Biological materials: Functional adaptations and bioinsp

Progress in Materials Science 57, 1492-1704 DOI: 10.1016/j.pmatsci.2012.03.001

Citation Report

#	Article	IF	CITATIONS
1	Biotech cementitious materials: Some aspects of an innovative approach for concrete with enhanced durability. Construction and Building Materials, 2013, 40, 1136-1141.	7.2	98
2	Biomimetic Materials by Freeze Casting. Jom, 2013, 65, 720-727.	1.9	60
3	Structural design and mechanical behavior of alligator (Alligator mississippiensis) osteoderms. Acta Biomaterialia, 2013, 9, 9049-9064.	8.3	57
4	Bio-inspired structured boron carbide-boron nitride composite by reactive spark plasma sintering. Virtual and Physical Prototyping, 2013, 8, 253-258.	10.4	1
5	The future of construction materials research and the seventh UN Millennium Development Goal: A few insights. Construction and Building Materials, 2013, 40, 729-737.	7.2	108
6	Bio-inspired superoleophobic and smart materials: Design, fabrication, and application. Progress in Materials Science, 2013, 58, 503-564.	32.8	513
7	Comparative study of carp otolith hardness: Lapillus and asteriscus. Materials Science and Engineering C, 2013, 33, 1876-1881.	7.3	20
8	Axial compression of a hollow cylinder filled with foam: A study of porcupine quills. Acta Biomaterialia, 2013, 9, 5297-5304.	8.3	46
9	Structural Biological Materials: Critical Mechanics-Materials Connections. Science, 2013, 339, 773-779.	12.6	878
10	Adhesive nanostructured multilayer films using a bacterial exopolysaccharide for biomedical applications. Journal of Materials Chemistry B, 2013, 1, 2367.	5.8	69
11	Bioinspired Water-Enhanced Mechanical Gradient Nanocomposite Films That Mimic the Architecture and Properties of the Squid Beak. Journal of the American Chemical Society, 2013, 135, 5167-5174.	13.7	112
12	Wear and abrasion resistance selection maps of biological materials. Acta Biomaterialia, 2013, 9, 7895-7907.	8.3	80
13	Highly deformable bones: Unusual deformation mechanisms of seahorse armor. Acta Biomaterialia, 2013, 9, 6763-6770.	8.3	64
14	Progress in biopolymer-based biomaterials and their application in controlled drug delivery. Expert Review of Medical Devices, 2013, 10, 813-833.	2.8	41
15	Characterizing the mechanical properties of tropoelastin protein scaffolds. Materials Research Society Symposia Proceedings, 2013, 1569, 45-50.	0.1	1
16	Biotechconcrete: An innovative approach for concrete with enhanced durability. , 2013, , 565-576.		4
17	Active Anti-erosion Protection Strategy in Tamarisk (Tamarix aphylla). Scientific Reports, 2013, 3, 3429.	3.3	23
18	In vitro biocompatibility study of biodegradable polyester scaffolds constructed using Fused Deposition Modeling (FDM). IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 356-360.	0.4	6

#	Article	IF	CITATIONS
19	Effects and Mechanisms of Surface Topography on the Antiwear Properties of Molluscan Shells (<i>Scapharca subcrenata</i>) Using the Fluid-Solid Interaction Method. Scientific World Journal, The, 2014, 2014, 1-12.	2.1	4
20	Energy Adaptive Glass Matter. Journal of Architectural Engineering Technology, 2014, 03, .	0.1	3
22	Fabrication, testing and modeling of a new flexible armor inspired from natural fish scales and osteoderms. Bioinspiration and Biomimetics, 2014, 9, 036005.	2.9	94
23	Revealing the Structure of Stereociliary Actin by X-ray Nanoimaging. ACS Nano, 2014, 8, 12228-12237.	14.6	19
24	Biotechnologies and bioinspired materials for the construction industry: an overview. International Journal of Sustainable Engineering, 2014, 7, 235-244.	3.5	22
25	Structure and Properties of Selected Natural Materials. Key Engineering Materials, 0, 635, 66-70.	0.4	0
26	Highly Enhanced Damping Figure of Merit in Biomimetic Hierarchical Staggered Composites. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	2.2	34
27	On the mechanics of sinusoidal interfaces between dissimilar elastic–plastic solids subject to dominant mode I. Engineering Fracture Mechanics, 2014, 131, 38-57.	4.3	20
28	Multiscale structural gradients enhance the biomechanical functionality of the spider fang. Nature Communications, 2014, 5, 3894.	12.8	76
29	Dopa/Catechol-Tethered Polymers: Bioadhesives and Biomimetic Adhesive Materials. Polymer Reviews, 2014, 54, 436-513.	10.9	137
30	Bioinspired polyethylene terephthalate nanocone arrays with underwater superoleophobicity and anti-bioadhesion properties. Nanoscale, 2014, 6, 13845-13853.	5.6	70
31	Stepped Moduli in Layered Composites. Advanced Functional Materials, 2014, 24, 7197-7204.	14.9	15
32	Polarization-sensitive color in butterfly scales: polarization conversion from ridges with reflecting elements. Optics Express, 2014, 22, 27437.	3.4	15
33	Complexâ€shaped microbial biominerals for nanotechnology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 615-627.	6.1	33
34	Bioâ€Inspired Multifunctional Metallic Foams Through the Fusion of Different Biological Solutions. Advanced Functional Materials, 2014, 24, 2721-2726.	14.9	46
35	Mapping nanomechanical properties of freshly grown, native, interlamellar organic sheets on flat pearl nacre. Acta Biomaterialia, 2014, 10, 3986-3996.	8.3	10
36	Exploration on the Biotechnological Aspect of the Ureolytic Bacteria for the Production of the Cementitious Materials—a Review. Applied Biochemistry and Biotechnology, 2014, 172, 2308-2323.	2.9	63
37	Numerical investigation of the impact behaviour of bioinspired nacre-like aluminium composite plates. Composites Science and Technology, 2014, 96, 13-22.	7.8	113

#	Article	IF	CITATIONS
38	Biomimetic self-assembly of apatite hybrid materials: From a single molecular template to bi-/multi-molecular templates. Biotechnology Advances, 2014, 32, 744-760.	11.7	71
39	Synergistic Toughening of Bioinspired Poly(vinyl alcohol)–Clay–Nanofibrillar Cellulose Artificial Nacre. ACS Nano, 2014, 8, 2739-2745.	14.6	282
41	Bio-inspired encapsulation and functionalization of living cells with artificial shells. Colloids and Surfaces B: Biointerfaces, 2014, 113, 483-500.	5.0	35
42	Calcium phosphate neuron-like structures: a rare case or a common structure?. Journal of Materials Chemistry B, 2014, 2, 2020.	5.8	4
43	Recent progress in the development of materials. Current Opinion in Chemical Engineering, 2014, 3, 13-17.	7.8	5
44	Genesis and occupancy of a shell midden on Paraná State coast, Brazil. Quaternary International, 2014, 352, 135-146.	1.5	4
45	Inherently adaptive polymer nanocomposites. Journal of Applied Polymer Science, 2014, 131, .	2.6	2
46	Polarization-sensitive color in iridescent scales of butterfly Ornithoptera. RSC Advances, 2014, 4, 51865-51871.	3.6	15
47	Structures and Properties of Keratin-Based and Related Biological Materials. , 2014, , 1-24.		1
48	Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biology Reviews, 2014, 28, 36-55.	4.7	291
49	Bioinspired Materials: from Low to High Dimensional Structure. Advanced Materials, 2014, 26, 6994-7017.	21.0	198
50	From macro to micro: structural biomimetic materials by electrospinning. RSC Advances, 2014, 4, 39704-39724.	3.6	55
51	Anti-wear properties of the molluscan shell Scapharca subcrenata: Influence of surface morphology, structure and organic material on the elementary wear process. Materials Science and Engineering C, 2014, 42, 7-14.	7.3	27
52	Programmable Skins based on Core-Shell Microsphere/Nanotube/Polymer Composites. Materials Research Society Symposia Proceedings, 2015, 1800, 1.	0.1	0
53	Design and implementation of a biologically inspired swimming robot an EPS@ISEP 2014 spring project. , 2015, , .		2
54	The Mantis Shrimp Saddle: A Biological Spring Combining Stiffness and Flexibility. Advanced Functional Materials, 2015, 25, 6437-6447.	14.9	61
55	Spear and Shield: Survival War between Mantis Shrimps and Abalones. Advanced Materials Interfaces, 2015, 2, 1500250.	3.7	17
57	The D3 Science-to-Design Methodology: Automated and Cognitive-Based Processes for Discovering, Describing, and Designing Complex Nanomechanical Biosystems. , 2015, , .		4

#		IF	CITATIONS
π 58	A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess. Scientific Reports, 2015, 5, 8357.	3.3	23
59	Biomineralization for sustainable construction – A review of processes and applications. Earth-Science Reviews, 2015, 148, 1-17.	9.1	145
60	The role of quasi-plasticity in the extreme contact damage tolerance of the stomatopod dactyl club. Nature Materials, 2015, 14, 943-950.	27.5	128
61	Density patterns in metal films produced by laser interference. Nanotechnology, 2015, 26, 255301.	2.6	3
62	Application of Diatom Biosilica inÂDrugÂDelivery. , 2015, , 245-254.		6
63	A review of microbial precipitation for sustainable construction. Construction and Building Materials, 2015, 93, 1224-1235.	7.2	214
64	Contaminant adhesion (aerial/ground biofouling) on the skin of a gecko. Journal of the Royal Society Interface, 2015, 12, 20150318.	3.4	18
65	Effect of viscoelasticity on skin pain sensation. Theoretical and Applied Mechanics Letters, 2015, 5, 222-226.	2.8	9
66	Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Science Advances, 2015, 1, e1500849.	10.3	336
67	Structural Design Elements in Biological Materials: Application to Bioinspiration. Advanced Materials, 2015, 27, 5455-5476.	21.0	472
68	Multi-scale thermal stability of a hard thermoplastic protein-based material. Nature Communications, 2015, 6, 8313.	12.8	54
69	Bio-inspired functional wood-based materials – hybrids and replicates. International Materials Reviews, 2015, 60, 431-450.	19.3	98
70	Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder – The peacock's tail coverts shaft and its components. Acta Biomaterialia, 2015, 17, 137-151.	8.3	48
71	Aligned Bioinspired Cellulose Nanocrystal-Based Nanocomposites with Synergetic Mechanical Properties and Improved Hygromechanical Performance. ACS Applied Materials & Interfaces, 2015, 7, 4595-4607.	8.0	99
72	Extreme strength observed in limpet teeth. Journal of the Royal Society Interface, 2015, 12, 20141326.	3.4	163
73	Ultrastrong composites from dopamine modified-polymer-infiltrated colloidal crystals. Materials Horizons, 2015, 2, 434-441.	12.2	7
74	First Steps to Develop Biomimicry Ideas. Energy Procedia, 2015, 72, 307-309.	1.8	18
75	Morphogenesis and mechanostabilization of complex natural and 3D printed shapes. Science Advances, 2015, 1, e1400052.	10.3	48

