment. Environmental Research Letters, 2018, 13, 014024.	2.2	23
147	Synoptic-Scale Control over Modern Rainfall and Flood Patterns in the Levant Drylands with Implications for Past Climates. Journal of Hydrometeorology, 2018, 19, 1077-1096.	0.7	47
148	Moisture Sources for Wintertime Extreme Precipitation Events Over South China During 1979–2013. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6690-6712.	1.2	36
149	The Atmospheric Moisture Residence Time and Reference Time for Moisture Tracking over China. Journal of Hydrometeorology, 2018, 19, 1131-1147.	0.7	13
150	Characteristics and synoptic environment of torrential rain in the warm sector over South China: a composite study. Meteorology and Atmospheric Physics, 2019, 131, 1191-1203.	0.9	6
151	Regime shift of global oceanic evaporation in the late 1990s using OAFlux dataset. Theoretical and Applied Climatology, 2019, 136, 1407-1417.	1.3	2
153	Amplification of mega-heatwaves through heat torrents fuelled by upwind drought. Nature Geoscience, 2019, 12, 712-717.	5.4	168
154	On the Connection between Atmospheric Moisture Transport and Dry Conditions in Rainfall Climatological Zones of the Niger River Basin. Water (Switzerland), 2019, 11, 622.	1.2	8
155	A quantitative study of moisture transport variation on the interdecadal variation of the summer precipitation in South China from 1979 to 2015. Climate Dynamics, 2019, 53, 4743-4761.	1.7	15
156	Suppression of winter heavy precipitation in Southeastern China by the Kuroshio warm current. Climate Dynamics, 2019, 53, 2437-2450.	1.7	4
157	Contribution of the main moisture sources to precipitation during extreme peak precipitation months. Advances in Water Resources, 2019, 131, 103385.	1.7	27
158	Investigating Land Surface Effects on the Moisture Transport over South America with a Moisture Tagging Model. Journal of Climate, 2019, 32, 6627-6644.	1.2	37
159	Diagnosing Moisture Sources for Flash Floods in the United States. Part II: Terrestrial and Oceanic Sources of Moisture. Journal of Hydrometeorology, 2019, 20, 1511-1531.	0.7	13
160	Land–atmosphere interactions in the tropics – a review. Hydrology and Earth System Sciences, 2019, 23, 4171-4197.	1.9	43
161	Water Pathways for the Hindu-Kush-Himalaya and an Analysis of Three Flood Events. Atmosphere, 2019, 10, 489.	1.0	9
162	Characterization of Moisture Sources for Austral Seas and Relationship with Sea Ice Concentration. Atmosphere, 2019, 10, 627.	1.0	2
163	A Precipitation Recycling Network to Assess Freshwater Vulnerability: Challenging the Watershed Convention. Water Resources Research, 2019, 55, 9947-9961.	1.7	33

#	Article	IF	CITATIONS
164	Local and remote moisture sources for extreme precipitation: a study of the two catastrophic 1982 western Mediterranean episodes. Hydrology and Earth System Sciences, 2019, 23, 3885-3900.	1.9	16
165	Identifying and contrasting the sources of the water vapor reaching the subregions of the Tibetan Plateau during the wet season. Climate Dynamics, 2019, 53, 6891-6907.	1.7	48
166	Role of Moisture Transport and Recycling in Characterizing Droughts: Perspectives from Two Recent U.S. Droughts and the CFSv2 System. Journal of Hydrometeorology, 2019, 20, 139-154.	0.7	22
167	A database of optimal integration times for Lagrangian studies of atmospheric moisture sources and sinks. Scientific Data, 2019, 6, 59.	2.4	38
168	Satellite Remote Sensing of Precipitation and the Terrestrial Water Cycle in a Changing Climate. Remote Sensing, 2019, 11, 2301.	1.8	81
169	Impacts of Wintertime Extratropical Cyclones on Temperature and Precipitation Over Northeastern China During 1979–2016. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1514-1536.	1.2	11
170	Satellite Salinity Observing System: Recent Discoveries and the Way Forward. Frontiers in Marine Science, 2019, 6, .	1.2	120
