Extinction debt of high-mountain plants under twenty-

Nature Climate Change 2, 619-622 DOI: 10.1038/nclimate1514

Citation Report

#	Article	IF	CITATIONS
1	Long-term temperature and precipitation trends at the Coweeta Hydrologic Laboratory, Otto, North Carolina, USA. Hydrology Research, 2012, 43, 890-901.	1.1	115
2	Short-term variation in species richness across an altitudinal gradient of alpine summits. Biodiversity and Conservation, 2012, 21, 3157-3186.	1.2	16
3	Dispersal and species' responses to climate change. Oikos, 2013, 122, 1532-1540.	1.2	318
4	Microclimate moderates plant responses to macroclimate warming. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18561-18565.	3.3	523
5	Appropriateness of fullâ€, partial―and noâ€dispersal scenarios in climate change impact modelling. Diversity and Distributions, 2013, 19, 1224-1234.	1.9	88
6	Moving forward: dispersal and species interactions determine biotic responses to climate change. Annals of the New York Academy of Sciences, 2013, 1297, 44-60.	1.8	120
7	Phenology and seed setting success of snowbed plant species in contrasting snowmelt regimes in the Central Pyrenees. Flora: Morphology, Distribution, Functional Ecology of Plants, 2013, 208, 220-231.	0.6	15
8	The mechanisms causing extinction debts. Trends in Ecology and Evolution, 2013, 28, 341-346.	4.2	218
9	Predicting persistence in a changing climate: flow direction and limitations to redistribution. Oikos, 2013, 122, 161-170.	1.2	41
10	Disentangling the drivers of metacommunity structure across spatial scales. Journal of Biogeography, 2013, 40, 1560-1571.	1.4	113
11	Projected latitudinal and regional changes in vascular plant diversity through climate change: short-term gains and longer-term losses. Biodiversity and Conservation, 2013, 22, 1467-1483.	1.2	6
12	A road map for integrating ecoâ€evolutionary processes into biodiversity models. Ecology Letters, 2013, 16, 94-105.	3.0	215
13	Climate change impacts on biodiversity in Switzerland: A review. Journal for Nature Conservation, 2013, 21, 154-162.	0.8	61
14	Tools for integrating range change, extinction risk and climate change information into conservation management. Ecography, 2013, 36, 956-964.	2.1	111
15	Climate or migration: what limited <scp>E</scp> uropean beech postâ€glacial colonization?. Global Ecology and Biogeography, 2013, 22, 1217-1227.	2.7	56
16	The Future of Species Under Climate Change: Resilience or Decline?. Science, 2013, 341, 504-508.	6.0	549
17	Habitat area and climate stability determine geographical variation in plant species range sizes. Ecology Letters, 2013, 16, 1446-1454.	3.0	130
18	Working toward integrated models of alpine plant distribution. Alpine Botany, 2013, 123, 41-53.	1.1	31

