Using shortâ€term postseismic displacements to infer to of the upper mantle

Journal of Geophysical Research 117, DOI: 10.1029/2011jb008562

Citation Report

#	Article	IF	CITATIONS
1	Faults (shear zones) in the Earth's mantle. Tectonophysics, 2012, 558-559, 1-27.	0.9	136
2	The time scales of continental rifting: Implications for global processes. , 2013, , .		42
3	Kinematics of rotating panels of E–W faults in the San Andreas system: what can we tell from geodesy?. Geophysical Journal International, 2013, 194, 1295-1301.	1.0	17
4	Twoâ€dimensional viscosity structure of the northeastern Japan islands arcâ€ŧrench system. Geophysical Research Letters, 2013, 40, 4604-4608.	1.5	26
5	Effect of shear zones on post-seismic deformation with application to the 1997 Mw 7.6 Manyi earthquake. Geophysical Journal International, 2014, 198, 259-269.	1.0	12
6	Localized shear in the deep lithosphere beneath the San Andreas fault system. Geology, 2014, 42, 295-298.	2.0	36
7	Probing the lithospheric rheology across the eastern margin of the Tibetan Plateau. Earth and Planetary Science Letters, 2014, 396, 88-96.	1.8	105
8	Rheological properties of the mantle lid beneath the Mojave region in southern California. Earth and Planetary Science Letters, 2014, 393, 60-72.	1.8	41
9	Reconciling mantle attenuation-temperature relationships from seismology, petrology, and laboratory measurements. Geochemistry, Geophysics, Geosystems, 2014, 15, 3521-3542.	1.0	71
10	Reconciling viscoelastic models of postseismic and interseismic deformation: Effects of viscous shear zones and finite length ruptures. Journal of Geophysical Research: Solid Earth, 2015, 120, 2794-2819.	1.4	27
11	Postseismic GRACE and GPS observations indicate a rheology contrast above and below the Sumatra slab. Journal of Geophysical Research: Solid Earth, 2015, 120, 5343-5361.	1.4	48
12	Postearthquake relaxation evidence for laterally variable viscoelastic structure and water content in the Southern California mantle. Journal of Geophysical Research: Solid Earth, 2015, 120, 2672-2696.	1.4	43
13	Low steady-state stresses in the cold lithospheric mantle inferred from dislocation dynamics models of dislocation creep in olivine. Earth and Planetary Science Letters, 2015, 432, 232-242.	1.8	26
14	Rheology, microstructure, and fabric in a large scale mantle shear zone, Ronda Peridotite, southern Spain. Journal of Structural Geology, 2015, 73, 1-17.	1.0	16
15	Constitutive Equations, Rheological Behavior, and Viscosity of Rocks. , 2015, , 441-472.		72
16	The stress dependence of olivine creep rate: Implications for extrapolation of lab data and interpretation of recrystallized grain size. Earth and Planetary Science Letters, 2015, 418, 20-26.	1.8	57
17	Mantle strength of the San Andreas fault system and the role of mantle-crust feedbacks. Geology, 2015, 43, 891-894.	2.0	18
18	Stressâ€driven relaxation of heterogeneous upper mantle and timeâ€dependent afterslip following the 2011 Tohoku earthquake. Journal of Geophysical Research: Solid Earth, 2016, 121, 385-411.	1.4	103