171	Global climatology of nocturnal low-level jets and associated moisture sources and sinks. Atmospheric Research, 2019, 229, 39-59.	1.8	28
172	The role of moisture transport for precipitation in the inter-annual and inter-daily fluctuations of the Arctic sea ice extension. Earth System Dynamics, 2019, 10, 121-133.	2.7	8
173	Atmospheric moisture transport and the decline in Arctic Sea ice. Wiley Interdisciplinary Reviews: Climate Change, 2019, 10, e588.	3.6	22
174	On the assessment of the moisture transport by the Great Plains low-level jet. Earth System Dynamics, 2019, 10, 107-119.	2.7	28
175	Contribution of atmospheric moisture transport to winter Arctic warming. International Journal of Climatology, 2019, 39, 2697-2710.	1.5	18
176	Reduced Moisture Transport Linked to Drought Propagation Across North America. Geophysical Research Letters, 2019, 46, 5243-5253.	1.5	64
177	On the Moisture Origins of Tornadic Thunderstorms. Journal of Climate, 2019, 32, 4321-4346.	1.2	24
178	The European 2016/17 Drought. Journal of Climate, 2019, 32, 3169-3187.	1.2	86
179	Vertically integrated moisture flux convergence over Iran. Climate Dynamics, 2019, 53, 3561-3582.	1.7	16
180	Assessment of Uncertainties in Scenario Simulations of Biogeochemical Cycles in the Baltic Sea. Frontiers in Marine Science, 2019, 6, .	1.2	31
181	Linking Anomalous Moisture Transport And Drought Episodes in the IPCC Reference Regions. Bulletin of the American Meteorological Society, 2019, 100, 1481-1498.	1.7	33

#	Article	IF	CITATIONS
182	Forestâ€Induced Exponential Growth of Precipitation Along Climatological Wind Streamlines Over the Amazon. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2589-2599.	1.2	41
183	Atmospheric Water Transport to the Endorheic Tibetan Plateau and Its Effect on the Hydrological Status in the Region. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12864-12881.	1.2	40
184	Meteorological conditions leading to the 2015ÂSalgar flash flood: lessons for vulnerable regions in tropical complex terrain. Natural Hazards and Earth System Sciences, 2019, 19, 2635-2665.	1.5	12
185	From Amazonia to southern Africa: atmospheric moisture transport through lowâ€level jets and atmospheric rivers. Annals of the New York Academy of Sciences, 2019, 1436, 217-230.	1.8	37
186	Bay of Bengal branch of Indian summer monsoon and its association with spatial distribution of rainfall patterns over India. Theoretical and Applied Climatology, 2019, 137, 1895-1907.	1.3	3
187	Longâ€ŧerm water balance partitioning explained by physical and ecological characteristics in world river basins. Ecohydrology, 2019, 12, e2072.	1.1	8
188	Moisture flux adjustments in RegCM4 for improved simulation of Indian summer monsoon precipitation. Climate Dynamics, 2019, 52, 7049-7069.	1.7	14
189	Quantitative identification of moisture sources over the Tibetan Plateau and the relationship between thermal forcing and moisture transport. Climate Dynamics, 2019, 52, 181-196.	1.7	36
190	New observational insights into the atmospheric circulation over the Euro-Atlantic sector since 1685. Climate Dynamics, 2020, 54, 823-841.	1.7	9
191	Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change. Wiley Interdisciplinary Reviews: Climate Change, 2020, 11, e632.	3.6	118
192	Recent progress on the sources of continental precipitation as revealed by moisture transport analysis. Earth-Science Reviews, 2020, 201, 103070.	4.0	71
193	Decline in Terrestrial Moisture Sources of the Mississippi River Basin in a Future Climate. Journal of Hydrometeorology, 2020, 21, 299-316.	0.7	8
194	Beyond Turnover Time: Constraining the Lifetime Distribution of Water Vapor from Simple and Complex Approaches. Journals of the Atmospheric Sciences, 2020, 77, 413-433.	0.6	25
195	Modeling the contributions of oceanic moisture to summer precipitation in eastern China using 180. Journal of Hydrology, 2020, 581, 124304.	2.3	7