		CITATION REPORT		
#	Article		IF	CITATIONS
76	The role of mechanics in biological and bio-inspired systems. Nature Communications,	2015, 6, 7418.	12.8	170
77	The materials science of collagen. Journal of the Mechanical Behavior of Biomedical Ma 52, 22-50.	terials, 2015,	3.1	227
78	Novel Microbial Based Low Energy Green Building Material Production Technology. Adv Materials Research, 0, 1090, 96-100.	/anced	0.3	2
79	Bioinspired engineering of honeycomb structure – Using nature to inspire human inr Progress in Materials Science, 2015, 74, 332-400.	novation.	32.8	501
80	Rapid synthesis of an extra hard metal matrix nanocomposite at ambient temperature. Science & Engineering A: Structural Materials: Properties, Microstructure and Proc 635, 109-117.	Materials cessing, 2015,	5.6	59
81	Nanoscale structure and formation mechanism of the aragonite fibers in the ligament o Cumingii shell. Journal of Materials Science, 2015, 50, 3383-3390.	of Hyriopsis	3.7	3
82	Advanced Nanomaterials: Promises for Improved Dental Tissue Regeneration. , 2015, ,	5-22.		9
83	Summary and future trends. , 2015, , 225-232.			0
84	Recombinant engineering of reversible cross-links into a resilient biopolymer. Polymer, 255-263.	2015, 69,	3.8	14
85	Bioinspired Hierarchical Alumina–Graphene Oxide–Poly(vinyl alcohol) Artificial Nac Strength and Toughness. ACS Applied Materials & Interfaces, 2015, 7, 9281-9286	re with Optimized	8.0	82
86	A numerical study of bioinspired nacre-like composite plates under blast loading. Comp Structures, 2015, 126, 329-336.	osite	5.8	54
87	Analysis of the mechanical response of biomimetic materials with highly oriented micro through 3D printing, mechanical testing and modeling. Journal of the Mechanical Beha Biomedical Materials, 2015, 48, 70-85.	structures vior of	3.1	55
88	Amplified Responsiveness of Multilayered Polymer Grafts: Synergy between Brushes an Macromolecules, 2015, 48, 7106-7116.	d Hydrogels.	4.8	36
89	Morphometric structural diversity of a natural armor assembly investigated by 2D cont analysis. Journal of Structural Biology, 2015, 192, 487-499.	inuum strain	2.8	7
90	Dynamics of laser induced metal nanoparticle and pattern formation. Applied Physics L \cdot	etters, 2015, 106,	3.3	12
91	Extended Charge Carrier Lifetimes in Hierarchical Donor–Acceptor Supramolecular Po Journal of Physical Chemistry C, 2015, 119, 19584-19589.	olymer Films.	3.1	25
92	Multifunctional Engineering Aluminum Surfaces for Selfâ€Propelled Antiâ€Condensatio Engineering Materials, 2015, 17, 961-968.	on. Advanced	3.5	21
93	Synthesis and characterization of nacre-inspired zirconia/polyimide multilayer coatings sputtering and pulsed laser deposition technique. Surface and Coatings Technology, 20	by a hybrid 015, 284, 118-128.	4.8	12

#	Article	IF	Citations
94	Guiding and Deflecting Cracks in Bulk Metallic Glasses to Increase Damage Tolerance. Advanced Engineering Materials, 2015, 17, 620-625.	3.5	15
95	Mechanical and biological properties of oxidized horn keratin. Materials Science and Engineering C, 2015, 47, 123-134.	7.3	29
96	Structures and Properties of Keratin-Based and Related Biological Materials. , 2015, , 483-510.		2
97	Bio-inspired Adaptive Building Skins. , 2015, , 115-134.		13
98	Biological materials and molecular biomimetics – filling up the empty soft materials space for tissue engineering applications. Journal of Materials Chemistry B, 2015, 3, 13-24.	5.8	49
99	Finite deformation effects in cellular structures with hyperelastic cell walls. International Journal of Solids and Structures, 2015, 53, 107-128.	2.7	19
100	The Roles of Cellular Nanomechanics in Cancer. Medicinal Research Reviews, 2015, 35, 198-223.	10.5	34
101	Degradation of a Polycaprolactone/Eggshell Biocomposite in a Bioreactor. Journal of Polymers and the Environment, 2015, 23, 11-20.	5.0	18
102	Micrographical, minerological and nano-mechanical characterisation of microbial carbonates from urease and carbonic anhydrase producing bacteria. Ecological Engineering, 2016, 94, 443-454.	3.6	89
103	A Sinusoidally Architected Helicoidal Biocomposite. Advanced Materials, 2016, 28, 6835-6844.	21.0	158
104	Nacreâ€Like Ternary Hybrid Films with Enhanced Mechanical Properties by Interlocked Nanofiber Design. Advanced Materials Interfaces, 2016, 3, 1600296.	3.7	14
105	Leaf venation, as a resistor, to optimize a switchable IR absorber. Scientific Reports, 2016, 6, 31611.	3.3	9
106	Passive and active mechanical properties of biotemplated ceramics revisited. Bioinspiration and Biomimetics, 2016, 11, 065001.	2.9	6
107	Bioinspired Hydroxyapatite/Poly(methyl methacrylate) Composite with a Nacreâ€Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 2016, 28, 50-56.	21.0	319
108	Thermal conductivity of Fe graphitized wood derived carbon. Materials and Design, 2016, 99, 528-534.	7.0	36
109	Using high-pressure torsion to process an aluminum–magnesium nanocomposite through diffusion bonding. Journal of Materials Research, 2016, 31, 88-99.	2.6	68
110	Unearthing ecological wisdom from natural habitats and its ramifications on development of biocement and sustainable cities. Landscape and Urban Planning, 2016, 155, 61-68.	7.5	26
111	Pangolin armor: Overlapping, structure, and mechanical properties of the keratinous scales. Acta Biomaterialia, 2016, 41, 60-74.	8.3	109

#	Article	IF	CITATIONS
112	Soy protein-directed one-pot synthesis of gold nanomaterials and their functional conductive devices. Journal of Materials Chemistry B, 2016, 4, 3643-3650.	5.8	25
113	Natural and Synthetic Polymers for Designing Composite Materials. , 2016, , 233-286.		22
114	Protein-based Engineered Nanostructures. Advances in Experimental Medicine and Biology, 2016, , .	1.6	13
115	Natural Composite Systems for Bioinspired Materials. Advances in Experimental Medicine and Biology, 2016, 940, 143-166.	1.6	7
116	Vibrational Cutting of Soft Tissue with Micro-serrated Surgical Scalpels. Procedia CIRP, 2016, 45, 199-202.	1.9	7
117	The nanocomposite nature of bone drives its strength and damage resistance. Nature Materials, 2016, 15, 1195-1202.	27.5	171
118	Mollusc and brachiopod skeletal hard parts: Intricate archives of their marine environment. Sedimentology, 2016, 63, 1-59.	3.1	90
119	A Model of Interfacial Permeability for Soft Seals in Marine-Organism, Suction-Based Adhesion. MRS Advances, 2016, 1, 2531-2543.	0.9	16
120	Competing mechanisms in the wear resistance behavior of biomineralized rod-like microstructures. Journal of the Mechanics and Physics of Solids, 2016, 96, 511-534.	4.8	19
122	Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability. Nature Communications, 2016, 7, 13440.	12.8	93
123	Functional lignocellulosic materials prepared by ATRP from a wood scaffold. Scientific Reports, 2016, 6, 31287.	3.3	56
124	Impact resistance of oil-immersed lignum vitae. Scientific Reports, 2016, 6, 30090.	3.3	12
125	Continuum damage modeling and simulation of hierarchical dental enamel. Modelling and Simulation in Materials Science and Engineering, 2016, 24, 045014.	2.0	19
126	Future of Superhard Material Design, Processing and Manufacturing. , 2016, , 211-239.		0
127	Microstructure-Property Correlations for Hard, Superhard, and Ultrahard Materials. , 2016, , .		17
128	Anisotropic constitutive model incorporating multiple damage mechanisms for multiscale simulation of dental enamel. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 515-533.	3.1	12
129	Multi-scale toughening of fibre composites using carbon nanofibres and z-pins. Composites Science and Technology, 2016, 131, 98-109.	7.8	81
130	Synthesis, microstructure and mechanical properties of a bio-inspired Ti-intermetallic multi-layered/SiCf-reinforced Ti-matrix hybrid composite. Journal of Materials Science, 2016, 51, 8747-8760	3.7	24

#	Article	IF	CITATIONS
131	Hierarchical structure and mechanical properties of snake (Naja atra) and turtle (Ocadia sinensis) eggshells. Acta Biomaterialia, 2016, 31, 33-49.	8.3	16
132	Numerical simulation of ballistic impact behavior of bio-inspired scale-like protection system. Materials and Design, 2016, 99, 201-210.	7.0	67
133	Photosynthetic Glass: As a Responsive Bioenergy System. , 2016, , 97-124.		0
134	Biomimetic water-collecting materials inspired by nature. Chemical Communications, 2016, 52, 3863-3879.	4.1	184
135	Structure and mechanical behaviors of protective armored pangolin scales and effects of hydration and orientation. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 56, 165-174.	3.1	44
136	Buckling prevention strategies in nature as inspiration for improving percutaneous instruments: a review. Bioinspiration and Biomimetics, 2016, 11, 021001.	2.9	38
137	Water-assisted self-healing and property recovery in a natural dermal armor of pangolin scales. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 56, 14-22.	3.1	20
138	Bio-inspired multifunctional metallic glass. Science China Chemistry, 2016, 59, 271-276.	8.2	13
139	Eggshell quality: a comparison between Fayoumi, Gimieizah and Brown Hy-Line strains for mechanical properties and ultrastructure of their eggshells. Animal Production Science, 2016, 56, 908.	1.3	22
140	A bioinspired study on the interlaminar shear resistance of helicoidal fiber structures. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 56, 57-67.	3.1	57
141	Structure and mechanical properties of selected protective systems in marine organisms. Materials Science and Engineering C, 2016, 59, 1143-1167.	7.3	83
142	Recent progress of abrasion-resistant materials: learning from nature. Chemical Society Reviews, 2016, 45, 237-251.	38.1	42
143	The organic interlamellar layer in abalone nacre: Formation and mechanical response. Materials Science and Engineering C, 2016, 58, 7-13.	7.3	21
144	Study of biomechanical, anatomical, and physiological properties of scorpion stingers for developing biomimetic materials. Materials Science and Engineering C, 2016, 58, 1112-1121.	7.3	43
145	Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Progress in Materials Science, 2016, 76, 229-318.	32.8	571
146	The springtail cuticle as a blueprint for omniphobic surfaces. Chemical Society Reviews, 2016, 45, 323-341.	38.1	191
147	Advancing biomaterials of human origin for tissue engineering. Progress in Polymer Science, 2016, 53, 86-168.	24.7	817
148	Biomimetics and its tools. Bioinspired, Biomimetic and Nanobiomaterials, 2017, 6, 53-66.	0.9	89