#	Article	IF	CITATIONS
19	Climate Change Impacts on Global Food Security. Science, 2013, 341, 508-513.	6.0	2,131
20	Community shifts under climate change: Mechanisms at multiple scales. American Journal of Botany, 2013, 100, 1422-1434.	0.8	42
21	Advancing the long view of ecological change in tundra systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120477.	1.8	20
22	A greener Greenland? Climatic potential and long-term constraints on future expansions of trees and shrubs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120479.	1.8	74
23	Disequilibrium vegetation dynamics under future climate change. American Journal of Botany, 2013, 100, 1266-1286.	0.8	387
24	Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across <scp>N</scp> orthern <scp>E</scp> urope. Global Change Biology, 2013, 19, 1470-1481.	4.2	200
25	On the importance of edaphic variables to predict plant species distributions – limits and prospects. Journal of Vegetation Science, 2013, 24, 591-592.	1.1	40
26	Positive effects of an extremely hot summer on propagule rain in upper alpine to subnival habitats of the Central Eastern Alps. Plant Ecology and Diversity, 2013, 6, 467-474.	1.0	6
27	Uncertainty in assessing the impacts of global change with coupled dynamic species distribution and population models. Global Change Biology, 2013, 19, 858-869.	4.2	53
28	Europe's other debt crisis caused by the long legacy of future extinctions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7342-7347.	3.3	102
29	Realized climatic niche of North American plant taxa lagged behind climate during the end of the Pleistocene. American Journal of Botany, 2013, 100, 1255-1265.	0.8	36
30	Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environmental Research Letters, 2013, 8, 024043.	2.2	95
31	The oldest monitoring site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835. Plant Ecology and Diversity, 2013, 6, 447-455.	1.0	84
32	Millennial-Scale Temperature Change Velocity in the Continental Northern Neotropics. PLoS ONE, 2013, 8, e81958.	1.1	34
33	An horizon scan of biogeography. Frontiers of Biogeography, 2013, 5, .	0.8	5
34	Assessing the Effectiveness of Artistic Place-Based Climate Change Interpretation. Journal of Interpretation Research, 2014, 19, 7-24.	0.7	7
35	Current vegetation changes in an alpine late snowbed community in the south-eastern Alps (N-Italy). Alpine Botany, 2014, 124, 105-113.	1.1	34
36	Elevation matters: contrasting effects of climate change on the vegetation development at different elevations in the Bavarian Alps. Alpine Botany, 2014, 124, 143-154.	1.1	35

#	Article	IF	CITATIONS
37	Demography as the basis for understanding and predicting range dynamics. Ecography, 2014, 37, 1149-1154.	2.1	49
38	Space matters when defining effective management for invasive plants. Diversity and Distributions, 2014, 20, 1029-1043.	1.9	30
39	Forecasting plant range collapse in a mediterranean hotspot: when dispersal uncertainties matter. Diversity and Distributions, 2014, 20, 72-83.	1.9	19
40	Accounting for tree line shift, glacier retreat and primary succession in mountain plant distribution models. Diversity and Distributions, 2014, 20, 1379-1391.	1.9	24
41	<scp>FATE</scp> â€ <scp>HD</scp> : a spatially and temporally explicit integrated model for predicting vegetation structure and diversity at regional scale. Global Change Biology, 2014, 20, 2368-2378.	4.2	32
42	Modelling the <scp>H</scp> olocene migrational dynamics of <i><scp>F</scp>agus sylvatica</i> â€ <scp>L.</scp> and <i><scp>P</scp>icea abies</i> (<scp>L</scp> .) <scp>H</scp> . <scp>K</scp> arst. Global Ecology and Biogeography, 2014, 23, 658-668.	2.7	18
43	The European functional tree of bird life in the face of global change. Nature Communications, 2014, 5, 3118.	5.8	52
44	Mechanistic modelling of animal dispersal offers new insights into range expansion dynamics across fragmented landscapes. Ecography, 2014, 37, 1240-1253.	2.1	61
45	Simulating longâ€distance seed dispersal in a dynamic vegetation model. Global Ecology and Biogeography, 2014, 23, 89-98.	2.7	34
46	A century of chasing the ice: delayed colonisation of iceâ€free sites by ground beetles along glacier forelands in the Alps. Ecography, 2014, 37, 33-42.	2.1	31
47	Rust fungi and global change. New Phytologist, 2014, 201, 770-780.	3.5	123
48	A new statistical framework for the quantification of covariate associations with species distributions. Methods in Ecology and Evolution, 2014, 5, 421-432.	2.2	32
49	Dominant Drivers of Seedling Establishment in a Fire-Dependent Obligate Seeder: Climate or Fire Regimes?. Ecosystems, 2014, 17, 258-270.	1.6	40
50	Using dynamic vegetation models to simulate plant range shifts. Ecography, 2014, 37, 1184-1197.	2.1	89
51	Anticipating the spatioâ€ŧemporal response of plant diversity and vegetation structure to climate and land use change in a protected area. Ecography, 2014, 37, 1230-1239.	2.1	42
52	Topoâ€elimatic microrefugia explain the persistence of a rare endemic plant in the Alps during the last 21 millennia. Global Change Biology, 2014, 20, 2286-2300.	4.2	85
53	How interactions between animal movement and landscape processes modify local range dynamics and extinction risk. Biology Letters, 2014, 10, 20140198.	1.0	25
54	Loss of frugivore seed dispersal services under climate change. Nature Communications, 2014, 5, 3971.	5.8	49