196	Stable Isotope Signatures and Moisture Transport of a Typical Heavy Precipitation Case in the Southern Tianshan Mountains. Chinese Geographical Science, 2020, 30, 180-188.	1.2	2
197	Roles of oceanic moisture exports in modulating summer rainfall over the middleâ€lower Yangtze River Basin: Interâ€annual variability and decadal transition. International Journal of Climatology, 2020, 40, 3757-3770.	1.5	3
198	Two-Layer Dynamic Recycling Model (2L-DRM): Learning from Moisture Tracking Models of Different Complexity. Journal of Hydrometeorology, 2020, 21, 3-16.	0.7	32
199	Significant increase of global anomalous moisture uptake feeding landfalling Atmospheric Rivers. Nature Communications, 2020, 11, 5082.	5.8	39

~		_
	ON	Report
CII/III		

#	Article	IF	CITATIONS
200	Favorable Circulation Patterns and Moisture Sources for Wintertime Extreme Precipitation Events Over the Balkhashâ€Junggar Region. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032275.	1.2	2
201	The growing importance of oceanic moisture sources for continental precipitation. Npj Climate and Atmospheric Science, 2020, 3, .	2.6	31
202	Atmospheric heat and moisture transport to energy―and waterâ€limited ecosystems. Annals of the New York Academy of Sciences, 2020, 1472, 123-138.	1.8	6
203	Understanding precipitation recycling over the Tibetan Plateau using tracer analysis with WRF. Climate Dynamics, 2020, 55, 2921-2937.	1.7	44
204	Structure of an Atmospheric River Over Australia and the Southern Ocean. Part I: Tropical and Midlatitude Water Vapor Fluxes. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032513.	1.2	11
205	Deuterium Excess in Precipitation Reveals Water Vapor Source in the Monsoon Margin Sites in Northwest China. Water (Switzerland), 2020, 12, 3315.	1.2	8
206	Atmospheric Basins: Identification of Quasiâ€Independent Spatial Patterns in the Global Atmospheric Hydrological Cycle Via a Complex Network Approach. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032796.	1.2	2
207	Intensification of the global water cycle and evidence from ocean salinity: a synthesis review. Annals of the New York Academy of Sciences, 2020, 1472, 76-94.	1.8	48
208	Identification of major moisture sources across the Mediterranean Basin. Climate Dynamics, 2020, 54, 4109-4127.	1.7	16
209	Contribution of Atmospheric Rivers to Annual, Seasonal, and Extreme Precipitation Across British Columbia and Southeastern Alaska. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031823.	1.2	24
210	Moisture sources associated with heavy rainfall over the Limpopo River Basin, southern Africa. Climate Dynamics, 2020, 55, 1473-1487.	1.7	36
211	Tracking the global flows of atmospheric moisture and associated uncertainties. Hydrology and Earth System Sciences, 2020, 24, 2419-2435.	1.9	40
212	Hydrological processes interconnecting the two largest watersheds of South America from seasonal to intraâ€monthly time scales: A critical review. International Journal of Climatology, 2020, 40, 3971-4005.	1.5	8
213	Simultaneous Episodes of Heavy Rainfall in Morocco and Southern Alps: 1. Mesoscale Simulations and Episode Climatology (1979–2016). Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030432.	1.2	0
214	Advances in understanding largeâ€scale responses of the water cycle to climate change. Annals of the New York Academy of Sciences, 2020, 1472, 49-75.	1.8	226
215	Lagrangian simulations of moisture sources for Chinese Xinjiang precipitation during 1979–2018. International Journal of Climatology, 2021, 41, E216.	1.5	11
216	Interannual Variability of Precipitation Recycle Ratio Over the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033733.	1.2	32
217	Influence of the Madden-Julian Oscillation on moisture transport by the Caribbean Low Level Jet during the Midsummer Drought in Mexico. Atmospheric Research, 2021, 248, 105243.	1.8	10