#	Article	IF	CITATIONS
149	Bionic building energy efficiency and bionic green architecture: A review. Renewable and Sustainable Energy Reviews, 2017, 74, 771-787.	16.4	64
150	Facile synthesis of bioglass nanospheres for the adsorption of cationic and anionic dyes from aqueous solution. Journal of Dispersion Science and Technology, 2017, 38, 1711-1718.	2.4	6
151	Structure, mechanical behavior and puncture resistance of grass carp scales. Journal of Bionic Engineering, 2017, 14, 356-368.	5.0	18
152	Carbon Nanodots as High-Functionality Cross-Linkers for Bioinspired Engineering of Multiple Sacrificial Units toward Strong yet Tough Elastomers. Macromolecules, 2017, 50, 3244-3253.	4.8	66
153	Metal Nanoparticle Growth within Clay–Polymer Nacre-Inspired Materials for Improved Catalysis and Plasmonic Detection in Complex Biofluids. Langmuir, 2017, 33, 8774-8783.	3.5	15
154	Fabrication of bioinspired structured glass–ceramics with enhanced fracture toughness. Journal of Materials Science, 2017, 52, 9202-9210.	3.7	4
155	Bioinspired Engineering of Poly(ethylene glycol) Hydrogels and Natural Protein Fibers for Layered Heart Valve Constructs. ACS Applied Materials & Interfaces, 2017, 9, 16524-16535.	8.0	23
156	Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Progress in Materials Science, 2017, 88, 467-498.	32.8	554
157	A review of terrestrial, aerial and aquatic keratins: the structure and mechanical properties of pangolin scales, feather shafts and baleen plates. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76, 4-20.	3.1	27
158	On the relationship between indentation hardness and modulus, and the damage resistance of biological materials. Acta Biomaterialia, 2017, 57, 373-383.	8.3	96
159	Biomimetic Architectured Graphene Aerogel with Exceptional Strength and Resilience. ACS Nano, 2017, 11, 6817-6824.	14.6	297
160	Universal structure motifs in biominerals: a lesson from nature for the efficient design of bioinspired functional materials. Interface Focus, 2017, 7, 20160120.	3.0	10
161	Trichomes as a natural biophysical barrier for plants and their bioinspired applications. Soft Matter, 2017, 13, 5096-5106.	2.7	25
162	Learning from Nature: Using bioinspired approaches and natural materials to make porous bioceramics. International Journal of Applied Ceramic Technology, 2017, 14, 507-520.	2.1	46
163	Biofabricated soft network composites for cartilage tissue engineering. Biofabrication, 2017, 9, 025014.	7.1	135
164	Design and function of biomimetic multilayer water purification membranes. Science Advances, 2017, 3, e1601939.	10.3	221
165	Fossilization processes of graptolites: insights from the experimental decay of <i>Rhabdopleura</i> sp. (Pterobranchia). Palaeontology, 2017, 60, 389-400.	2.2	9
166	Hierarchical Architectures to Enhance Structural and Functional Properties of Brittle Materials. Advanced Engineering Materials, 2017, 19, 1600683.	3.5	10

#	Article	IF	CITATIONS
167	Influence of analogical domains and comprehensiveness in explanation of analogy on the novelty of designs. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2017, 28, 381-410.	2.1	10
168	Micro-mechanical and tribological properties of aluminum-magnesium nanocomposites processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 318-327.	5.6	55
169	Magnesium-Assisted Continuous Growth of Strongly Iron-Enriched Incisors. ACS Nano, 2017, 11, 239-248.	14.6	13
170	Bioinspired, Graphene/Al ₂ O ₃ Doubly Reinforced Aluminum Composites with High Strength and Toughness. Nano Letters, 2017, 17, 6907-6915.	9.1	128
171	Heat transfer analysis by use of lense integrated in building wall. Energy Procedia, 2017, 128, 453-460.	1.8	2
172	A bioinspired study on the compressive resistance of helicoidal fibre structures. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170538.	2.1	25
173	Wood Composites with Wettability Patterns Prepared by Controlled and Selective Chemical Modification of a Three-Dimensional Wood Scaffold. ACS Sustainable Chemistry and Engineering, 2017, 5, 11686-11694.	6.7	8
174	Exploiting nacre-inspired crack deflection mechanisms in CFRP via micro-structural design. Composites Science and Technology, 2017, 153, 178-189.	7.8	42
175	Tissue Cutting With Microserrated Biopsy Punches. Journal of Micro and Nano-Manufacturing, 2017, 5,	0.7	13
176	From molecules to macrostructures: recent development of bioinspired hard tissue repair. Biomaterials Science, 2017, 5, 1435-1449.	5.4	40
178	Structural, tribological, and mechanical properties of the hind leg joint of a jumping insect: Using katydids to inform bioinspired lubrication systems. Acta Biomaterialia, 2017, 62, 284-292.	8.3	23
179	Onion-like multilayered polymer capsules synthesized by a bioinspired inside-out technique. Nature Communications, 2017, 8, 193.	12.8	58
180	Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Science Robotics, 2017, 2, .	17.6	594
181	Insect Analogue to the Lotus Leaf: A Planthopper Wing Membrane Incorporating a Low-Adhesion, Nonwetting, Superhydrophobic, Bactericidal, and Biocompatible Surface. ACS Applied Materials & Interfaces, 2017, 9, 24381-24392.	8.0	68
182	Nano―and Microâ€Mechanical Properties of Ultrafineâ€Grained Materials Processed by Severe Plastic Deformation Techniques. Advanced Engineering Materials, 2017, 19, 1600578.	3.5	42
183	Bioinspired Multifunctional Ceramic Plateletâ€Reinforced Piezoelectric Polymer Composite. Advanced Engineering Materials, 2017, 19, 1600570.	3.5	11
184	Moisture, anisotropy, stress state, and strain rate effects on bighorn sheep horn keratin mechanical properties. Acta Biomaterialia, 2017, 48, 300-308.	8.3	45
185	Seagull feather shaft: Correlation between structure and mechanical response. Acta Biomaterialia, 2017, 48, 270-288.	8.3	31

	CITATION	Report	
# 186	ARTICLE Centella asiatica leaf mediated synthesis of silver nanocolloid and its application as filler in gelatin based antimicrobial nanocomposite film 1 WT - Food Science and Technology 2017, 75, 293-300	IF 5.2	CITATIONS
187	A comparative study of piscine defense: The scales of Arapaima gigas, Latimeria chalumnae and Atractosteus spatula. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 73, 1-16.	3.1	52
188	Modeling of a biological material nacre: Waviness stiffness model. Materials Science and Engineering C, 2017, 70, 772-776.	7.3	28
189	Exposing Advanced Building Strategies of Strongly Iron-Enriched Incisors. Microscopy and Microanalysis, 2017, 23, 1848-1849.	0.4	0
190	Constitutive behaviour of paddlefish (<i>Polyodon spathula</i>) cartilage. Bioinspired, Biomimetic and Nanobiomaterials, 2017, 6, 236-243.	0.9	3
191	Multifunctional biomaterials and their bioinspired systems for bioactive molecules delivery. , 2017, , 119-137.		1
192	Promoting biomimetic materials for a sustainable construction industry. Bioinspired, Biomimetic and Nanobiomaterials, 2017, 6, 122-130.	0.9	3
193	Characterization of the Mandible Atta Laevigata and the Bioinspiration for the Development of a Biomimetic Surgical Clamp. Materials Research, 2017, 20, 1525-1533.	1.3	11
195	Impact response and energy absorption of human skull cellular bones. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 81, 106-119.	3.1	22
196	Advanced Materials through Assembly of Nanocelluloses. Advanced Materials, 2018, 30, e1703779.	21.0	493
197	Multi-scale structural design and biomechanics of the pistol shrimp snapper claw. Acta Biomaterialia, 2018, 73, 449-457.	8.3	15
198	Bioinspired Ultralight Inorganic Aerogel for Highly Efficient Air Filtration and Oil–Water Separation. ACS Applied Materials & Interfaces, 2018, 10, 13019-13027.	8.0	112
199	Armours for soft bodies: how far can bioinspiration take us?. Bioinspiration and Biomimetics, 2018, 13, 041004.	2.9	27
200	Realising damage-tolerant nacre-inspired CFRP. Journal of the Mechanics and Physics of Solids, 2018, 116, 391-402.	4.8	25
201	Bionic Prototyping of Honeycomb Patterned Polymer Composite and Its Engineering Application. Polymer-Plastics Technology and Engineering, 2018, 57, 1828-1844.	1.9	28
202	Mechanical properties of Au foams under nanoindentation. Computational Materials Science, 2018, 147, 154-167.	3.0	24
203	Formation of the three-dimensional (3D) interlinked hybrid shish-kebabs in injection-molded PE/PE-g-CNF composite by "structuring―processing. Composites Science and Technology, 2018, 157, 209-216.	7.8	10
204	Nacre-like ceramic refractories for high temperature applications. Journal of the European Ceramic Society, 2018, 38, 2186-2193.	5.7	29

#	Article	IF	CITATIONS
205	Three dimensional printed calcium phosphate and poly(caprolactone) composites with improved mechanical properties and preserved microstructure. Journal of Biomedical Materials Research - Part A, 2018, 106, 663-672.	4.0	32
206	Transparent and Flexible Nacre‣ike Hybrid Films of Aminoclays and Carboxylated Cellulose Nanofibrils. Advanced Functional Materials, 2018, 28, 1703277.	14.9	52
207	Sustainable road bases with microbial precipitation. Proceedings of Institution of Civil Engineers: Construction Materials, 2018, 171, 95-108.	1.1	13
208	Bioâ€Inspired Photonic Materials: Prototypes and Structural Effect Designs for Applications in Solar Energy Manipulation. Advanced Functional Materials, 2018, 28, 1705309.	14.9	117
209	Biomimetic Structural Materials: Inspiration from Design and Assembly. Annual Review of Physical Chemistry, 2018, 69, 23-57.	10.8	96
210	Understanding hydration effects on mechanical and impacting properties of turtle shell. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78, 116-123.	3.1	9
211	Bioinspired metal–polymer thin films with varying hydrophobic properties. Journal of Coatings Technology Research, 2018, 15, 87-94.	2.5	4
212	Silk-Based Hierarchical Materials for High Mechanical Performance at the Interface of Modeling, Synthesis, and Characterization. , 2018, , 1-28.		1
213	Biomimetic Design for a Bioengineered World. , 0, , .		1
214	Choosing the best nature's strategy with the highest thermodynamic potential for application in building thermal envelope using MCA analysis. Energy Procedia, 2018, 152, 450-455.	1.8	3
215	Quantifying the role of mineral bridges on the fracture resistance of nacre-like composites. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12698-12703.	7.1	44
216	Bioinspired Concentric-Cylindrical Multilayered Scaffolds with Controllable Architectures: Facile Preparation and Biological Applications. ACS Applied Materials & Interfaces, 2018, 10, 43512-43522.	8.0	20
217	Nature-Inspired Hydrogels with Soft and Stiff Zones that Exhibit a 100-Fold Difference in Elastic Modulus. ACS Applied Materials & Interfaces, 2018, 10, 34664-34673.	8.0	28
218	Additive Manufacturing as a Method to Design and Optimize Bioinspired Structures. Advanced Materials, 2018, 30, e1800940.	21.0	158
219	Temperature - dependent polymer absorber as a switchable state NIR reactor. Scientific Reports, 2018, 8, 15866.	3.3	0
220	Optimizing mechanical properties of bio-inspired composites through functionally graded matrix and microstructure design. Composite Structures, 2018, 206, 621-627.	5.8	7
221	Hard-yet-tough high-vanadium hierarchical composite coating: Microstructure and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 736, 87-99.	5.6	6
222	Parametric Analysis of a Spiraled Shell: Learning from Nature's Adaptable Structures. Designs, 2018, 2, 46.	2.4	3

