Replacing fossil based PET with biobased PEF; process a

Energy and Environmental Science 5, 6407 DOI: 10.1039/c2ee02480b

Citation Report

#	Article	IF	CITATIONS
1	Furandicarboxylic Acid (FDCA), A Versatile Building Block for a Very Interesting Class of Polyesters. ACS Symposium Series, 2012, , 1-13.	0.5	206
2	Chemical Recycling of PLA: A Great Opportunity Towards the Sustainable Development?. Journal of Polymers and the Environment, 2013, 21, 640-647.	2.4	130
3	Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Pt/C catalysts: influence of the base and effect of bismuth promotion. Green Chemistry, 2013, 15, 2240.	4.6	220
4	Introduction to Biopolymers. , 2013, , 1-75.		8
5	Concurrent formation of furan-2,5- and furan-2,4-dicarboxylic acid: unexpected aspects of the Henkel reaction. RSC Advances, 2013, 3, 15678-15686.	1.7	53
6	Determination of renewable energy yield from mixed waste material from the use of novel image analysis methods. Waste Management, 2013, 33, 2449-2456.	3.7	7
7	Developments in bioplastic materials for packaging food, beverages and other fast-moving consumer goods. , 2013, , 108-152.		20
8	Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 2013, 113, 1499-1597.	23.0	2,380
9	Catalytic Conversion of Furfural into a 2,5â€Furandicarboxylic Acidâ€Based Polyester with Total Carbon Utilization. ChemSusChem, 2013, 6, 47-50.	3.6	102
12	Advances in selective catalytic transformation of ployols to value-added chemicals. Chinese Journal of Catalysis, 2013, 34, 492-507.	6.9	53
13	One-Pot Conversion of Cellulose to Ethylene Glycol with Multifunctional Tungsten-Based Catalysts. Accounts of Chemical Research, 2013, 46, 1377-1386.	7.6	420
14	Rigid Biobased Building Blocks. Journal of Renewable Materials, 2013, 1, 61-72.	1.1	45
15	Aerobic Oxidation of Hydroxymethylfurfural and Furfural by Using Heterogeneous Co _{<i>x</i>} O _{<i>y</i>} –N@C Catalysts. ChemSusChem, 2014, 7, 3334-3340.	3.6	104
16	Synthesis of Bioâ€Based Methacrylic Acid by Decarboxylation of Itaconic Acid and Citric Acid Catalyzed by Solid Transitionâ€Metal Catalysts. ChemSusChem, 2014, 7, 2712-2720.	3.6	57
17	Synthesis and characterization of bio-based furanic polyesters. Journal of Polymer Research, 2014, 21, 1.	1.2	54
18	Evolving scenarios for biorefineries and the impact on catalysis. Catalysis Today, 2014, 234, 2-12.	2.2	47
19	Chain Mobility, Thermal, and Mechanical Properties of Poly(ethylene furanoate) Compared to Poly(ethylene terephthalate). Macromolecules, 2014, 47, 1383-1391.	2.2	473
20	Base-Free Aerobic Oxidation of 5-Hydroxymethyl-furfural to 2,5-Furandicarboxylic Acid in Water Catalyzed by Functionalized Carbon Nanotube-Supported Au–Pd Alloy Nanoparticles. ACS Catalysis, 2014, 4, 2175-2185.	5.5	353

#	Article	IF	CITATIONS
21	Catalytic dehydration of C ₆ carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chemistry, 2014, 16, 548-572.	4.6	523
22	Bio-based semi-aromatic polyesters for coating applications. Progress in Organic Coatings, 2014, 77, 277-284.	1.9	25
23	Fuels and plastics from lignocellulosic biomass via the furan pathway; a technical analysis. RSC Advances, 2014, 4, 3536-3549.	1.7	61
24	Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chemistry, 2014, 16, 950-963.	4.6	1,323
25	Ex-ante life cycle assessment of polymer nanocomposites using organo-modified layered double hydroxides for potential application in agricultural films. Green Chemistry, 2014, 16, 4969-4984.	4.6	49
26	Green building blocks for bioâ€based plastics. Biofuels, Bioproducts and Biorefining, 2014, 8, 306-324.	1.9	223
27	Heterogeneous catalyst discovery using 21st century tools: a tutorial. RSC Advances, 2014, 4, 5963.	1.7	52
28	Catalysis for biomass and CO ₂ use through solar energy: opening new scenarios for a sustainable and low-carbon chemical production. Chemical Society Reviews, 2014, 43, 7562-7580.	18.7	189
29	Oxygen sorption and transport in amorphous poly(ethylene furanoate). Polymer, 2014, 55, 4748-4756.	1.8	242
30	A novel platinum nanocatalyst for the oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic acid under mild conditions. Journal of Catalysis, 2014, 315, 67-74.	3.1	224
31	Nonâ€isothermal Crystallization Kinetics of Biobased Poly(ethylene 2,5â€furandicarboxylate) Synthesized via the Direct Esterification Process. Macromolecular Chemistry and Physics, 2014, 215, 2065-2074.	1.1	107
32	New Sustainable Model of Biorefineries: Biofactories and Challenges of Integrating Bio―and Solar Refineries. ChemSusChem, 2015, 8, 2854-2866.	3.6	49
33	Baseâ€Free Aqueousâ€Phase Oxidation of 5â€Hydroxymethylfurfural over Ruthenium Catalysts Supported on Covalent Triazine Frameworks. ChemSusChem, 2015, 8, 3832-3838.	3.6	110
34	Polyethylene Terephthalate: Copolyesters, Composites, and Renewable Alternatives. , 2015, , 113-141.		7
35	Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass. Carbohydrate Polymers, 2015, 130, 420-428.	5.1	118
36	Whole-Cell Biocatalytic Production of 2,5-Furandicarboxylic Acid. Microbiology Monographs, 2015, , 207-223.	0.3	11
37	Selective Aerobic Oxidation of 5â€HMF into 2,5â€Furandicarboxylic Acid with Pt Catalysts Supported on TiO ₂ ―and ZrO ₂ â€Based Supports. ChemSusChem, 2015, 8, 1206-1217.	3.6	190
38	Isothermal Crystallization Kinetics of Poly (Ethylene 2,5â€Furandicarboxylate). Macromolecular Materials and Engineering, 2015, 300, 466-474.	1.7	115

#	Article	IF	CITATIONS
39	From Fossil Resources to Renewable Resources: Synthesis, Structure, Properties and Comparison of Terephthalic Acid-2,5-Furandicarboxylic Acid-Diol Copolyesters. Journal of Renewable Materials, 2015, 3, 120-141.	1.1	20
40	Polyethylene Glycol-400-Functionalized Dicationic Acidic Ionic Liquids for Highly Efficient Conversion of Fructose into 5-Hydroxymethylfurfural. Catalysis Letters, 2015, 145, 1080-1088.	1.4	15
41	Selective Aerobic Oxidation of HMF to 2,5â€Diformylfuran on Covalent Triazine Frameworksâ€Supported Ru Catalysts. ChemSusChem, 2015, 8, 672-679.	3.6	173
42	The Direct Conversion of Sugars into 2,5â€Furandicarboxylic Acid in a Triphasic System. ChemSusChem, 2015, 8, 1151-1155.	3.6	61
43	Isothermal crystallization and structural characterization of poly(ethylene-2,5-furanoate). Polymer, 2015, 72, 165-176.	1.8	105
44	Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polymer Chemistry, 2015, 6, 5961-5983.	1.9	531
45	Enzyme cascade reactions: synthesis of furandicarboxylic acid (FDCA) and carboxylic acids using oxidases in tandem. Green Chemistry, 2015, 17, 3271-3275.	4.6	124
46	Carbon Dioxide Sorption and Transport in Amorphous Poly(ethylene furanoate). Macromolecules, 2015, 48, 2184-2193.	2.2	251
47	Recent Advances in the Catalytic Synthesis of 2,5-Furandicarboxylic Acid and Its Derivatives. ACS Catalysis, 2015, 5, 6529-6544.	5.5	489
48	Functionalized Carbon Nanotubes for Biomass Conversion: The Baseâ€Free Aerobic Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid over Platinum Supported on a Carbon Nanotube Catalyst. ChemCatChem, 2015, 7, 2853-2863.	1.8	113
49	Definitions of Terms and Types of Biopolymers. , 2015, , 1-90.		15
50	Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid in water under mild conditions. Green Chemistry, 2015, 17, 1610-1617.	4.6	180
52	Bio-based plastics for building facades. , 2016, , 329-346.		3
53	High molecular weight bio furan-based co-polyesters for food packaging applications: synthesis, characterization and solid-state polymerization. Green Chemistry, 2016, 18, 5142-5150.	4.6	95
54	A Comparative Study on the Reactivity of Various Ketohexoses to Furanics in Methanol. ChemSusChem, 2016, 9, 1827-1834.	3.6	20
55	Ultrasmall Platinum Nanoparticles Supported Inside the Nanospaces of Periodic Mesoporous Organosilica with an Imidazolium Network: An Efficient Catalyst for the Aerobic Oxidation of Unactivated Alcohols in Water. ChemCatChem, 2016, 8, 906-910.	1.8	40
56	Nucleation and Selfâ€Nucleation of Bioâ€Based Poly(ethylene 2,5â€furandicarboxylate) Probed by Fast Scanning Calorimetry. Macromolecular Materials and Engineering, 2016, 301, 586-596.	1.7	34
57	Sustainable polymers from renewable resources. Nature, 2016, 540, 354-362.	13.7	1,902