#	Article	IF	CITATIONS
218	Seasonal Precipitation Predictability for the Northern Hemisphere Using Concurrent and Preseason Atmospheric Water Vapor Transport and Sea Surface Temperature. Journal of Hydrometeorology, 2021, 22, 183-199.	0.7	5
219	Orbitally driven evolution of Asian monsoon and stable water isotope ratios during the Holocene: Isotope-enabled climate model simulations and proxy data comparisons. Quaternary Science Reviews, 2021, 252, 106743.	1.4	8
220	Dry and Wet Climate Periods over Eastern South America: Identification and Characterization through the SPEI Index. Atmosphere, 2021, 12, 155.	1.0	10
221	Moisture transport to a typical transitional climate zone in North China forced by atmospheric and oceanic internal variability under the background of global warming. International Journal of Climatology, 2021, 41, 2962-2982.	1.5	0
222	Significant Land Contributions to Interannual Predictability of East Asian Summer Monsoon Rainfall. Earth's Future, 2021, 9, e2020EF001762.	2.4	18
223	Response of drylands' waterâ€cycle to the global warming. International Journal of Climatology, 2021, 41, 4587-4602.	1.5	6
224	Mechanisms for Severe Drought Occurrence in the Balsas River Basin (Mexico). Atmosphere, 2021, 12, 368.	1.0	1
225	A Lagrangian View of Moisture Transport Related to the Heavy Rainfall of July 2020 in Japan: Importance of the Moistening Over the Subtropical Regions. Geophysical Research Letters, 2021, 48, e2020GL091441.	1.5	25
226	Closing the Water Cycle from Observations across Scales: Where Do We Stand?. Bulletin of the American Meteorological Society, 2021, 102, E1897-E1935.	1.7	31
227	Observed response of precipitation intensity to dew point temperature over the contiguous US. Theoretical and Applied Climatology, 2021, 144, 1349-1362.	1.3	5
228	Assessing the Moisture Transports Associated With Nocturnal Low-Level Jets in Continental South America. Frontiers in Environmental Science, 2021, 9, .	1.5	7
229	Terrestrial sources of summer arctic moisture and the implication for arctic temperature patterns. Npj Climate and Atmospheric Science, 2021, 4, .	2.6	4
230	Tracking the origins of moisture over Vietnam: The role of moisture sources and atmospheric drivers on seasonal hydroclimatic conditions. International Journal of Climatology, 2021, 41, 5843-5861.	1.5	4
231	Interannual oxygen isotope variability in Indian summer monsoon precipitation reflects changes in moisture sources. Communications Earth & Environment, 2021, 2, .	2.6	21
232	The Mechanism of Increasing Summer Water Vapor Over the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034166.	1.2	27
233	Spatial and temporal trends and variabilities of hailstones in the United States Northern Great Plains and their possible attributions. Journal of Climate, 2021, , 1-53.	1.2	4
234	Water Budgets of Tropical Cyclones through a Lagrangian Approach: A Case of Study of Hurricane Irma (2017). Environmental Sciences Proceedings, 2021, 8, .	0.3	0
235	An In-Depth Analysis of Physical Blue and Green Water Scarcity in Agriculture in Terms of Causes and Events and Perceived Amenability to Economic Interpretation. Water (Switzerland), 2021, 13, 1693.	1.2	21

#	Article	IF	Citations
236	Moisture Sources for the Explosive Cyclogenesis of Extratropical Cyclone Miguel (2019) through a Lagrangian Approach. Environmental Sciences Proceedings, 2021, 8, 19.	0.3	0
237	Oceanic versus terrestrial origin of El Niño Southern Oscillation–associated continental precipitation anomalies. Annals of the New York Academy of Sciences, 2021, 1504, 202-214.	1.8	6
238	Intensified Moisture Sources of Heavy Precipitation Events Contributed to Interannual Trend in Precipitation Over the Three-Rivers-Headwater Region in China. Frontiers in Earth Science, 2021, 9, .	0.8	4