#	Article	IF	CITATIONS
223	Multifunctional Stimuli-Responsive Cellulose Nanocrystals via Dual Surface Modification with Genetically Engineered Elastin-Like Polypeptides and Poly(acrylic acid). ACS Macro Letters, 2018, 7, 646-650.	4.8	21
224	Corrosion and antibacterial characterization of Agâ€DLC coatingon a new CoCrNbMoZr dental alloy. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 1403-1411.	1.5	13
225	Interaction between nacre-like CFRP mesolayers and long-fibre interlayers. Composite Structures, 2018, 200, 921-928.	5.8	17
226	Natural eggshell membranes exhibiting programmable shape recovery characteristics. MRS Communications, 2018, 8, 903-910.	1.8	2
227	Revealing the Mechanics of Helicoidal Composites through Additive Manufacturing and Beetle Developmental Stage Analysis. Advanced Functional Materials, 2018, 28, 1803073.	14.9	55
228	On the internal architecture of emergent plants. Journal of the Mechanics and Physics of Solids, 2018, 119, 224-239.	4.8	55
229	Microstructure and mechanical properties of hard Acrocomia mexicana fruit shell. Scientific Reports, 2018, 8, 9668.	3.3	28
230	Nanostructured biomimetic, bioresponsive, and bioactive biomaterials. , 2018, , 35-65.		1
231	The quest for mechanically and biologically functional soft biomaterials via soft network composites. Advanced Drug Delivery Reviews, 2018, 132, 214-234.	13.7	35
232	Investigation of inner mechanism of anisotropic mechanical property of antler bone. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 1-10.	3.1	7
233	Shape-Changing Tubular Hydrogels. Gels, 2018, 4, 18.	4.5	4
234	Amplifying Strength, Toughness, and Auxeticity via Wavy Sutural Tessellation in Plant Seedcoats. Advanced Materials, 2018, 30, e1800579.	21.0	23
235	3D magnetic printing of bio-inspired composites with tunable mechanical properties. Journal of Materials Science, 2018, 53, 14274-14286.	3.7	28
236	Deformation and fracture behavior of a natural shell ceramic: Coupled effects of shell shape and microstructure. Materials Science and Engineering C, 2018, 90, 557-567.	7.3	6
237	The Role of Impulse, Tissue Stretching, and Tip Geometry for Tissue Penetration of Polymer Needles. Journal of Medical Devices, Transactions of the ASME, 2018, 12, .	0.7	0
238	Fine nanostructural variation in the wing pattern of a moth Chiasmia eleonora Cramer (1780). Journal of Biosciences, 2018, 43, 673-684.	1.1	3
239	On the Materials Science of Nature's Arms Race. Advanced Materials, 2018, 30, e1705220.	21.0	63
240	Study on design and cutting parameters of rotating needles for core biopsy. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 86, 43-54.	3.1	16

#	Article	IF	CITATIONS
241	Scale Thickness Predicts Skin Puncture-Force Resistance in Three Pleuronectiform Fishes. Integrative Organismal Biology, 2019, 1, obz005.	1.8	4
242	Bioinspired Materials: From Living Systems to New Concepts in Materials Chemistry. Materials, 2019, 12, 2117.	2.9	14
243	3D bio-inspired hierarchical discontinuous CFRP with enhanced ductility. Composite Structures, 2019, 226, 111202.	5.8	14
244	Super Elastic and Thermally Insulating Carbon Aerogel: Go Tubular Like Polar Bear Hair. Matter, 2019, 1, 36-38.	10.0	17
245	Staggered ply discontinuities for tailoring the tensile behavior of hybrid carbon fiber/self-reinforced polypropylene composites: A study of pattern parameters. Composites Part A: Applied Science and Manufacturing, 2019, 125, 105551.	7.6	4
246	A novel unhairing enzyme produced by heterologous expression of keratinase gene (kerT) in Bacillus subtilis. World Journal of Microbiology and Biotechnology, 2019, 35, 122.	3.6	11
247	Additive manufacturing of functionally graded materials: A review. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138209.	5.6	309
248	A novel aluminium/CFRP hybrid composite with a bio-inspired crossed-lamellar microstructure for preservation of structural integrity. Composites Science and Technology, 2019, 182, 107760.	7.8	10
249	Design of Architectured Materials Based on Mechanically Driven Structural and Compositional Patterning. Advanced Engineering Materials, 2019, 21, 1900487.	3.5	38
250	Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs. Advanced Materials, 2019, 31, e1901561.	21.0	342
251	Biological design of materials. , 2019, , 27-97.		7
252	3D Printed Cartilageâ€Like Tissue Constructs with Spatially Controlled Mechanical Properties. Advanced Functional Materials, 2019, 29, 1906330.	14.9	66
253	Machinability of enamel under grinding process using diamond dental burrs. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2019, 233, 1151-1164.	1.8	6
254	A three-level hybrid metal/in-plane-CFRP/crossed-lamellar microstructure concept for containment applications. Composites Part A: Applied Science and Manufacturing, 2019, 126, 105609.	7.6	6
255	Catalyst-Loaded Capsules that Spontaneously Inflate and Violently Eject their Core. Langmuir, 2019, 35, 13718-13726.	3.5	4
256	Personalized 4D printing of bioinspired tracheal scaffold concept based on magnetic stimulated shape memory composites. Composites Science and Technology, 2019, 184, 107866.	7.8	128
257	Crystalline organization of nacre and crossed lamellar architecture of seashells and their influences in mechanical properties. Materialia, 2019, 8, 100476.	2.7	6
258	Single molecule protein patterning using hole mask colloidal lithography. Nanoscale, 2019, 11, 16228-16234.	5.6	9

	CITATION R	EPORT	
#	ARTICLE Evaluating the hierarchical, hygroscopic deformation of the Daucus carota umbel through	١F	CITATIONS
260	structural characterization and mechanical analysis. Acta Biomaterialia, 2019, 99, 457-468. Matrix-induced pre-strain and mineralization-dependent interfibrillar shear transfer enable 3D fibrillar deformation in a biogenic armour. Acta Biomaterialia, 2019, 100, 18-28.	8.3	5
261	Hierarchical nanomaterials <i>via</i> biomolecular self-assembly and bioinspiration for energy and environmental applications. Nanoscale, 2019, 11, 4147-4182.	5.6	122
262	Ultraâ€Adaptable and Wearable Photonic Skin Based on a Shapeâ€Memory, Responsive Cellulose Derivative. Advanced Functional Materials, 2019, 29, 1902720.	14.9	89
263	A comprehensive review of selected biological armor systems – From structure-function to bio-mimetic techniques. Composite Structures, 2019, 225, 111172.	5.8	21
264	Synthesis and properties of crosslinked carboxymethyl chitosan and its hemostatic and wound healing effects on liver injury of rats. Journal of Biomaterials Applications, 2019, 34, 442-450.	2.4	9
265	On the Nature of the Transparent Teeth of the Deep-Sea Dragonfish, Aristostomias scintillans. Matter, 2019, 1, 235-249.	10.0	24
266	Biomimetic preparation of a ceramic combined with sea urchin stereom structure and nacre mineral bridge structure. Materials and Design, 2019, 178, 107844.	7.0	6
267	Bioprocess-inspired fabrication of materials with new structures and functions. Progress in Materials Science, 2019, 105, 100571.	32.8	76
268	Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomaterialia, 2019, 94, 112-131.	8.3	336
269	In-Situ Observation of Fracture Behavior of Ti-Aluminide Multi-Layered Composites Produced by a Hybrid Sintering Process. Materials, 2019, 12, 1568.	2.9	4
270	Horse hoof inspired biomimetic structure for improved damage tolerance and crack diversion. Composite Structures, 2019, 220, 362-370.	5.8	17
271	How Water Can Affect Keratin: Hydrationâ€Driven Recovery of Bighorn Sheep (Ovis Canadensis) Horns. Advanced Functional Materials, 2019, 29, 1901077.	14.9	29
272	Recent Advances in Additive Manufacturing of Bio-inspired Materials. , 2019, , 35-68.		16
273	A novel enzymatic preâ€treatment improves amino acid utilization in feather meal fed to rainbow trout (<i>Oncorhynchus mykiss</i>). Aquaculture Research, 2019, 50, 1459-1474.	1.8	16
274	Biomanufacturing. , 2019, , .		10
275	Wild boar's tusk enamel: Structure and mechanical behavior. Materials Science and Engineering C, 2019, 100, 354-362.	7.3	4
276	Architectured Polymeric Materials Produced by Additive Manufacturing. Springer Series in Materials Science, 2019, , 257-285.	0.6	3

#	Article	IF	CITATIONS
277	Beautiful and Functional: A Review of Biomimetic Design in Additive Manufacturing. Additive Manufacturing, 2019, 27, 408-427.	3.0	199
278	Machine learning for composite materials. MRS Communications, 2019, 9, 556-566.	1.8	183
279	A natural energy absorbent polymer composite: The equine hoof wall. Acta Biomaterialia, 2019, 90, 267-277.	8.3	47
280	Effect of Constituent Materials on Composite Performance: Exploring Design Strategies via Machine Learning. Advanced Theory and Simulations, 2019, 2, 1900056.	2.8	36
281	Study of magnesium precipitation based on biocementation. Marine Georesources and Geotechnology, 2019, 37, 1257-1266.	2.1	17
282	Bioinspired Superwettability Micro/Nanoarchitectures: Fabrications and Applications. Advanced Functional Materials, 2019, 29, 1808012.	14.9	129
283	Porosity and Pore Size Distribution of Native and Delignified Beech Wood Determined by Mercury Intrusion Porosimetry. Materials, 2019, 12, 416.	2.9	39
284	A Metalâ€Doped Fungiâ€Based Biomaterial for Advanced Electrocatalysis. Chemistry - A European Journal, 2019, 25, 3828-3834.	3.3	2
285	The energy absorption and bearing capacity of light-weight bio-inspired structures produced by selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 93, 170-182.	3.1	33
286	Simulated Performance of a Xenohybrid Bone Graft (SmartBone®) in the Treatment of Acetabular Prosthetic Reconstruction. Journal of Functional Biomaterials, 2019, 10, 53.	4.4	3
287	Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs. Chemical Reviews, 2019, 119, 12279-12336.	47.7	121
288	Mechanical model of bio-inspired composites with sutural tessellation. Journal of the Mechanics and Physics of Solids, 2019, 122, 190-204.	4.8	21
289	Failure mechanisms of biological crossed-lamellar microstructures applied to synthetic high-performance fibre-reinforced composites. Journal of the Mechanics and Physics of Solids, 2019, 125, 53-73.	4.8	22
290	Looking deep into nature: A review of micro-computed tomography in biomimicry. Acta Biomaterialia, 2019, 85, 27-40.	8.3	55
291	Solvent-Controlled Spatial Distribution of SI-AGET-ATRP Grafted Polymers in Lignocellulosic Materials. Biomacromolecules, 2019, 20, 336-346.	5.4	11
292	Processing Lignocellulose-Based Composites into an Ultrastrong Structural Material. ACS Nano, 2019, 13, 371-376.	14.6	53
293	Keratin Production and Its Applications: Current and Future Perspective. Springer Series on Polymer and Composite Materials, 2019, , 19-34.	0.7	15
294	Modeling the Compressive Behavior of Anisotropic, Nanometerâ€6cale Structured Silica. Advanced Engineering Materials, 2019, 21, 1801097.	3.5	3

