Comparative Analysis of the Immunomodulatory Prope Mesenchymal Stem Cells

Cell Medicine 4, 1-12 DOI: 10.3727/215517912x647217

Citation Report

#	Article	IF	CITATIONS
1	Safety and immunomodulatory effects of allogeneic canine adipose-derived mesenchymal stromal cells transplanted into the region of the lacrimal gland, the gland of the third eyelid and the knee joint. Cytotherapy, 2013, 15, 1498-1510.	0.3	42
2	Conditioned Medium from Horse Amniotic Membrane-Derived Multipotent Progenitor Cells: Immunomodulatory Activity In Vitro and First Clinical Application in Tendon and Ligament Injuries In Vivo. Stem Cells and Development, 2013, 22, 3015-3024.	1.1	76
3	The effects of therapeutic concentrations of gentamicin, amikacin and hyaluronic acid on cultured bone marrowâ€derived equine mesenchymal stem cells. Equine Veterinary Journal, 2013, 45, 732-736.	0.9	26
4	Therapeutic use of stem cells in horses: Which type, how, and when?. Veterinary Journal, 2013, 197, 570-577.	0.6	75
5	Allogeneic Adipose Tissue-Derived Mesenchymal Stem Cells in Combination with Platelet Rich Plasma are Safe and Effective in the Therapy of Superficial Digital Flexor Tendonitis in the Horse. International Journal of Immunopathology and Pharmacology, 2013, 26, 61-68.	1.0	68
6	Secretion of immunoregulatory cytokines by mesenchymal stem cells. World Journal of Stem Cells, 2014, 6, 552.	1.3	485
7	Gene expression of tendon markers in mesenchymal stromal cells derived from different sources. BMC Research Notes, 2014, 7, 826.	0.6	29
8	Equine Mesenchymal Stem Cells Inhibit T Cell Proliferation Through Different Mechanisms Depending on Tissue Source. Stem Cells and Development, 2014, 23, 1258-1265.	1.1	84
9	Characterization and profiling of immunomodulatory genes of equine mesenchymal stromal cells from non-invasive sources. Stem Cell Research and Therapy, 2014, 5, 6.	2.4	47
10	Equine mesenchymal stromal cells and embryo-derived stem cells are immune privileged in vitro. Stem Cell Research and Therapy, 2014, 5, 90.	2.4	42
11	The current 'state of play' of regenerative medicine in horses: what the horse can tell the human. Regenerative Medicine, 2014, 9, 673-685.	0.8	41
12	Equine bone marrow-derived mesenchymal stromal cells are heterogeneous in MHC class II expression and capable of inciting an immune response in vitro. Stem Cell Research and Therapy, 2014, 5, 13.	2.4	116
14	Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: immunophenotypic characterization and differentiation potential. Stem Cell Research and Therapy, 2014, 5, 25.	2.4	110
15	Gastrointestinal Microbes Interact with Canine Adipose-Derived Mesenchymal Stem Cells In Vitro and Enhance Immunomodulatory Functions. Stem Cells and Development, 2014, 23, 1831-1843.	1.1	55
16	Role of mesenchymal stem cells in cell life and their signaling. World Journal of Stem Cells, 2014, 6, 24.	1.3	19
17	Multiple intravenous injections of allogeneic equine mesenchymal stem cells do not induce a systemic inflammatory response but do alter lymphocyte subsets in healthy horses. Stem Cell Research and Therapy, 2015, 6, 73.	2.4	43
18	Equine allogeneic bone marrow-derived mesenchymal stromal cells elicit antibody responses in vivo. Stem Cell Research and Therapy, 2015, 6, 54.	2.4	110
19	Phenotypic and Immunomodulatory Properties of Equine Cord Blood-Derived Mesenchymal Stromal Cells. PLoS ONE, 2015, 10, e0122954.	1.1	38

#	Article	IF	CITATIONS
20	Equine Induced Pluripotent Stem Cells have a Reduced Tendon Differentiation Capacity Compared to Embryonic Stem Cells. Frontiers in Veterinary Science, 2015, 2, 55.	0.9	38
21	Immunomodulatory Role of Adipose-Derived Stem Cells on Equine Endometriosis. BioMed Research International, 2015, 2015, 1-6.	0.9	25