239	Reviewing the Impact of Land Use and Landâ€Use Change on Moisture Recycling and Precipitation Patterns. Water Resources Research, 2021, 57, e2020WR029234.	1.7	39
240	Forests buffer against variations in precipitation. Global Change Biology, 2021, 27, 4686-4696.	4.2	39
241	Feature engineering for subseasonal-to-seasonal warm-season precipitation forecasts in the Midwestern US: towards a unifying hypothesis of anomalous warm-season hydroclimatic circulation. Journal of Climate, 2021, , 1-67.	1.2	1
242	The residence time of water vapour in the atmosphere. Nature Reviews Earth & Environment, 2021, 2, 558-569.	12.2	41
243	Numerical reconstruction of historical extreme floods: The Guadiana event of 1876. Journal of Hydrology, 2021, 599, 126292.	2.3	9
244	The Significance of Hydrogen and Oxygen Stable Isotopes in the Water Vapor Source in Dingxi Area. Water (Switzerland), 2021, 13, 2374.	1.2	11
245	Projected changes in precipitation recycling over the Tibetan Plateau based on a global and regional climate model. Journal of Hydrometeorology, 2021, , .	0.7	4
246	Future flood riverine risk analysis considering the heterogeneous impacts from tropical cyclone and non-tropical cyclone rainfalls: Application to daily flows in the Nam River Basin, South Korea. Advances in Water Resources, 2021, 154, 103983.	1.7	4
247	Case studies of atmospheric moisture sources in the source region of the Yellow River from a Lagrangian perspective. International Journal of Climatology, 0, , .	1.5	3
248	Role of unusual moisture transport across Equatorial Indian Ocean on the extreme rainfall event during Kerala flood 2018. Dynamics of Atmospheres and Oceans, 2021, 95, 101225.	0.7	6
249	Atmospheric river, a term encompassing different meteorological patterns. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1558.	2.8	12
250	Improving AMSR2 total precipitable water vapour model using metaheuristic algorithms. Hydrological Sciences Journal, 2021, 66, 2102-2115.	1.2	3
251	Contribution of moisture sources to precipitation changes in the Three Gorges Reservoir Region. Hydrology and Earth System Sciences, 2021, 25, 4759-4772.	1.9	7
252	An Investigation of Extreme Weather Impact on Precipitable Water Vapor and Vegetation Growth—A Case Study in Zhejiang China. Remote Sensing, 2021, 13, 3576.	1.8	3
253	Temporal evolution of surface humidity in Turkey: recent trends and the role of sea surface temperatures. Theoretical and Applied Climatology, 2021, 146, 1277-1296.	1.3	1

#	Article	IF	CITATIONS
254	Stable isotopic (δ2H, δ18O) monograms of winter precipitation events and hydro-climatic dynamics in Central Mexico. Atmospheric Research, 2021, 261, 105744.	1.8	3
255	Cascading effect of meteorological forcing on extreme precipitation events: Role of atmospheric rivers in southeastern US. Journal of Hydrology, 2021, 601, 126641.	2.3	12
256	Spatio-temporal variability of atmospheric rivers and associated atmospheric parameters in the Euro-Atlantic region. Theoretical and Applied Climatology, 0, , 1.	1.3	3
257	Ecological aspects of the soil-water-plant-atmosphere system. , 2022, , 279-302.		2
258	Global atmospheric moisture transport associated with precipitation extremes: Mechanisms and climate change impacts. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1412.	2.8	47
259	ENSO-related impact on the vapor sources of China based on case simulations of summer 2015 and 2010. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 211, 105489.	0.6	5
260	Kelvin Waves during GOAmazon and Their Relationship to Deep Convection. Journals of the Atmospheric Sciences, 2020, 77, 3533-3550.	0.6	11
261	Australian Precipitation Recycling and Evaporative Source Regions. Journal of Climate, 2020, 33, 8721-8735.	1.2	24
262	Moisture Sources Associated with Precipitation during Dry and Wet Seasons over Central Asia. Journal of Climate, 2020, 33, 10755-10771.	1.2	30