CITATION REPORT

#	Article	IF	CITATIONS
19	Reconciling laboratory and observational models of mantle rheology in geodynamic modelling. Journal of Geodynamics, 2016, 100, 33-50.	0.7	33
20	Viscous anisotropy of textured olivine aggregates, Part 1: Measurement of the magnitude and evolution of anisotropy. Earth and Planetary Science Letters, 2016, 445, 92-103.	1.8	31
21	Statistical tests of simple earthquake cycle models. Geophysical Research Letters, 2016, 43, 12,036.	1.5	1
22	Inference of the viscosity structure and mantle conditions beneath the Central Nevada Seismic Belt from combined postseismic and lake unloading studies. Geochemistry, Geophysics, Geosystems, 2016, 17, 1740-1757.	1.0	9
23	Lithospheric rheology constrained from twenty-five years of postseismic deformation following the 1989 M 6.9 Loma Prieta earthquake. Earth and Planetary Science Letters, 2016, 435, 147-158.	1.8	8
24	Postseismic uplift of the Andes following the 2010 Maule earthquake: Implications for mantle rheology. Geophysical Research Letters, 2017, 44, 1768-1776.	1.5	25
25	Resolving depth-dependent subduction zone viscosity and afterslip from postseismic displacements following the 2011 Tohoku-oki, Japan earthquake. Earth and Planetary Science Letters, 2017, 459, 279-290.	1.8	103
26	Fabric heterogeneity in the Mojave lower crust and lithospheric mantle in Southern California. Journal of Geophysical Research: Solid Earth, 2017, 122, 5000-5025.	1.4	22
27	Modeling Seismic Cycles of Great Megathrust Earthquakes Across the Scales With Focus at Postseismic Phase. Geochemistry, Geophysics, Geosystems, 2017, 18, 4387-4408.	1.0	71
28	Reconciling geodetic and geological estimates of recent plate motion across the Southwest Indian Ridge. Geophysical Journal International, 2017, 208, 118-133.	1.0	15
29	Spatiotemporal Variation of Mantle Viscosity and the Presence of Cratonic Mantle Inferred From 8ÂYears of Postseismic Deformation Following the 2010 Maule, Chile, Earthquake. Geochemistry, Geophysics, Geosystems, 2018, 19, 3272-3285.	1.0	18
30	"Measures of Dissipation in Viscoelastic Media―Extended: Toward Continuous Characterization Across Very Broad Geophysical Time Scales. Geophysical Research Letters, 2019, 46, 9544-9553.	1.5	30
31	Great Basin Mantle Xenoliths Record Active Lithospheric Downwelling Beneath Central Nevada. Geochemistry, Geophysics, Geosystems, 2019, 20, 751-772.	1.0	13
32	Lithosphere and shallow asthenosphere rheology from observations of post-earthquake relaxation. Physics of the Earth and Planetary Interiors, 2019, 293, 106271.	0.7	21
33	Rift–drift transition in the Red Sea: a rheological model of the early stage of seafloor spreading. Geophysical Journal International, 2019, 217, 1870-1893.	1.0	2
34	Flow of Lower Crust and Upper Mantle Inferred from Geological and Geophysical Observations. Journal of Geography (Chigaku Zasshi), 2019, 128, 731-745.	0.1	2
35	Crustal Deformation of Northeastern China Following the 2011 Mw 9.0 Tohoku, Japan Earthquake Estimated from GPS Observations: Strain Heterogeneity and Seismicity. Remote Sensing, 2019, 11, 3029.	1.8	8
36	Seismotectonics. , 2019, , 278-336.		0

#	Article	IF	CITATIONS
37	Earthquake prediction and hazard analysis. , 2019, , 337-380.		1
41	Brittle fracture of rock. , 2019, , 1-42.		0
42	Rock friction. , 2019, , 43-96.		2
43	Mechanics of earthquakes. , 2019, , 166-227.		1
44	The seismic cycle. , 2019, , 228-277.		1
47	New analogue materials for nonlinear lithosphere rheology, with an application to slab break-off. Tectonophysics, 2019, 756, 73-96.	0.9	13
48	Mechanics of faulting. , 2019, , 97-165.		4
49	Rates of Olivine Grain Growth During Dynamic Recrystallization and Postdeformation Annealing. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020415.	1.4	16
50	Toward a Self onsistent Characterization of Lithospheric Plates Using Full‧pectrum Viscoelasticity. AGU Advances, 2020, 1, e2020AV000205.	2.3	15
51	Logarithmic and exponential transients in GNSS trajectory models as indicators of dominant processes in postseismic deformation. Journal of Geodesy, 2020, 94, 1.	1.6	6
52	Heterogeneous Power‣aw Flow With Transient Creep in Southern California Following the 2010 El Mayor ucapah Earthquake. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019740.	1.4	10
53	Impact of power-law rheology on the viscoelastic relaxation pattern and afterslip distribution following the 2010 Mw 8.8 Maule earthquake. Earth and Planetary Science Letters, 2020, 542, 116292.	1.8	20
54	Assessing Longâ€Term Postseismic Transients From GPS Time Series in Southern California. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018670.	1.4	8
55	Stress variations in space and time within the mantle section of an oceanic transform zone: Evidence for the seismic cycle. Geology, 2020, 48, 569-573.	2.0	10
56	Shear attenuation and anelastic mechanisms in the central Pacific upper mantle. Earth and Planetary Science Letters, 2020, 536, 116148.	1.8	21
57	Plate tectonics and surface environment: Role of the oceanic upper mantle. Earth-Science Reviews, 2020, 205, 103185.	4.0	22
58	Thin crème brûlée rheological structure for the Eastern California Shear Zone. Geology, 2021, 49, 216-221.	2.0	14
60	Dislocation Creep of Olivine: Backstress Evolution Controls Transient Creep at High Temperatures.	14	11

