<i>LacZ</i> βâ€galactosidase: Structure and function of molecular biological importance

Protein Science

21, 1792-1807

DOI: 10.1002/pro.2165

Citation Report

#	Article	IF	CITATIONS
1	Intramolecular strategies and stereoelectronic effects. Glycosides hydrolysis revisited. Pure and Applied Chemistry, 1993, 65, 1161-1178.	0.9	65
2	Effects of Alcohols and Compatible Solutes on the Activity of \hat{l}^2 -Galactosidase. Applied Biochemistry and Biotechnology, 2013, 169, 786-794.	1.4	38
3	Structural Explanation for Allolactose (lac Operon Inducer) Synthesis by lacZ \hat{l}^2 -Galactosidase and the Evolutionary Relationship between Allolactose Synthesis and the lac Repressor. Journal of Biological Chemistry, 2013, 288, 12993-13005.	1.6	42
4	Biochemical characterization of mutants in the active site residues of the βâ€galactosidase enzyme of <i>Bacillus circulans</i> ATCC 31382. FEBS Open Bio, 2014, 4, 1015-1020.	1.0	21
5	Structure of \hat{l}^2 -galactosidase at 3.2- \tilde{A} resolution obtained by cryo-electron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11709-11714.	3.3	184
6	Studies of translational misreading in vivo show that the ribosome very efficiently discriminates against most potential errors. Rna, 2014, 20, 9-15.	1.6	80
7	Probiotic Properties of Lactic Acid Bacteria Isolated from Water-Buffalo Mozzarella Cheese. Probiotics and Antimicrobial Proteins, 2014, 6, 141-156.	1.9	47
8	Characterization of novel galactosylated chitin-oligosaccharides and chitosan-oligosaccharides. International Dairy Journal, 2014, 39, 330-335.	1.5	6
9	A Single Molecule Perspective on the Functional Diversity of <i>in Vitro</i> Evolved \hat{l}^2 -Glucuronidase. Journal of the American Chemical Society, 2014, 136, 5949-5955.	6.6	44
10	Molecular Mechanism of Antibody-Mediated Activation of β-galactosidase. Structure, 2014, 22, 621-627.	1.6	24
11	A particular silent codon exchange in a recombinant gene greatly influences host cell metabolic activity. Microbial Cell Factories, 2015, 14, 156.	1.9	18
12	Enzymatic Synthesis of Galactosylated Serine/Threonine Derivatives by \hat{I}^2 -Galactosidase from Escherichia coli. International Journal of Molecular Sciences, 2015, 16, 13714-13728.	1.8	4
13	A <i>lacZ</i> reporter gene expression atlas for 313 adult KOMP mutant mouse lines. Genome Research, 2015, 25, 598-607.	2.4	29
14	Potential of d-Octaarginine-Linked Polymers as an in Vitro Transfection Tool for Biomolecules. Bioconjugate Chemistry, 2015, 26, 1782-1790.	1.8	11
15	Conversion of cheese whey into a fucose- and glucuronic acid-rich extracellular polysaccharide by Enterobacter A47. Journal of Biotechnology, 2015, 210, 1-7.	1.9	22
16	Sortase A-mediated multi-functionalization of protein nanoparticles. Chemical Communications, 2015, 51, 12107-12110.	2.2	60
17	A new electrochemical substrate for rapid and sensitive in vivo monitoring of \hat{l}^2 -galactosidase gene expressions. Analyst, The, 2015, 140, 6040-6046.	1.7	12
18	A gene expression resource generated by genome-wide <i>lacZ</i> profiling in the mouse. DMM Disease Models and Mechanisms, 2015, 8, 1467-78.	1.2	12