#	Article	IF	CITATIONS
295	Preparation and impact resistance performance of bionic sandwich structure inspired from beetle forewing. Composites Part B: Engineering, 2019, 161, 490-501.	12.0	35
296	Damage-tolerant architected materials inspired by crystal microstructure. Nature, 2019, 565, 305-311.	27.8	397
297	Biomimicry of the Armadillo Carapace for the Design of Bending Cylinders for Aerospace Applications. , 2019, , .		6
298	Synergistic delamination toughening of composites using multi-scale carbon reinforcements. Composites Part B: Engineering, 2019, 161, 18-28.	12.0	36
299	Keratin as a Biopolymer. Springer Series on Polymer and Composite Materials, 2019, , 163-185.	0.7	14
300	Design and models of helical needle geometries for core biopsies. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 113-124.	3.1	1
301	Hierarchy structure and fracture mechanisms of the wild wolf tusk's enamel. Materials Science and Engineering C, 2020, 106, 110277.	7.3	6
302	Morphological optimization of scorpion telson. Journal of the Mechanics and Physics of Solids, 2020, 135, 103773.	4.8	29
303	On the exceptional damage-tolerance of gradient metallic materials. Materials Today, 2020, 32, 94-107.	14.2	89
304	Fabrication and cutting performance of bionic micro-serrated scalpels based on the miscanthus leaves. Tribology International, 2020, 145, 106162.	5.9	14
305	Effect of hydration on mechanical characteristics of pangolin scales. Journal of Materials Science, 2020, 55, 4420-4436.	3.7	3
306	Mechanics of bioinspired functionally graded soft-hard composites made by multi-material 3D printing. Composite Structures, 2020, 237, 111867.	5.8	73
307	Independent control of dynamic material properties by exploiting structural hierarchy and intrinsic structural gradients. Materials Today Communications, 2020, 23, 100865.	1.9	2
308	Supramolecular multilayer organization of chromosomes: possible functional roles of planar chromatin in gene expression and DNA replication and repair. FEBS Letters, 2020, 594, 395-411.	2.8	19
309	A Bioinspired Ultratough Multifunctional Mica-Based Nanopaper with 3D Aramid Nanofiber Framework as an Electrical Insulating Material. ACS Nano, 2020, 14, 611-619.	14.6	85
310	Static and dynamic properties of pre-twisted leaves and stalks with varying chiral morphologies. Extreme Mechanics Letters, 2020, 34, 100612.	4.1	7
311	Bioinspired structures for core sandwich composites produced by fused deposition modelling. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020, 234, 379-393.	1.1	6
312	Bioinspired and Biomimetic Design of Multilayered and Multiscale Structures. , 2020, , 3-19.		1

#	Article	IF	CITATIONS
313	Bioinspired Design for Energy Storage Devices. , 2020, , 193-211.		0
314	Fabrication of Anisotropic Poly(vinyl alcohol) Scaffolds with Controllable Mechanical Properties and Structural Recoverability under Compression via a Freeze-Casting Technique. Macromolecules, 2020, 53, 8809-8818.	4.8	12
315	Bioinspired Underwater Propulsors. , 2020, , 113-139.		6
316	Aquatic Animals Operating at High Reynolds Numbers. , 2020, , 235-270.		1
317	Lightweight, compression-resistant cellular structures inspired from the infructescence of Liquidambar formosana. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103961.	3.1	3
318	A new design and performance optimization of bio-inspired flexible protective equipment. Bioinspiration and Biomimetics, 2020, 15, 066003.	2.9	9
319	Layered Double Hydroxides in Bioinspired Nanotechnology. Crystals, 2020, 10, 602.	2.2	15
320	Progress in Bioinspired Dry and Wet Gradient Materials from Design Principles to Engineering Applications. IScience, 2020, 23, 101749.	4.1	20
321	Bioinspired material architectures from bighorn sheep horncore velar bone for impact loading applications. Scientific Reports, 2020, 10, 18916.	3.3	17
322	Nanomechanics of Biomaterials – from Cells to Shells. Israel Journal of Chemistry, 2020, 60, 1171-1184.	2.3	7
323	Bio-inspired Surface Texture Modification as a Viable Feature of Future Aquatic Antifouling Strategies: A Review. International Journal of Molecular Sciences, 2020, 21, 5063.	4.1	27
324	Advanced bio-inspired structural materials: Local properties determine overall performance. Materials Today, 2020, 41, 177-199.	14.2	52
326	Bioinspired Design of Dental Functionally Graded Multilayer Structures. , 2020, , 140-166.		0
327	Bionic Organs. , 2020, , 167-192.		1
328	Bioinspired Design of Nanostructures. , 2020, , 212-232.		0
329	Flying of Insects. , 2020, , 271-299.		5
330	Bioinspired Building Envelopes. , 2020, , 343-354.		0
332	A review of impact resistant biological and bioinspired materials and structures. Journal of Materials Research and Technology, 2020, 9, 15705-15738.	5.8	96

#	Article	IF	CITATIONS
333	Human Cortical Bone as a Structural Material. , 2020, , 20-44.		0
334	Bamboo-Inspired Materials and Structures. , 2020, , 89-110.		5
335	Designing Nature-Inspired Liquid-Repellent Surfaces. , 2020, , 300-319.		1
336	Biomimetic and Soft Robotics. , 2020, , 320-342.		0
337	Beyond linearity: bent crystalline copper nanowires in the small-to-moderate regime. Nanoscale Advances, 2020, 2, 3002-3016.	4.6	2
338	Bioinspired Design of Multilayered Composites. , 2020, , 45-88.		0
339	Smart bio-gel optofluidic Mach–Zehnder interferometers multiphoton-lithographically customized with chemo-mechanical-opto transduction and bio-triggered degradation. Lab on A Chip, 2020, 20, 3815-3823.	6.0	7
340	A natural impact-resistant bicontinuous composite nanoparticle coating. Nature Materials, 2020, 19, 1236-1243.	27.5	115
341	Bioinspired hierarchical impact tolerant materials. Bioinspiration and Biomimetics, 2020, 15, 046009.	2.9	10
342	FEM simulation on impact resistance of surface gradient and periodic layered bionic composites. Composite Structures, 2020, 247, 112428.	5.8	10
343	Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host–Guest Interactions. Chemical Reviews, 2020, 120, 6070-6123.	47.7	466
344	Tailored pore canal characteristics and compressive deformation behavior of bionic porous NiTi shape memory alloy prepared by selective laser melting. Smart Materials and Structures, 2020, 29, 095001.	3.5	6
345	Mechanical properties of calcite- and aragonite-based structures by nanoindentation tests. Bioinspired, Biomimetic and Nanobiomaterials, 2020, 9, 112-121.	0.9	5
346	Bioinspired polypeptide as building blocks for multifunctional material design. Applied Materials Today, 2020, 20, 100683.	4.3	3
347	Spider Silk Biomimetics Programs to Inform the Development of New Wearable Technologies. Frontiers in Materials, 2020, 7, .	2.4	23
348	Functionally graded biomimetic biomaterials in dentistry: an evidence-based update. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1144-1162.	3.5	12
349	Environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by atomic force microscopy-based single-molecule force spectroscopy and the implications for advanced polymer materials. Chemical Society Reviews, 2020, 49, 2799-2827.	38.1	82
350	Research on Improving Concrete Durability by Biomineralization Technology. Sustainability, 2020, 12,	3.2	11

#	Αρτιςι ε	IF	CITATIONS
" 351	Graft Copolymerization of Acrylonitrile and Ethyl Acrylate onto <i>Pinus Roxburghii</i> Wood Surface Enhanced Physicochemical Properties and Antibacterial Activity. Journal of Chemistry, 2020, 2020, 1-16	1.9	8
352	Fiber reorientation in hybrid helicoidal composites. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103914.	3.1	12
353	Natural arrangement of fiber-like aragonites and its impact on mechanical behavior of mollusk shells: A review. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103940.	3.1	19
354	Microstructure and mechanical properties of an alpha keratin bovine hoof wall. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104, 103689.	3.1	8
355	Natural protein bioinspired materials for regeneration of hard tissues. Journal of Materials Chemistry B, 2020, 8, 2199-2215.	5.8	43
356	Tango with the Piranhas. Matter, 2020, 2, 23-25.	10.0	2
357	A biomimeticâ€structured woodâ€derived carbon sponge with highly compressible and biocompatible properties for humanâ€motion detection. InformaÄnÃ-Materiály, 2020, 2, 1225-1235.	17.3	34
358	Ice-templated porous tungsten and tungsten carbide inspired by natural wood. Journal of Materials Science and Technology, 2020, 45, 187-197.	10.7	33
359	Continuous gradient ceramic/polymer composite for application in large temperature gradient connection by a polymer-derived ceramic route. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105799.	7.6	10
360	A review of multifunctional nacre-mimetic materials based on bidirectional freeze casting. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 109, 103820.	3.1	31
361	Bioinspired design of elastomeric vitrimers with sacrificial metal-ligand interactions leading to supramechanical robustness and retentive malleability. Materials and Design, 2020, 192, 108756.	7.0	42
362	Intrinsic-to-extrinsic transition in fracture toughness through structural design: A lesson from nature. Extreme Mechanics Letters, 2020, 37, 100685.	4.1	7
363	Carbonate substituted hydroxyapatite. , 2020, , 149-173.		10
364	<p>Engineering of Aerogel-Based Biomaterials for Biomedical Applications</p> . International Journal of Nanomedicine, 2020, Volume 15, 2363-2378.	6.7	72
365	Materials science perspective of multifunctional materials derived from collagen. International Materials Reviews, 2021, 66, 160-187.	19.3	20
366	Biological and synthetic template-directed syntheses of mineralized hybrid and inorganic materials. Progress in Materials Science, 2021, 116, 100712.	32.8	35
367	Inspiration from Nature's body armours – A review of biological and bioinspired composites. Composites Part B: Engineering, 2021, 205, 108513.	12.0	94
368	Bioinspired: A 3D vertical silicon sponge-inspired construction of organic-inorganic loose mass transfer nanochannels for enhancing properties of polyimide nanofiltration membranes. Separation and Purification Technology, 2021, 259, 118038.	7.9	10