CITATION REPORT

r				
	Iournal of Geophysical	Research Solid Farth	2021 126	@2020IR02132
			12021, 120,	

CITATION REPORT

#	Article	IF	CITATIONS
61	Dislocation interactions in olivine control postseismic creep of the upper mantle. Nature Communications, 2021, 12, 3496.	5.8	14
62	An apparatus for measuring nonlinear viscoelasticity of minerals at high temperature. Review of Scientific Instruments, 2021, 92, 073902.	0.6	0
64	The Geodynamic World Builder: a solution for complex initial conditions in numerical modeling. Solid Earth, 2019, 10, 1785-1807.	1.2	11
65	The Impact of a 3â€Ð Earth Structure on Glacial Isostatic Adjustment in Southeast Alaska Following the Little Ice Age. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022312.	1.4	5
67	Feldspar and orthopyroxene piezometers constrained using quartz–feldspar and olivine–orthopyroxene mineral pairs from natural mylonites. Journal of Structural Geology, 2022, 154, 104495.	1.0	7
68	Transient Creep in Subduction Zones by Longâ€Range Dislocation Interactions in Olivine. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	4
69	Coseismic and early post-seismic deformations due to the 2019 earthquake sequence in Ridgecrest, California. Geophysical Journal International, 2022, 230, 957-975.	1.0	2
70	A global, spherical finite-element model for post-seismic deformation using <i>Abaqus</i> . Geoscientific Model Development, 2022, 15, 2489-2503.	1.3	5
71	Does middle-lower crustal flow exist in the eastern Tibetan Plateau? Insights from finite-element modeling and geodetic observations. Tectonophysics, 2022, , 229363.	0.9	3
72	Identifying Geographical Patterns of Transient Deformation in the Geological Sea Level Record. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	4
73	Backstresses in geologic materials quantified by nanoindentation load-drop experiments. Philosophical Magazine, 2022, 102, 1974-1988.	0.7	5
74	Contribution of Viscoelastic Stress to the Synchronization of Earthquake Cycles on Oceanic Transform Faults. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	4
75	"Ghost Transient―Corrections to the Southern California GPS Velocity Field from San Andreas Fault Seismic Cycle Models. Seismological Research Letters, 2022, 93, 2973-2989.	0.8	13
76	On the Choice and Implications of Rheologies That Maintain Kinematic and Dynamic Consistency Over the Entire Earthquake Cycle. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	2
77	Glacial isostatic adjustment and postseismic deformation in Antarctica. Geological Society Memoir, 2023, 56, .	0.9	4
78	Heterogeneous rheology of Japan subduction zone revealed by postseismic deformation of the 2011 Tohoku-oki earthquake. Progress in Earth and Planetary Science, 2023, 10, .	1.1	5
79	Dislocation theory of steady and transient creep of crystalline solids: Predictions for olivine. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	4
80	Ductile Deformation of the Lithospheric Mantle. Annual Review of Earth and Planetary Sciences, 2023, 51, .	4.6	1

ARTICLE

IF CITATIONS