263	Tracking Moisture Sources of Precipitation over Central Asia: A Study Based on the Water-Source-Tagging Method. Journal of Climate, 2020, 33, 10339-10355.	1.2	31
264	Estimating the Temporal Domain when the Discount of the Net Evaporation Term Affects the Resulting Net Precipitation Pattern in the Moisture Budget Using a 3-D Lagrangian Approach. PLoS ONE, 2014, 9, e99046.	1.1	6
265	Megacity precipitationsheds reveal tele-connected water security challenges. PLoS ONE, 2018, 13, e0194311.	1.1	27
266	A review of the main drivers and variability of Central America's Climate and seasonal forecast systems. Revista De Biologia Tropical, 2018, 66, 153.	0.1	49
267	Variabilidade Interanual da Precipitação e Fluxo de Umidade Sobre a Amazônia Usando o QTCM. Revista Brasileira De Meteorologia, 2018, 33, 41-56.	0.2	9
268	A Lagrangian approach for investigating anomalies in the moisture transport during drought episodes. Cuadernos De Investigacion Geografica, 2016, 42, 113-125.	0.6	15
269	Similarities, differences and mechanisms of climate impact on terrestrial vs. marine ecosystems. Nature Conservation, 0, 34, 505-523.	0.0	7
273	The fate of land evaporation – a global dataset. Earth System Science Data, 2020, 12, 1897-1912.	3.7	13
278	Contribution of Recycled Moisture to Precipitation: A Modified Dâ€Excessâ€Based Model. Geophysical Research Letters, 2021, 48, e2021GL095909.	1.5	15

#	Article	IF	CITATIONS
279	Moisture Origins and Transport Processes for the 2020 Yangtze River Valley Record-Breaking Mei-yu Rainfall. Advances in Atmospheric Sciences, 2021, 38, 2125-2136.	1.9	19
281	Short Communication: Atmospheric moisture transport, the bridge between ocean evaporation and Arctic ice melting. , 0, , .		0
282	Analysis of Changes on Moisture Sources Contributions for Arctic Region in a FutureClimate Scenario Using GFDL/CM3 Model. , 0, , .		0
283	Tracking the Origin of Moisture (and Moisture for Precipitation) over the Danube River Basin through a Lagrangian Approach . , 0, , .		0
284	TRACKING THE ORIGIN OF MOISTURE OVER SERBIA USING THE LAGRANGIAN METHOD. , 2018, 8, .		0
285	Hydroclimate response in Texas and Gulf of Mexico to rapid warming during the last deglacial: High-resolution speleothem proxy and monitoring evidence. Quaternary Science Reviews, 2021, 273, 107244.	1.4	2
286	A Comparison of Northwest Cloudbands and Landfalling Atmospheric Rivers Over Australia. International Journal of Climatology, 2022, 42, 5073-5091.	1.5	0
287	A high resolution coupled ocean-atmosphere simulation of the regional climate over Central America. Climate Dynamics, 2022, 58, 2981-3001.	1.7	3
288	Moisture Sources for Tropical Cyclones Genesis in the Coast of West Africa through a Lagrangian Approach. Environmental Sciences Proceedings, 2020, 4, .	0.3	1
289	Assessment of the spatio-temporal variability of the added value on precipitation of convection-permitting simulation over the Iberian Peninsula using the RegIPSL regional earth system model. Climate Dynamics, 2022, 59, 471-498.	1.7	13
290	Determination of climatic conditions related to precipitation anomalies in the Tropical Andes by means of the random forest algorithm and novel climate indices. International Journal of Climatology, 2022, 42, 5055-5072.	1.5	6
291	Southeastern United States Hydroclimate During Holocene Abrupt Climate Events: Evidence From New Stalagmite Isotopic Records From Alabama. Paleoceanography and Paleoclimatology, 2022, 37, .	1.3	4
292	Moisture Sources for Precipitation Associated With Major Hurricanes During 2017 in the North Atlantic Basin. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	13
293	Where does the moisture for North Atlantic tropical cyclones come from?. Journal of Hydrometeorology, 2022, , .	0.7	5
294	Difference in the Atmospheric Water Cycle over the Hengduan Mountains between Wet and Dry Summers. International Journal of Climatology, 0, , .	1.5	1