#	Article	IF	CITATIONS
58	Production of organic acids from biomass resources. Current Opinion in Green and Sustainable Chemistry, 2016, 2, 54-58.	3.2	49
59	Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Progress in Energy and Combustion Science, 2016, 55, 98-194.	15.8	234
60	Value creation with life cycle assessment: an approach to contextualize the application of life cycle assessment in chemical companies to create sustainable value. Journal of Cleaner Production, 2016, 126, 337-351.	4.6	24
61	Controlled deposition of Pt nanoparticles on Fe ₃ O ₄ @carbon microspheres for efficient oxidation of 5-hydroxymethylfurfural. RSC Advances, 2016, 6, 51229-51237.	1.7	45
62	Efficient and environmental-friendly dehydration of fructose to 5-hydroxymethyl-2-furfural in water under high pressure of CO2. Tetrahedron Letters, 2016, 57, 4742-4745.	0.7	13
63	Basicity-Tuned Hydrotalcite-Supported Pd Catalysts for Aerobic Oxidation of 5-Hydroxymethyl-2-furfural under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2016, 4, 4752-4761.	3.2	117
65	Penetrant transport in semicrystalline poly(ethylene furanoate). Polymer, 2016, 98, 305-310.	1.8	48
66	A metal-free, high nitrogen-doped nanoporous graphitic carbon catalyst for an effective aerobic HMF-to-FDCA conversion. Green Chemistry, 2016, 18, 5957-5961.	4.6	129
67	A Highâ€Performance Baseâ€Metal Approach for the Oxidative Esterification of 5â€Hydroxymethylfurfural. ChemCatChem, 2016, 8, 2907-2911.	1.8	58
68	On choosing the most appropriate catalysts for the conversion of carbon dioxide to fuels and other commodities, and on the environmentally benign processing of renewable and nonrenewable feedstocks. Applied Petrochemical Research, 2016, 6, 167-182.	1.3	2
69	Production of bio-based 2,5-furan dicarboxylate polyesters: Recent progress and critical aspects in their synthesis and thermal properties. European Polymer Journal, 2016, 83, 202-229.	2.6	359
70	Meta-Analysis of Life Cycle Energy and Greenhouse Gas Emissions for Priority Biobased Chemicals. ACS Sustainable Chemistry and Engineering, 2016, 4, 6443-6454.	3.2	42
71	Synthesis and characteristics of biobased copolyester for thermal shrinkage film. RSC Advances, 2016, 6, 57626-57633.	1.7	8
72	Does biobased polymer achieve better environmental impacts than fossil polymer? Comparison of fossil HDPE and biobased HDPE produced from sugar beet and wheat. Biomass and Bioenergy, 2016, 85, 159-167.	2.9	39
73	Green chemistry, catalysis and valorization of waste biomass. Journal of Molecular Catalysis A, 2016, 422, 3-12.	4.8	150
74	Rational control of nano-scale metal-catalysts for biomass conversion. Chemical Communications, 2016, 52, 6210-6224.	2.2	179
75	Scaling up of renewable chemicals. Current Opinion in Biotechnology, 2016, 38, 112-122.	3.3	84
76	Identification and quantification of oligomers as potential migrants in plastics food contact materials with a focus in polycondensates – A review. Trends in Food Science and Technology, 2016, 50, 118-130.	7.8	87

#	Article	IF	CITATIONS
77	Production of 4-Hydroxymethylfurfural from Derivatives of Biomass-Derived Glycerol for Chemicals and Polymers. ACS Sustainable Chemistry and Engineering, 2016, 4, 1707-1714.	3.2	13
78	Putting carbon dioxide to work. Nature, 2016, 531, 180-181.	13.7	30
79	Some of tomorrow's catalysts for processing renewable and non-renewable feedstocks, diminishing anthropogenic carbon dioxide and increasing the production of energy. Energy and Environmental Science, 2016, 9, 687-708.	15.6	69
80	Alternative Monomers Based on Lignocellulose and Their Use for Polymer Production. Chemical Reviews, 2016, 116, 1540-1599.	23.0	580
81	Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/C–O–Mg catalyst. Green Chemistry, 2016, 18, 1597-1604.	4.6	140
82	Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET. Green Chemistry, 2016, 18, 342-359.	4.6	254
83	Base-free conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Ru/C catalyst. Green Chemistry, 2016, 18, 979-983.	4.6	217
84	Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides. Chemical Reviews, 2016, 116, 1637-1669.	23.0	610
85	How consumers of plastic water bottles are responding to environmental policies?. Waste Management, 2017, 61, 13-27.	3.7	87
86	Synthesis of Furandicarboxylic Acid Esters From Nonfood Feedstocks Without Concomitant Levulinic Acid Formation. ChemSusChem, 2017, 10, 1460-1468.	3.6	28
87	MnCo ₂ O ₄ spinel supported ruthenium catalyst for air-oxidation of HMF to FDCA under aqueous phase and base-free conditions. Green Chemistry, 2017, 19, 1619-1623.	4.6	158
88	Poly(ethylene furanoate- co -ethylene terephthalate) biobased copolymers: Synthesis, thermal properties and cocrystallization behavior. European Polymer Journal, 2017, 89, 349-366.	2.6	86
89	A two-step efficient preparation of a renewable dicarboxylic acid monomer 5,5′-[oxybis(methylene)]bis[2-furancarboxylic acid] from <scp>d</scp> -fructose and its application in polyester synthesis. Green Chemistry, 2017, 19, 1570-1575.	4.6	26
90	Reactivity studies in water on the acid-catalysed dehydration of psicose compared to other ketohexoses into 5-hydroxymethylfurfural. Carbohydrate Research, 2017, 446-447, 1-6.	1.1	16
91	A scalable carboxylation route to furan-2,5-dicarboxylic acid. Green Chemistry, 2017, 19, 2966-2972.	4.6	107
92	Solid State Polymerization of Poly(Ethylene Furanoate) and Its Nanocomposites with SiO ₂ and TiO ₂ . Macromolecular Materials and Engineering, 2017, 302, 1700012.	1.7	43
93	Facet Effect of Single-Crystalline Pd Nanocrystals for Aerobic Oxidation of 5-Hydroxymethyl-2-furfural. ACS Catalysis, 2017, 7, 421-432.	5.5	85
94	Lignocellulosics as sustainable resources for production of bioplastics $\hat{a} \in A$ review. Journal of Cleaner Production, 2017, 162, 646-664.	4.6	312

# 95	ARTICLE Effect of catalyst type on recyclability and decomposition mechanism of poly(ethylene furanoate)	IF 2.6	Citations
95 96	biobased polyester. Journal of Analytical and Applied Pyrolysis, 2017, 126, 357-370. Highly Efficient and Stable Bimetallic AuPd over La-Doped Ca–Mg–Al Layered Double Hydroxide for Base-Free Aerobic Oxidation of 5-Hydroxymethylfurfural in Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 5852-5861.	3.2	88
97	Heterogeneouslyâ€Catalyzed Aerobic Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid with MnO ₂ . ChemSusChem, 2017, 10, 654-658.	3.6	134
98	Acidic mesostructured silica-carbon nanocomposite catalysts for biofuels and chemicals synthesis from sugars in alcoholic solutions. Applied Catalysis B: Environmental, 2017, 206, 74-88.	10.8	42
99	Optimum Batch-Reactor Operation for the Synthesis of Biomass-Derived Renewable Polyesters. Industrial & Engineering Chemistry Research, 2017, 56, 549-559.	1.8	10
100	Porous nitrogen-enriched carbonaceous material from marine waste: chitosan-derived carbon nitride catalyst for aerial oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid. Scientific Reports, 2017, 7, 13596.	1.6	47
101	Molecular dynamics of fully biobased poly(butylene 2,5-furanoate) as revealed by broadband dielectric spectroscopy. Polymer, 2017, 128, 24-30.	1.8	58
102	Environmental performance of bio-based and biodegradable plastics: the road ahead. Chemical Society Reviews, 2017, 46, 6855-6871.	18.7	502
103	Heterogeneous catalysis for bio-based polyester monomers from cellulosic biomass: advances, challenges and prospects. Green Chemistry, 2017, 19, 5012-5040.	4.6	141
104	Facile preparation of bio-based polyesters from furandicarboxylic acid and long chain diols via asymmetric monomer strategy. Green Chemistry, 2017, 19, 4930-4938.	4.6	26
105	A roadmap towards green packaging: the current status and future outlook for polyesters in the packaging industry. Green Chemistry, 2017, 19, 4737-4753.	4.6	251
106	Oneâ€Pot Transformation of Carbohydrates into Valuable Furan Derivatives via 5â€Hydroxymethylfurfural. ChemCatChem, 2017, 9, 4244-4255.	1.8	20
107	Influence of organically modified montmorillonite and sepiolite claysÂon the physical properties of bio-based poly(ethylene 2,5-furandicarboxylate). Composites Part B: Engineering, 2017, 110, 96-105.	5.9	75
108	Chemicals from biomass: technological <i>versus</i> environmental feasibility. A review. Biofuels, Bioproducts and Biorefining, 2017, 11, 195-214.	1.9	126
109	Kinetics of homogeneous 5â€hydroxymethylfurfural oxidation to 2,5â€furandicarboxylic acid with Co/Mn/Br catalyst. AICHE Journal, 2017, 63, 162-171.	1.8	39
110	Solid-State Polymerization of Poly(ethylene furanoate) Biobased Polyester, I: Effect of Catalyst Type on Molecular Weight Increase. Polymers, 2017, 9, 607.	2.0	37
111	Poly(Neopentyl Glycol Furanoate): A Member of the Furan-Based Polyester Family with Smart Barrier Performances for Sustainable Food Packaging Applications. Materials, 2017, 10, 1028.	1.3	60
112	Bioplastics. , 2017, , 631-652.		31