#	Article	IF	CITATIONS
55	Life history and spatial traits predict extinction risk due to climate change. Nature Climate Change, 2014, 4, 217-221.	8.1	341
56	Variation of biomass and morphology of the cushion plant <scp><i>Androsace tapete</i></scp> along an elevational gradient in the <scp>T</scp> ibetan <scp>P</scp> lateau. Plant Species Biology, 2014, 29, E64.	0.6	12
57	KISSMig – a simple model for R to account for limited migration in analyses of species distributions. Ecography, 2014, 37, 1282-1287.	2.1	31
58	Identifying the driving factors behind observed elevational range shifts on <scp>E</scp> uropean mountains. Global Ecology and Biogeography, 2014, 23, 876-884.	2.7	110
59	Climate refugia: joint inference from fossil records, species distribution models and phylogeography. New Phytologist, 2014, 204, 37-54.	3.5	361
60	Living with extremes: the dark side of global climate change. Plant Ecology, 2014, 215, 673-675.	0.7	10
61	Ecological responses of plant species and communities to climate warming: upward shift or range filling processes?. Climatic Change, 2014, 123, 201-214.	1.7	71
62	Recent ecological responses to climate variability and human impacts in the Nianbaoyeze Mountains (eastern Tibetan Plateau) inferred from pollen, diatom and tree-ring data. Journal of Paleolimnology, 2014, 51, 287-302.	0.8	26
63	Predictive traits to the rescue. Nature Climate Change, 2014, 4, 175-176.	8.1	12
64	Does probability of occurrence relate to population dynamics?. Ecography, 2014, 37, 1155-1166.	2.1	127
65	Are different facets of plant diversity well protected against climate and land cover changes? A test study in the French Alps. Ecography, 2014, 37, 1254-1266.	2.1	52
66	Fine-grain modeling of species' response to climate change: holdouts, stepping-stones, and microrefugia. Trends in Ecology and Evolution, 2014, 29, 390-397.	4.2	272
67	A model-based method to evaluate the ability of nature reserves to protect endangered tree species in the context of climate change. Forest Ecology and Management, 2014, 327, 48-54.	1.4	30
68	Converting probabilistic tree species range shift projections into meaningful classes for management. Journal of Environmental Management, 2014, 134, 153-165.	3.8	21
69	Terrestrial and Inland Water Systems. , 0, , 271-360.		25
71	Determinants of bird species richness, endemism, and island network roles in Wallacea and the West Indies: is geography sufficient or does current and historical climate matter?. Ecology and Evolution, 2014, 4, 4019-4031.	0.8	20
72	Plant and arthropod colonisation of a glacier foreland in a peripheral mountain range. Biodiversity, 2015, 16, 213-223.	0.5	24
73	Ecosystem change in high tropical mountains. , 0, , 227-246.		3