295	A global perspective on western Mediterranean precipitation extremes. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	10
296	Role of synoptic-scale circulations, mechanisms, and precursors during extreme rainfall events over the Southern Indian Peninsula. Meteorology and Atmospheric Physics, 2022, 134, 1.	0.9	3
297	Extreme precipitation events in the Mediterranean area: contrasting two different models for moisture source identification. Hydrology and Earth System Sciences, 2021, 25, 6465-6477.	1.9	9

#	ARTICLE	IF	CITATIONS
298	Precipitable Water Vapor Retrieval Over Land From GCOM-W/AMSR2 Based on a New Integrated Method. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-12.	2.7	3
299	Moisture Transport versus Precipitation Change in Sub-Basins of the Yangtze River Basin. Water (Switzerland), 2022, 14, 622.	1.2	0
300	A unified framework to estimate the origins of atmospheric moisture and heat using Lagrangian models. Geoscientific Model Development, 2022, 15, 1875-1898.	1.3	14
301	Quantifying Spatial Drought Propagation Potential in North America Using Complex Network Theory. Water Resources Research, 2022, 58, .	1.7	11
302	Quantifying the Spatial Characteristics of the Moisture Transport Affecting Precipitation Seasonality and Recycling Variability in Central Asia. Advances in Atmospheric Sciences, 2022, 39, 967-984.	1.9	2
303	River flow response to deforestation: Contrasting results from different models. Water Security, 2022, 15, 100115.	1.2	4
304	Quantifying the contribution of evaporation from Lake Taihu to precipitation with an isotope-based method. Isotopes in Environmental and Health Studies, 2022, , 1-19.	0.5	1
305	Modelling hydrometeorological extremes associated to the moisture transport driven by the Great Plains low-level jet. Stochastic Environmental Research and Risk Assessment, 2022, 36, 1917-1941.	1.9	1
306	Experimental investigation into the permeability of water vapor in shales. Journal of Hydrology, 2022, 609, 127697.	2.3	4
307	éẻe—é«~原ä,»è¦æµåŸŸçš"陜°´æ°´æ±½æ¥æ⊶ SCIENTIA SINICA Terrae, 2022, 52, 1328-1344.	0.1	2
308	Contributions of moisture sources to precipitation in the major drainage basins in the Tibetan Plateau. Science China Earth Sciences, 2022, 65, 1088-1103.	2.3	16
310	Atmospheric moisture sources of drought and wet events during 1979–2019 in the Three-River Source Region, Qinghai-Tibetan Plateau. Theoretical and Applied Climatology, 2022, 149, 487-499.	1.3	4
311	Moisture Sources and Climatic Controls of Precipitation Stable Isotopes Over the Tibetan Plateau in Waterâ€Tagging Simulations. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	7
312	Divergent Representation of Precipitation Recycling in the Amazon and the Congo in CMIP6 Models. Geophysical Research Letters, 2022, 49, .	1.5	11
313	The importance of continental evaporation for precipitation in Colombia: A baseline combining observations from stable isotopes and modelling moisture trajectories. Hydrological Processes, 2022, 36, .	1.1	7
314	The Amazon and La Plata River Basins as Moisture Sources of South America: Climatology and Intraseasonal Variability. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
315	Lagrangian Analysis of Moisture Sources of Precipitation in the Tianshan Mountains, Central Asia. Earth and Space Science, 2022, 9, .	1.1	1
316	Concurrent extreme events of atmospheric moisture transport and continental precipitation: The role of landfalling atmospheric rivers. Atmospheric Research, 2022, 278, 106356.	1.8	4

#	Article	IF	CITATIONS
317	Variability of Precipitation Recycling and Moisture Sources over the Colombian Pacific Region: A Precipitationshed Approach. Atmosphere, 2022, 13, 1202.	1.0	1
318	Largeâ€Scale Afforestation Enhances Precipitation by Intensifying the Atmospheric Water Cycle Over the Chinese Loess Plateau. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	19