#	Article	IF	CITATIONS
113	Chemical Process Intensification with Pressure-Tunable Media. Theoretical Foundations of Chemical Engineering, 2017, 51, 928-935.	0.2	2
114	A lignin-epoxy resin derived from biomass as an alternative to formaldehyde-based wood adhesives. Green Chemistry, 2018, 20, 1459-1466.	4.6	182
115	The Road to Biorenewables: Carbohydrates to Commodity Chemicals. ACS Sustainable Chemistry and Engineering, 2018, 6, 4464-4480.	3.2	120
116	Diamines for Polymer Materials via Direct Amination of Lipid―and Lignocelluloseâ€based Alcohols with NH ₃ . ChemCatChem, 2018, 10, 3027-3033.	1.8	40
118	Characterization and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4350-E4357.	3.3	632
119	Copper-Based Catalytic Anodes To Produce 2,5-Furandicarboxylic Acid, a Biomass-Derived Alternative to Terephthalic Acid. ACS Catalysis, 2018, 8, 1197-1206.	5.5	218
120	From Furan to High Quality Bio-based Poly(ethylene furandicarboxylate). Chinese Journal of Polymer Science (English Edition), 2018, 36, 720-727.	2.0	31
121	Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment. Renewable Energy, 2018, 129, 733-747.	4.3	69
122	Heterogeneous catalysts for the selective aerobic oxidation of 5-hydroxymethylfurfural to added value products in water. Inorganica Chimica Acta, 2018, 470, 11-21.	1.2	57
123	Catalysis as an Enabling Science for Sustainable Polymers. Chemical Reviews, 2018, 118, 839-885.	23.0	669
124	Influence of the Anion on the Oxidation of 5â€Hydroxymethylfurfural by Using Ionicâ€Polymerâ€Supported Platinum Nanoparticle Catalysts. ChemPlusChem, 2018, 83, 19-23.	1.3	27
125	Selective synthesis of 2, 5-furandicarboxylic acid by oxidation of 5-hydroxymethylfurfural over MnFe 2 O 4 catalyst. Catalysis Today, 2018, 309, 119-125.	2.2	56
126	Hydrogen Peroxide Assisted Selective Oxidation of 5â€Hydroxymethylfurfural in Water under Mild Conditions. ChemCatChem, 2018, 10, 361-365.	1.8	59
127	Fully bioâ€based polyesters derived from 2,5â€furandicarboxylic acid (2,5â€FDCA) and dodecanedioic acid (DDCA): From semicrystalline thermoplastic to amorphous elastomer. Journal of Applied Polymer Science, 2018, 135, 46076.	1.3	47
128	On the strain-induced structural evolution of Poly(ethylene-2,5-furanoate) upon uniaxial stretching: An in-situ SAXS-WAXS study. Polymer, 2018, 134, 227-241.	1.8	38
129	Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes. Green Chemistry, 2018, 20, 5427-5453.	4.6	445
130	Engineering Saccharomyces cerevisiae for co-utilization of d-galacturonic acid and d-glucose from citrus peel waste. Nature Communications, 2018, 9, 5059.	5.8	65
131	Poly(ethylene 2,5-furandicarboxylate-mb-poly(tetramethylene glycol)) multiblock copolymers: From high tough thermoplastics to elastomers. Polymer, 2018, 155, 89-98.	1.8	57

#	Article	IF	CITATIONS
132	Distributed processes for biomass conversion could aid UN Sustainable Development Goals. Nature Catalysis, 2018, 1, 731-735.	16.1	66
133	Highly crystalline polyesters synthesized from furandicarboxylic acid (FDCA): Potential bio-based engineering plastic. European Polymer Journal, 2018, 109, 379-390.	2.6	38
134	Environmental sustainability assessment of HMF and FDCA production from lignocellulosic biomass through life cycle assessment (LCA). Holzforschung, 2018, 73, 105-115.	0.9	27
135	Fabrication of supported Au-CuO nanohybrids by reduction-oxidation strategy for efficient oxidative esterification of 5-hydroxymethyl-2-furfural into dimethyl furan-2,5-dicarboxylate. Applied Catalysis A: General, 2018, 567, 80-89.	2.2	30
136	Biobased Poly(ethylene- <i>co</i> -hexamethylene 2,5-furandicarboxylate) (PEHF) Copolyesters with Superior Tensile Properties. Industrial & Engineering Chemistry Research, 2018, 57, 13094-13102.	1.8	43
137	Catalytic conversion of glucose to 5-hydroxymethylfurfural using zirconium-containing metal–organic frameworks using microwave heating. RSC Advances, 2018, 8, 31618-31627.	1.7	49
138	Engineering the production of dipicolinic acid in E. coli. Metabolic Engineering, 2018, 48, 208-217.	3.6	30
139	Nanoscale center-hollowed hexagon MnCo2O4 spinel catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Catalysis Communications, 2018, 113, 19-22.	1.6	54
140	Cellulose-based platform chemical: The path to application. Current Opinion in Green and Sustainable Chemistry, 2018, 14, 14-18.	3.2	32
141	Ruthenium Supported on High‣urfaceâ€Area Zirconia as an Efficient Catalyst for the Baseâ€Free Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid. ChemSusChem, 2018, 11, 2083-2090.	3.6	60
142	Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives. Green Chemistry, 2018, 20, 3657-3682.	4.6	233
143	Cobalt–metalloid alloys for electrochemical oxidation of 5-hydroxymethylfurfural as an alternative anode reaction in lieu of oxygen evolution during water splitting. Beilstein Journal of Organic Chemistry, 2018, 14, 1436-1445.	1.3	58
144	Bottle-grade polyethylene furanoate from ring-opening polymerisation of cyclic oligomers. Nature Communications, 2018, 9, 2701.	5.8	145
145	Effect of Zeolite as a Green Catalyst and Nucleation Agent on the Physical Properties of Poly(Ethylene) Tj ETQq1	1 0.78431 0.4	4 gBT /Ove
146	Electrocatalytic Oxidation of 5â€(Hydroxymethyl)furfural Using Highâ€&urfaceâ€Area Nickel Boride. Angewandte Chemie - International Edition, 2018, 57, 11460-11464.	7.2	283
147	Structural Investigation of Poly(ethylene furanoate) Polymorphs. Polymers, 2018, 10, 296.	2.0	49
148	Solid-State Polymerization of Poly(Ethylene Furanoate) Biobased Polyester, II: An Efficient and Facile Method to Synthesize High Molecular Weight Polyester Appropriate for Food Packaging Applications. Polymers, 2018, 10, 471.	2.0	43
149	Assessing the Ability of the Cradle to Cradle Certifiedâ,,¢ Products Program to Reliably Determine the Environmental Performance of Products. Sustainability, 2018, 10, 1562.	1.6	17

#	Article	IF	CITATIONS
150	Role of enhanced solubility in esterification of 2,5-furandicarboxylic acid with ethylene glycol at reduced temperatures: energy efficient synthesis of poly(ethylene 2,5-furandicarboxylate). Reaction Chemistry and Engineering, 2018, 3, 447-453.	1.9	23
151	Elektrokatalytische Oxidation von 5â€(Hydroxymethyl)furfural an Nickelborid mit großer OberflÃ ¤ he. Angewandte Chemie, 2018, 130, 11631-11636.	1.6	50
152	The role of Bi-doping in promoting electron transfer and catalytic performance of Pt/3DOM-Ce1â^'Bi O2â^'δ. Journal of Catalysis, 2018, 365, 292-302.	3.1	59
153	Development and Life Cycle Assessment of Polyester Binders Containing 2,5-Furandicarboxylic Acid and Their Polyurethane Coatings. Journal of Polymers and the Environment, 2018, 26, 3626-3637.	2.4	29
154	A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Critical Reviews in Environmental Science and Technology, 2018, 48, 614-654.	6.6	189
155	Chemicals from renewable biomass: A renaissance in carbohydrate chemistry. Current Opinion in Green and Sustainable Chemistry, 2018, 14, 89-95.	3.2	40
156	Emerging bioeconomy sectors in energy systems modeling – Integrated systems analysis of electricity, heat, road transport, aviation, and chemicals: a case study for the Netherlands. Biofuels, Bioproducts and Biorefining, 2018, 12, 665-693.	1.9	20
157	Biobased Cationically Polymerizable Epoxy Thermosets from Furan and Fatty Acid Derivatives. ACS Sustainable Chemistry and Engineering, 2018, 6, 9442-9450.	3.2	34
158	Activation of formyl C H and hydroxyl O H bonds in HMF by the CuO(1 1 1) and Co3O4(1 1 0) surfaces: study. Applied Surface Science, 2018, 456, 174-183.	A DFT	39
159	Electrochemical Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid (FDCA) in Acidic Media Enabling Spontaneous FDCA Separation. ChemSusChem, 2018, 11, 2138-2145.	3.6	131
160	Hierarchical Nickel–Cobaltâ€Based Transition Metal Oxide Catalysts for the Electrochemical Conversion of Biomass into Valuable Chemicals. ChemSusChem, 2018, 11, 2547-2553.	3.6	130
161	Selective Conversion of Furoic Acid Derivatives to Multi‧ubstituted Furanacrylate by a Ruthenium Catalyst. ChemCatChem, 2019, 11, 5124-5130.	1.8	11
162	Catalytic Synthesis of 2,5â€Furandicarboxylic Acid from Concentrated 2,5â€Diformylfuran Mediated by <i>N</i> â€hydroxyimides under Mild Conditions. Chemistry - an Asian Journal, 2019, 14, 3329-3334.	1.7	8
163	Kinetics and Mechanism of Catalytic Oxidation of 5-Methylfurfural to 2,5-Furandicarboxylic Acid with Co/Mn/Br Catalyst. Industrial & Engineering Chemistry Research, 2019, 58, 19009-19021.	1.8	12
164	Multifaceted characterization of sugarcane bagasse under different steam explosion severity conditions leading to distinct enzymatic hydrolysis yields. Industrial Crops and Products, 2019, 139, 111542.	2.5	22
165	Poly(ethylene furanoate) modified with dimerized fatty acid diol towards multiblock copolymers: Microstructure – Property relationship. Materials Today Communications, 2019, 20, 100577.	0.9	10
166	New insight into the mechanism for the excellent gas properties of poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 642-650.	Tf 50 107 2.6	7 Td (2,5-fura 76