#	ARTICLE	IF	CITATIONS
19	Three-in-one enzyme assay based on single molecule detection in femtoliter arrays. Analytical and Bioanalytical Chemistry, 2015, 407, 7443-7452.	1.9	25
20	Separation of E. coli chaperonin groEL from \hat{l}^2 -galactosidase without denaturation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 1007, 93-99.	1.2	7
21	Use of Reporter Genes in the Generation of Vaccinia Virus-Derived Vectors. Viruses, 2016, 8, 134.	1.5	3
22	Captureâ€Tagâ€Release: A Strategy for Small Molecule Labeling of Native Enzymes. ChemBioChem, 2016, 17, 1602-1605.	1.3	7
23	Luciferase NanoLuc as a reporter for gene expression and protein levels in <i>Saccharomyces cerevisiae</i> . Yeast, 2016, 33, 191-200.	0.8	52
24	Cold-Active \hat{l}^2 -Galactosidases: Sources, Biochemical Properties and Their Biotechnological Potential. Grand Challenges in Biology and Biotechnology, 2016, , 445-469.	2.4	2
25	Enzymatic modification of polysaccharides: Mechanisms, properties, and potential applications: A review. Enzyme and Microbial Technology, 2016, 90, 1-18.	1.6	149
26	Beta galactosidases in Arabidopsis and tomato–a mini review. Biochemical Society Transactions, 2016, 44, 150-158.	1.6	44
27	Characterization of the activity of \hat{l}^2 -galactosidase from Escherichia coli and Drosophila melanogaster in fixed and non-fixed Drosophila tissues. Biochimie Open, 2016, 3, 1-7.	3.2	12
28	Interaction–dependent native chemical ligation and protein trans–splicing (IDNCLâ€PTS) for detection and visualization of ligand–protein interactions. ChemistrySelect, 2016, 1, 1768-1772.	0.7	4
29	Fluorometric cell-based assay for \hat{l}^2 -galactosidase activity in probiotic gram-positive bacterial cells $\hat{a} \in \hat{l}^2$ Lactobacillus helveticus. Journal of Microbiological Methods, 2016, 128, 58-60.	0.7	12
30	Structural studies of a cold-adapted dimeric \hat{l}^2 -D-galactosidase fromParacoccussp. 32d. Acta Crystallographica Section D: Structural Biology, 2016, 72, 1049-1061.	1.1	17
31	Role of the <i>ganSPQAB</i> Operon in Degradation of Galactan by Bacillus subtilis. Journal of Bacteriology, 2016, 198, 2887-2896.	1.0	22
32	Catalytic and substrate promiscuity: distinct multiple chemistries catalysed by the phosphatase domain of receptor protein tyrosine phosphatase. Biochemical Journal, 2016, 473, 2165-2177.	1.7	8
33	Potent Glycosidase Inhibition with Heterovalent Fullerenes: Unveiling the Binding Modes Triggering Multivalent Inhibition. Chemistry - A European Journal, 2016, 22, 11450-11460.	1.7	65
34	Structural Dissection of the Active Site of <i>Thermotoga maritima</i> \hat{I}^2 -Galactosidase Identifies Key Residues for Transglycosylating Activity. Journal of Agricultural and Food Chemistry, 2016, 64, 2917-2924.	2.4	21
35	Effects of tRNA modification on translational accuracy depend on intrinsic codon–anticodon strength. Nucleic Acids Research, 2016, 44, 1871-1881.	6.5	83
36	Overview and assessment of the histochemical methods and reagents for the detection of \hat{l}^2 -galactosidase activity in transgenic animals. Anatomical Science International, 2016, 91, 56-67.	0.5	29

#	Article	IF	CITATIONS
37	Electrochemical Detection of <i>Escherichia coli</i> from Aqueous Samples Using Engineered Phages. Analytical Chemistry, 2017, 89, 1650-1657.	3.2	78
38	Engineering of the <i>Bacillus circulans</i> \hat{l}^2 -Galactosidase Product Specificity. Biochemistry, 2017, 56, 704-711.	1.2	30
39	Advantages and Limitations of Salmon-Gal/Tetrazolium Salt Histochemistry for the Detection of LacZ Reporter Gene Activity in Murine Epithelial Tissue. Journal of Histochemistry and Cytochemistry, 2017, 65, 197-206.	1.3	3
40	Metal-to-ligand charge-transfer: Applications to visual detection of \hat{l}^2 -galactosidase activity and sandwich immunoassay. Talanta, 2017, 167, 253-259.	2.9	16
41	Online Monitoring of Enzymatic Reactions Using Time-Resolved Desorption Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2017, 89, 2338-2344.	3.2	29
42	Development of polyol-responsive antibody mimetics for single-step protein purification. Protein Expression and Purification, 2017, 134, 114-124.	0.6	10
43	Mg2+-induced stabilization of \hat{l}^2 -galactosidase from Bacillus megaterium and its application in the galactosylation of natural products. Biotechnology Letters, 2017, 39, 1175-1181.	1.1	5
44	\hat{l}^2 -galactosidase from Aspergillus lacticoffeatus : A promising biocatalyst for the synthesis of novel prebiotics. International Journal of Food Microbiology, 2017, 257, 67-74.	2.1	38
45	Using yeast to determine the functional consequences of mutations in the human p53 tumor suppressor gene: An introductory courseâ€based undergraduate research experience in molecular and cell biology. Biochemistry and Molecular Biology Education, 2017, 45, 161-178.	0.5	24
46	Structure-activity relationships on the study of \hat{l}^2 -galactosidase folding/unfolding due to interactions with immobilization additives: Triton X-100 and ethanol. International Journal of Biological Macromolecules, 2017, 96, 87-92.	3.6	10
47	Development of a Long-Lived Luminescence Probe for Visualizing \hat{I}^2 -Galactosidase in Ovarian Carcinoma Cells. Analytical Chemistry, 2017, 89, 11679-11684.	3.2	140
48	Flexibility-Rigidity Coordination of the Dense Exopolysaccharide Matrix in Terrestrial Cyanobacteria Acclimated to Periodic Desiccation. Applied and Environmental Microbiology, 2017, 83, .	1.4	29
49	Fabrication of Stable and Luminescent Copper Nanocluster-Based AIE Particles and Their Application in β-Galactosidase Activity Assay. ACS Applied Materials & Interfaces, 2017, 9, 32887-32895.	4.0	64
50	Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW). Chemosphere, 2017, 186, 893-900.	4.2	22
51	A <i>priA</i> Mutant Expressed in Two Pieces Has Almost Full Activity in Escherichia coli K-12. Journal of Bacteriology, 2017, 199, .	1.0	6
52	Blue-white screening as a new readout for deoxyribozyme activity in bacterial cells. RSC Advances, 2017, 7, 54835-54843.	1.7	7
53	Key amino acid residues conferring enhanced enzyme activity at cold temperatures in an Antarctic polyextremophilic $\hat{1}^2$ -galactosidase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12530-12535.	3.3	30
54	Measuring βâ€Galactosidase Activity in Gramâ€Positive Bacteria Using a Wholeâ€Cell Assay with MUG as a Fluorescent Reporter. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2017, 74, 4.44.1-4.44.8.	1.1	2

