Role of solid oxidefuel cells in a balanced energy strateg

Energy and Environmental Science 5, 5498-5509 DOI: 10.1039/c1ee02445k

Citation Report

#	Article	IF	CITATIONS
1	Energetics of Dysprosia-Stabilized Bismuth Oxide Electrolytes. Chemistry of Materials, 2012, 24, 4185-4191.	3.2	16
2	Fabrication of epitaxial zirconia and ceria thin films with arbitrary dopant and host atom composition. Thin Solid Films, 2012, 522, 66-70.	0.8	20
3	Bimodally integrated anode functional layer for lower temperature solid oxide fuel cells. Journal of Materials Chemistry, 2012, 22, 17113.	6.7	38
4	The evolution of low temperature solid oxide fuel cells. Journal of Materials Research, 2012, 27, 2063-2078.	1.2	70
5	Challenges in Ceramic Science: A Report from the Workshop on Emerging Research Areas in Ceramic Science. Journal of the American Ceramic Society, 2012, 95, 3699-3712.	1.9	59
6	Feasibility of low temperature solid oxide fuel cells operating on reformed hydrocarbon fuels. Journal of Materials Chemistry, 2012, 22, 22405.	6.7	31
7	Energy Conversion with Solid Oxide Fuel Cell Systems: A Review of Concepts and Outlooks for the Short- and Long-Term. Industrial & amp; Engineering Chemistry Research, 2013, 52, 3089-3111.	1.8	129
8	Diopside–Ba disilicate glass–ceramic sealants for SOFCs: Enhanced adhesion and thermal stability by Sr for Ca substitution. International Journal of Hydrogen Energy, 2013, 38, 3073-3086.	3.8	43
9	A Highly Active Perovskite Electrode for the Oxygen Reduction Reaction Below 600 °C. Angewandte Chemie - International Edition, 2013, 52, 14036-14040.	7.2	138
10	Electrochemical performances of spinel oxides as cathodes for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2013, 38, 1052-1057.	3.8	40
11	A general approach to develop reduced order models for simulation ofÂsolid oxide fuel cell stacks. Journal of Power Sources, 2013, 232, 139-151.	4.0	16
12	Fabrication and characterization of a cathode-support solid oxide fuel cell by tape casting and lamination. International Journal of Hydrogen Energy, 2013, 38, 16584-16589.	3.8	20
13	Study of calcium–magnesium–aluminum–silicate (CMAS) glass and glass-ceramic sealant for solid oxide fuel cells. Journal of Power Sources, 2013, 231, 203-212.	4.0	47
14	Studies on elements diffusion of Mn/Co coated ferritic stainless steel for solid oxide fuel cell interconnects application. International Journal of Hydrogen Energy, 2013, 38, 5075-5083.	3.8	43
15	Self-assembled free-standing three-dimensional nickel nanoparticle/graphene aerogel for direct ethanol fuel cells. Journal of Materials Chemistry A, 2013, 1, 5689.	5.2	139
16	Melilite glass–ceramic sealants for solid oxide fuel cells: effects of ZrO2 additions assessed by microscopy, diffraction and solid-state NMR. Journal of Materials Chemistry A, 2013, 1, 6471.	5.2	13
17	An Aâ€Siteâ€Deficient Perovskite offers High Activity and Stability for Lowâ€Temperature Solidâ€Oxide Fuel Cells. ChemSusChem, 2013, 6, 2249-2254.	3.6	90
18	SrOâ€Containing Diopside Glass–Ceramic Sealants for Solid Oxide Fuel Cells: Mechanical Reliability and Thermal Shock Resistance. Fuel Cells, 2013, 13, 689-694.	1.5	5

#	Article	IF	CITATIONS
19	Effect of Volatile Boron Species on the Electrocatalytic Activity of Cathodes of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2013, 160, F301-F308.	1.3	32
21	Role of nanostructures on SOFC performance at reduced temperatures. MRS Bulletin, 2014, 39, 783-791.	1.7	48
22	Rational Design of Lowerâ€Temperature Solid Oxide Fuel Cell Cathodes via Nanotailoring of Coâ€Assembled Composite Structures. Angewandte Chemie - International Edition, 2014, 53, 13463-13467.	7.2	61
23	Pulsed laser deposition of yttria stabilized zirconia based heterostructure. Thin Solid Films, 2014, 553, 98-103.	0.8	5
24	Theoretical consideration of Solid Oxide Electrolyzer Cell with zirconia-based electrolyte operated under extreme polarization or with low supply of feedstock chemicals. Electrochimica Acta, 2014, 130, 718-727.	2.6	13
25	A mixed-integer nonlinear program for the optimal design and dispatch of distributed generation systems. Optimization and Engineering, 2014, 15, 167-197.	1.3	33
26	Bi-layer glass-ceramic sealant for solid oxide fuel cells. Journal of the European Ceramic Society, 2014, 34, 1449-1455.	2.8	12
27	Strain effects on the ionic conductivity of Y-doped ceria: A simulation study. Journal of Electroceramics, 2014, 32, 28-36.	0.8	30
28	Synthesis strategies for improving the performance of doped-BaZrO ₃ materials in solid oxide fuel cell applications. Journal of Materials Research, 2014, 29, 1-15.	1.2	106
29	A Fuel-Flexible Solid Oxide Fuel Cell Operating in Gradual Internal Reforming. Journal of the Electrochemical Society, 2014, 161, F354-F359.	1.3	33
30	From shale gas to renewable energy based transportation solutions. Energy Policy, 2014, 67, 499-507.	4.2	12
31	Evolution of electrochemical interfaces in solid oxide fuel cells (SOFC): a Ni and Zr resonant anomalous ultra-small-angle X-ray scattering study with elemental and spatial resolution across the cell assembly. RSC Advances, 2014, 4, 4676-4690.	1.7	10
32	On the variability of reported ionic conductivity in nanoscale YSZ thin films. Journal of Electroceramics, 2014, 32, 37-46.	0.8	43
33	Low-temperature solid-oxide fuel cells. MRS Bulletin, 2014, 39, 773-779.	1.7	127
34	Hydrogen tungsten bronze as a decoking agent for long-life, natural gas-fueled solid oxide fuel cells. Energy and Environmental Science, 2014, 7, 3069.	15.6	37
35	Hydrocarbon-fueled solid oxide fuel cells with surface-modified, hydroxylated Sn/Ni–Ce _{0.8} Gd _{0.2} O _{1.9} heterogeneous catalyst anode. Journal of Materials Chemistry A, 2014, 2, 17041-17046.	5.2	31
36	Oxide ion distribution, vacancy ordering and electrical behaviour in the Bi ₃ NbO ₇ –Bi ₃ YbO ₆ pseudo-binary system. Journal of Materials Chemistry A, 2014, 2, 18624-18634.	5.2	8
37	3D core–shell architecture from infiltration and beneficial reactive sintering as highly efficient and thermally stable oxygen reduction electrode. Journal of Materials Chemistry A, 2014, 2, 1284-1293.	5.2	44