	CITATION REI	PORT	
#	Article	IF	CITATIONS
168	A BrÃ,nsted Acidic Ionic Liquid as an Efficient and Selective Catalyst System for Bioderived High Molecular Weight Poly(ethylene 2,5â€furandicarboxylate). ChemSusChem, 2019, 12, 4927-4935.	3.6	26
169	Functionalization of Partially Bio-Based Poly(Ethylene Terephthalate) by Blending with Fully Bio-Based Poly(Amide) 10,10 and a Glycidyl Methacrylate-Based Compatibilizer. Polymers, 2019, 11, 1331.	2.0	9
170	In-situ synthesis, thermal and mechanical properties of biobased poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 121, 109266.	f 50 667 1 2.6	^r d (2,5-furan 25
171	Effects of Various 1,3-Propanediols on the Properties of Poly(propylene furandicarboxylate). ACS Sustainable Chemistry and Engineering, 2019, 7, 3282-3291.	3.2	36
172	Highly transparent films of new copolyesters derived from terephthalic and 2,4-furandicarboxylic acids. Polymer Chemistry, 2019, 10, 5324-5332.	1.9	22
173	Contribution of Fourier transform mass spectrometry to bio-oil study. , 2019, , 679-733.		7
174	Enzymatic degradation of PLA/cellulose nanocrystal composites. Industrial Crops and Products, 2019, 141, 111799.	2.5	62
175	New multi-block copolyester of 2,5-furandicarboxylic acid containing PEG-like sequences to form flexible and degradable films for sustainable packaging. Polymer Degradation and Stability, 2019, 169, 108963.	2.7	28
176	Design of high-performance heterogeneous catalysts using hydrotalcite for selective organic transformations. Green Chemistry, 2019, 21, 1361-1389.	4.6	61
177	Spotlight on fungal pectin utilization—from phytopathogenicity to molecular recognition and industrial applications. Applied Microbiology and Biotechnology, 2019, 103, 2507-2524.	1.7	23
178	Extraction of sugars from forced chicory roots. Biomass Conversion and Biorefinery, 2019, 9, 699-708.	2.9	15
179	Effect of Biaxial Orientation on Microstructure and Properties of Renewable Copolyesters of Poly(ethylene terephthalate) with 2,5-Furandicarboxylic Acid for Packaging Application. ACS Applied Polymer Materials, 2019, 1, 1798-1810.	2.0	28
180	Relationships between crystalline structure and the thermal behavior of poly(ethylene) Tj ETQq0 0 0 rgBT /Overloo 2019, 59, 1667-1677.	ck 10 Tf 5 1.5	0 267 Td (2, 10
181	Metal-functionalized carbon nanotubes for biomass conversion: base-free highly efficient and recyclable catalysts for aerobic oxidation of 5-hydroxymethylfurfural. New Journal of Chemistry, 2019, 43, 10601-10609.	1.4	13
182	Toward biomass-based single-atom catalysts and plastics: Highly active single-atom Co on N-doped carbon for oxidative esterification of primary alcohols. Applied Catalysis B: Environmental, 2019, 256, 117767.	10.8	96
183	A tunable precious metal-free system for selective oxidative esterification of biobased 5-(hydroxymethyl)furfural. Green Chemistry, 2019, 21, 3464-3468.	4.6	28
184	When Will 5â€Hydroxymethylfurfural, the "Sleeping Giant―of Sustainable Chemistry, Awaken?. ChemSusChem, 2019, 12, 2976-2982.	3.6	154
185	Valorization of C5 polyols by direct carboxylation to FDCA: Synthesis and characterization of a key intermediate and role of carbon dioxide. Journal of CO2 Utilization, 2019, 32, 170-177.	3.3	12

#	Article	IF	CITATIONS
186	Insights into the Synthesis of Poly(ethylene 2,5-Furandicarboxylate) from 2,5-Furandicarboxylic Acid: Steps toward Environmental and Food Safety Excellence in Packaging Applications. Industrial & Engineering Chemistry Research, 2019, 58, 8955-8962.	1.8	45
187	Species-specific transcriptomic responses in Daphnia magna exposed to a bio-plastic production intermediate. Environmental Pollution, 2019, 252, 399-408.	3.7	5

Exploring Next-Generation Engineering Bioplastics: Poly(alkylene furanoate)/Poly(alkylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 662 Td 188

189	Synthesis of Biobased Diethyl Terephthalate via Diels–Alder Addition of Ethylene to 2,5-Furandicarboxylic Acid Diethyl Ester: An Alternative Route to 100% Biobased Poly(ethylene) Tj ETQq1 1 0.7843	3 8 ærgBT /	Osværlock
190	Convergent production of 2,5-furandicarboxylic acid from biomass and CO ₂ . Green Chemistry, 2019, 21, 2923-2927.	4.6	52
191	Green polymeric materials: On the dynamic homogeneity and miscibility of furan-based polyester blends. Polymer, 2019, 174, 187-199.	1.8	34
192	Technoâ€economic comparative assessment of novel lignin depolymerization routes to bioâ€based aromatics. Biofuels, Bioproducts and Biorefining, 2019, 13, 1068-1084.	1.9	48
193	AuPdâ€Fe ₃ O ₄ Nanoparticleâ€Catalyzed Synthesis of Furanâ€2,5â€dimethylcarboxylate from 5â€Hydroxymethylfurfural under Mild Conditions. ChemSusChem, 2019, 12, 2310-2317.	3.6	30
194	Solid-State Polymerization of Poly(Ethylene Furanoate) Biobased Polyester, III: Extended Study on Effect of Catalyst Type on Molecular Weight Increase. Polymers, 2019, 11, 438.	2.0	22
195	Selective aerobic oxidation of the 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over gold nanoparticles supported on graphitized carbon: Study on reaction pathways. Molecular Catalysis, 2019, 470, 67-74.	1.0	28
196	Effective Strategy for High-Yield Furan Dicarboxylate Production for Biobased Polyester Applications. ACS Catalysis, 2019, 9, 4277-4285.	5.5	51
197	Synthesis of 2,5-Furandicarboxylic Acid from Natural Raw Materials. Materials Science Forum, 2019, 945, 488-492.	0.3	2
198	Enzymatic Carboxylation of 2-Furoic Acid Yields 2,5-Furandicarboxylic Acid (FDCA). ACS Catalysis, 2019, 9, 2854-2865.	5.5	74
199	Biobased Poly(ethylene furanoate) Polyester/TiO2 Supported Nanocomposites as Effective Photocatalysts for Anti-inflammatory/Analgesic Drugs. Molecules, 2019, 24, 564.	1.7	27
200	History of Food Packaging. , 2019, , .		2
201	New AB type monomers from lignocellulosic biomass. Pure and Applied Chemistry, 2019, 91, 389-396.	0.9	8
202	Modification of Poly(ethylene 2,5-furandicarboxylate) with Biobased 1,5-Pentanediol: Significantly Toughened Copolyesters Retaining High Tensile Strength and O ₂ Barrier Property. Biomacromolecules, 2019, 20, 353-364.	2.6	92
203	Copolyesters developed from bioâ€based 2,5â€furandicarboxylic acid: Synthesis, sequence distribution, mechanical, and barrier properties of poly(propyleneâ€ <i>co</i> â€1,4â€cyclohexanedimethylene) Tj ETQq1 1 0.78	3 4.3 14 rgB	T2/Dverla

#	Article	IF	CITATIONS
204	Life Cycle Assessment of Polyethylene Terephthalate Packaging: An Overview. Journal of Polymers and the Environment, 2019, 27, 533-548.	2.4	61
205	Effect of MnO ₂ Crystal Structure on Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Journal of the American Chemical Society, 2019, 141, 890-900.	6.6	299
206	A Comparative Study of Nickel, Cobalt, and Iron Oxyhydroxide Anodes for the Electrochemical Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. ACS Catalysis, 2019, 9, 660-670.	5.5	254
207	2,5â€Furandicarboxylic acid as a sustainable alternative to isophthalic acid for synthesis of amorphous poly(ethylene terephthalate) copolyester with enhanced performance. Journal of Applied Polymer Science, 2019, 136, 47186.	1.3	27
208	Catalysis for solar-driven chemistry: The role of electrocatalysis. Catalysis Today, 2019, 330, 157-170.	2.2	49
209	Designing Biobased Recyclable Polymers for Plastics. Trends in Biotechnology, 2020, 38, 50-67.	4.9	185
210	Towards improving the sustainability of bioplastics: Process modelling and life cycle assessment of two separation routes for 2,5-furandicarboxylic acid. Separation and Purification Technology, 2020, 233, 116056.	3.9	32
211	NiSe@NiOx core-shell nanowires as a non-precious electrocatalyst for upgrading 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid. Applied Catalysis B: Environmental, 2020, 261, 118235.	10.8	130
212	Aerobic Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid over Holey 2 D Mn ₂ O ₃ Nanoflakes from a Mnâ€based MOF. ChemSusChem, 2020, 13, 548-555.	3.6	68
213	Continuous Flow Synthesis of Bimetallic AuPd Catalysts for the Selective Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid. ChemNanoMat, 2020, 6, 420-426.	1.5	17
214	Bioengineering advancements, innovations and challenges on green synthesis of 2, 5-furan dicarboxylic acid. Bioengineered, 2020, 11, 19-38.	1.4	31
215	Insights into the active sites and catalytic mechanism of oxidative esterification of 5-hydroxymethylfurfural by metal-organic frameworks-derived N-doped carbon. Journal of Catalysis, 2020, 381, 570-578.	3.1	56
216	Influence of asymmetric substituent group 2-methyl-1,3-propanediol on bio-based poly(propylene) Tj ETQq0 0 0	rgBT /Over 1 . 2	lock 10 Tf 50
217	A brief overview of renewable plastics. Materials Today Sustainability, 2020, 7-8, 100031.	1.9	57
218	Constraints, impacts and benefits of lignocellulose conversion pathways to liquid biofuels and biochemicals. , 2020, , 249-282.		3
219	Recent advances in catalytic oxidation of 5-hydroxymethylfurfural. Molecular Catalysis, 2020, 495, 111133.	1.0	70
221	Titanium Oxideâ€Confined Manganese Oxide for Oneâ€Step Electrocatalytic Preparation of 2,5â€Furandicarboxylic Acid in Acidic Media. ChemElectroChem, 2020, 7, 4251-4258.	1.7	14
222	Status of Biocatalysis in the Production of 2,5-Furandicarboxylic Acid. ACS Catalysis, 2020, 10, 9145-9169.	5.5	42