22	Expression of genes involved in immune response and in vitro immunosuppressive effect of equine MSCs. Veterinary Immunology and Immunopathology, 2015, 165, 107-118.	0.5	24
23	Fibrin-based 3D matrices induce angiogenic behavior of adipose-derived stem cells. Acta Biomaterialia, 2015, 17, 78-88.	4.1	72
24	Biologic Strategies for Intra-articular Treatment andÂCartilage Repair. Journal of Equine Veterinary Science, 2015, 35, 175-190.	0.4	11
25	Endometriotic mesenchymal stem cells exhibit a distinct immune phenotype. International Immunology, 2015, 27, 195-204.	1.8	27
26	Stem Cells from Foetal Adnexa and Fluid in Domestic Animals: An Update on Their Features and Clinical Application. Reproduction in Domestic Animals, 2015, 50, 353-364.	0.6	18
27	Mesenchymal Stem Cell Therapy: Clinical Progress and Opportunities for Advancement. Current Pathobiology Reports, 2015, 3, 1-7.	1.6	8
28	Feline Foamy Virus Adversely Affects Feline Mesenchymal Stem Cell Culture and Expansion: Implications for Animal Model Development. Stem Cells and Development, 2015, 24, 814-823.	1.1	44
29	State of the art: Stem cells in equine regenerative medicine. Equine Veterinary Journal, 2015, 47, 145-154.	0.9	31
30	Advances in the Use of Stem Cells in Veterinary Medicine: From Basic Research to Clinical Practice. Scientifica, 2016, 2016, 1-12.	0.6	28
31	A Comparative Study of Growth Kinetics, In Vitro Differentiation Potential and Molecular Characterization of Fetal Adnexa Derived Caprine Mesenchymal Stem Cells. PLoS ONE, 2016, 11, e0156821.	1.1	39
32	Response to Intravenous Allogeneic Equine Cord Blood-Derived Mesenchymal Stromal Cells Administered from Chilled or Frozen State in Serum and Protein-Free Media. Frontiers in Veterinary Science, 2016, 3, 56.	0.9	17
33	Effect of inflammatory environment on equine bone marrow derived mesenchymal stem cells immunogenicity and immunomodulatory properties. Veterinary Immunology and Immunopathology, 2016, 171, 57-65.	0.5	53
35	Comparative Characterization of Human and Equine Mesenchymal Stromal Cells: A Basis for Translational Studies in the Equine Model. Cell Transplantation, 2016, 25, 109-124.	1.2	39
36	Inflammatory response to the administration of mesenchymal stem cells in an equine experimental model: effect of autologous, and single and repeat doses of pooled allogeneic cells in healthy joints. BMC Veterinary Research, 2016, 12, 65.	0.7	58
37	Comparative study of equine mesenchymal stem cells from healthy and injured synovial tissues: an in vitro assessment. Stem Cell Research and Therapy, 2016, 7, 35.	2.4	33
38	Equine allogeneic umbilical cord blood derived mesenchymal stromal cells reduce synovial fluid nucleated cell count and induce mild selfâ€ŀimiting inflammation when evaluated in an lipopolysaccharide induced synovitis model. Equine Veterinary Journal, 2016, 48, 619-625.	0.9	41

#	Article	IF	CITATIONS
39	Donorâ€derived equine mesenchymal stem cells suppress proliferation of mismatched lymphocytes. Equine Veterinary Journal, 2016, 48, 253-260.	0.9	28
40	Canine and Equine Mesenchymal Stem Cells Grown in Serum Free Media Have Altered Immunophenotype. Stem Cell Reviews and Reports, 2016, 12, 245-256.	5.6	47
41	Canine placenta: A promising potential source of highly proliferative and immunomodulatory mesenchymal stromal cells?. Veterinary Immunology and Immunopathology, 2016, 171, 47-55.	0.5	32
42	Therapeutic Efficacy of Fresh, Autologous Mesenchymal Stem Cells for Severe Refractory Gingivostomatitis in Cats. Stem Cells Translational Medicine, 2016, 5, 75-86.	1.6	88
43	Autologous and Allogeneic Equine Mesenchymal Stem Cells Exhibit Equivalent Immunomodulatory Properties In Vitro. Stem Cells and Development, 2017, 26, 503-511.	1.1	47