#	Article	IF	CITATIONS
38	Releasing Metal Catalysts via Phase Transition: (NiO) _{0.05} -(SrTi _{0.8} Nb _{0.2} O ₃) _{0.95} as a Redox Stable Anode Material for Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2014, 6, 19990-19996.	4.0	39
39	Bismuthâ€Based Pervoskite as a Highâ€Performance Cathode for Intermediateâ€Temperature Solidâ€Oxide Fuel Cells. ChemElectroChem, 2014, 1, 554-558.	1.7	23
40	Structural and oxygen-transport studies of double perovskites PrBa _{1â^x} Co ₂ O _{5+l´} (x = 0.00, 0.05, and 0.10) toward their application as superior oxygen reduction electrodes. Journal of Materials Chemistry A, 2014, 2, 20520-20529.	5.2	92
41	CHx adsorption (x = 1–4) and thermodynamic stability on the CeO2(111) surface: a first-principles investigation. RSC Advances, 2014, 4, 12245.	1.7	15
42	Ceria co-doping: synergistic or average effect?. Physical Chemistry Chemical Physics, 2014, 16, 8320-8331.	1.3	67
44	Thermal and mechanical stability of lanthanide-containing glass–ceramic sealants for solid oxide fuel cells. Journal of Materials Chemistry A, 2014, 2, 1834-1846.	5.2	31
46	Fabrication and Evaluation of a Micro-Tubular Solid Oxide Fuel Cell with an Inert Support Using Scandia-Stabilized Zirconia Electrolyte. Journal of the Electrochemical Society, 2015, 162, F1555-F1560.	1.3	19
47	Advanced Technologies for High-Temperature Solid Oxide Fuel Cells. Electrochemical Energy Storage and Conversion, 2015, , 307-337.	0.0	0
48	Progress and Prospects in Symmetrical Solid Oxide Fuel Cells with Two Identical Electrodes. Advanced Energy Materials, 2015, 5, 1500188.	10.2	128
50	Solid – state electrochemical heat engines. International Journal of Hydrogen Energy, 2015, 40, 3719-3725.	3.8	4
51	Reactions and mass transport in high temperature co-electrolysis of steam/CO2 mixtures for syngas production. Journal of Power Sources, 2015, 280, 630-639.	4.0	62
52	Electrochemical properties of BaZr0.1Ce0.7Y0.1Yb0.1O3Ââ^'Âδ-Nd1.95NiO4Â+Âδ composite cathode for protonic ceramic fuel cells. International Journal of Hydrogen Energy, 2015, 40, 2800-2807.	3.8	35
53	Contribution of properties of composite cathode and cathode/electrolyte interface to cell performance in a planar solid oxide fuel cell stack. Journal of Power Sources, 2015, 279, 540-548.	4.0	18
54	Hydrotalcite-dispersed paper-structured catalyst for the dry reforming of methane. International Journal of Hydrogen Energy, 2015, 40, 10807-10815.	3.8	23
55	Effectiveness of paper-structured catalyst for the operation of biodiesel-fueled solid oxide fuel cell. Journal of Power Sources, 2015, 283, 320-327.	4.0	13
56	Enhancement of La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3-î´} Surface Exchange through Ion Implantation. Journal of the Electrochemical Society, 2015, 162, F965-F970.	1.3	21
57	Development of bilayer glass-ceramic SOFC sealants via optimizing the chemical composition of glasses—a review. Journal of Solid State Electrochemistry, 2015, 19, 2899-2916.	1.2	24
58	Towards a smart energy network: The roles of fuel/electrolysis cells and technological perspectives. International Journal of Hydrogen Energy, 2015, 40, 6866-6919.	3.8	141

ARTICLE IF CITATIONS # Conceptual design of light integrated gasification fuel cell based on thermodynamic process 59 5.1 16 simulation. Applied Energy, 2015, 147, 486-499. In Situ Tailored Nickel Nano-Catalyst Layer for Internal Reforming Hydrocarbon Fueled SOFCs. ECS Transactions, 2015, 68, 1121-1128. Mechanisms of methane decomposition and carbon species oxidation on the Pr_{0.42}Sr_{0.6}Co_{0.2}Fe_{0.7}Nb_{0.1}O<sub>3â[^]if</sub5.2 61 6 electrode with high catalytic activity. Journal of Materials Chemistry A, 2015, 3, 22816-22823. Laser cladding of glass-ceramic sealants for SOFC. Journal of the European Ceramic Society, 2015, 35, 4475-4484. Different ceria-based materials Gd0.1Ce0.9O2â[~]Î[^] and Sm0.075Nd0.075Ce0.85O2â[~]Î[′] for ceria–bismuth bilayer electrolyte high performance low temperature solid oxide fuel cells. Journal of Power Sources, 2015, 63 4.0 19 299, 32-39. Enhanced performance of solid oxide fuel cells by introducing a transition layer between nanostructured cathode and electrolyte. International Journal of Hydrogen Energy, 2015, 40, 501-508. 3.8 The double rare-earth substituted bismuth oxide system Bi3Y1â⁻xYbxO6. Solid State Ionics, 2015, 269, 65 1.3 12 37-43. Fuel cell technology for domestic built environment applications: State of-the-art review. Renewable 8.2 66 239 and Sustainable Energy Reviews, 2015, 42, 913-931. In-situ Young's moduli of the constitutive layers in a solid oxide fuel cell. Journal of Power Sources, 4.0 67 8 2015, 273, 522-529. A Brief Description of High Temperature Solid Oxide Fuel Cell's Operation, Materials, Design, 1.3 Fabrication Technologies and Performance. Applied Sciences (Switzerland), 2016, 6, 75. Perovskite as a Cathode Material: A Review of its Role in Solidâ€Oxide Fuel Cell Technology. 69 197 1.7 ChemElectroChem, 2016, 3, 511-530. Sintering behavior and electrochemical performances of nano-sized gadolinium-doped ceria via ammonium carbonate assisted co-precipitation for solid oxide fuel cells. Journal of Alloys and 2.8 29 Compounds, 2016, 682, 188-195. Stannate-Based Ceramic Oxide as Anode Materials for Oxide-Ion Conducting Low-Temperature Solid 71 1.3 23 Oxide Fuel Cells. Journal of the Electrochemical Society, 2016, 163, F1198-F1205. Performance evaluation of an independent microgrid comprising an integrated coal gasification fuel cell combined cycle, large-scale photovoltaics, and a pumped-storage power station. Energy, 2016, 116, 4.5 78-93. Performance improvement of direct internal reforming solid oxide fuel cell fuelled by H2S-contaminated biogas with paper-structured catalyst technology. Journal of Power Sources, 2016, 73 29 4.0 332, 170-179. Reaction Kinetics of Gasâ€"Solid Exchange Using Gas Phase Isotopic Oxygen Exchange. ACS Catalysis, 74 2016, 6, 6025-6032. Controlled synthesis and growth mechanism of Bi2O3/YSZ solid electrolyte materials. Ceramics 75 2.35 International, 2016, 42, 16262-16265. Glass–ceramic seals in the system MgO BaO B 2 O 3 SiO 2 operating under simulated SOFC conditions. 3.8 International Journal of Hydrogen Energy, 2016, 41, 15335-15345.