#	Article	IF	CITATIONS
223	The Unintended Side Effects of Bioplastics: Carbon, Land, and Water Footprints. One Earth, 2020, 3, 45-53.	3.6	118
224	Synthesis of 2,5-furandicarboxylic acid by a TEMPO/laccase system coupled with <i>Pseudomonas putida</i> KT2440. RSC Advances, 2020, 10, 21781-21788.	1.7	18
225	Toward an Intensified Process of Biomass-Derived Monomers: The Influence of 5-(Hydroxymethyl)furfural Byproducts on the Gold-Catalyzed Synthesis of 2,5-Furandicarboxylic Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 11512-11521.	3.2	25
226	Recent advance in renewable materials and green processes for optoelectronic applications. Materials Today Sustainability, 2021, 11-12, 100057.	1.9	6
227	Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability. Polymers, 2020, 12, 1558.	2.0	209
228	Improved Performance of Nickel Boride by Phosphorus Doping as an Efficient Electrocatalyst for the Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Industrial & Engineering Chemistry Research, 2020, 59, 17348-17356.	1.8	42
229	Remarkable elasticity and enzymatic degradation of bio-based poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf S	50 502 Td 4.8	(adipate- <i> 47</i>
230	A unique pathway to platform chemicals: aldaric acids as stable intermediates for the synthesis of furandicarboxylic acid esters. Green Chemistry, 2020, 22, 8271-8277.	4.6	24
231	Green chemistry and the plastic pollution challenge: towards a circular economy. Green Chemistry, 2020, 22, 6310-6322.	4.6	204
232	Green poly-lysine as electron-extraction modified layer with over 15% power conversion efficiency and its application in bio-based flexible organic solar cells. Organic Electronics, 2020, 87, 105924.	1.4	18
233	Recent Developments in Low iLUC Policies and Certification in the EU Biobased Economy. Sustainability, 2020, 12, 8147.	1.6	14
234	Adjusting effect of additives on decatungstate-photocatalyzed HMF oxidation with molecular oxygen under visible light illumination. Chemical Engineering Journal, 2020, 396, 125345.	6.6	27
235	PEF plastic synthesized from industrial carbon dioxide and biowaste. Nature Sustainability, 2020, 3, 761-767.	11.5	76
236	Improved biosynthesis of 2,5-Furandicarboxylic acid through coupling of heterologous pathways in Escherichia coli and native pathways in Pseudomonas putida. Biochemical Engineering Journal, 2020, 161, 107657.	1.8	11
237	Enabling Ironâ€Based Highly Effective Electrochemical Waterâ€Splitting and Selective Oxygenation of Organic Substrates through In Situ Surface Modification of Intermetallic Iron Stannide Precatalyst. Advanced Energy Materials, 2020, 10, 2001377.	10.2	96
238	Synthesis of Poly(Ethylene 2,5-Furanoate): I. Kinetics of 2,5-Dimethyl Ester of Furandicarboxylic Acid Transesterification. Materials Science Forum, 0, 992, 311-316.	0.3	1
239	Advances in the synthesis and application of 2,5-furandicarboxylic acid. , 2020, , 135-170.		7
240	Which electrode is better for biomass valorization: Cu(OH)2 or CuO nanowire?. Korean Journal of Chemical Engineering, 2020, 37, 556-562.	1.2	18

ARTICLE IF CITATIONS # Sustainable bioplastics: Recent progress in the production of bio-building blocks for the bio-based 241 6.6 93 next-generation polymer PEF. Chemical Engineering Journal, 2020, 390, 124636. A Technoeconomic Platform for Early-Stage Process Design and Cost Estimation of Joint 242 1.3 23 Fermentativeâ€'Catalytic Bioprocessing. Processes, 2020, 8, 229. Modification of poly(ethylene 2,5-furandicarboxylate) with aliphatic polycarbonate diols: 1. Randomnized copolymers with significantly improved ductility and high CO2 barrier performance. 243 2.6 14 European Polymer Journal, 2020, 134, 109856. Oxidation of 5-hydroxymethylfurfural to 5-formyl furan-2-carboxylic acid by non-precious transition 244 metal oxide-based catalyst. Journal of Supercritical Fluids, 2020, 160, 104812. Direct Alkoxycarbonylation of Heteroarenes via Cu-Mediated Trichloromethylation and In Situ 245 2.4 22 Alcoholysis. Organic Letters, 2020, 22, 2093-2098. Engineering a homogeneous alloy-oxide interface derived from metal-organic frameworks for selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Applied Catalysis B: 10.8 Environmental, 2020, 270, 118805. An evoluted bioâ \in based 2,5â \in furanciar boxylate copolyester fiber from poly(ethylene terephthalate). 247 2.0 15 Journal of Polymer Science, 2020, 58, 320-329. Recent Developments in Metal-Based Catalysts for the Catalytic Aerobic Oxidation of 1.6 47 5-Hydroxymethyl-Furfural to 2,5-Furandicarboxylic Acid. Catalysts, 2020, 10, 120. Novel biobased high toughness PBAT/PEF blends: morphology, thermal properties, crystal structures 249 20 1.4 and mechanical properties. New Journal of Chemistry, 2020, 44, 3112-3121. Mechanistic Investigation of Biomass Oxidation Using Nickel Oxide Nanoparticles in a CO₂-Saturated Electrolyte for Paired Electrolysis. Journal of Physical Chemistry Letters, 2.1 2020, 11, 2941-2948. Lowâ€crystallinity to highly amorphous copolyesters with high glass transition temperatures based on 251 7 1.6 rigid carbohydrateâ€derived building blocks. Polymer International, 2021, 70, 536-545. Renewable polymers and plastics: Performance beyond the green. New Biotechnology, 2021, 60, 146-158. 2.4 Innovative Protocols in the Catalytic Oxidation of $5\hat{a}\in Hydroxymethylfurfural$. ChemSusChem, 2021, 14, 253 3.6 62 266-280. New (and Old) Monomers from Biorefineries to Make Polymer Chemistry More Sustainable. 254 Macromolecular Rapid Communications, 2021, 42, e2000485. Ultrafine Copper Oxide Particles Dispersed on Nitrogenâ€Doped Hollow Carbon Nanospheres for 255 9 1.3 Oxidative Esterification of Biomassâ€Derived 5â€Hydroxymethylfurfural. ChemPlusChem, 2021, 86, 259-269. Catalytic upgrading of biomass derived furans. Industrial Crops and Products, 2021, 159, 113055. 36 Decarbonising the critical sectors of aviation, shipping, road freight and industry to limit warming to 257 2.6 72 1.5–2°C. Climate Policy, 2021, 21, 455-474. Toward Replacing Ethylene Oxide in a Sustainable World: Glycolaldehyde as a Bioâ€Based C 2 Platform Molecule. Angewandte Chemie, 2021, 133, 12312-12331.

#	Article	IF	CITATIONS
259	Toward Replacing Ethylene Oxide in a Sustainable World: Glycolaldehyde as a Bioâ€Based C ₂ Platform Molecule. Angewandte Chemie - International Edition, 2021, 60, 12204-12223.	7.2	47
260	Improved polymerization and depolymerization kinetics of poly(ethylene terephthalate) by co-polymerization with 2,5-furandicarboxylic acid. RSC Advances, 2021, 11, 23506-23518.	1.7	12
261	Development of Compatibilized Polyamide 1010/Coconut Fibers Composites by Reactive Extrusion with Modified Linseed Oil and Multi-functional Petroleum Derived Compatibilizers. Fibers and Polymers, 2021, 22, 728-744.	1.1	7
262	Sulfidation of nickel foam with enhanced electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Dalton Transactions, 2021, 50, 10922-10927.	1.6	21
263	Electrochemical upgrading of biomass-derived 5-hydroxymethylfurfural and furfural over oxygen vacancy-rich NiCoMn-layered double hydroxides nanosheets. Green Chemistry, 2021, 23, 4034-4043.	4.6	95
264	Nanoengineered Electrodes for Biomass-Derived 5-Hydroxymethylfurfural Electrocatalytic Oxidation to 2,5-Furandicarboxylic Acid. ACS Sustainable Chemistry and Engineering, 2021, 9, 1970-1993.	3.2	65
265	Phosphotungstic acid on activated carbon: A remarkable catalyst for 5-hydroxymethylfurfural production. Molecular Catalysis, 2021, 500, 111334.	1.0	13
266	Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions. Green Chemistry, 2021, 23, 4228-4254.	4.6	191
267	Organocatalyzed closed-loop chemical recycling of thermo-compressed films of poly(ethylene) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 422
268	From sugars to FDCA: a techno-economic assessment using a design concept based on solvent selection and carbon dioxide emissions. Green Chemistry, 2021, 23, 1716-1733.	4.6	47
269	Development of a continuous-flow tubular reactor for synthesis of 5-hydroxymethylfurfural from fructose using heterogeneous solid acid catalysts in biphasic reaction medium. New Journal of Chemistry, 2021, 45, 8479-8491.	1.4	16
270	Production of HMF, FDCA and their derived products: a review of life cycle assessment (LCA) and techno-economic analysis (TEA) studies. Green Chemistry, 2021, 23, 3154-3171.	4.6	109
271	Electrodeposition of hybrid nanosheet-structured NiCo ₂ O ₄ on carbon fiber paper as a non-noble electrocatalyst for efficient electrooxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. New Journal of Chemistry, 2021, 45, 11213-11221.	1.4	12
272	Highly Ordered Mesoporous Co ₃ O ₄ Electrocatalyst for Efficient, Selective, and Stable Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid. ChemSusChem, 2021, 14, 5199-5206.	3.6	38