#	Article	IF	CITATIONS
55	A single base change explains the independent origin of and selection for the nonshattering gene in African rice domestication. New Phytologist, 2017, 213, 1925-1935.	3.5	23
56	Mini review on role of \hat{I}^2 -galactosidase in lactose intolerance. IOP Conference Series: Materials Science and Engineering, 2017, 263, 022046.	0.3	11
57	Biochemical and Structural Insights into a Novel Thermostable \hat{l}^2 -1,3-Galactosidase from Marinomonas sp. BSi20414. Marine Drugs, 2017, 15, 13.	2.2	19
58	Beta (\hat{l}^2)-Galactosidase \hat{a}^{-} †., 2017, , .		0
59	Enzyme adsorption-induced activity changes: a quantitative study on TiO2 model agglomerates. Journal of Nanobiotechnology, 2017, 15, 55.	4.2	14
60	On the Assembly of Microreactors with Parallel Enzymatic Pathways. Advanced Biology, 2018, 2, e1700244.	3.0	14
61	Discovery of Intermediates of lacZ \hat{l}^2 -Galactosidase Catalyzed Hydrolysis Using dDNP NMR. Journal of the American Chemical Society, 2018, 140, 3030-3034.	6.6	12
62	An improved CPRG colorimetric ligand-receptor signal transduction assay based on beta-galactosidase activity in mammalian BWZ-reporter cells. Journal of Pharmacological and Toxicological Methods, 2018, 90, 67-75.	0.3	1
63	Giant Glycosidase Inhibitors: First―and Secondâ€Generation Fullerodendrimers with a Dense Iminosugar Shell. Chemistry - A European Journal, 2018, 24, 2483-2492.	1.7	33
64	Light-triggered enzymatic reactions in nested vesicle reactors. Nature Communications, 2018, 9, 1093.	5.8	125
65	Fluorescent Chemosensors as Future Tools for Cancer Biology. ACS Chemical Biology, 2018, 13, 1785-1798.	1.6	60
66	Development of photoswitchable inhibitors for \hat{l}^2 -galactosidase. Organic and Biomolecular Chemistry, 2018, 16, 7430-7437.	1.5	16
67	Is divalent magnesium cation the best cofactor for bacterial \hat{l}^2 -galactosidase?. Journal of Biosciences, 2018, 43, 941-945.	0.5	6
68	Transcriptome profiling uncovers \hat{l}^2 -galactosidases of diverse domain classes influencing hypocotyl development in jute (Corchorus capsularis L.). Phytochemistry, 2018, 156, 20-32.	1.4	8
69	Copy number of ArsR reporter plasmid determines its arsenite response and metal specificity. Applied Microbiology and Biotechnology, 2018, 102, 5753-5761.	1.7	8
70	Bottom-up single-molecule strategy for understanding subunit function of tetrameric \hat{l}^2 -galactosidase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8346-8351.	3.3	14
71	Gut microbiota in experimental murine model of Graves' orbitopathy established in different environments may modulate clinical presentation of disease. Microbiome, 2018, 6, 97.	4.9	65
72	Genome-Wide Analysis of \hat{l}^2 -Galactosidases in Xanthomonas campestris pv. campestris 8004. Frontiers in Microbiology, 2018, 9, 957.	1.5	3