#	Article	IF	CITATIONS
77	Fabrication of thin films on an anode support with surface modification for high-efficiency intermediate-temperature solid oxide fuel cells via a dip-coating method. Electrochimica Acta, 2016, 217, 150-155.	2.6	21
78	Fuel Cells with Biofuels. Green Energy and Technology, 2016, , 507-522.	0.4	0
79	An efficient electrocatalyst as cathode material for solid oxide fuel cells: BaFe0·95Sn0·05O3â^'δ. Journal of Power Sources, 2016, 326, 459-465.	4.0	70
80	Toward highly efficient in situ dry reforming of H ₂ S contaminated methane in solid oxide fuel cells via incorporating a coke/sulfur resistant bimetallic catalyst layer. Journal of Materials Chemistry A, 2016, 4, 9080-9087.	5.2	26
81	Evaluation of A-site deficient Sr 1â^'x Sc 0.175 Nb 0.025 Co 0.8 O 3â^'δ (x=0, 0.02, 0.05 and 0.1) perovskite cathodes for intermediate-temperature solid oxide fuel cells. Ceramics International, 2016, 42, 12894-12900.	2.3	24
82	High performance zirconia-bismuth oxide nanocomposite electrolytes for lower temperature solid oxide fuel cells. Journal of Power Sources, 2016, 320, 267-273.	4.0	42
83	Exploring the mixed transport properties of sulfur(<scp>vi</scp>)-doped Ba ₂ In ₂ O ₅ for intermediate-temperature electrochemical applications. Journal of Materials Chemistry A, 2016, 4, 11069-11076.	5.2	9
84	Gas leak diffusion induced polarization in submicro/nanoscale non-tight electrolytes of solid oxide fuel cells. RSC Advances, 2016, 6, 62052-62061.	1.7	3
85	Comprehensive review of methane conversion in solid oxide fuel cells: Prospects for efficient electricity generation from natural gas. Progress in Energy and Combustion Science, 2016, 54, 1-64.	15.8	270
86	Structural, chemical, and electrochemical properties of co-doped fluorite oxides Ce0.8La0.2â^'xTlxO2â~'δ as electrolyte materials for solid oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41, 4751-4764.	3.8	11
87	A perspective on low-temperature solid oxide fuel cells. Energy and Environmental Science, 2016, 9, 1602-1644.	15.6	698
88	Direct electrochemical oxidation of ethanol on SOFCs: Improved carbon tolerance of Ni anode by alloying. Applied Catalysis B: Environmental, 2016, 183, 386-393.	10.8	54
89	A novel composite cathode Er0.4Bi1.6O3–Pr0.5Ba0.5MnO3â^î^ for ceria-bismuth bilayer electrolyte high performance low temperature solid oxide fuel cells. Journal of Power Sources, 2016, 301, 306-311.	4.0	30
90	BaCo _{0.7} Fe _{0.22} Y _{0.08} O _{3â[~]î´} as an Active Oxygen Reduction Electrocatalyst for Low-Temperature Solid Oxide Fuel Cells below 600 °C. ACS Energy Letters, 2017, 2, 301-305.	8.8	70
91	Direct methane solid oxide fuel cells based on catalytic partial oxidation enabling complete coking tolerance of Ni-based anodes. Journal of Power Sources, 2017, 345, 30-40.	4.0	45
92	Functionally Graded Bismuth Oxide/Zirconia Bilayer Electrolytes for High-Performance Intermediate-Temperature Solid Oxide Fuel Cells (IT-SOFCs). ACS Applied Materials & Interfaces, 2017, 9, 8443-8449.	4.0	58
93	Mechanism of the cathode current collector on cell performance in a solid oxide fuel cell stack. Journal of Power Sources, 2017, 351, 169-173.	4.0	11
94	Anion Doping: A New Strategy for Developing Highâ€Performance Perovskiteâ€Type Cathode Materials of Solid Oxide Fuel Cells. Advanced Energy Materials, 2017, 7, 1700242.	10.2	198