273	Techno-Economic Assessment of Mixed-Furan Production from Diverse Biomass Hydrolysates. ACS Sustainable Chemistry and Engineering, 2021, 9, 3428-3438.	3.2	12
274	Recent Progress in 5-Hydroxymethylfurfural Catalytic Oxidation to 2,5-Furandicarboxylic Acid. Current Organic Chemistry, 2021, 25, 404-416.	0.9	8
275	A novel kinetic approach to crystallization mechanisms in polymers. Polymer Engineering and Science, 2021, 61, 1502-1517.	1.5	8
276	Advances in Electrochemical Modification Strategies of 5â€Hydroxymethylfurfural. ChemSusChem, 2021,	3.6	47

#	Article	IF	CITATIONS
277	Electrochemical Routes for the Valorization of Biomass-Derived Feedstocks: From Chemistry to Application. ACS Energy Letters, 0, , 1205-1270.	8.8	130
278	Furfural to <scp>FDCA</scp> : systematic process design and technoâ€economic evaluation. Biofuels, Bioproducts and Biorefining, 2021, 15, 1021-1030.	1.9	11
279	Innovative Bio-based Poly(Lactic Acid)/Poly(Alkylene Furanoate)s Fiber Blends for Sustainable Textile Applications. Journal of Polymers and the Environment, 2021, 29, 3948-3963.	2.4	27
280	Environmental performance comparison of bioplastics and petrochemical plastics: A review of life cycle assessment (LCA) methodological decisions. Resources, Conservation and Recycling, 2021, 168, 105451.	5.3	169
281	Merging Biology and Photovoltaics: How Nature Helps Sun atching. Advanced Energy Materials, 2021, 11, 2100520.	10.2	15
282	An Overall Reaction Integrated with Highly Selective Oxidation of 5â€Hydroxymethylfurfural and Efficient Hydrogen Evolution. Advanced Functional Materials, 2021, 31, 2102886.	7.8	71
283	Progress and Perspectives in Photo―and Electrochemicalâ€Oxidation of Biomass for Sustainable Chemicals and Hydrogen Production. Advanced Energy Materials, 2021, 11, 2101180.	10.2	200
284	Enhanced Protocatechuic Acid Production From Glucose Using Pseudomonas putida 3-Dehydroshikimate Dehydratase Expressed in a Phenylalanine-Overproducing Mutant of Escherichia coli. Frontiers in Bioengineering and Biotechnology, 2021, 9, 695704.	2.0	11
285	(Not) Doing the Right Things for the Wrong Reasons: An Investigation of Consumer Attitudes, Perceptions, and Willingness to Pay for Bio-Based Plastics. Sustainability, 2021, 13, 6819.	1.6	25
286	Ex-ante life cycle assessment of polyethylenefuranoate (PEF) from bio-based monomers synthesized via a novel electrochemical process. Cleaner Environmental Systems, 2021, 2, 100036.	2.2	3
287	Pressure Reduction Enhancing the Production of 5-Hydroxymethylfurfural from Glucose in Aqueous Phase Catalysis System. Polymers, 2021, 13, 2096.	2.0	4
288	Insights into high molecular weight poly(ethylene 2,5-furandicarboxylate) with satisfactory appearance: Roles of in-situ catalysis of metal zinc. Journal of Industrial and Engineering Chemistry, 2021, 99, 422-430.	2.9	11
289	An Overview of Bioplastic Research on Its Relation to National Policies. Sustainability, 2021, 13, 7848.	1.6	7
290	Are Biobased Plastics Green Alternatives?—A Critical Review. International Journal of Environmental Research and Public Health, 2021, 18, 7729.	1.2	48
291	Zincâ€Catalyzed Depolymerization of the Endâ€ofâ€Life Poly(ethylene 2,5â€furandicarboxylate). ChemistrySelect, 2021, 6, 7972-7975.	0.7	7
292	UbiD domain dynamics underpins aromatic decarboxylation. Nature Communications, 2021, 12, 5065.	5.8	14
293	Toward scalable biocatalytic conversion of 5-hydroxymethylfurfural by galactose oxidase using coordinated reaction and enzyme engineering. Nature Communications, 2021, 12, 4946.	5.8	56
294	Chemical conversion of furan dicarboxylic acid to environmentally benign polyesters: an overview. Biomass Conversion and Biorefinery, 0, , 1.	2.9	4

#	Article	IF	CITATIONS
295	Bio-based material from fruit waste of orange peel for industrial applications. Journal of Materials Research and Technology, 2022, 17, 3186-3197.	2.6	38
296	Chemical Recycling of PET in the Presence of the Bio-Based Polymers, PLA, PHB and PEF: A Review. Sustainability, 2021, 13, 10528.	1.6	37
297	Ag(I)-Catalyzed C–H Carboxylation of Thiophene Derivatives. Organometallics, 2021, 40, 3136-3144.	1.1	6
298	Bio-based polymers with performance-advantaged properties. Nature Reviews Materials, 2022, 7, 83-103.	23.3	268
299	Technoeconomic Analysis of Multiple-Stream Ethanol and Lignin Production from Lignocellulosic Biomass: Insights into the Chemical Selection and Process Integration. ACS Sustainable Chemistry and Engineering, 2021, 9, 13640-13652.	3.2	18
300	Progress in the catalytic glycolysis of polyethylene terephthalate. Journal of Environmental Management, 2021, 296, 113267.	3.8	79
301	Unpacking food to go: Packaging and food waste of on the go provisioning practices in the UK. Geoforum, 2021, 126, 115-125.	1.4	5
302	Rational construction of metal–base synergetic sites on Au/Mg-beta catalyst for selective aerobic oxidation of 5-hydroxymethylfurfural. Journal of Energy Chemistry, 2021, 62, 599-609.	7.1	19
303	Biobased 2,5-furandicarboxylic acid (FDCA) and its emerging copolyesters' properties for packaging applications. European Polymer Journal, 2021, 160, 110778.	2.6	30
304	Ultrathin layered double hydroxides nanosheets array towards efficient electrooxidation of 5-hydroxymethylfurfural coupled with hydrogen generation. Applied Catalysis B: Environmental, 2021, 299, 120669.	10.8	83
305	Investigation of the catalytic activity and reaction kinetic modeling of two antimony catalysts in the synthesis of poly(ethylene furanoate). Green Chemistry, 2021, 23, 2507-2524.	4.6	24
306	Preparation of Sulfur-Modulated Nickel/Carbon Composites from Lignosulfonate for the Electrocatalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. ACS Applied Energy Materials, 2021, 4, 1182-1188.	2.5	37
307	Recent advances in the electrocatalytic synthesis of 2,5-furandicarboxylic acid from 5-(hydroxymethyl)furfural. Journal of Materials Chemistry A, 2021, 9, 20164-20183.	5.2	62
308	Catalytic Aerobic Oxidation of 5-Hydroxymethylfurfural (HMF) into 2,5-Furandicarboxylic Acid and Its Derivatives. Biofuels and Biorefineries, 2017, , 171-206.	0.5	5
309	Liquid-Phase Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over Co/Mn/Br Catalyst. Industrial & Engineering Chemistry Research, 2020, 59, 17076-17084.	1.8	25
310	Biobased Poly(ethylene 2,5-furancoate): No Longer an Alternative, but an Irreplaceable Polyester in the Polymer Industry. ACS Sustainable Chemistry and Engineering, 2020, 8, 8471-8485.	3.2	106
311	Stabilization strategies in biomass depolymerization using chemical functionalization. Nature Reviews Chemistry, 2020, 4, 311-330.	13.8	214
312	The formation of p-toluic acid from coumalic acid: a reaction network analysis. Green Chemistry, 2017, 19, 3263-3271.	4.6	21