#	Article	IF	CITATIONS
369	Structural and mechanical properties of fish scales for the bio-inspired design of flexible body armors: A review. Acta Biomaterialia, 2021, 121, 41-67.	8.3	51
370	Scale performance and composition in a small Amazonian armored catfish, Corydoras trilineatus. Acta Biomaterialia, 2021, 121, 359-370.	8.3	8
371	Geometrically toughening mechanism of cellular composites inspired by Fibonacci lattice in Liquidambar formosana. Composite Structures, 2021, 262, 113349.	5.8	8
372	Squid Beak Inspired Cross-Linked Cellulose Nanocrystal Composites. Biomacromolecules, 2021, 22, 201-212.	5.4	6
373	Nanoindentation and Hierarchy Structure of the Bovine Hoof Wall. Materials, 2021, 14, 289.	2.9	3
374	Abnormal stiffness behaviour in artificial cactus-inspired reinforcement materials. Bioinspiration and Biomimetics, 2021, 16, 026004.	2.9	1
375	Micro Hierarchical Structure and Mechanical Property of Sparrow Hawk (Accipiter nisus) Feather Shaf. CMES - Computer Modeling in Engineering and Sciences, 2021, 127, 705-720.	1.1	0
376	Structure of Keratin. Methods in Molecular Biology, 2021, 2347, 41-53.	0.9	7
377	The rigidizable behavior of the deployable hindwings of the Asian ladybeetle during flight. Journal of Materials Science, 2021, 56, 5670-5683.	3.7	5
378	A water drop-shaped slingshot in plants: geometry and mechanics in the explosive seed dispersal of <i>Orixa japonica</i> (Rutaceae). Annals of Botany, 2021, 127, 765-774.	2.9	3
379	Nacre-like Mechanically Robust Heterojunction for Lithium-Ion Extraction. Matter, 2021, 4, 737-754.	10.0	69
380	Design of High Strength and Lightweight Construction Composites Using Advanced Porous and Tough Cementitious Materials. Journal of Advanced Concrete Technology, 2021, 19, 240-247.	1.8	3
381	Deformation resilient cement structures using 3D-printed molds. IScience, 2021, 24, 102174.	4.1	9
382	Dynamic behaviors and protection mechanisms of sulcata tortoise carapace. Computer Methods in Biomechanics and Biomedical Engineering, 2021, 24, 1450-1462.	1.6	5
384	Sm0.5Sr0.5CoO3-δbased nacre-like ceramic with enhanced thermal shock resistance for high temperature solar thermal application. Ceramics International, 2021, 47, 11814-11818.	4.8	3
385	Terpene polyacrylate TPA5 shows favorable molecular hydrodynamic properties as a potential bioinspired archaeological wood consolidant. Scientific Reports, 2021, 11, 7343.	3.3	11
386	Nanofibers Produced by Electrospinning of Ultrarigid Polymer Rods Made from Designed Peptide Bundlemers. ACS Applied Materials & Interfaces, 2021, 13, 26339-26351.	8.0	14
387	Learning from nature: Bio-inspiration for damage-tolerant high-performance fibre-reinforced composites. Composites Science and Technology, 2021, 208, 108669.	7.8	45

#	Article	IF	CITATIONS
388	Natural Cornstalk Pith as an Effective Energy Absorbing Cellular Material. Journal of Bionic Engineering, 2021, 18, 600-610.	5.0	5
389	Finite element analysis on multi-toughening mechanism of microstructure of osteon. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 117, 104408.	3.1	10
390	Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting. Construction and Building Materials, 2021, 283, 122732.	7.2	45
391	Synthetic biology as driver for the biologization of materials sciences. Materials Today Bio, 2021, 11, 100115.	5.5	31
392	Multi-scale design of the chela of the hermit crab Coenobita brevimanus. Acta Biomaterialia, 2021, 127, 229-241.	8.3	5
393	Magnetic Field Assisted 3D Printing of Limpet Teeth Inspired Polymer Matrix Composite With Compression Reinforcement. , 2021, , .		1
395	Recent progress in biomaterials for heart valve replacement: Structure, function, and biomimetic design. View, 2021, 2, 20200142.	5.3	9
396	3D Printing of Functional Magnetic Materials: From Design to Applications. Advanced Functional Materials, 2021, 31, 2102777.	14.9	91
397	A constitutive relation of hierarchical composite fibrous materials. International Journal of Fracture, 2021, 229, 215.	2.2	0
398	Bactericidal surfaces: An emerging 21st-century ultra-precision manufacturing and materials puzzle. Applied Physics Reviews, 2021, 8, .	11.3	23
399	Preparation of graphene/Al composites with a lamellar structure by silane cross-linking graphene oxide. Journal of Materials Research and Technology, 2021, 13, 2433-2441.	5.8	14
400	Biomimetic armour design strategies for additive manufacturing: A review. Materials and Design, 2021, 205, 109730.	7.0	90
401	Numerical investigation on the enhanced damping behavior of bio-inspired nacreous composites by introducing interlocked structure. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119, 104442.	3.1	13
402	Bioinspired energy absorbing material designs using additive manufacturing. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119, 104518.	3.1	45
403	Investigation of Mechanical and Physical Properties of Big Sheep Horn as an Alternative Biomaterial for Structural Applications. Materials, 2021, 14, 4039.	2.9	26
404	A new cancellous bone material of silk fibroin/cellulose dual network composite aerogel reinforced by nano-hydroxyapatite filler. International Journal of Biological Macromolecules, 2021, 182, 286-297.	7.5	23
405	Structural Design Variations in Beetle Elytra. Advanced Functional Materials, 2021, 31, 2106468.	14.9	12
406	Multiscale Study of Soil Stabilization Using Bacterial Biopolymers. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, .	3.0	29

#	Article	IF	CITATIONS
407	Miniature Ultralight Deformable Squama Mechanics and Skin Based on Piezoelectric Actuation. Micromachines, 2021, 12, 969.	2.9	3
408	Honeycombâ€based heterostructures: An emerging platform for advanced energy applications: A review on energy systems. Electrochemical Science Advances, 2022, 2, e202100075.	2.8	18
409	Graphene-based PANI composite coatings with fine-controllable 3D hierarchical structures prepared from bio-inspired photo-/colloidal-lithography technique for flexible supercapacitor application. Electrochimica Acta, 2021, 390, 138890.	5.2	9
410	The Journey of Water Remediation through Biomimetic Strategies: A Mechanistic Insight. Advanced Sustainable Systems, 2021, 5, 2100213.	5.3	10
411	A Review on Mechanical Models for Cellular Media: Investigation on Material Characterization and Numerical Simulation. Polymers, 2021, 13, 3283.	4.5	6
412	Magnetic Field-Assisted 3D Printing of Limpet Teeth Inspired Polymer Matrix Composite With Compression Reinforcement. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2022, 144, .	2.2	5
413	<i>MechAnalyze</i> : An Algorithm for Standardization and Automation of Compression Test Analysis. Tissue Engineering - Part C: Methods, 2021, 27, 529-542.	2.1	3
414	Latest Advances in Development of Smart Phase Change Material for Soft Actuators. Advanced Engineering Materials, 2022, 24, 2100863.	3.5	13
415	Dual-gradient structure leads to optimized combination of high fracture resistance and strength-ductility synergy with minimized final catastrophic failure. Journal of Materials Research and Technology, 2021, 15, 901-910.	5.8	7
416	Mechanical and microstructural characterization of functionally graded Inconel 825 - SS316L fabricated using wire arc additive manufacturing. Journal of Materials Research and Technology, 2021, 15, 661-669.	5.8	31
417	Transition boundaries and stiffness optimal design for multi-TPMS lattices. Materials and Design, 2021, 210, 110062.	7.0	40
418	Artificial intelligence and machine learning in design of mechanical materials. Materials Horizons, 2021, 8, 1153-1172.	12.2	237
419	Natural and Synthetic Polymers for Designing Composite Materials. , 2015, , 1-54.		6
420	Introduction to Biotechnologies and Biomimetics for Civil Engineering. , 2015, , 1-19.		3
421	Effects of microfluid in the veins of the deployable hindwings of the Asian ladybeetle on flight performance. Computers in Biology and Medicine, 2020, 121, 103817.	7.0	11
422	Stiff and tough: a comparative study on the tensile properties of shark skin. Zoology, 2018, 126, 154-163.	1.2	10
424	Microstructure and mechanical properties of different keratinous horns. Journal of the Royal Society Interface, 2018, 15, 20180093.	3.4	33
425	How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170607.	2.1	119

#	Article	IF	Citations
427	Review on the self-healing concrete-approach and evaluation techniques. Journal of Ceramic Processing Research, 2019, 20, 1-18.	0.4	7
428	Natures Buildings as Trees: Biologically Inspired Glass as an Energy System. Optics and Photonics Journal, 2015, 05, 136-150.	0.4	7
429	The Influence of Short-term Physical Training Program on Female College Students. , 2013, , .		0
430	DESIGN DE SUPERFÃCIE E OS NOVOS PARADIGMAS DA CIÊNCIA. , 0, , .		0
431	Present Status of Ground Improvement Technologies Using Microbial Functions . Journal of MMIJ, 2015, 131, 155-163.	0.3	3
433	Bio-inspired Lightweight Structural Systems: Learning from Microcomponents in the Nature for the Energy Efficiency in the Architecture. , 2016, , 391-409.		1
434	CHAPTER 12. Halloysite–Dopamine Hybrid Nanotubes to Immobilize Biomacromolecules. RSC Smart Materials, 2016, , 329-353.	0.1	0
436	DEFORMATION MODES AND STRUCTURAL RESPONSE OF DIATOM FRUSTULES. Journal of Materials Science and Engineering With Advanced Technology, 2017, 15, 105-134.	0.1	4
437	CARACTERIZAÇÃO DE COMPÓSITOs POLIMÉRICOs REFORÇADO COM AS ESCAMAS DO PIRARUCU. , 0, , .		0
438	Bionic approach to the design of bridge structures. Part 1: Features of the bionic approach in relation to building structures. Transportnye Sooruženiâ, 2019, 6, .	0.2	1
439	Bionic approach to design of bridge structures. Part 2: Finite-element modeling of an arch pedestrian bridge designed using the bionic approach. Transportnye Sooruženiâ, 2019, 6, .	0.2	1
440	Cross-Scale Biological Models of Species for Future Biomimetic Composite Design: A Review. Coatings, 2021, 11, 1297.	2.6	6
441	Nonlinear elastic aspects of multi-component iron oxide core–shell nanowires by means of atom probe tomography, analytical microscopy, and nonlinear mechanics. Nanoscale Advances, 2020, 2, 5710-5727.	4.6	1
442	Tribological properties and self-compensating lubrication mechanisms of Ni3Al matrix bio-inspired shell-like composite structure. Applied Surface Science, 2022, 573, 151462.	6.1	17
443	Multifunctional chitosan-based film loaded with hops β-acids: Preparation, characterization, controlled release and antibacterial mechanism. Food Hydrocolloids, 2022, 124, 107337.	10.7	18
444	Bioinspired Nanoparticles for Efficient Drug Delivery System. , 2020, , 540-574.		0
445	Silk-Based Hierarchical Materials for High Mechanical Performance at the Interface of Modeling, Synthesis, and Characterization. , 2020, , 1547-1574.		0
446	Bioinspired Nanoparticles for Efficient Drug Delivery System. Advances in Chemical and Materials Engineering Book Series, 0, , 69-103.	0.3	1