#	Article	IF	CITATIONS
74	Scenarios of large mammal loss in Europe for the 21 st century. Conservation Biology, 2015, 29, 1028-1036.	2.4	23
75	Modelling the effect of habitat fragmentation on climateâ€driven migration of European forest understorey plants. Diversity and Distributions, 2015, 21, 1375-1387.	1.9	32
76	Largeâ€scale fuzzy ruleâ€based prediction for suitable chestnut ink disease sites: a case study in northâ€east <scp>I</scp> taly. Forest Pathology, 2015, 45, 311-323.	0.5	8
77	Microclimates buffer the responses of plant communities to climate change. Global Ecology and Biogeography, 2015, 24, 1340-1350.	2.7	105
78	Extending spatial modelling of climate change responses beyond the realized niche: estimating, and accommodating, physiological limits and adaptive evolution. Global Ecology and Biogeography, 2015, 24, 1192-1202.	2.7	73
79	Potential Effects of Forest Disturbances and Management on Water Resources in a Warmer Climate. Forest Science, 2015, 61, 895-903.	0.5	13
80	Hot topics in biodiversity and climate change research. F1000Research, 2015, 4, 928.	0.8	0
81	Delayed biodiversity change: no time to waste. Trends in Ecology and Evolution, 2015, 30, 375-378.	4.2	92
82	Climatic Risk and Distribution Atlas of European Bumblebees. BioRisk, 0, 10, 1-236.	0.2	171
83	How to describe species richness patterns for bryophyte conservation?. Ecology and Evolution, 2015, 5, 5443-5455.	0.8	12
84	Alpine biodiversity and refugia in a changing climate. Biodiversity, 2015, 16, 193-195.	0.5	9
85	Soil thermal buffer and regeneration niche may favour calcareous fen resilience to climate change. Folia Geobotanica, 2015, 50, 293-301.	0.4	32
86	Contrasting the effects of environment, dispersal and biotic interactions to explain the distribution of invasive plants in alpine communities. Biological Invasions, 2015, 17, 1407-1423.	1.2	42
87	Predicting changes in the distribution and abundance of species under environmental change. Ecology Letters, 2015, 18, 303-314.	3.0	348
88	Soil warming and <scp>CO</scp> ₂ enrichment induce biomass shifts in alpine tree line vegetation. Global Change Biology, 2015, 21, 2005-2021.	4.2	65
89	Potential warm-stage microrefugia for alpine plants: Feedback between geomorphological and biological processes. Ecological Complexity, 2015, 21, 87-99.	1.4	66
90	Validation of and comparison between a semidistributed rainfall–runoff hydrological model (PREVAH) and a spatially distributed snowâ€evolution model (SnowModel) for snow cover prediction in mountain ecosystems. Ecohydrology, 2015, 8, 1181-1193.	1,1	5
91	Herb layer extinction debt in highly fragmented temperate forests – Completely paid after 160 years?. Biological Conservation, 2015, 182, 164-172.	1.9	39