#	Article	IF	CITATIONS
313	Saving resources and the climate? A systematic review of the circular economy and its mitigation potential. Environmental Research Letters, 2020, 15, 123001.	2.2	51
314	Conversion of Lignocellulosic Sugarcane Bagasse Waste into Bioethanol Using Indigenous Yeast Strain. Biosciences, Biotechnology Research Asia, 2020, 17, 559-565.	0.2	3
317	Pd/Au Based Catalyst Immobilization in Polymeric Nanofibrous Membranes via Electrospinning for the Selective Oxidation of 5-Hydroxymethylfurfural. Processes, 2020, 8, 45.	1.3	16
318	Research Gap and Needs. , 2021, , 393-416.		0
319	Thermoresponsive block copolymer supported Pt nanocatalysts for base-free aerobic oxidation of 5-hydroxymethyl-2-furfural. Frontiers of Chemical Science and Engineering, 2021, 15, 1514-1523.	2.3	2
320	Use of filamentous fungi as biocatalysts in the oxidation of 5-(hydroxymethyl)furfural (HMF). Bioresource Technology, 2022, 344, 126169.	4.8	19
321	Sustainable textile fibers of bioderived polylactide/poly(pentamethylene 2, <scp>5â€furanoate</scp>) blends. Journal of Applied Polymer Science, 2022, 139, 51740.	1.3	13
322	Na-MnOx catalyzed aerobic oxidative cleavage of biomass-derived 1,2-diols to synthesis medium-chain furanic chemicals. Green Energy and Environment, 2022, 7, 957-964.	4.7	6
323	Au/Ag/Cu-Mixed Catalysts for the Eco-Friendly Oxidation of 5-Hydroxymethylfurfural and Related Compounds to Carboxylic Acids under Atmospheric Oxygen in Water. ACS Omega, 2021, 6, 2239-2247.	1.6	10
324	Prozesstechnik: Ein grüner Bruder für PET. Nachrichten Aus Der Chemie, 2020, 68, 39-41.	0.0	0
325	Biobased Packaging from Food Industry Waste. , 2020, , 241-265.		2
326	Plastics and Sustainability. , 2021, , 489-504.		1
327	Synthetic Biology and Future Production of Biofuels and High–Value Products. , 2020, , 271-302.		4
328	Recommendations for replacing PET on packaging, fiber, and film materials with biobased counterparts. Green Chemistry, 2021, 23, 8795-8820.	4.6	77
329	Assessing the Economic Viability of the Plastic Biorefinery Concept and Its Contribution to a More Circular Plastic Sector. Polymers, 2021, 13, 3883.	2.0	9
330	Synthesis and properties of poly(ethyleneâ€coâ€diethylene glycol 2,5â€furandicarboxylate) copolymers. Journal of Applied Polymer Science, 2022, 139, 51921.	1.3	5
331	Pt Nanoparticles on ZSM-5 Nanoparticles for Base-Free Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. ACS Applied Nano Materials, 2021, 4, 14047-14059.	2.4	14
332	Comparative Study of Oxygen Diffusion in Polyethylene Terephthalate and Polyethylene Furanoate Using Molecular Modeling: Computational Insights into the Mechanism for Gas Transport in Bulk Polymer Systems. Macromolecules, 2022, 55, 498-510.	2.2	14

#	Article	IF	CITATIONS
333	Structure and enhanced mechanical properties of biobased poly(ethylene 2,5-furandicarboxylate) by incorporating with low loadings of talc platelets. Polymer, 2021, 237, 124351.	1.8	8
334	Contribution of Fermentation Technology to Building Blocks for Renewable Plastics. Fermentation, 2022, 8, 47.	1.4	11
335	Bioplastics for a circular economy. Nature Reviews Materials, 2022, 7, 117-137.	23.3	550
336	Effect of membrane purification and concentration of sucrose in sugar beet molasses for the production of 5-hydroxymethylfurfural. Chemical Engineering Research and Design, 2022, 179, 365-373.	2.7	5
337	Oxidase enzymes as sustainable oxidation catalysts. Royal Society Open Science, 2022, 9, 211572.	1.1	20
338	Facile Production of 2,5â€Furandicarboxylic Acid via Oxidation of Industrially Sourced Crude 5â€Hydroxymethylfurfural. ChemSusChem, 2022, 15, .	3.6	6
339	Green Chemistry, Biocatalysis, and the Chemical Industry of the Future. ChemSusChem, 2022, 15, .	3.6	63
340	Synthesis of 2,5-furandicarboxylic acid dimethyl ester from galactaric acid <i>via</i> dimethyl carbonate chemistry. Green Chemistry, 2022, 24, 2766-2771.	4.6	18
341	Synergistic decarboxylation over Ce-doped Na/SiO ₂ facilitating functionalized monomer production from furfural for manufacturing polymers. Green Chemistry, 2022, 24, 2240-2248.	4.6	1
342	Recent Progress on Bio-Based Polyesters Derived from 2,5-Furandicarbonxylic Acid (FDCA). Polymers, 2022, 14, 625.	2.0	45
343	Oxidation of 2,5-bis(hydroxymethyl)furan to 2,5-furandicarboxylic acid catalyzed by carbon nanotube-supported Pd catalysts. Chinese Journal of Catalysis, 2022, 43, 793-801.	6.9	5
344	Nanocatalyzed Upcycling of the Plastic Wastes for a Circular Economy. SSRN Electronic Journal, 0, , .	0.4	0
345	Life Cycle Greenhouse Gas Emissions and Water and Fossil-Fuel Consumptions for Polyethylene Furanoate and Its Coproducts from Wheat Straw. ACS Sustainable Chemistry and Engineering, 2022, 10, 2830-2843.	3.2	14
346	The Road to Bring FDCA and PEF to the Market. Polymers, 2022, 14, 943.	2.0	57
347	A Coupled Ketoreductaseâ€Diaphorase Assay for the Detection of Polyethylene Terephthalateâ€Hydrolyzing Activity. ChemSusChem, 2022, 15, .	3.6	3
348	Technoeconomic and Life-Cycle Assessment for Electrocatalytic Production of Furandicarboxylic Acid. ACS Sustainable Chemistry and Engineering, 2022, 10, 4206-4217.	3.2	13
349	Design and Application of a High-Surface-Area Mesoporous δ-MnO ₂ Electrocatalyst for Biomass Oxidative Valorization. Chemistry of Materials, 2022, 34, 3123-3132.	3.2	19
350	Fire Propagation Behavior of Some Biobased Furanic Compounds with a Focus on the Polymer PEF. ACS Omega, 2022, 7, 9181-9195.	1.6	1

#	Article	IF	CITATIONS
351	Aliphatic polycarbonate modified poly(ethylene furandicarboxylate) materials with improved ductility, toughness and high CO2 barrier performance. Polymer, 2022, 246, 124751.	1.8	6
352	Structural and biochemical characterization of the prenylated flavin mononucleotide-dependent indole-3-carboxylic acid decarboxylase. Journal of Biological Chemistry, 2022, 298, 101771.	1.6	10
353	Catalytic Conversion of 5â€Hydroxymethylfurfural to Highâ€Value Derivatives by Selective Activation of Câ°'O, C=O, and C=C Bonds. ChemSusChem, 2022, 15, .	3.6	16
354	Developing future visions for bio-plastics substituting PET – A backcasting approach. Sustainable Production and Consumption, 2022, 31, 370-383.	5.7	22
355	The metabolic potential of plastics as biotechnological carbon sources – Review and targets for the future. Metabolic Engineering, 2022, 71, 77-98.	3.6	55
356	Boosting the valorization of biomass and green electrons to chemical building blocks: A study on the kinetics and mass transfer during the electrochemical conversion of HMF to FDCA in a microreactor. Chemical Engineering Journal, 2022, 438, 135393.	6.6	15
357	Hydrogen production coupled with water and organic oxidation based on layered double hydroxides. Exploration, 2021, 1, .	5.4	79
358	Production and waste treatment of polyesters: application of bioresources and biotechniques. Critical Reviews in Biotechnology, 2023, 43, 503-520.	5.1	7
359	Efficient Electrooxidation of 5â€Hydroxymethylfurfural Using Coâ€Doped Ni ₃ S ₂ Catalyst: Promising for H ₂ Production under Industrialâ€Level Current Density. Advanced Science, 2022, 9, e2200957.	5.6	82
361	W exsolution promotes the <i>in situ</i> reconstruction of a NiW electrode with rich active sites for the electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF). Catalysis Science and Technology, 2022, 12, 3363-3371.	2.1	8
362	Synthesis of a fire-retardant and high Tg biobased polyester from 2,5-furandicarboxylic acid. Polymer Journal, 2022, 54, 995-1008.	1.3	3
364	High selective oxidation of 5-hydroxymethyl furfural to 5-hydroxymethyl-2-furan carboxylic acid using Ag-TiO2. Molecular Catalysis, 2022, 525, 112353.	1.0	7
365	Bio-effects of bio-based and fossil-based microplastics: Case study with lettuce-soil system. Environmental Pollution, 2022, 306, 119395.	3.7	14
366	Biopolymers from Agriculture Waste and By-Products. Springer Series on Polymer and Composite Materials, 2022, , 111-128.	0.5	3
367	Sustainable materials alternative to petrochemical plastics pollution: A review analysis. , 2022, 2, 100016.		40
368	Synthesis of Heteropolyacid (HPA) Functionalized Graphitic Carbon Nitride as Effective Catalysts for Converting Polysaccharides into High-Value Chemicals. SSRN Electronic Journal, 0, , .	0.4	0
369	Biorefinery, an integrated concept: Analysis of bioethanol and aromas production from whey. , 2022, , 447-471.		1
370	éžèćµé‡'属基å,¬åŒ–å‰,用于生物èˆç"µæ°§åŒ–é«~值化å^©ç"¨çš" ç"ç©¶èį›å±•. Science China Ma	ater 3a5 s, <u>20</u>	0222 6 5, 3273