#	Article	IF	CITATIONS
95	Durable direct ethanol anode-supported solid oxide fuel cell. Applied Energy, 2017, 199, 180-186.	5.1	61
96	Mechanical properties of solid oxide fuel cell glass-ceramic sealants in the system BaO/SrO-MgO-B2O3-SiO2. Journal of the European Ceramic Society, 2017, 37, 3579-3594.	2.8	48
97	Tailoring sintering step allows high performance for solid oxide fuel cells prepared by a tri-layer co-firing process. Materials Research Bulletin, 2017, 93, 42-46.	2.7	4
98	Thermally Sprayed Large Tubular Solid Oxide Fuel Cells and Its Stack: Geometry Optimization, Preparation, and Performance. Journal of Thermal Spray Technology, 2017, 26, 441-455.	1.6	16
99	Thermal conditions and heat transfer characteristics of high-temperature solid oxide fuel cells investigated by three-dimensional numerical simulations. Energy, 2017, 120, 293-305.	4.5	32
100	Recent Progress on Advanced Materials for Solidâ€Oxide Fuel Cells Operating Below 500 °C. Advanced Materials, 2017, 29, 1700132.	11.1	257
101	Synthesis, structural and electrochemical properties of new ytterbium-doped langbeinite ceramics. Ceramics International, 2017, 43, 10939-10947.	2.3	14
102	A new in situ strategy to eliminate partial internal short circuit in Ce _{0.8} Sm _{0.2} O _{1.9} -based solid oxide fuel cells. Journal of Materials Chemistry A, 2017, 5, 12873-12878.	5.2	20
103	Conceptual and basic design of a novel integrated cogeneration power plant energy system. Energy, 2017, 127, 516-533.	4.5	39
104	Electrical transport and dielectric modulus formalism of CuO doped ZrO 2 partially stabilized solid solution. Materials Research Bulletin, 2017, 88, 272-280.	2.7	10
105	Detonation nanodiamond introduced into samarium doped ceria electrolyte improving performance of solid oxide fuel cell. Journal of Power Sources, 2017, 342, 515-520.	4.0	15
106	Changes of coordination modes of Cu-based coordination complexes as tuneable proton-conducting solid electrolytes. Journal of Materials Chemistry A, 2017, 5, 1085-1093.	5.2	31
107	Chemically Driven Enhancement of Oxygen Reduction Electrocatalysis in Supported Perovskite Oxides. Journal of Physical Chemistry Letters, 2017, 8, 235-242.	2.1	6
108	Microstructure correlated electrical conductivity of Manganese alloyed nanocrystalline cubic zirconia synthesized by mechanical alloying. Advanced Powder Technology, 2017, 28, 618-628.	2.0	8
109	Defect interaction and local structural distortions in Mg-doped LaGaO3: A combined experimental and theoretical study. Journal of Chemical Physics, 2017, 147, 144702.	1.2	4
110	Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability. Chemical Society Reviews, 2017, 46, 6345-6378.	18.7	246
111	Oxygen Dissociation Kinetics of Concurrent Heterogeneous Reactions on Metal Oxides. ACS Catalysis, 2017, 7, 5766-5772.	5.5	26
112	Electrochemical characterization and mechanism analysis of high temperature Co-electrolysis of CO2 and H2O in a solid oxide electrolysis cell. International Journal of Hydrogen Energy, 2017, 42, 29911-29920.	3.8	26

	Сітатіс	on Report	
#	Article	IF	CITATIONS
113	Structure and conductivity in tungsten doped δ-Bi 3 YO 6. Solid State Ionics, 2017, 308, 61-67.	1.3	8
114	Heterogeneous nanograin structured NiO-YSZ anodes via a water-in-oil microemulsion route for solid oxide fuel cells. Journal of Alloys and Compounds, 2017, 723, 681-688.	2.8	4
115	Conductivity recovery by redox cycling of yttrium doped barium zirconate proton conductors and exsolution of Ni-based sintering additives. Journal of Power Sources, 2017, 339, 93-102.	4.0	30
116	Perspective—Low-Carbon Electricity Is Great: What about "Less-Carbon�. Journal of the Electrochemical Society, 2017, 164, F1587-F1590.	1.3	12
117	Biogas Production from Local Biomass Feedstock in the Mekong Delta and Its Utilization for a Direct Internal Reforming Solid Oxide Fuel Cell. Frontiers in Environmental Science, 2017, 5, .	1.5	11
118	Cathode Degradation From Airborne Contaminants in Solid Oxide Fuel Cells. , 2017, , 101-119.		10
119	Preparation and properties of LSB-doped GDC electrolytes for intermediate temperature solid oxide fuel cells. Ionics, 2018, 24, 3543-3554.	1.2	2
120	Significantly Improving the Durability of Single-Chamber Solid Oxide Fuel Cells: A Highly Active CO ₂ -Resistant Perovskite Cathode. ACS Applied Energy Materials, 2018, 1, 1337-1343.	2,5	31
121	High performance cathode-unsintered solid oxide fuel cell enhanced by porous Bi1.6Er0.4O3 (ESB) interlayer. International Journal of Hydrogen Energy, 2018, 43, 12713-12719.	3.8	13
122	Highly Active and Stable Cobalt-Free Hafnium-doped SrFe _{0.9} Hf _{0.1} O _{3â^î} Perovskite Cathode for Solid Oxide Fuel Cells. ACS Applied Energy Materials, 2018, 1, 2134-2142.	2,5	34
123	Influence of yttria surface modification on high temperature corrosion of porous Ni22Cr alloy. International Journal of Applied Ceramic Technology, 2018, 15, 361-369.	1.1	3
124	Ni-loaded (Ce,Zr)O2–δ-dispersed paper-structured catalyst for dry reforming of methane. International Journal of Hydrogen Energy, 2018, 43, 4951-4960.	3.8	35
125	Pd-doped La0.6Sr0.4Co0.2Fe0.8O3â^î´ perovskite oxides as cathodes for intermediate temperature solid oxide fuel cells. Solid State Ionics, 2018, 319, 22-27.	1.3	21
126	Ionic conductivity in multiply substituted ceria-based electrolytes. Solid State Ionics, 2018, 316, 9-19.	1.3	37
127	Effects of accelerated degradation on metal supported thin film-based solid oxide fuel cells. Journal of Materials Chemistry A, 2018, 6, 7887-7896.	5.2	18
128	In situ formation of a 3D core-shell and triple-conducting oxygen reduction reaction electrode for proton-conducting SOFCs. Journal of Power Sources, 2018, 385, 76-83.	4.0	51
129	A structural insight into the electrical properties of Dy-Ho co-doped phase stabilized Bismuth Oxide based electrolytes. Journal of Electroanalytical Chemistry, 2018, 817, 55-64.	1.9	19
130	Novel perovskite-spinel composite conductive ceramics for SOFC cathode contact layer. International Journal of Hydrogen Energy, 2018, 43, 23036-23040.	3.8	23