#	Article	IF	CITATIONS
447	Directed Assembly of Largeâ€6ized, Mechanically Robust, Nacreâ€Inspired Graphene Oxide/Sodium Alginate Nanocomposite Paper. Macromolecular Materials and Engineering, 2020, 305, 2000493.	3.6	3
448	Diabolical ironclad beetles inspire tougher joints for engineering applications. Nature, 2020, 586, 502-504.	27.8	6
449	A mechanistic approach for inâ€vitro anticancer activity via nucleic acid fragmentation by copper(II) complex anchored on MCMâ€41. Applied Organometallic Chemistry, 2022, 36, .	3.5	3
450	An artful microstructure in nacre: Superior resistance to fatigue deformation. International Journal of Fatigue, 2022, 157, 106705.	5.7	3
451	Nanomachines and nanorobotics: improving cancer diagnosis and therapy. , 2022, , 503-543.		3
452	A Review on the Performance Evaluation of Autonomous Self-Healing Bacterial Concrete: Mechanisms, Strength, Durability, and Microstructural Properties. Journal of Composites Science, 2022, 6, 23.	3.0	24
453	Recapitulating dynamic ECM ligand presentation at biomaterial interfaces: Molecular strategies and biomedical prospects. Exploration, 2022, 2, .	11.0	19
454	Varying Synthesis Conditions and Comprehensive Characterization of Fluorine-Doped Hydroxyapatite Nanocrystals in a Simulated Body Fluid. Crystals, 2022, 12, 139.	2.2	1
455	Controlling failure regimes in Brick-and-Mortar structures. Extreme Mechanics Letters, 2022, 51, 101596.	4.1	6
456	Review on materials and structures inspired by bamboo. Construction and Building Materials, 2022, 325, 126656.	7.2	28
457	3D mechanics of scaled membranes. International Journal of Solids and Structures, 2022, 241, 111498.	2.7	2
458	Recent advances in high-strength and high-toughness polyurethanes based on supramolecular interactions. Polymer Chemistry, 2022, 13, 2420-2441.	3.9	23
459	Topological study about failure behavior and energy absorption of honeycomb structures under various strain rates. Defence Technology, 2023, 24, 214-227.	4.2	7
460	Extreme strain rate deformation of nacre-inspired graphene/copper nanocomposites under laser-induced hypersonic micro-projectile impact. Composites Part B: Engineering, 2022, 235, 109763.	12.0	13
461	A Biomimetic Approach to Protective Glove Design: Inspirations from Nature and the Structural Limitations of Living Organisms. Autex Research Journal, 2023, 23, 89-102.	1.1	2
462	The effect of Sr addition on the microstructure and corrosion behaviour of a Mg-Zn-Ca alloy. Surface and Coatings Technology, 2022, 437, 128328.	4.8	19
463	Comparison of cracking behavior of nanocrystalline Cu film on substrates of different plastic deformation mechanisms. Materials Today Communications, 2022, 31, 103289.	1.9	1
464	Measurement spatial deformation of bone loading based on 3D surface modeling. , 2021, , .		0

#	Article	IF	CITATIONS
465	Argâ^'Glyâ^'Asp peptide functionalized poly-amino acid/ poly (p-benzamide) copolymer with enhanced mechanical properties and osteogenicity. Materials Science and Engineering C, 2022, 133, 112627.	7.3	5
466	Through-thickness perforated steel plates optimized for ballistic impact applications. Materials and Design, 2021, 212, 110257.	7.0	5
467	Full compression response of FG-based scaffolds with varying porosity via an effective numerical scheme. International Journal of Mechanical Sciences, 2022, 223, 107294.	6.7	12
468	Bioinspired ceramics for bone tissue applications. , 2022, , 111-143.		0
469	Additive manufacturing of bio-implants using functionally graded materials. AIP Conference Proceedings, 2022, , .	0.4	2
470	Quantification of Bush-Cricket Acoustic Trachea Mechanics Using AFM Nanoindentation. SSRN Electronic Journal, 0, , .	0.4	0
471	Elastomer–Hydrogel Systems: From Bio-Inspired Interfaces to Medical Applications. Polymers, 2022, 14, 1822.	4.5	10
472	Bamboo-Based Microfluidic System for Sustainable Bio-devices. Environmental Footprints and Eco-design of Products and Processes, 2022, , 141-169.	1.1	4
475	Graded biological materials and additive manufacturing technologies for producing bioinspired graded materials: An overview. Composites Part B: Engineering, 2022, 242, 110086.	12.0	42
476	Advances in the use of recycled non-ferrous slag as a resource for non-ferrous metal mine site remediation. Environmental Research, 2022, 213, 113533.	7.5	13
477	Shock-Resistant and Energy-Absorbing Properties of Bionic NiTi Lattice Structure Manufactured by SLM. Journal of Bionic Engineering, 2022, 19, 1684-1698.	5.0	8
478	Correlative Structure-Property Characterisation of the Leafcutter Ant (<i>Atta cepholotes</i>) Mandible. Microscopy and Microanalysis, 2022, 28, 1342-1346.	0.4	4
479	Ordered stereom structure in sea urchin tubercles: High capability for energy dissipation. Acta Biomaterialia, 2022, 150, 310-323.	8.3	3
480	Biological activity of peptides isolated from feather keratin waste through microbial and enzymatic hydrolysis. Electronic Journal of Biotechnology, 2022, 60, 11-18.	2.2	7
481	Low velocity impact behavior of bioinspired hierarchical armor with filling layer. Mechanics of Advanced Materials and Structures, 2023, 30, 4982-4995.	2.6	6
482	Grainâ€Slip Derived Network Topology to Remarkable Strength–Toughness Combination of Perovskite Film for Flexible Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	11
483	Hierarchical self-assembly of Zirconium toughened Alumina based bioinspired microporous material by freeze casting method. Journal of Porous Materials, 2023, 30, 1-10.	2.6	1
484	Research on plasma arc additive manufacturing of Inconel 625 Ni–Cu functionally graded materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 853, 143796.	5.6	15

#	Article	IF	CITATIONS
485	Biological importance and pharmaceutical significance of keratin: A review. International Journal of Biological Macromolecules, 2022, 219, 395-413.	7.5	16
486	Deciphering structural biological materials: Viewing from the mechanics perspective and their prospects. Composites Part B: Engineering, 2022, 245, 110213.	12.0	16
487	Nacre-inspired topological design tuning the impact resistant behaviors of composite plates. Composite Structures, 2022, 299, 116077.	5.8	7
488	Room-temperature self-healing supramolecular polyurethanes based on the synergistic strengthening of biomimetic hierarchical hydrogen-bonding interactions and coordination bonds. Chemical Engineering Journal, 2023, 451, 138673.	12.7	67
489	Evaluating the adsorption performance of functional building material with HCHO remover. Frontiers in Built Environment, 0, 8, .	2.3	2
490	Analysis of the topological motifs of the cellular structure of the tri-spine horseshoe crab (Tachypleus tridentatus) and its associated mechanical properties. Bioinspiration and Biomimetics, 0, , .	2.9	0
491	Quantification of bush-cricket acoustic trachea mechanics using Atomic Force Microscopy nanoindentation. Acta Biomaterialia, 2022, 153, 399-410.	8.3	1
492	Biomineralization of bone tissue: calcium phosphate-based inorganics in collagen fibrillar organic matrices. Biomaterials Research, 2022, 26, .	6.9	26
493	Ice-Templated Fabrication of Porous Materials with Bioinspired Architecture and Functionality. Accounts of Materials Research, 2022, 3, 1173-1185.	11.7	18
494	Gradient Magnesium Content Affects Nanomechanics via Decreasing the Size and Crystallinity of Nanoparticles of Pseudoosteodentine of the Pacific Cutlassfish, <i>Trichiurus lepturus</i> Teeth. ACS Omega, 2022, 7, 39214-39223.	3.5	0
495	Bending Study of Six Biological Models for Design of High Strength and Tough Structures. Biomimetics, 2022, 7, 176.	3.3	5
496	Thickness effect on the mechanical properties of nacre in Hyriopsis cumingii under three-point bending. Engineering Fracture Mechanics, 2022, 276, 108869.	4.3	4
497	Learning the stress-strain fields in digital composites using Fourier neural operator. IScience, 2022, 25, 105452.	4.1	14
498	Material removal and surface damage in high-speed grinding of enamel. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 136, 105532.	3.1	1
499	In situ experimental study on the synergistic strengthening and toughening mechanisms of multiple pore structures in deer antler. Materials and Design, 2022, 224, 111306.	7.0	2
500	Bio-inspired 3D-printed lattice structures for energy absorption applications: A review. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2023, 237, 503-542.	1.1	6
501	Application of Biomineralization Technology to Self-Healing of Fiber-Reinforced Lightweight Concrete after Exposure to High Temperatures. Materials, 2022, 15, 7796.	2.9	4
503	Lessons from Nature for Carbonâ€Based Nanoarchitected Metamaterials. Small Science, 2022, 2, .	9.9	8

#	Article	IF	CITATIONS
504	Toughening a bulk metallic glass through mode II fracture under mode I loading. Journal of Non-Crystalline Solids, 2023, 600, 122007.	3.1	0
505	Sustainable Biodegradation and Extraction of Keratin with Its Applications. , 2022, , 1-35.		0
506	Toughening two-dimensional hybrid materials by integrating carbon nanotubes. Surfaces and Interfaces, 2023, 36, 102559.	3.0	2
507	Evaluating the performance of a unique design of biomimetic armor. AIP Conference Proceedings, 2022, , .	0.4	1
508	Research Progress of Shape Memory Polymer and 4D Printing in Biomedical Application. Advanced Healthcare Materials, 2023, 12, .	7.6	21
509	Mechanical and Recyclable Properties of Polyimine Enhanced by Biomimetic Modification of Graphene Oxide Sheets/Silicon Carbide Nano-Whiskers. Nanomaterials, 2022, 12, 4486.	4.1	0
510	Survival in desert: Extreme water adaptations and bioinspired structural designs. IScience, 2023, 26, 105819.	4.1	6
511	A Review of Image-Based Simulation Applications in High-Value Manufacturing. Archives of Computational Methods in Engineering, 2023, 30, 1495-1552.	10.2	8
512	Preparation and thermal properties of bionic nacre composite materials based on exfoliated montmorillonite. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	0
513	Understanding Frugal Engineering for Equity: Exploring Convergence of Biological Designs and Social Innovations. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2023, 145, .	2.2	2
514	Sustainability assessment, structural performance and challenges of self-healing bio-mineralized concrete: A systematic review for built environment applications. Journal of Building Engineering, 2023, 66, 105839.	3.4	9
515	Scalable Manufacturing of Mechanical Robust Bioinspired Ceramic–Resin Composites with Locally Tunable Heterogeneous Structures. Advanced Materials, 2023, 35, .	21.0	7
516	Multi-hit damage and perforation of plates inspired by the attacks of the mantis shrimp. Mechanics of Materials, 2023, 181, 104587.	3.2	1
517	Local composition detouring for defect-free compositionally graded materials in additive manufacturing. Materials Research Letters, 2023, 11, 586-594.	8.7	2
518	Bioinspired design optimization for pseudo-ductility in platelet fibre laminates. Composites Part A: Applied Science and Manufacturing, 2023, 168, 107494.	7.6	1
519	Recent progress on surface texturing and solid lubricants in tribology: Designs, properties, and mechanisms. Materials Today Communications, 2023, 35, 105854.	1.9	21
520	Bio-Inspired of Pyramidical Concrete Barrier Walls against the Effects of Explosion Waves. Open Journal of Civil Engineering, 2022, 12, 615-629.	0.5	0
521	A review of the material and mechanical properties of select Ganoderma fungi structures as a source for bioinspiration. Journal of Materials Science, 2023, 58, 3401-3420.	3.7	3