#	Article	IF	CITATIONS
73	Transition-State Ensembles Navigate the Pathways of Enzyme Catalysis. Journal of Physical Chemistry B, 2018, 122, 5809-5819.	1.2	10
74	Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chemical Society Reviews, 2018, 47, 7140-7180.	18.7	689
75	Direct synthesis of N-terminal thiazolidine-containing peptide thioesters from peptide hydrazides. Chemical Communications, 2018, 54, 9127-9130.	2.2	16
76	Ratiometric fluorescent probes with a self-immolative spacer for real-time detection of \hat{l}^2 -galactosidase and imaging in living cells. Analytica Chimica Acta, 2018, 1033, 193-198.	2.6	22
77	Using Natural Waste Material as a Matrix for the Immobilization of Enzymes: Chicken Eggshell Membrane Powder for \hat{l}^2 -Galactosidase Immobilization. Applied Biochemistry and Biotechnology, 2019, 187, 101-115.	1.4	17
78	Evaluation of enterococci for potential probiotic utilization in dogs. Folia Microbiologica, 2019, 64, 177-187.	1.1	7
79	Production of bioactive compounds by the mycelial growth of Pleurotus djamor in whey powder enriched with selenium. LWT - Food Science and Technology, 2019, 114, 108376.	2.5	16
80	Molecular Magnetic Resonance Imaging with Gd(III)-Based Contrast Agents: Challenges and Key Advances. Journal of the American Chemical Society, 2019, 141, 17025-17041.	6.6	159
81	Comparative genome analysis reveals metabolic traits associated with probiotics properties in Lactobacillus reuteri KUB-AC5. Gene Reports, 2019, 17, 100536.	0.4	10
82	A New \hat{I}^2 -Galactosidase from the Antarctic Bacterium Alteromonas sp. ANT48 and Its Potential in Formation of Prebiotic Galacto-Oligosaccharides. Marine Drugs, 2019, 17, 599.	2.2	25
83	Small Molecule as Fluorescent Probes for Monitoring Intracellular Enzymatic Transformations. Chemical Reviews, 2019, 119, 11718-11760.	23.0	240
84	Active Site Architecture and Reaction Mechanism Determination of Cold Adapted \hat{l}^2 -d-galactosidase from Arthrobacter sp. 32cB. International Journal of Molecular Sciences, 2019, 20, 4301.	1.8	12
85	Genes Involved in Galactooligosaccharide Metabolism in Lactobacillus reuteri and Their Ecological Role in the Gastrointestinal Tract. Applied and Environmental Microbiology, 2019, 85, .	1.4	21
86	Identification of pre- and pro-haptens with a \hat{l}^2 -galactosidase-expressing E. coli culture system for skin sensitization. Toxicology Letters, 2019, 305, 81-93.	0.4	2
87	Insights into the pH-dependent catalytic mechanism of Sulfolobus solfataricus \hat{l}^2 -glycosidase: A molecular dynamics study. Carbohydrate Research, 2019, 480, 42-53.	1.1	7
88	Rolling Circle Transcription-Amplified Hierarchically Structured Organic–Inorganic Hybrid RNA Flowers for Enzyme Immobilization. ACS Applied Materials & Interfaces, 2019, 11, 22932-22940.	4.0	17
89	Microbial water quality: Voltammetric detection of coliforms based on riboflavin–ferrocyanide redox couples. Electrochemistry Communications, 2019, 101, 99-103.	2.3	5
90	Direct and single-step sensing of primary ovarian cancers related glycosidases. Chinese Chemical Letters, 2019, 30, 1013-1016.	4.8	9

#	Article	IF	CITATIONS
91	Structure–Activity Study of Antibacterial Poly(ester urethane)s with Uniform Distribution of Hydrophobic and Cationic Groups. Biomacromolecules, 2019, 20, 1675-1682.	2.6	40
92	Senescence-associated \hat{l}^2 -galactosidase staining following traumatic brain injury in the mouse cerebrum. PLoS ONE, 2019, 14, e0213673.	1.1	47
94	A novel wide-range microfluidic dilution device for drug screening. Biomicrofluidics, 2019, 13, 024105.	1.2	2
95	Controlled deprotection and release of a small molecule from a compartmented synthetic tissue module. Communications Chemistry, 2019, 2, .	2.0	23
96	A near-infrared fluorescent probe for the ratiometric detection and living cell imaging of \hat{l}^2 -galactosidase. Analytical and Bioanalytical Chemistry, 2019, 411, 7957-7966.	1.9	18
97	Novel fluorescent probe for rapid and ratiometric detection of \hat{l}^2 -galactosidase and live cell imaging. Talanta, 2019, 192, 308-313.	2.9	16
98	Enzymes for Use in Functional Foods. , 2019, , 129-147.		4
99	Cellular and metabolic approaches to investigate the effects of graphene and graphene oxide in the fungi Aspergillus flavus and Aspergillus niger. Carbon, 2019, 143, 419-429.	5 . 4	37
100	\hat{l}^2 -Galactosidase from Exiguobacterium acetylicum: Cloning, expression, purification and characterization. Bioresource Technology, 2019, 277, 211-215.	4.8	19
101	Modification of narrowâ€spectrum peptidomimetic polyurethanes with fatty acid chains confers broadâ€spectrum antibacterial activity. Polymer International, 2019, 68, 1255-1262.	1.6	11
102	The art of vector engineering: towards the construction of nextâ€generation genetic tools. Microbial Biotechnology, 2019, 12, 125-147.	2.0	49
103	Conventional and non-conventional applications of \hat{l}^2 -galactosidases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140271.	1.1	62
104	Selfâ€Immolative Activation of βâ€Galactosidaseâ€Responsive Probes for In Vivo MR Imaging in Mouse Models. Angewandte Chemie - International Edition, 2020, 59, 388-394.	7.2	32
105	Selfâ€Immolative Activation of βâ€Galactosidaseâ€Responsive Probes for In Vivo MR Imaging in Mouse Models. Angewandte Chemie, 2020, 132, 396-402.	1.6	11
106	Fragment-based drug discovery using cryo-EM. Drug Discovery Today, 2020, 25, 485-490.	3.2	54
107	Cross-subunit catalysis and a new phenomenon of recessive resurrection in Escherichia coli RNase E. Nucleic Acids Research, 2020, 48, 847-861.	6.5	15
108	Photoacoustic reporter genes for noninvasive molecular imaging and theranostics. Journal of Innovative Optical Health Sciences, 2020, 13, 2030005.	0.5	4
109	Improvement of Pseudoalteromonas haloplanktis TAC125 as a Cell Factory: IPTG-Inducible Plasmid Construction and Strain Engineering. Microorganisms, 2020, 8, 1466.	1.6	9