#	Article	IF	CITATIONS
131	In Situ Impedance Analysis of Oxygen Exchange on Growing La _{0.6} Sr _{0.4} CoO _{3â^Î} Thin Films. ACS Applied Energy Materials, 2018, 1, 4522-4535.	2.5	19
133	Pr2Ni0.71Cu0.24Ga0.05O4-Sm0.2Ce0.8O1.9 composite film as active cathodic layer for intermediate temperature solid oxide fuel cells. Solid State Ionics, 2018, 327, 59-63.	1.3	7
134	Improving the Electrocatalytic Activity and Durability of the La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3â^î(} Cathode by Surface Modification. ACS Applied Materials & Interfaces, 2018, 10, 39785-39793.	4.0	71
135	Highâ€Performance Solid Oxide Fuel Cell with an Electrochemically Surfaceâ€Tailored Oxygen Electrode. ChemSusChem, 2018, 11, 2620-2627.	3.6	17
136	Structure and electrochemical properties of cobalt-free perovskite cathode materials for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2018, 279, 224-230.	2.6	33
137	Solid solution limits and electrical properties of scheelite SryLa1-yNb1-xVxO4-Î′ materials for x = 0.25 and 0.30 as potential proton conducting ceramic electrolytes. International Journal of Hydrogen Energy, 2018, 43, 18682-18690.	3.8	5
138	Fabrication and characterization of Nd2-xInxCe2O7 proton-conducting electrolytes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2018, 399, 157-165.	4.0	14
139	The microstructure effect on ion conduction in composite electrolyte. International Journal of Energy Research, 2018, 42, 4229-4234.	2.2	4
140	Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy and Environmental Science, 2018, 11, 2696-2767.	15.6	1,467
141	Highly durable solid oxide fuel cells: suppressing chemical degradation <i>via</i> rational design of a diffusion-blocking layer. Journal of Materials Chemistry A, 2018, 6, 15083-15094.	5.2	28
142	In Situ Synthesized La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3â~î^} –Gd _{0.1<!--<br-->Nanocomposite Cathodes via a Modified Sol–Gel Process for Intermediate Temperature Solid Oxide Fuel Cells, ACS Applied Nano Materials, 2018, 1, 2934-2942.}	sub>Ce <s 2.4</s 	ub>0.9
143	Cobalt-substituted SrTi _{0.3} Fe _{0.7} O _{3â~î^} : a stable high-performance oxygen electrode material for intermediate-temperature solid oxide electrochemical cells. Energy and Environmental Science, 2018, 11, 1870-1879.	15.6	93
144	Coking-resistant NbOx-Ni-Ce0.8Sm0.2O1.9 anode material for methanol-fueled solid oxide fuel cells. International Journal of Hydrogen Energy, 2018, 43, 12748-12755.	3.8	13
145	A novel approach for the quantification of inhomogeneous 3D current distribution in fuel cell electrodes. Journal of Power Sources, 2018, 396, 246-256.	4.0	15
146	Preparation and properties of lanthanum (La) and indium (In) co-doped ceria system for IT-SOFC. Ionics, 2019, 25, 1747-1757.	1.2	5
147	Polymer Fuel Cell Based on Polybenzimidazole Membrane: A Review. Polymer-Plastics Technology and Materials, 2019, 58, 465-497.	0.6	22
148	Liquidsâ€ŧoâ€₽ower Using Lowâ€Temperature Solid Oxide Fuel Cells. Energy Technology, 2019, 7, 20-32.	1.8	25
149	High performance Mn _{1.3} Co _{1.3} Cu _{0.4} O ₄ spinel based composite cathodes for intermediate temperature solid oxide fuel cells. Journal of Materials Chemistry A, 2019, 7, 19696-19703.	5.2	33

#	Article	IF	CITATIONS
150	Correlation of Time-Dependent Oxygen Surface Exchange Kinetics with Surface Chemistry of La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3â^îr} Catalysts. ACS Applied Materials & Interfaces, 2019, 11, 31786-31792.	4.0	40
151	Dual Atmosphere Isothermal Aging and Rapid Thermal Cycling of Ag-Ni and Ag-CuO Stainless Steel to Zirconia Braze Joints. Journal of the Electrochemical Society, 2019, 166, F594-F603.	1.3	9
152	La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3â^î^} /CeO ₂ Heterostructured Composite Nanofibers as a Highly Active and Robust Cathode Catalyst for Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2019, 11, 26830-26841.	4.0	93
153	Meeting U.S. Solid Oxide Fuel Cell Targets. Joule, 2019, 3, 2060-2065.	11.7	39
154	Effect of H2O and CO2 on LSCF-GDC Composite Cathodes. ECS Transactions, 2019, 91, 665-680.	0.3	6
155	High stability SrTi _{1â^x} Fe _x O _{3â^î^} electrodes for oxygen reduction and oxygen evolution reactions. Journal of Materials Chemistry A, 2019, 7, 21447-21458.	5.2	32
156	High performance Ba0.95Ca0.05Fe0.9-xSnxY0.1O3-δ-SDC as cobalt-free cathode for intermediate-temperature proton-conducting solid oxide fuel cells with BaZr0.1Ce0.7Y0.2O3-δ electrolyte. Journal of Alloys and Compounds, 2019, 786, 163-168.	2.8	28
157	Modeling and Optimization of the BSCF-Based Single-Chamber Solid Oxide Fuel Cell by Artificial Neural Network and Genetic Algorithm. Journal of Chemistry, 2019, 2019, 1-9.	0.9	6
158	Highly Efficient CuCo 2 O 4 Decorated Er 0.4 Bi 1.6 O 3 Nanostructured Cathode for Intermediate Temperature Solid Oxide Fuel Cells. ChemistrySelect, 2019, 4, 6606-6613.	0.7	3
159	Enhanced thermoelectric properties of n-type Ti-doped PbTe. MRS Advances, 2019, 4, 1683-1689.	0.5	1
160	Electrochemical performance and stability of SrTi0.3Fe0.6Co0.1O3-δ infiltrated La0.8Sr0.2MnO3Zr0.92Y0.16O2-δ oxygen electrodes for intermediate-temperature solid oxide electrochemical cells. Journal of Power Sources, 2019, 426, 233-241.	4.0	27
161	Enhanced sinterability and electrochemical performance of solid oxide fuel cells via a rollÂcalendering process. Journal of Materials Chemistry A, 2019, 7, 9958-9967.	5.2	9
162	A-site deficient La0.4Sr0.4TiO3-Ce0.9Gd0.1O1.95 composites as efficient and redox stable anodes for solid oxide fuel cells. Journal of Alloys and Compounds, 2019, 787, 1143-1148.	2.8	14
163	Atomic Layer Deposition for Surface Engineering of Solid Oxide Fuel Cell Electrodes. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 629-646.	2.7	27
164	Pilot-scale calcination of limestone in steam-rich gas for direct air capture. Energy Conversion and Management: X, 2019, 1, 100007.	0.9	0
165	A Cogeneration System Based on Solid Oxide and Proton Exchange Membrane Fuel Cells With Hybrid Storage for Off-Grid Applications. Frontiers in Energy Research, 2019, 6, .	1.2	43
166	Development of paper-structured catalyst for application to direct internal reforming solid oxide fuel cell fueled by biogas. International Journal of Hydrogen Energy, 2019, 44, 10484-10497.	3.8	22
167	Recent Trends in Nanomaterials for Sustainable Energy. Environmental Chemistry for A Sustainable World, 2019, , 1-20.	0.3	1