44	Retinoic acid-mediated anti-inflammatory responses in equine immune cells stimulated by LPS and allogeneic mesenchymal stem cells. Research in Veterinary Science, 2017, 114, 225-232.	0.9	11
45	Human and feline adipose-derived mesenchymal stem cells have comparable phenotype, immunomodulatory functions, and transcriptome. Stem Cell Research and Therapy, 2017, 8, 69.	2.4	42
46	Impact of Cryopreservation on Caprine Fetal Adnexa Derived Stem Cells and Its Evaluation for Growth Kinetics, Phenotypic Characterization, and Wound Healing Potential in Xenogenic Rat Model. Journal of Cellular Physiology, 2017, 232, 2186-2200.	2.0	20
47	Ultrastructural characteristics and immune profile of equine MSCs from fetal adnexa. Reproduction, 2017, 154, 509-519.	1.1	18
48	Antigenicity of mesenchymal stem cells in an inflamed joint environment. American Journal of Veterinary Research, 2017, 78, 867-875.	0.3	18
49	The Challenge in Using Mesenchymal Stromal Cells for Recellularization of Decellularized Cartilage. Stem Cell Reviews and Reports, 2017, 13, 50-67.	5.6	39
50	Priming Equine Bone Marrow-Derived Mesenchymal Stem Cells with Proinflammatory Cytokines: Implications in Immunomodulation–Immunogenicity Balance, Cell Viability, and Differentiation Potential. Stem Cells and Development, 2017, 26, 15-24.	1.1	69
51	Allogeneic major histocompatibility complexâ€mismatched equine bone marrowâ€derived mesenchymal stem cells are targeted for death by cytotoxic antiâ€major histocompatibility complex antibodies. Equine Veterinary Journal, 2017, 49, 539-544.	0.9	71
52	In-vitro characterization of canine multipotent stromal cells isolated from synovium, bone marrow, and adipose tissue: a donor-matched comparative study. Stem Cell Research and Therapy, 2017, 8, 218.	2.4	63
53	Transforming Growth Factor-β2 Downregulates Major Histocompatibility Complex (MHC) I and MHC II Surface Expression on Equine Bone Marrow-Derived Mesenchymal Stem Cells Without Altering Other Phenotypic Cell Surface Markers. Frontiers in Veterinary Science, 2017, 4, 84.	0.9	33
54	Tenogenically Induced Allogeneic Peripheral Blood Mesenchymal Stem Cells in Allogeneic Platelet-Rich Plasma: 2-Year Follow-up after Tendon or Ligament Treatment in Horses. Frontiers in Veterinary Science, 2017, 4, 158.	0.9	35
55	Human Bone Marrow Mesenchymal Stem/Stromal Cells Preserve Their Immunomodulatory and Chemotactic Properties When Expanded in a Human Plasma Derived Xeno-Free Medium. Stem Cells International, 2017, 2017, 1-12.	1.2	9
56	Mesenchymal stem cell therapy in cats: Current knowledge and future potential. Journal of Feline Medicine and Surgery, 2018, 20, 208-216.	0.6	41

#	Article	IF	CITATIONS
57	A Comparison of Bone Marrow and Cord Blood Mesenchymal Stem Cells for Cartilage Self-Assembly. Tissue Engineering - Part A, 2018, 24, 1262-1272.	1.6	19
58	Equine allogeneic chondrogenic induced mesenchymal stem cells: A GCP target animal safety and biodistribution study. Research in Veterinary Science, 2018, 117, 246-254.	0.9	17
59	Safety and tracking of intrathecal allogeneic mesenchymal stem cell transplantation in healthy and diseased horses. Stem Cell Research and Therapy, 2018, 9, 96.	2.4	26
60	Placental Stem Cells from Domestic Animals. Cell Transplantation, 2018, 27, 93-116.	1.2	30
61	TGF-β Family Signaling in Mesenchymal Differentiation. Cold Spring Harbor Perspectives in Biology, 2018, 10, a022202.	2.3	175
62	Equine mesenchymal stem cells derived from endometrial or adipose tissue share significant biological properties, but have distinctive pattern of surface markers and migration. Theriogenology, 2018, 106, 93-102.	0.9	32
63	Serumâ€free human MSC medium supports consistency in human but not in equine adiposeâ€derived multipotent mesenchymal stromal cell culture. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 60-72.	1.1	16