#	Article	IF	CITATIONS
110	Structural basis of a novel repressor, SghR, controlling Agrobacterium infection by cross-talking to plants. Journal of Biological Chemistry, 2020, 295, 12290-12304.	1.6	4
111	\hat{l}^2 -Galactosidase instructed self-assembly of supramolecular bolaamphiphiles hydrogelators. Soft Matter, 2020, 16, 7648-7651.	1.2	12
112	Unexpected Anomeric Acceptor Preference Observed Using dDNP NMR for Transglycosylation Studies of \hat{l}^2 -Galactosidases. Biochemistry, 2020, 59, 2903-2908.	1.2	5
113	Mapping the Transglycosylation Relevant Sites of Cold-Adapted \hat{l}^2 -d-Galactosidase from Arthrobacter sp. 32cB. International Journal of Molecular Sciences, 2020, 21, 5354.	1.8	6
114	Genetic Incorporation of Selenotyrosine Significantly Improves Enzymatic Activity of <i>Agrobacterium radiobacter</i> Phosphotriesterase. ChemBioChem, 2021, 22, 2535-2539.	1.3	5
115	Genome sequence of the psychrophilic Cryobacterium sp. LW097 and characterization of its four novel cold-adapted \hat{l}^2 -galactosidases. International Journal of Biological Macromolecules, 2020, 163, 2068-2083.	3.6	12
116	Combinatorial Strategy for Studying Biochemical Pathways in Double Emulsion Templated Cellâ€Sized Compartments. Advanced Materials, 2020, 32, e2004804.	11.1	34
117	Crosstalk-free colloidosomes for high throughput single-molecule protein analysis. Science China Chemistry, 2020, 63, 1507-1514.	4.2	11
118	Beta galactosidase mediated bio-enzymatically synthesized nano-gold with aggrandized cytotoxic potential against pathogenic bacteria and cancer cells. Journal of Photochemistry and Photobiology B: Biology, 2020, 209, 111923.	1.7	11
119	Visualization of endogenous \hat{l}^2 -galactosidase activity in living cells and zebrafish with a turn-on near-infrared fluorescent probe. Talanta, 2020, 217, 121098.	2.9	26
120	Cloning and Characterization of a New \hat{l}^2 -Galactosidase from Alteromonas sp. QD01 and Its Potential in Synthesis of Galacto-Oligosaccharides. Marine Drugs, 2020, 18, 312.	2.2	17
121	Structural Comparison of Different Galacto-oligosaccharide Mixtures Formed by β-Galactosidases from Lactic Acid Bacteria and Bifidobacteria. Journal of Agricultural and Food Chemistry, 2020, 68, 4437-4446.	2.4	14
122	A near-infrared fluorescent probe for monitoring and imaging of \hat{l}^2 -galactosidase in living cells. Talanta, 2020, 219, 121307.	2.9	19
123	Kinetic analysis of substrate competition in enzymatic reactions with \hat{I}^2 -D-galactosidase by capillary electrophoresis / dynamic frontal analysis. Journal of Pharmaceutical and Biomedical Analysis, 2020, 188, 113390.	1.4	9
124	Sustainable, Alginate-Based Sensor for Detection of Escherichia coli in Human Breast Milk. Sensors, 2020, 20, 1145.	2.1	11
125	Nutrient composition of underutilized skeins of flying fish (Hirundichthys oxycephalus): The new and better egg whites. Journal of Food Composition and Analysis, 2020, 88, 103461.	1.9	5
126	Advances in fluorescent sensors for \hat{l}^2 -galactosidase. Materials Chemistry Frontiers, 2021, 5, 763-774.	3.2	19
127	Synthesis of $\hat{l}^2(1\hat{A}\hat{a}^{\dagger}\hat{A}\hat{A})$ and $\hat{l}^2(1\hat{A}\hat{a}^{\dagger}\hat{A}\hat{A})$ galactooligosaccharides from lactose and whey using a recombinant \hat{l}^2 -galactosidase from Pantoea anthophila. Electronic Journal of Biotechnology, 2021, 49, 14-21.	1.2	20