	CITATION	Report	
#	ARTICLE	IF	CITATIONS
522	centrifugal freezing and pressure infiltration. Ceramics International, 2023, 49, 17719-17728.	4.8	1
523	Design of hierarchical lattice structures attainable by additive manufacturing techniques. IOP Conference Series: Materials Science and Engineering, 2023, 1275, 012003.	0.6	0
524	Grayscale Digital Light Processing Gradient Printing for Stress Concentration Reduction and Material Toughness Enhancement. Journal of Applied Mechanics, Transactions ASME, 2023, 90, .	2.2	5
525	Materials, design, and technology of body armor. , 2023, , 259-301.		0
526	Software package for synthetic data generation of composite materials. AIP Conference Proceedings, 2023, , .	0.4	0
527	Principles of tissue stress. , 2023, , 175-313.		0
528	Biomineral mesostructure. MRS Bulletin, 2023, 48, 413-420.	3.5	3
529	Lightweight Structural Biomaterials with Excellent Mechanical Performance: A Review. Biomimetics, 2023, 8, 153.	3.3	2
530	Efficient bio-cementation between silicate tailings and biogenic calcium carbonate: Nano-scale structure and mechanism of the interface. Environmental Pollution, 2023, 332, 121665.	7.5	4
531	Bio-functional collagen/casein/chitosan scaffolds regulated porous TFC membrane for acid recovery. Desalination, 2023, 558, 116627.	8.2	1
532	Energy absorption characteristics of the bionic lotus petiole structure under transverse load. Thin-Walled Structures, 2023, 187, 110748.	5.3	3
533	Sustainable Biodegradation and Extraction of Keratin with Its Applications. , 2023, , 713-747.		0
534	Disrupting Density-Dependent Property Scaling in Hierarchically Architected Foams. ACS Nano, 2023, 17, 10452-10461.	14.6	1
535	Synergistic enhancement of strength, ductility, and toughness in a low carbon micro-alloy steel with an ultrafine-grained heterogeneous lamellar structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 878, 145205.	5.6	3
536	Evaluación numérica de la rigidez y la tenacidad en materiales compuestos bioinspirados. Revista UIS IngenierÃas, 2023, 22, .	0.2	0
537	Additive Manufacturing of Porous Biominerals. Advanced Functional Materials, 2023, 33, .	14.9	2
538	Computational Mechanics of Form-Fitting 3D-Printed Lattice-Based Wrist-Hand Orthosis for Motor Neuron Disease. Biomedicines, 2023, 11, 1787.	3.2	3
539	Bioinspired Macroporous Materials of MXene Nanosheets: Iceâ€Templated Assembly and Multifunctional Applications. Small Methods, 0, , .	8.6	2

#	Article	IF	CITATIONS
540	Three-dimensional hierarchical microstructures of the suture of turtle shell and its effect on the mechanical properties. Engineering Fracture Mechanics, 2023, 285, 109302.	4.3	0
541	Extraction, properties, and applications of keratin-based films and blends. , 2023, , 399-420.		0
542	Supporting Multifunctional Bio-Inspired Design Concept Generation through Case-Based Expandable Domain Integrated Design (xDID) Model. Designs, 2023, 7, 86.	2.4	0
543	A review of nacre-inspired materials: Chemistry, strengthening-deformation mechanism, synthesis, and applications. Progress in Materials Science, 2023, 139, 101168.	32.8	7
544	Tribological Performance and Model Establishment of Self-Compensating Lubrication Film Inspired by the Functional Surfaces of Scapharca subcrenata Shells. Coatings, 2023, 13, 1399.	2.6	2
545	Demystifying the influence of design parameters of nature-inspired materials for supercapacitors. Journal of Energy Storage, 2023, 72, 108670.	8.1	6
546	Cross-scale design of energy dissipative composites using self-repairing interfaces based on sacrificial bonds. Materials and Design, 2023, 233, 112283.	7.0	0
547	Nanoencapsulation in polymeric materials: Weaving magical coats for microorganisms. Nano Today, 2023, 52, 101973.	11.9	3
548	Functional significance of lamellar architecture in marine sponge fibers: Conditions for when splitting a cylindrical tube into an assembly of tubes will decrease its bending stiffness. Journal of the Mechanics and Physics of Solids, 2023, 181, 105405.	4.8	0
549	Ballistic Behavior of Bioinspired Nacre-like Composites. Biomimetics, 2023, 8, 341.	3.3	0
550	Friction and Wear Behavior of G20CrMo with Cylindrical Texture Filled with Sn-Ag-Cu under Different Conditions. Journal of Materials Engineering and Performance, 0, , .	2.5	0
551	Mechanical Behavior of Bamboo, and Its Biomimetic Composites and Structural Members: A Systematic Review. Journal of Bionic Engineering, 2024, 21, 56-73.	5.0	0
552	Challenges and opportunities for innovation in bioinformed sustainable materials. Communications Materials, 2023, 4, .	6.9	2
553	Bio-inspired nacre and helicoidal composites: From structure to mechanical applications. Thin-Walled Structures, 2023, 192, 111146.	5.3	2
554	How to Survive a (Juvenile) Piranha Attack: An Integrative Approach to Evaluating Predator Performance. Integrative Organismal Biology, 2023, 5, .	1.8	0
555	Additive Manufacturing of Functionally Graded Materials: A Comprehensive Review. International Journal of Precision Engineering and Manufacturing, 2024, 25, 165-197.	2.2	1
556	Unicellular Organisms with Versatile Solutions at the Microâ€Scale: Functional Materials and Principles in Ciliates. Advanced Functional Materials, 0, , .	14.9	0
557	Application of Biomineralization Technology in the Stabilization of Electric Arc Furnace Reducing Slag. Applied Sciences (Switzerland), 2023, 13, 10435.	2.5	0

#	Article	IF	CITATIONS
558	Research and application of biomimetic modified ceramics and ceramic composites: A review. Journal of the American Ceramic Society, 2024, 107, 663-697.	3.8	0
559	Revealing the predictive power of neural operators for strain evolution in digital composites. Journal of the Mechanics and Physics of Solids, 2023, 181, 105444.	4.8	1
560	Study of the in-plane crashworthiness performance of 6-legged starfish-inspired structures. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 0, , .	1.1	0
562	Investigation of mechanical, microstructural and corrosive properties of ERNiCrMo-3 – ERCuSiA based additively manufactured functionally graded material. International Journal on Interactive Design and Manufacturing, 0, , .	2.2	0
563	Bioinspired building materials—lessons from nature. Frontiers in Materials, 0, 10, .	2.4	0
564	Rational design and additive manufacturing of grain boundary-inspired, multi-architecture lattice structures. Materials and Design, 2023, 235, 112448.	7.0	3
565	Generating three-dimensional bioinspired microstructures using transformer-based generative adversarial network. Journal of Materials Research and Technology, 2023, 27, 6117-6134.	5.8	0
566	Correlative chemical and elemental nano-imaging of morphology and disorder at the nacre-prismatic region interface in Pinctada margaritifera. Scientific Reports, 2023, 13, .	3.3	1
568	A review of the types and tessellation of lattice structures, their effectiveness and limitations in mimicking natural cellular structures. MATEC Web of Conferences, 2023, 388, 06008.	0.2	0
569	Bioâ€Inspired Functional Materials for Environmental Applications. Small Methods, 2024, 8, .	8.6	0
570	Tunable architectures in Al/Al2O3 composites for enhanced damage tolerance using zirconium acetate-mediated ice-templating. Materials and Design, 2024, 237, 112608.	7.0	0
571	BioinspiredLLM: Conversational Large Language Model for the Mechanics of Biological and Bioâ€Inspired Materials. Advanced Science, 0, , .	11.2	2
572	A review on the potential challenges in the application of biocementation in cement-based materials, possible solutions and way forward. Materials Today Communications, 2024, 38, 107986.	1.9	0
573	Snake-scale stimulated robust biomimetic composite triboelectric layer for energy harvesting and smart health monitoring. Nano Energy, 2024, 122, 109266.	16.0	1
574	Biomimetic Design Approaches for Impact Applications: A Review. Springer Proceedings in Materials, 2024, , 219-232.	0.3	0
575	Enhancing bending performance in <scp>3D</scp> woven spacer composites with lightweight biomimetic integrated doubleâ€spacer structure. Polymer Composites, 0, , .	4.6	0
576	Low-velocity impact response of a novel bionic turtle shell back armor sandwich structure. Journal of Materials Research and Technology, 2024, 29, 910-923.	5.8	0
577	A simple method for fabricating polymer/ceramic functionally graded material scaffold. Ceramics International, 2024, 50, 14497-14512.	4.8	0

		CITATION R	EPORT	
#	Article		IF	CITATIONS
578	Nanoscale Structural Characteristics and In Vitro Bioactivity of Borosilicate–Poly(vin (PVA) Hybrid Aerogels for Bone Regeneration. ACS Applied Nano Materials, 2024, 7, 40	yl alcohol) 092-4102.	5.0	0
579	Peptide recovery from chicken feather keratin and their anti-biofilm properties against methicillin-resistant Staphylococcus aureus (MRSA). World Journal of Microbiology an Biotechnology, 2024, 40, .	d	3.6	0
580	Convolution Kernel Function and Its Invariance Properties of Bone Fractal Operators. F Fractional, 2024, 8, 151.	ractal and	3.3	0
581	Numerical modelling of Ti6Al4V(ELI) hierarchical honeycomb structures of order one a Results in Engineering, 2024, 21, 102024.	t the vertices.	5.1	0
582	Evaluation of manufacturing methods for pultruded rod-based hierarchical composite members with minimal porosity. Plastics, Rubber and Composites, 2024, 53, 25-35.	structural	2.0	0