#	ARTICLE	IF	Citations
168	Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells – A review. International Journal of Hydrogen Energy, 2019, 44, 7448-7493.	3.8	287
169	Pt Nanoparticle-Loaded Graphene Aerogel Microspheres with Excellent Methanol Electro-Oxidation Performance. Langmuir, 2019, 35, 3694-3700.	1.6	30
170	New insights into element migration on La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes of intermediate temperature solid oxide fuel cells. Solid State Ionics, 2019, 334, 145-151.	1.3	16
171	Atomic Scale Origin of Enhanced Ionic Conductivity at Crystal Defects. Nano Letters, 2019, 19, 2162-2168.	4.5	30
172	Anodeâ€Supported Planar Solid Oxide Fuel Cells Based on Doubleâ€sided Cathodes. Energy Technology, 2019, 7, 240-244.	1.8	25
173	Synergistic effect study of EuBa0.98Co2O5+-Ce0.8Sm0.2O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2019, 771, 513-521.	2.8	14
174	On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells. Renewable and Sustainable Energy Reviews, 2019, 101, 361-375.	8.2	121
175	Effective promotion of oxygen reduction activity by rare earth doping in simple perovskite cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2020, 446, 227360.	4.0	67
176	A review on recent status and challenges of yttria stabilized zirconia modification to lowering the temperature of solid oxide fuel cells operation. International Journal of Energy Research, 2020, 44, 631-650.	2.2	84
177	Characterization of SmBa0.5Ca0.5CoCuO5+Î′ with exsolved CaCuO2-type phase as an advanced cathode material of solid oxide fuel cells. Ceramics International, 2020, 46, 3861-3865.	2.3	6
178	<i>In situ</i> exsolution of Ni particles on the PrBaMn ₂ O ₅ SOFC electrode material monitored by high temperature neutron powder diffraction under hydrogen. Journal of Materials Chemistry A, 2020, 8, 3590-3597.	5.2	20
179	Catalytic Steam Reforming of Natural Gas over a New Ni Exsolved Ruddlesdenâ€Popper Manganite in SOFC Anode Conditions. ChemCatChem, 2020, 12, 1453-1466.	1.8	11
180	Stability of tungsten-doped δ-Bi3YO6. Solid State Ionics, 2020, 345, 115173.	1.3	2
181	Comparison of in-situ Raman studies of SOFC with thick single-crystal and thin-film magnetron sputtered membranes. Solid State Ionics, 2020, 344, 115091.	1.3	4
182	Mayenite Electrides and Their Doped Forms for Oxygen Reduction Reaction in Solid Oxide Fuel Cells. Energies, 2020, 13, 4978.	1.6	0
183	Improved electrochemical performance and durability of butaneâ€operating lowâ€ŧemperature solid oxide fuel cell through palladium infiltration. International Journal of Energy Research, 2020, 44, 9995-10007.	2.2	17
184	Enhancing oxygen reduction activity and CO2-tolerance of A-site-deficient BaCo0.7Fe0.3O3-Î [^] cathode by surface-decoration with Pr6O11 particles. International Journal of Hydrogen Energy, 2020, 45, 31070-31079.	3.8	8
185	Revisiting ionic conductivity of rare earth doped ceria: Dependency on different factors. International Journal of Hydrogen Energy, 2020, 45, 25139-25166.	3.8	43