64	The immunomodulatory function of equine MSCs is enhanced by priming through an inflammatory microenvironment or TLR3 ligand. Veterinary Immunology and Immunopathology, 2018, 195, 33-39.	0.5	32
65	Allogeneic Stem Cells Alter Gene Expression and Improve Healing of Distal Limb Wounds in Horses. Stem Cells Translational Medicine, 2018, 7, 98-108.	1.6	34
66	Cardiosphere-derived cells suppress allogeneic lymphocytes by production of PGE2 acting via the EP4 receptor. Scientific Reports, 2018, 8, 13351.	1.6	11
67	Cell Identity, Proliferation, and Cytogenetic Assessment of Equine Umbilical Cord Blood Mesenchymal Stromal Cells. Stem Cells and Development, 2018, 27, 1729-1738.	1.1	5
68	Effects of human umbilical cord-derived mesenchymal stem cells on hematologic malignancies. Oncology Letters, 2018, 15, 6982-6990.	0.8	5
69	Practical considerations for clinical use of mesenchymal stem cells: From the laboratory to the horse. Veterinary Journal, 2018, 238, 49-57.	0.6	16
70	Cell-Based Therapies for Joint Disease in Veterinary Medicine: What We Have Learned and What We Need to Know. Frontiers in Veterinary Science, 2018, 5, 70.	0.9	50
71	Iberian pig mesenchymal stem/stromal cells from dermal skin, abdominal and subcutaneous adipose tissues, and peripheral blood: in vitro characterization and migratory properties in inflammation. Stem Cell Research and Therapy, 2018, 9, 178.	2.4	29
72	Equine mesenchymal stromal cells from different tissue sources display comparable immune-related gene expression profiles in response to interferon gamma (IFN)-γ. Veterinary Immunology and Immunopathology, 2018, 202, 25-30.	0.5	20
73	Animal mesenchymal stem cell research in cartilage regenerative medicine – a review. Veterinary Quarterly, 2019, 39, 95-120.	3.0	19
74	Mechanisms utilized by feline adipose-derived mesenchymal stem cells to inhibit T lymphocyte proliferation. Stem Cell Research and Therapy, 2019, 10, 188.	2.4	25

#	ARTICLE	IF	Citations
75	A novel direct co-culture assay analyzed by multicolor flow cytometry reveals context- and cell type-specific immunomodulatory effects of equine mesenchymal stromal cells. PLoS ONE, 2019, 14, e0218949.	1.1	8
76	Equine Fetal, Adult, and Embryonic Stem Cell-Derived Tenocytes Are All Immune Privileged but Exhibit Different Immune Suppressive Properties In Vitro. Stem Cells and Development, 2019, 28, 1413-1423.	1.1	8
77	Subconjunctival bone marrowâ€derived mesenchymal stem cell therapy as a novel treatment alternative for equine immuneâ€mediated keratitis: A case series. Veterinary Ophthalmology, 2019, 22, 674-682.	0.6	26
78	Intra-Articular Injection of 2 Different Dosages of Autologous and Allogeneic Bone Marrow- and Umbilical Cord-Derived Mesenchymal Stem Cells Triggers a Variable Inflammatory Response of the Fetlock Joint on 12 Sound Experimental Horses. Stem Cells International, 2019, 2019, 1-17.	1.2	27
79	Generation and miRNA Characterization of Equine Induced Pluripotent Stem Cells Derived from Fetal and Adult Multipotent Tissues. Stem Cells International, 2019, 2019, 1-15.	1.2	16
80	Improved expansion of equine cord blood derived mesenchymal stromal cells by using microcarriers in stirred suspension bioreactors. Journal of Biological Engineering, 2019, 13, 25.	2.0	11
81	Regenerative Medicine. , 2019, , 104-122.		2
82	The Equine Hoof: Laminitis, Progenitor (Stem) Cells, and Therapy Development. Toxicologic Pathology, 2021, 49, 1294-1307.	0.9	6
83	Comparative analysis and characterization of soluble factors and exosomes from cultured adipose tissue and bone marrow mesenchymal stem cells in canine species. Veterinary Immunology and Immunopathology, 2019, 208, 6-15.	0.5	63