#	Article	IF	CITATIONS
371	Closing the Carbon Loop in the Circular Plastics Economy. Macromolecular Rapid Communications, 2022, 43, .	2.0	21
372	Selfâ€healing and biodegradable copolyesters synthesized from 2, <scp>5â€furandicarboxylic</scp> acid applied as human skin. Journal of Applied Polymer Science, 2022, 139, .	1.3	5
373	Sustainable Poly(butylene adipate- <i>co</i> -furanoate) Composites with Sulfated Chitin Nanowhiskers: Synergy Leading to Superior Robustness and Improved Biodegradation. ACS Sustainable Chemistry and Engineering, 2022, 10, 8411-8422.	3.2	12
374	Enhanced Basicity of MnOxâ€Supported Ru for the Selective Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid. ChemSusChem, 2022, 15, .	3.6	15
375	Metal vacancy-enriched layered double hydroxide for biomass molecule electrooxidation coupled with hydrogen production. Fundamental Research, 2024, 4, 69-76.	1.6	2
376	Synthesis of heteropolyacid (HPA) functionalized graphitic carbon nitride as effective catalysts for converting polysaccharides into high-value chemicals. Resources, Conservation and Recycling, 2022, 185, 106473.	5.3	2
377	Derivative voltammetry: a simple tool to probe reaction selectivity in photoelectrochemical cells. Sustainable Energy and Fuels, 0, , .	2.5	0
378	High oxidation state enabled by plated Ni-P achieves superior electrocatalytic performance for 5-hydroxymethylfurfural oxidation reaction. IScience, 2022, 25, 104744.	1.9	9
379	Covalent Bonding Oxidation Group and Tiâ€cluster to Synthesize a Porous Crystalline Catalyst for Selective Photoâ€oxidation Biomass Valorization. Angewandte Chemie, 0, , .	1.6	3
380	Covalentâ€Bonding Oxidation Group and Titanium Cluster to Synthesize a Porous Crystalline Catalyst for Selective Photoâ€Oxidation Biomass Valorization. Angewandte Chemie - International Edition, 2022, 61, .	7.2	38
381	5-Hydroxymethylfurfural Oxidation to 2,5-Furandicarboxylic Acid on Noble Metal-Free Nanocrystalline Mixed Oxide Catalysts. Catalysts, 2022, 12, 814.	1.6	1
382	Solar energy-driven electrolysis with molecular catalysts for the reduction of carbon dioxide coupled with the oxidation of 5-hydroxymethylfurfural. Catalysis Science and Technology, 2022, 12, 5495-5500.	2.1	14
383	Polyethylene furanoate: technoeconomic analysis of biobased production. Biofuels, Bioproducts and Biorefining, 2023, 17, 135-152.	1.9	9
384	Next-Generation High-Performance Biobased Naphthalate-Modified PET for Sustainable Food Packaging Applications. Macromolecules, 2022, 55, 7785-7797.	2.2	11
385	Carboxylation reactions for integrating CO ₂ capture with the production of renewable monomers. , 2023, 13, 227-244.		3
386	Deep Eutectic Solventâ€Induced In Situ Etching and Phosphorization to Form Nickel Phosphides for Electrooxidation of 5â€Hydroxymethylfurfural. ChemSusChem, 2022, 15, .	3.6	7
387	Use phase and end-of-life modeling of biobased biodegradable plastics in life cycle assessment: a review. Clean Technologies and Environmental Policy, 2022, 24, 3253-3272.	2.1	13
388	Thiol-ene biobased networks: Furan allyl derivatives for green coating applications. Progress in Organic Coatings, 2022, 173, 107203.	1.9	7

#	Article	IF	Citations
389	Nickel-vanadium-cobalt ternary layered double hydroxide for efficient electrocatalytic upgrading of 5-hydroxymethylfurfural to 2,5-furancarboxylic acid at low potential. Journal of Materials Chemistry A, 2022, 10, 21135-21141.	5.2	9
390	Food Waste Biorefineries: Developments, Current Advances and Future Outlook. , 2022, , 309-336.		0
391	Compatibilization of Polylactide/Poly(ethylene 2,5-furanoate) (PLA/PEF) Blends for Sustainable and Bioderived Packaging. Molecules, 2022, 27, 6371.	1.7	11
392	Base metal catalyzed oxidation of 5-hydroxy-methyl-furfural to 2,5-furan-dicarboxylic acid: A review. Catalysis Today, 2023, 408, 64-72.	2.2	5
393	Coupling Process Intensification and Systems Flowsheeting for Economic and Environmental Analysis of 5-Hydroxymethyl Furfural Modular Microreactor Plants. ACS Sustainable Chemistry and Engineering, 2022, 10, 14955-14971.	3.2	2
394	Bioplastics for Food Packaging: Environmental Impact, Trends and Regulatory Aspects. Foods, 2022, 11, 3087.	1.9	33
395	Consumer attitudes and willingness to pay for novel bio-based products using hypothetical bottle choice. Sustainable Production and Consumption, 2023, 35, 173-183.	5.7	13
396	Influence of the Multiple Injection Moulding and Composting Time on the Properties of Selected Packaging and Furan-Based Polyesters. Journal of Polymers and the Environment, 0, , .	2.4	4
397	In situ nanofibrillar fully-biobased poly (lactic acid)/poly (ethylene 2,5-furandicarboxylate) composites with promoted crystallization kinetics, mechanical properties, and heat resistance. Polymer Degradation and Stability, 2022, 206, 110172.	2.7	4
398	From Biomass to Functional Crystalline Diamond Nanothread: Pressure-Induced Polymerization of 2,5-Furandicarboxylic Acid. Journal of the American Chemical Society, 2022, 144, 21837-21842.	6.6	11
399	Kinetic Modeling of Homogenous Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Industrial & Engineering Chemistry Research, 2022, 61, 18352-18361.	1.8	5
400	Catalytic synthesis of 5-hydroxymethyl furfural from sorghum syrup derived fructose. Sustainable Energy Technologies and Assessments, 2022, 54, 102884.	1.7	0
401	Recent progress in biobased synthetic textile fibers. Frontiers in Materials, 0, 9, .	1.2	4
402	An Empirical Investigation on Plastic Waste Issues and Plastic Disposal Strategies to Protect the Environment: A UAE Perspective. Sustainability, 2022, 14, 16719.	1.6	4
403	Sustainable bioplastics derived from renewable natural resources for food packaging. Matter, 2023, 6, 97-127.	5.0	24
404	The E factor at 30: a passion for pollution prevention. Green Chemistry, 2023, 25, 1704-1728.	4.6	54
405	Specific interchain interactions of poly(ethylene 2,5â€furandicarboxylate) with polyglycolide acid blends and its effect on miscibility. Journal of Polymer Science, 2023, 61, 806-817.	2.0	3
406	Pakistan toward Achieving Net-Zero Emissions: Policy and Roadmap. ACS Sustainable Chemistry and Engineering, 2023, 11, 368-380.	3.2	4

#	Article	IF	CITATIONS
407	Biodegradable polymers- a greener approach for food packaging. , 2023, , 317-369.		4
408	Greenhouse gas emission reduction and energy impact of electrifying upgraders in refineries using plasma processing technology. Sustainable Energy and Fuels, 0, , .	2.5	Ο
409	Whole $\hat{a} \in cell$ Mediated Carboxylation of $2\hat{a} \in F$ uroic Acid Towards the Production of Renewable Platform Chemicals and Biomaterials. ChemCatChem, 2023, 15, .	1.8	3
410	The global warming potential and the material utility of PET and bio-based PEF bottles over multiple recycling trips. Journal of Cleaner Production, 2023, 395, 136426.	4.6	12
411	Photopolymerization of furan-based monomers: Exploiting UV-light for a new age of green polymers. Reactive and Functional Polymers, 2023, 185, 105540.	2.0	8
412	Determination of Solubility and Thermodynamic Analysis of Solubility Behavior of 2,5-Furandicarboxylic Acid in Water and Ether Binary Solvent System. Journal of Chemical & Engineering Data, 2023, 68, 726-743.	1.0	2
413	Biobased 2,5-Bis(hydroxymethyl)furan as a Versatile Building Block for Sustainable Polymeric Materials. ACS Omega, 2023, 8, 8991-9003.	1.6	11
414	Microstructural consequences of isothermal crystallization in homo- and co-polyesters based on 2,5- and 2,4-furandicarboxylic acid. Polymer, 2023, 272, 125835.	1.8	3
416	Doped Mn Enhanced NiS Electrooxidation Performance of HMF into FDCA at Industrial‣evel Current Density. Advanced Functional Materials, 2023, 33, .	7.8	23
417	Recent Progress in Metalâ€Catalyzed Selective Oxidation of 5â€Hydroxymethylfurfural into Furanâ€Based Valueâ€Added Chemicals. Chemical Record, 2023, 23, .	2.9	3
418	Electrocatalytic valorization of waste polyethylene furanoate (PEF) bioplastics for the production of formic acid and hydrogen energy. Reaction Chemistry and Engineering, 2023, 8, 1937-1942.	1.9	2
419	Recent advances in the production of 2,5-furandicarboxylic acid from biorenewable resources. Materials Science for Energy Technologies, 2023, 6, 502-521.	1.0	1
420	Biomass as a Source of Energy, Fuels and Chemicals. , 2021, , 589-741.		0
444	Eco-friendly food packaging innovations: A review of recent progress on recyclable polymers. , 2023, ,		2
451	Recent progress, trends, and new challenges in the electrochemical production of green hydrogen coupled to selective electrooxidation of 5-hydroxymethylfurfural (HMF). RSC Advances, 2023, 13, 28307-28336.	1.7	1
464	Overview of Bioplastics. , 2023, , 63-71.		0
466	Lactose utilisation to furan carboxylates: a unique source for platform molecules. Green Chemistry, 2024, 26, 1381-1386.	4.6	0
471	Bionanocomposites for Packaging Materials. , 2023, , 193-212.		Ο

CITATION	DEDODT
CITATION	KEPORI

#	Article	IF	CITATIONS
475	The global burden of plastics in oral health: prospects for circularity, sustainable materials development and practice. , 2024, 2, 881-902.		0
476	Bioplastic for a clean environment. , 2024, , 47-76.		0
477	Individual antecedents to consumer intention to switch to food waste bioplastic products: a configuration analysis. , 2024, , 3-20.		0