#	Article	IF	CITATIONS
186	Composite electrodes of Ti-doped SrFeO3-δ and LSGMZ electrolytes as both the anode and cathode in symmetric solid oxide fuel cells. Journal of Alloys and Compounds, 2020, 846, 156154.	2.8	19
187	Stabilizing fluorite structure in ceria-based high-entropy oxides: Influence of Mo addition on crystal structure and transport properties. Journal of the European Ceramic Society, 2020, 40, 5870-5881.	2.8	36
188	Review: Influence of alloy addition and spinel coatings on Cr-based metallic interconnects of solid oxide fuel cells. International Journal of Hydrogen Energy, 2020, 45, 25191-25209.	3.8	62
189	Multi-functionalities enabled fivefold applications of LaCo0.6Ni0.4O3â [∼] Î′ in intermediate temperature symmetrical solid oxide fuel/electrolysis cells. Nano Energy, 2020, 77, 105207.	8.2	37
190	Ultra-fast fabrication of anode-supported solid oxide fuel cells via microwave-assisted sintering technology. Korean Journal of Chemical Engineering, 2020, 37, 1436-1439.	1.2	4
191	Tailoring the Surface of Perovskite through In Situ Growth of Ru/RuO ₂ Nanoparticles as Robust Symmetrical Electrodes for Reversible Solid Oxide Cells. Advanced Materials Interfaces, 2020, 7, 2000828.	1.9	8
192	A comparative study of the R-P phase Srn+1FenO3n+1 (n= 1, 2 and 3) cathodes for intermediate temperature solid oxide fuel cells. Ceramics International, 2020, 46, 19335-19342.	2.3	9
193	Generating C4 Alkenes in Solid Oxide Fuel Cells via Cofeeding H ₂ and <i>n</i> Butane Using a Selective Anode Electrocatalyst. ACS Applied Materials & Interfaces, 2020, 12, 16209-16215.	4.0	15
194	Electrochemical performance and anode reaction process for Ca doped Sr2Fe1·5Mo0·5O6-δ as electrodes for symmetrical solid oxide fuel cells. Electrochimica Acta, 2020, 341, 136067.	2.6	44
195	Exploring the effects of divalent alkaline earth metals (Mg, Ca, Sr, Ba) doped Nd2Ce2O7 electrolyte for proton-conducting solid oxide fuel cells. Ceramics International, 2020, 46, 12675-12685.	2.3	16
196	Local structural changes in Ce1-xLnxO2-δ (LnÂ=ÂLa, Gd) solid electrolytes. Solid State Ionics, 2020, 347, 115213.	1.3	3
197	Oxygen ion conductivity in ceria-based electrolytes co-doped with samarium and gadolinium. Solid State Ionics, 2020, 347, 115255.	1.3	18
198	Interface engineering towards low temperature in-situ densification of SOFC. International Journal of Hydrogen Energy, 2020, 45, 10030-10038.	3.8	13
199	Ba0.5Sr0.5Co0.8-xFe0.2NbxO3-l´ (xâ‰0.1) as cathode materials for intermediate temperature solid oxide fuel cells with an electron-blocking interlayer. Ceramics International, 2020, 46, 10215-10223.	2.3	36
200	Exploring Ni(Mn _{1/3} Cr _{2/3}) ₂ O ₄ spinel-based electrodes for solid oxide cells. Journal of Materials Chemistry A, 2020, 8, 3988-3998.	5.2	27
201	Binder- and conductive additive-free laser-induced graphene/LiNi1/3Mn1/3Co1/3O2 for advanced hybrid supercapacitors. NPG Asia Materials, 2020, 12, .	3.8	28
202	Effects of niobium doping on the stability of SrCo0.2Fe0.8O3-δ cathodes for intermediate temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2020, 829, 154503.	2.8	22
203	Effect of anomalous behavior of Be-doping on structural stability, bandgap and optical properties in comparison with Mg-doped BaZrO3 perovskite: insights from DFT calculations. Optical and Quantum Electronics, 2020, 52, 1	1.5	15

#	Article	IF	CITATIONS
204	Porous/dense bilayer BaZr0.8Y0.2O3-δ electrolyte matrix fabricated by tape casting combined with solid-state reactive sintering for protonic ceramic fuel cells. International Journal of Hydrogen Energy, 2021, 46, 9918-9926.	3.8	14
205	Unraveling the problem associated with multi-cation oxide formation using urea based infiltration techniques for SOFC application. Journal of Alloys and Compounds, 2021, 852, 157037.	2.8	8
206	Controlling cation migration and inter-diffusion across cathode/interlayer/electrolyte interfaces of solid oxide fuel cells: A review. Ceramics International, 2021, 47, 5839-5869.	2.3	55
207	Recent advances and perspectives of fluorite and perovskite-based dual-ion conducting solid oxide fuel cells. Journal of Energy Chemistry, 2021, 57, 406-427.	7.1	56
208	Effect of lanthanide (Ln=La, Nd, and Pr) doping on electrochemical performance of Ln2NiO4+뫉^`YSZ composite cathodes for solid oxide fuel cells. Ceramics International, 2021, 47, 2493-2498.	2.3	17
209	A comparative study of surface segregation and interface of LaO·6SrO·4CoO·2FeO·8O3-δ electrode on GDC and YSZ electrolytes of solid oxide fuel cells. International Journal of Hydrogen Energy, 2021, 46, 2606-2616.	3.8	43
210	Impact of Aliovalent Alkaline-Earth metal solutes on Ceria Grain Boundaries: A density functional theory study. Acta Materialia, 2021, 205, 116481.	3.8	5
211	Investigations on Positive (Sm3+) and Negative (Ho3+) Association Energy Ion Co-doped Cerium Oxide Solid Electrolytes for IT-SOFC Applications. Jom, 2021, 73, 2754-2763.	0.9	1
212	Background of energy storage. , 2021, , 1-26.		3
213	Exsolution of Embedded Nanoparticles in Defect Engineered Perovskite Layers. ACS Nano, 2021, 15, 4546-4560.	7.3	18
214	Influence of Al3+ doping for V5+ on the structural, optical, thermal and electrical properties of V2-Al O5- (x=0–0.20) ceramics. Ceramics International, 2021, 47, 10724-10732.	2.3	5
215	The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production. Renewable and Sustainable Energy Reviews, 2021, 142, 110803.	8.2	27
216	Sintering behavior and electrochemical performance of A-site deficient SrxTi0.3Fe0·7O3-δ oxygen electrodes for solid oxide electrochemical cells. Ceramics International, 2021, 47, 25051-25058.	2.3	13
217	Sintering/Crystallization and Viscosity of Sealing Glass-Ceramics. Crystals, 2021, 11, 737.	1.0	7
218	Partial Oxidation of Isooctane over Ruâ€Promoted Nickel–Molybdenum/Cerium–Zirconium Oxide Catalyst at an Intermediate Temperature for Internal Reforming Solid Oxide Fuel Cell Applications. Energy Technology, 2021, 9, 2100064.	1.8	2
219	Computational Design and Experimental Validation of the Optimal Bimetal-Doped SrCoO _{3â~î~} Perovskite as Solid Oxide Fuel Cell Cathode. Journal of the American Chemical Society, 2021, 143, 9507-9514.	6.6	48
220	180/160 isotope exchange for yttria stabilised zirconia in dry and humid oxygen. International Journal of Hydrogen Energy, 2021, 46, 20023-20036.	3.8	5
221	Ruddlesden-Popper-based lanthanum cuprate thin film cathodes for solid oxide fuel cells: Effects of doping and structural transformation on the oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46, 27173-27182.	3.8	6