#	Article	IF	CITATIONS
128	Isotopic Resolution of Protein Complexes up to 466 kDa Using Individual Ion Mass Spectrometry. Analytical Chemistry, 2021, 93, 2723-2727.	3.2	32
129	Asymmetrical flow field-flow fractionation to probe the dynamic association equilibria of \hat{l}^2 -D-galactosidase. Journal of Chromatography A, 2021, 1635, 461719.	1.8	6
130	$\langle i \rangle N \langle i \rangle$ -Linked glycosylation profiles of therapeutic induced senescent (TIS) triple negative breast cancer cells (TNBC) and their extracellular vesicle (EV) progeny. Molecular Omics, 2021, 17, 72-85.	1.4	12
131	Analysis of Gene Expression Using lacZ Reporter Mouse Lines. Methods in Molecular Biology, 2021, 2224, 29-45.	0.4	0
132	Optically superior fluorescent probes for selective imaging of cells, tumors, and reactive chemical species. Organic and Biomolecular Chemistry, 2021, 19, 5208-5236.	1.5	4
133	An integrated transcriptomic and proteomic approach to identify the main Torymus sinensis venom components. Scientific Reports, 2021 , 11 , 5032 .	1.6	18
134	βâ€Galactosidase: From its source and applications toÂits recombinant form. Biotechnology and Applied Biochemistry, 2022, 69, 612-628.	1.4	33
135	Prebiotic properties of Bacillus coagulans MA-13: production of galactoside hydrolyzing enzymes and characterization of the transglycosylation properties of a GH42 l^2 -galactosidase. Microbial Cell Factories, 2021, 20, 71.	1.9	18
136	Antarctic Rahnella inusitata: A Producer of Cold-Stable \hat{l}^2 -Galactosidase Enzymes. International Journal of Molecular Sciences, 2021, 22, 4144.	1.8	8
137	Algorithmic assessment of cellular senescence in experimental and clinical specimens. Nature Protocols, 2021, 16, 2471-2498.	5.5	92
138	RNA interference-mediated knockdown of odorant-binding protein 2 and MP58 gene causes mortality in Myzus persicae. International Journal of Tropical Insect Science, 2022, 42, 315-326.	0.4	3
139	Bioactive phytocompound mulberroside C and endophytes of <i>MorusÂalba</i> as potential inhibitors of HIVâ€₁ replication: a mechanistic evaluation. HIV Medicine, 2021, 22, 690-704.	1.0	6
140	Supramolecular Interaction of Molecular Cage and βâ€Galactosidase: Application in Enzymatic Inhibition, Drug Delivery and Antimicrobial Activity. ChemBioChem, 2021, 22, 1955-1960.	1.3	3
141	Infant-Associated Bifidobacterial β-Galactosidases and Their Ability to Synthesize Galacto-Oligosaccharides. Frontiers in Microbiology, 2021, 12, 662959.	1.5	9
142	1,8-Naphthalimide based fluorescent sensors for enzymes. Coordination Chemistry Reviews, 2021, 437, 213713.	9.5	82
143	Challenges in biodegradation of non-degradable thermoplastic waste: From environmental impact to operational readiness. Biotechnology Advances, 2021, 49, 107731.	6.0	54
144	In Situ Generated Novel 1H MRI Reporter for \hat{l}^2 -Galactosidase Activity Detection and Visualization in Living Tumor Cells. Frontiers in Chemistry, 2021, 9, 709581.	1.8	5
145	Mutagenic strategies against luxS gene affect the early stage of biofilm formation of Campylobacter jejuni. Journal of Applied Genetics, 2022, 63, 145-157.	1.0	5