84	Equine Allogeneic Chondrogenic Induced Mesenchymal Stem Cells Are an Effective Treatment for Degenerative Joint Disease in Horses. Stem Cells and Development, 2019, 28, 410-422.	1.1	41
85	Equine Mesenchymal Stem Cells: Properties, Sources, Characterization, and Potential Therapeutic Applications. Journal of Equine Veterinary Science, 2019, 72, 16-27.	0.4	49
86	Equine Cord Blood Mesenchymal Stromal Cells Have Greater Differentiation and Similar Immunosuppressive Potential to Cord Tissue Mesenchymal Stromal Cells. Stem Cells and Development, 2019, 28, 227-237.	1.1	17
87	Horses with equine recurrent uveitis have an activated CD4+ Tâ€cell phenotype that can be modulated by mesenchymal stem cells in vitro. Veterinary Ophthalmology, 2020, 23, 160-170.	0.6	27
88	Equine bone marrow-derived mesenchymal stromal cells inhibit reactive oxygen species production by neutrophils. Veterinary Immunology and Immunopathology, 2020, 221, 109975.	0.5	14
89	Can Extracorporeal Shockwave Promote Osteogenesis of Equine Bone Marrow-Derived Mesenchymal Stem Cells In Vitro <i>?</i> . Stem Cells and Development, 2020, 29, 110-118.	1.1	6
90	Therapeutic mesenchymal stromal stem cells: Isolation, characterization and role in equine regenerative medicine and metabolic disorders. Stem Cell Reviews and Reports, 2020, 16, 301-322.	1.7	27
91	Heat Shock Alters Mesenchymal Stem Cell Identity and Induces Premature Senescence. Frontiers in Cell and Developmental Biology, 2020, 8, 565970.	1.8	24
92	In vitro preconditioning of equine adipose mesenchymal stem cells with prostaglandin E2, substance P and their combination changes the cellular protein secretomics and improves their immunomodulatory competence without compromising stemness. Veterinary Immunology and Immunopathology. 2020. 228. 110100.	0.5	8

#	Article	IF	CITATIONS
93	A comparative analysis of immunomodulatory genes in two clonal subpopulations of CD90+ amniocytes isolated from human amniotic fluid. Placenta, 2020, 101, 234-241.	0.7	4
94	Placenta-derived multipotent mesenchymal stromal cells: a promising potential cell-based therapy for canine inflammatory brain disease. Stem Cell Research and Therapy, 2020, 11, 304.	2.4	11
95	Quality control and immunomodulatory potential for clinical-grade equine bone marrow-derived mesenchymal stromal cells and conditioned medium. Research in Veterinary Science, 2020, 132, 407-415.	0.9	3
96	One health in regenerative medicine: report on the second Havemeyer symposium on regenerative medicine in horses. Regenerative Medicine, 2020, 15, 1775-1787.	0.8	4
97	Mesenchymal Stromal Cells as Potential Antimicrobial for Veterinary Use—A Comprehensive Review. Frontiers in Microbiology, 2020, 11, 606404.	1.5	21
98	Mesenchymal Stem Cell in Veterinary Sciences. , 2020, , .		2
99	Pre-conditioning of Equine Bone Marrow-Derived Mesenchymal Stromal Cells Increases Their Immunomodulatory Capacity. Frontiers in Veterinary Science, 2020, 7, 318.	0.9	17
100	Edition of Prostaglandin E2 Receptors EP2 and EP4 by CRISPR/Cas9 Technology in Equine Adipose Mesenchymal Stem Cells. Animals, 2020, 10, 1078.	1.0	5
101	Fat Therapeutics: The Clinical Capacity of Adipose-Derived Stem Cells and Exosomes for Human Disease and Tissue Regeneration. Frontiers in Pharmacology, 2020, 11, 158.	1.6	117
102	A multicenter experience using adipose-derived mesenchymal stem cell therapy for cats with chronic, non-responsive gingivostomatitis. Stem Cell Research and Therapy, 2020, 11, 115.	2.4	28
103	Priming with inflammatory cytokines is not a prerequisite to increase immune-suppressive effects and responsiveness of equine amniotic mesenchymal stromal cells. Stem Cell Research and Therapy, 2020, 11, 99.	2.4	10
104	Mesenchymal Stem Cell-Mediated Immuno-Modulatory and Anti- Inflammatory Mechanisms in Immune and Allergic Disorders. Recent Patents on Inflammation and Allergy Drug Discovery, 2020, 14, 3-14.	3.9	13