#	Article	IF	CITATIONS
222	Effective transport parameters of porous media from 2D microstructure images. International Journal of Heat and Mass Transfer, 2021, 175, 121371.	2.5	4
223	Enabled fast cathode kinetics for intermediate-temperature solid oxide fuel cell with improved CO2 poisoning robustness: La2NiO4 surfaced-modified SrCo0.8Nb0.1Ta0.1O3-δ composite. Journal of Power Sources, 2021, 506, 230057.	4.0	19
224	Simulation and Sensitivity Analysis for Various Geometries and Optimization of Solid Oxide Fuel Cells: A Review. Eng, 2021, 2, 386-415.	1.2	3
225	Triple perovskite structured Nd1.5Ba1.5CoFeMnO9â^' oxygen electrode materials for highly efficient and stable reversible protonic ceramic cells. Journal of Power Sources, 2021, 510, 230409.	4.0	24
226	An efficient and robust lanthanum strontium cobalt ferrite catalyst as a bifunctional oxygen electrode for reversible solid oxide cells. Journal of Materials Chemistry A, 2021, 9, 5507-5521.	5.2	21
227	Glasses and glass-ceramics as sealants in solid oxide fuel cell applications. , 2021, , 373-404.		3
228	Superionic conductive La3+ and Pr3+ Co-doped cerium oxide for IT-SOFC applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 10628-10638.	1.1	5
229	Investigations on electrochemical performance of La2NiO4+δ cathode material doped at A site for solid oxide fuel cells. Materials Research Express, 2020, 7, 065507.	0.8	10
230	Synthesis and Characterization of La0.75Sr0.25Mn0.5Cr0.5-xCuxO3-l̂´ for SOFC An-ode Material. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 925-930.	0.6	4
231	Terbium and Tungsten Co-doped Bismuth Oxide Electrolytes for Low Temperature Solid Oxide Fuel Cells. Journal of the Korean Ceramic Society, 2014, 51, 260-264.	1.1	12
232	Electrochemical Performance of NiCo ₂ O ₄ Spinel Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2100542.	0.8	4
233	High Temperature Fuel Cells for Efficient Conversion of Fossil Fuel Energy. , 2015, , 235-239.		0
234	Electro-chemo-mechanical effects of lithium incorporation in zirconium oxide. Physical Review Materials, 2018, 2, .	0.9	0
235	Synthesis and characterization of Ga-doped Ba3MoNbO8.5 electrolytes for intermediate temperature-solid oxide fuel cells. Ceramics International, 2022, 48, 4545-4553.	2.3	6
236	Defect chemistry and proton uptake of La2-xSrxNiO4±δ and La2-xBaxNiO4±δ Ruddlesden-Popper phases. Journal of Solid State Chemistry, 2022, 306, 122731.	1.4	9
237	Highly promoted electrocatalytic activity of spinel CoFe ₂ O ₄ by combining with Er _{0.4} Bi _{1.6} O ₃ as a bifunctional oxygen electrode for reversible solid oxide cells. Journal of Materials Chemistry A, 2022, 10, 2045-2054.	5.2	6
238	Rare earth cerate (Re2Ce2O7) ceramic nanomaterials. , 2022, , 47-75.		1
239	Combining electrochemical and quantitative elemental analysis to investigate the sulfur poisoning process of ceria thin film fuel electrodes. Journal of Materials Chemistry A, 2022, 10, 1840-1851.	5.2	2

#	Articie	IF	CITATIONS
240	A brief review of heterostructure electrolytes for high-performance solid oxide fuel cells at reduced temperatures. Journal of the Korean Ceramic Society, 2022, 59, 131-152.	1.1	12
241	Sr-free orthorhombic perovskite Pr0.8Ca0.2Fe0.8Co0.2O3-δas a high-performance air electrode for reversible solid oxide cell. Journal of Power Sources, 2022, 528, 231202.	4.0	18
242	LaBa0.8Ca0.2Co2O5+l̂´ cathode with superior CO2 resistance and high oxygen reduction activity for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2022, 47, 16214-16221.	3.8	11
245	High temperature oxidation of AISI 441 in simulated solid oxide fuel cell anode side conditions. Corrosion Science, 2022, 203, 110338.	3.0	4
246	Unconventional Highly Active and Stable Oxygen Reduction Catalysts Informed by Computational Design Strategies. Advanced Energy Materials, 2022, 12, .	10.2	4
247	Genetic Algorithms for Chemical Engineering Optimization Problems. , 0, , .		0
248	A review on the application of Sr2Fe1.5Mo0.5O6-based oxides in solid oxide electrochemical cells. Separation and Purification Technology, 2022, 298, 121581.	3.9	16
249	BaCO3 Nanoparticles-Modified Composite Cathode with Improved Electrochemical Oxygen Reduction Kinetics for High-Performing Ceramic Fuel Cells. Catalysts, 2022, 12, 1046.	1.6	4
250	A combined ionic Lewis acid descriptor and machine-learning approach to prediction of efficient oxygen reduction electrodes for ceramic fuel cells. Nature Energy, 2022, 7, 866-875.	19.8	64
251	Synthesis and Properties of the Gallium-Containing Ruddlesden-Popper Oxides with High-Entropy B-Site Arrangement. Materials, 2022, 15, 6500.	1.3	4
252	Catalytic and electrocatalytic performance of Sr(Ti0.3Fe0.7Ru0.07)O3-δ for applications in solid oxide fuel cells supplied with ethanol steam reforming mixtures. Journal of Power Sources, 2022, 551, 232215.	4.0	4
253	High performance La2NiO4+δ impregnated La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes for solid oxide fuel cells. Solid State Ionics, 2022, 387, 116065.	1.3	4
254	Progress in nanomaterials fabrication and their prospects in artificial intelligence towards solid oxide fuel cells: A review. International Journal of Hydrogen Energy, 2024, 52, 216-247.	3.8	7
255	F-doped LiNi0.8Co0.15Al0.05O2-δ cathodes with enhanced ORR catalytic activity for LT-SOFCs. Journal of Alloys and Compounds, 2023, 940, 168837.	2.8	3
256	Enhancement of low-temperature solid oxide fuel cell performance and durability via surface chemistry modification. Electrochimica Acta, 2023, 442, 141881.	2.6	5
257	Mitigating distortions during debinding of a monolithic solid oxide fuel cell stack using a multiscale, multiphysics model. Journal of the European Ceramic Society, 2023, 43, 1992-2001.	2.8	1
258	An experimental study of ammonia decomposition rates over cheap metal catalysts for solid oxide fuel cell anode. International Journal of Hydrogen Energy, 2023, 48, 19188-19195.	3.8	3
259	A Review on Solid Oxide Fuel Cell Stack Designs for Intermediate Temperatures. Jurnal Kejuruteraan, 2020, 32, 149-158.	0.2	5

ARTICLE

IF CITATIONS