319	Precipitation stable isotope composition, moisture sources, and controlling factors in Xi'an, Northwest China. Atmospheric Research, 2022, 280, 106428.	1.8	8
320	Moisture source identification for precipitation associated with tropical cyclone development over the Indian Ocean: a Lagrangian approach. Climate Dynamics, 2023, 60, 2735-2758.	1.7	3
321	Regime Changes in Atmospheric Moisture under Climate Change. Atmosphere, 2022, 13, 1577.	1.0	2
322	Global water availability boosted by vegetation-driven changes in atmospheric moisture transport. Nature Geoscience, 2022, 15, 982-988.	5.4	41
323	Contribution of Tibetan Plateau ecosystems to local and remote precipitation through moisture recycling. Global Change Biology, 2023, 29, 702-718.	4.2	9
324	Network motifs shape distinct functioning of Earth's moisture recycling hubs. Nature Communications, 2022, 13, .	5.8	6
325	晚å ç"' Ÿä»£å§å†°æœŸç¢³–水循环回顾ä,Žå±•望. Chinese Science Bulletin, 2022, , .	0.4	2
326	A Joint Impact on Water Vapor Transport over South China during the Pre-Rainy Season by ENSO and PDO. Water (Switzerland), 2022, 14, 3639.	1.2	0
327	TROVA: TRansport Of water VApor. SoftwareX, 2022, 20, 101228.	1.2	8
328	Dominance of terrestrial moisture supply for the record-breaking extreme precipitation in Hubei, China on August 12, 2021. Advances in Climate Change Research, 2022, 13, 851-857.	2.1	3
329	Oceanic and terrestrial origin of precipitation over 50 major world river basins: Implications for the occurrence of drought. Science of the Total Environment, 2023, 859, 160288.	3.9	4
330	Anthropogenic Impacts on the Water Cycle over Drylands in the Northern Hemisphere. Journal of Climate, 2023, 36, 453-466.	1.2	1
331	Where does the link between atmospheric moisture transport and extreme precipitation matter?. Weather and Climate Extremes, 2023, 39, 100536.	1.6	8
332	Moisture transport and sources of an extreme rainfall event of June 2021 in southern Xinjiang, China. Advances in Climate Change Research, 2022, 13, 843-850.	2.1	2
333	Changes in the moisture contribution over global arid regions. Climate Dynamics, 2023, 61, 543-557.	1.7	5
334	Understanding Recycled Precipitation at Different Spatioâ€Temporal Scales Over India: An Eulerian Water Tagging Approach. Water Resources Research, 2023, 59, .	1.7	3

#	Article	IF	CITATIONS
335	The South Atlantic Ocean as a moisture source region and its relation with precipitation in South America. Climate Dynamics, 2023, 61, 1741-1756.	1.7	3
336	How much of precipitation over the Euroregion Galicia – Northern Portugal is due to tropical-origin cyclones?: A Lagrangian approach. Atmospheric Research, 2023, 285, 106640.	1.8	0
337	Comparison of moisture sources of summer precipitation in 1998 and 2020 in the middle and lower reaches of Yangtze River basin. International Journal of Climatology, 2023, 43, 3493-3505.	1.5	1
338	Oceanic climate changes threaten the sustainability of Asia's water tower. Nature, 2023, 615, 87-93.	13.7	31
339	Quantifying the impact of large-scale afforestation on the atmospheric water cycle during rainy season over the Chinese Loess Plateau. Journal of Hydrology, 2023, 619, 129326.	2.3	5
340	A Spatial PWV Retrieval Model Over Land for GCOM-W/AMSR2 Using Neural Network Method: A Case in the Western United States. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 2954-2962.	2.3	1
341	The Contribution of Local and Remote Transpiration, Ground Evaporation, and Canopy Evaporation to Precipitation Across North America. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	4
342	å¨çƒç©ºä,水资æºç®¡ç†æ½œåŠ›çš"å³é"®åŒºè⁻†å^«ä,Žæºæ±‡å^†æž• Chinese Science Bulletin, 2023, , .	0.4	0
344	Climate Change and Drought in the Dryland Areas of Nigeria. Springer Climate, 2023, , 361-378.	0.3	1