#	Article	IF	CITATIONS
146	Cloning, expression, and characteristic analysis of the novel β ―galactosidase from silkworm, Bombyx mori. Genesis, 2021, 59, e23446.	0.8	3
147	Characterization of two β-galactosidases LacZ and WspA1 from Nostoc flagelliforme with focus on the latter's central active region. Scientific Reports, 2021, 11, 18448.	1.6	1
148	Whole conversion of agro-industrial wastes rich in galactose-based carbohydrates into lipid using oleaginous yeast Aureobasidium namibiae. Biotechnology for Biofuels, 2021, 14, 181.	6.2	4
149	Studying independent Kcna6 knock-out mice reveals toxicity of exogenous LacZ to central nociceptor terminals and differential effects of Kv1.6 on acute and neuropathic pain sensation. Journal of Neuroscience, 2021, 41, JN-RM-0187-21.	1.7	5
150	\hat{l}^2 -Galactosidase from Kluyveromyces lactis: Characterization, production, immobilization and applications - A review. International Journal of Biological Macromolecules, 2021, 191, 881-898.	3.6	39
151	A turn on fluorescent assay for real time determination of \hat{l}^2 -galactosidase and its application in living cell imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 265, 120345.	2.0	4
152	Antileishmanial drug screening. , 2021, , 55-65.		O
153	Biochemical Characterization of the Functional Roles of Residues in the Active Site of the \hat{l}^2 -Galactosidase from <i>Bacillus circulans</i> ATCC 31382. Biochemistry, 2017, 56, 3109-3118.	1.2	12
154	<i>Atlas</i> : automatic modeling of regulation of bacterial gene expression and metabolism using rule-based languages. Bioinformatics, 2021, 36, 5473-5480.	1.8	7
156	Two \hat{I}^2 -Galactosidases from the Human Isolate Bifidobacterium breve DSM 20213: Molecular Cloning and Expression, Biochemical Characterization and Synthesis of Galacto-Oligosaccharides. PLoS ONE, 2014, 9, e104056.	1.1	28
157	Analysis of Domain Architecture and Phylogenetics of Family 2 Glycoside Hydrolases (GH2). PLoS ONE, 2016, 11, e0168035.	1.1	46
158	Stable and destabilized GFP reporters to monitor calcineurin activity in Saccharomyces cerevisiae. Microbial Cell, 2020, 7, 106-114.	1.4	10
159	Human Galectin-1 and Its Inhibitors: Privileged Target for Cancer and HIV. Mini-Reviews in Medicinal Chemistry, 2019, 19, 1369-1378.	1.1	20
160	Changes in Gut Microbial Community of Pig Feces in Response to Different Dietary Animal Protein Media. Journal of Microbiology and Biotechnology, 2020, 30, 1321-1334.	0.9	2
161	Structure based virtual screening of natural product molecules as glycosidase inhibitors. In Silico Pharmacology, 2021, 9, 56.	1.8	2
162	Antibodyâ€mediated enzyme formation: Its legacy at age fiftyâ€four. Journal of Molecular Recognition, 2021, 34, e2931.	1.1	2
165	¹⁹ F MRI Probes for Multimodal Imaging**. Chemistry - A European Journal, 2022, 28, .	1.7	24
166	Biosensors for single-cell proteomic characterization. , 2022, , 7-36.		0

#	Article	IF	CITATIONS
167	Multitasking in the gut: the X-ray structure of the multidomain BbgIII from Bifidobacterium bifidum offers possible explanations for its alternative functions. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1564-1578.	1.1	0
168	Screening and characterization of \hat{l}^2 -galactosidase activity in lactic acid bacteria for the valorization of acid whey. JDS Communications, 2022, 3, 1-6.	0.5	13
169	Comparative studies of the biological efficacies of Ag and Ag-MgO nanocomposite formed by the green synthesis route. Inorganic Chemistry Communication, 2022, 135, 109082.	1.8	5
171	Tandem catalysis using an enzyme and a polymeric ruthenium-based artificial metalloenzyme. Polymer Chemistry, 2021, 12, 6755-6760.	1.9	15
172	His-tag \hat{l}^2 -galactosidase supramolecular performance. Biophysical Chemistry, 2022, 281, 106739.	1.5	4
173	Characterization of \hat{l}^2 -galactosidase and $\hat{l}\pm$ -galactosidase activities from the halophilic bacterium Gracilibacillus dipsosauri. Annals of Microbiology, 2021, 71, .	1.1	2
174	Chemiluminescent Probes Based on 1,2â€Dioxetane Structures For Bioimaging. Chemistry - an Asian Journal, 2022, 17, .	1.7	12
175	Identification in silico and expression analysis of a \hat{l}^2 -1-4-endoglucanase and \hat{l}^2 -galactosidase genes related to ripening in guava fruit. Journal of Genetic Engineering and Biotechnology, 2022, 20, 3.	1.5	3
177	Strategies for Improving Small-Molecule Biosensors in Bacteria. Biosensors, 2022, 12, 64.	2.3	17
180	Is divalent magnesium cation the best cofactor for bacterial \hat{l}^2 -galactosidase?. Journal of Biosciences, 2018, 43, 941-945.	0.5	0
181	The <i>E. coli</i> DnaK chaperone stimulates the αâ€complementation of βâ€galactosidase. Journal of Basic Microbiology, 2022, , .	1.8	0
182	Summary of Probiotic Potential of the Kefir for the Prevention and Alleviation of Functional GI Diseases. Current Nutrition and Food Science, 2022, 18, .	0.3	0
183	Ultraviolet optical horn antennas for label-free detection of single proteins. Nature Communications, 2022, 13, 1842.	5.8	14
187	A food-grade vector for Streptococcus thermophilus based on the \hat{l}_\pm -complementation of \hat{l}^2 -galactosidase. Journal of Dairy Science, 2022, , .	1.4	2
188	Some Clues about Enzymes from Psychrophilic Microorganisms. Microorganisms, 2022, 10, 1161.	1.6	3
189	Development of semiâ€quantitative urinary sodium test strip. Biotechnology and Applied Biochemistry, 0,	1.4	0
190	Green-emission nitrogen-doped carbon quantum dots from alkaline N-methyl-2-pyrrolidinone for determination of \hat{l}^2 -galactosidase and its inhibitors. Mikrochimica Acta, 2022, 189, .	2.5	0
191	Expanding the genetic engineering toolbox for the metabolically flexible acetogen <i>Eubacterium limosum </i> . Journal of Industrial Microbiology and Biotechnology, 2022, 49, .	1.4	5