105	Mesenchymal stem cells for treatment of musculoskeletal disease in horses: Relative merits of allogeneic versus autologous stem cells. Equine Veterinary Journal, 2020, 52, 654-663.	0.9	19
106	The Potential of Mesenchymal Stem Cells to Treat Systemic Inflammation in Horses. Frontiers in Veterinary Science, 2019, 6, 507.	0.9	34
107	Adipose-Derived Stromal/Stem Cells from Large Animal Models: from Basic to Applied Science. Stem Cell Reviews and Reports, 2021, 17, 719-738.	1.7	18
108	Pluripotency and immunomodulatory signatures of canine induced pluripotent stem cell-derived mesenchymal stromal cells are similar to harvested mesenchymal stromal cells. Scientific Reports, 2021, 11, 3486.	1.6	14
109	TGF-β2 Reduces the Cell-Mediated Immunogenicity of Equine MHC-Mismatched Bone Marrow-Derived Mesenchymal Stem Cells Without Altering Immunomodulatory Properties. Frontiers in Cell and Developmental Biology, 2021, 9, 628382.	1.8	10
110	Effects of continuous passage on the immunomodulatory properties of equine bone marrow-derived mesenchymal stem cells in vitro. Veterinary Immunology and Immunopathology, 2021, 234, 110203.	0.5	5

#	Article	IF	CITATIONS
111	Priming human adiposeâ€derived mesenchymal stem cells for corneal surface regeneration. Journal of Cellular and Molecular Medicine, 2021, 25, 5124-5137.	1.6	18
112	Comparative analysis of the immunomodulatory potential of caprine fetal adnexa derived mesenchymal stem cells. Molecular Biology Reports, 2021, 48, 3913-3923.	1.0	Ο
113	Effects of Normal Synovial Fluid and Interferon Gamma on Chondrogenic Capability and Immunomodulatory Potential Respectively on Equine Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2021, 22, 6391.	1.8	8
114	Allogenic mesenchymal stem cell-conditioned medium does not affect sperm parameters and mitigates early endometrial inflammatory responses in mares. Theriogenology, 2021, 169, 1-8.	0.9	5
115	Repeated intra-articular administration of equine allogeneic peripheral blood-derived mesenchymal stem cells does not induce a cellular and humoral immune response in horses. Veterinary Immunology and Immunopathology, 2021, 239, 110306.	0.5	12
116	Regenerative Medicine for Equine Musculoskeletal Diseases. Animals, 2021, 11, 234.	1.0	22
117	Umbilical Cord Blood Cells in the Repair of Central Nervous System Diseases. , 2014, , 269-287.		7
118	Anti-inflammatory effects of equine adipose-derived mesenchymal stem cells for bone fracture in thoroughbred racehorses. Journal of Preventive Veterinary Medicine, 2015, 39, 93-100.	0.1	3
119	Post-Thaw Non-Cultured and Post-Thaw Cultured Equine Cord Blood Mesenchymal Stromal Cells Equally Suppress Lymphocyte Proliferation In Vitro. PLoS ONE, 2014, 9, e113615.	1.1	13
120	Immunophenotypic characterisation and cytogenetic analysis of mesenchymal stem cells from equine bone marrow and foal umbilical cords during in vitro culture. Journal of Veterinary Research (Poland), 2016, 60, 339-347.	0.3	4
121	Evaluating Effect of Mesenchymal Stem Cells on Expression of TLR2 and TLR4 in Mouse DCs. Advanced Pharmaceutical Bulletin, 2016, 6, 179-186.	0.6	2
122	Allogeneic mesenchymal stem cells and growth factors in gel scaffold repair osteochondral defect in rabbit. Regenerative Medicine, 2020, 15, 1261-1275.	0.8	21
123	Prospects for the therapeutic development of umbilical cord blood-derived mesenchymal stem cells. World Journal of Stem Cells, 2020, 12, 1511-1528.	1.3	19
125	Uterine Stem Cells and Their Future Therapeutic Potential in Regenerative Medicine. Pancreatic Islet Biology, 2017, , 153-174.	0.1	0
126	Differentiation potential of mesenchymal stem cells through electrical stimulation. Journal of Preventive Veterinary Medicine, 2019, 43, 167-174.	0.1	0
127	Mesenchymal Stem Cell Immuno-Modulatory and/Anti-Inflammatory Properties. , 2020, , 47-65.		2
130	Mesenchymal Stem Cell and Its Properties. , 2020, , 13-26.		2
131	Extracellular vesicles from equine mesenchymal stem cells decrease inflammation markers in chondrocytes in vitro. Equine Veterinary Journal, 2022, 54, 1133-1143.	0.9	17

#	Article	IF	CITATIONS
132	Immunomodulation by mesenchymal stem cells in veterinary species. Comparative Medicine, 2013, 63, 207-17.	0.4	60
133	Cell Therapy in Veterinary Medicine as a Proof-of-Concept for Human Therapies: Perspectives From the North American Veterinary Regenerative Medicine Association. Frontiers in Veterinary Science, 2021, 8, 779109.	0.9	9
134	Pre-conditioning Strategies for Mesenchymal Stromal/Stem Cells in Inflammatory Conditions of Livestock Species. Frontiers in Veterinary Science, 2022, 9, 806069.	0.9	6
135	The oromaxillofacial region as a model for a one-health approach in regenerative medicine. American Journal of Veterinary Research, 2022, 83, 291-297.	0.3	0
136	Equine Mesenchymal Stem Cells Influence the Proliferative Response of Lymphocytes: Effect of Inflammation, Differentiation and MHC-Compatibility. Animals, 2022, 12, 984.	1.0	3
141	antimicrobial activity of equine platelet lysate and mesenchymal stromal cells against common clinical pathogens Canadian Journal of Veterinary Research, 2022, 86, 59-64.	0.2	0
142	Production of Cytotoxic Antibodies After Intra-Articular Injection of Allogeneic Synovial Membrane Mesenchymal Stem Cells With and Without LPS Administration. Frontiers in Immunology, 2022, 13, 871216.	2.2	6
143	Stem cells and endometrial hyperplasia. , 2014, 2, 70-75.		0
144	Effects of intravenous administration of peripheral bloodâ€derived mesenchymal stromal cells after infusion of lipopolysaccharide in horses. Journal of Veterinary Internal Medicine, 2022, 36, 1491-1501.	0.6	6
145	Treatment Effects of Intra-Articular Allogenic Mesenchymal Stem Cell Secretome in an Equine Model of Joint Inflammation. Frontiers in Veterinary Science, 0, 9, .	0.9	7
146	Adult Stem Cell Research in Light of the Bovine Mammary Gland Regenerative Medicine. Current Stem Cell Research and Therapy, 2023, 18, 740-749.	0.6	1
147	Mesenchymal Stem Cells Therapeutic Applications in Cardiovascular Disorders. , 2022, , 213-245.		0
148	Mesenchymal Stem Cells Therapeutic Applications in Eye and Adnexa Ailments. , 2022, , 391-408.		0
149	Mesenchymal Stem Cells Therapeutic Applications in Integumentary System Disorders. , 2022, , 341-374.		0
150	TGF-β2 enhances expression of equine bone marrow-derived mesenchymal stem cell paracrine factors with known associations to tendon healing. Stem Cell Research and Therapy, 2022, 13, .	2.4	4
152	The immunomodulation–immunogenicity balance of equine Mesenchymal Stem Cells (MSCs) is differentially affected by the immune cell response depending on inflammatory licensing and major histocompatibility complex (MHC) compatibility. Frontiers in Veterinary Science, 0, 9, .	0.9	7
153	Temporal extracellular vesicle protein changes following intraarticular treatment with integrin α10β1-selected mesenchymal stem cells in equine osteoarthritis. Frontiers in Veterinary Science, 0, 9, .	0.9	5
154	Therapeutical growth in oligodendroglial fate induction via transdifferentiation of stem cells for neuroregenerative therapy. Biochimie, 2023, 211, 35-56.	1.3	4

#	Article	IF	CITATIONS
156	Equine osteoarthritis: Strategies to enhance mesenchymal stromal cell-based acellular therapies. Frontiers in Veterinary Science, 0, 10, .	0.9	4
157	Multilineage Differentiation Potential of Equine Adipose-Derived Stromal/Stem Cells from Different Sources. Animals, 2023, 13, 1352.	1.0	2