#	Article	IF	CITATIONS
192	Protein C: βâ€galactosidase fusion protein for multiâ€modal bioanalytical applications. Biotechnology Progress, 2022, 38, .	1.3	1
193	Comparison of physical perturbation devices for enhancing lentiviral vector-mediated gene transfer to the airway epithelium. Human Gene Therapy, 0, , .	1.4	0
194	Unusual \hat{l}^2 1-4-galactosidase activity of an $\hat{l}\pm 1$ -6-mannosidase from Xanthomonas manihotis in the processing of branched hybrid and complex glycans. Journal of Biological Chemistry, 2022, 298, 102313.	1.6	1
195	Regulation of Gene Expression in Prokaryotes. , 2022, , 569-596.		O
196	Advancements in Inducer Systems for Recombinant Protein Production in E. coli. Microbiology Monographs, 2022, , 1-21.	0.3	0
197	Locked and Loaded: Î ² -Galactosidase Activated Photodynamic Therapy Agent Enables Selective Imaging and Targeted Treatment of Glioblastoma Multiforme Cancer Cells. ACS Applied Bio Materials, 2022, 5, 4284-4293.	2.3	5
198	Spatial engineering of E.Âcoli with addressable phase-separated RNAs. Cell, 2022, 185, 3823-3837.e23.	13.5	20
199	Long-term ecological and evolutionary dynamics in the gut microbiomes of carbapenemase-producing Enterobacteriaceae colonized subjects. Nature Microbiology, 2022, 7, 1516-1524.	5.9	9
200	NADES Compounds Identified in Hypoxis hemerocallidea Corms during Dormancy. Plants, 2022, 11, 2387.	1.6	1
201	Immobilization of <i>Kluyveromyces lactis</i> βâ€Galactosidase on Mesoâ€macroporous Silica: Use of Infrared Spectroscopy to Rationalize the Catalytic Efficiency. ChemPlusChem, 2022, 87, .	1.3	1
202	A Review on Psychrophilic \hat{l}^2 -D-Galactosidases and Their Potential Applications. Applied Biochemistry and Biotechnology, 0, , .	1.4	0
203	Illuminating the Oral Microbiome and Its Host Interactions: Tools and Approaches for Molecular Microbiology Studies. FEMS Microbiology Reviews, 0, , .	3.9	3
204	Sepedonium sp. and Phellinus sp. Novel Isolates: Growth Pattern and Production of Polysaccharide-Protein Complexes on Conventional and Grape Pomace Substrates. Waste and Biomass Valorization, 2023, 14, 3315-3326.	1.8	3
205	Biodegradation of poly(ethylene terephthalate): Mechanistic insights, advances, and future innovative strategies. Chemical Engineering Journal, 2023, 457, 141230.	6.6	25
206	Immobilization of \hat{l}^2 -galactosidases. , 2023, , 351-360.		0
207	Chemosensor with Ultra-High Fluorescence Enhancement for Assisting in Diagnosis and Resection of Ovarian Cancer. Analytical Chemistry, 2023, 95, 2949-2957.	3.2	16
208	NIR-excited imaging and in vivo visualization of \hat{l}^2 -galactosidase activity using a pyranonitrile-modified upconversion nanoprobe. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 292, 122411.	2.0	2
209	Gene regulation in physiological processes. , 2023, , 3-23.		0

#	Article	IF	CITATIONS
210	A near-infrared fluorescent nanoprobe for senescence-associated \hat{l}^2 -galactosidase sensing in living cells. Chemical Communications, 2023, 59, 2974-2977.	2.2	1
211	Isolation, Specificity, and Application of \hat{l}^2 -N-Acetylhexosaminidases from Penicillium crustosum. Applied Sciences (Switzerland), 2023, 13, 3399.	1.3	0
212	Activatable Photodynamic Photosensitizers for Cancer Treatment., 2023,, 345-377.		0
216	Chaperonin GroEL hydrolyses <i>ortho</i> -nitrophenyl β-galactoside. Organic and Biomolecular Chemistry, 2023, 21, 6120-6123.	1.5	1
230	Design strategies and biological applications of \hat{l}^2 -galactosidase fluorescent sensor in ovarian cancer research and beyond. RSC Advances, 2024, 14, 3010-3023.	1.7	0