#	ARTICLE	IF	CITATIONS
92	Interactive effects of climate change and fire on metapopulation viability of a forest-dependent frog in south-eastern Australia. Biological Conservation, 2015, 190, 142-153.	1.9	11
93	Accelerating extinction risk from climate change. Science, 2015, 348, 571-573.	6.0	1,561
94	Is sexual reproduction of high-mountain plants endangered by heat?. Oecologia, 2015, 177, 1195-1210.	0.9	14
95	Linking environmental filtering and disequilibrium to biogeography with a community climate framework. Ecology, 2015, 96, 972-985.	1.5	70
96	Modeling rates of life form cover change in burned and unburned alpine heathland subject to experimental warming. Oecologia, 2015, 178, 615-628.	0.9	20
97	Species' intrinsic traits inform their range limitations and vulnerability under environmental change. Global Ecology and Biogeography, 2015, 24, 849-858.	2.7	70
98	Holistic Approach in Invasive Species Research: The Case of the Tomato Leaf Miner in the Mediterranean Basin. Agroecology and Sustainable Food Systems, 2015, 39, 436-468.	1.0	14
99	Historical legacies accumulate to shape future biodiversity in an era of rapid global change. Diversity and Distributions, 2015, 21, 534-547.	1.9	112
100	Vegetation change at high elevation: scale dependence and interactive effects on Niwot Ridge. Plant Ecology and Diversity, 2015, 8, 713-725.	1.0	40
101	The silent extinction: climate change and the potential hybridization-mediated extinction of endemic high-mountain plants. Biodiversity and Conservation, 2015, 24, 1843-1857.	1.2	73
102	Longâ€ŧerm shifts in the phenology of rare and endemic Rocky Mountain plants. American Journal of Botany, 2015, 102, 1268-1276.	0.8	40
103	Seeds at risk: How will a changing alpine climate affect regeneration from seeds in alpine areas?. Alpine Botany, 2015, 125, 59-68.	1.1	38
104	The Influence of Paleoclimate on Present-Day Patterns in Biodiversity and Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 2015, 46, 551-572.	3.8	229
105	The role of demography, intraâ€species variation, and species distribution models in species' projections under climate change. Ecography, 2015, 38, 221-230.	2.1	35
106	Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecology and Diversity, 2015, 8, 305-315.	1.0	115
107	How climate, migration ability and habitat fragmentation affect the projected future distribution of European beech. Global Change Biology, 2015, 21, 897-910.	4.2	65
108	Quantifying biodiversity impacts of climate change and bioenergy: the role of integrated global scenarios. Regional Environmental Change, 2015, 15, 961-971.	1.4	12
109	Ain't no mountain high enough: the impact of severe typhoon on montane stream fishes. Environmental Biology of Fishes, 2015, 98, 35-44.	0.4	5

#	Article	IF	CITATIONS
110	Tree cover at fine and coarse spatial grains interacts with shade tolerance to shape plant species distributions across the Alps. Ecography, 2015, 38, 578-589.	2.1	38
111	Climateâ€related range shifts – a global multidimensional synthesis and new research directions. Ecography, 2015, 38, 15-28.	2.1	733
112	Complex Challenges of Maintaining Whitebark Pine in Greater Yellowstone under Climate Change: A Call for Innovative Research, Management, and Policy Approaches. Forests, 2016, 7, 54.	0.9	28
113	<i>Nâ€</i> dimensional hypervolumes to study stability of complex ecosystems. Ecology Letters, 2016, 19, 729-742.	3.0	51
114	Early signs of range disjunction of submountainous plant species: an unexplored consequence of future and contemporary climate changes. Global Change Biology, 2016, 22, 2094-2105.	4.2	20
115	Drought stress limits the geographic ranges of two tree species via different physiological mechanisms. Global Change Biology, 2016, 22, 1029-1045.	4.2	108
116	Uncertainty in predicting range dynamics of endemic alpine plants under climate warming. Global Change Biology, 2016, 22, 2608-2619.	4.2	40
117	Choice of baseline climate data impacts projected species' responses to climate change. Global Change Biology, 2016, 22, 2392-2404.	4.2	66
118	Niche expansion and temperature sensitivity of tropical African montane forests. Global Ecology and Biogeography, 2016, 25, 693-703.	2.7	15
119	Of Birds and Bees: Biodiversity and the Colonization of Ecosystems. , 2016, , 375-388.		1
120	Biodiversity potential of Nothofagus forests in Tierra del Fuego (Argentina): tool proposal for regional conservation planning. Biodiversity and Conservation, 2016, 25, 1843-1862.	1.2	27
121	Benchmarking novel approaches for modelling speciesÂrange dynamics. Global Change Biology, 2016, 22, 2651-2664.	4.2	180
122	Will climate change increase the risk of plant invasions into mountains?. Ecological Applications, 2016, 26, 530-544.	1.8	103
123	Snowbeds are more affected than other subalpine–alpine plant communities by climate change in the Swiss Alps. Ecology and Evolution, 2016, 6, 6969-6982.	0.8	60
124	Idiosyncratic responses of evergreen broad-leaved forest constituents in China to the late Quaternary climate changes. Scientific Reports, 2016, 6, 31044.	1.6	29
125	Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Scientific Reports, 2016, 6, 24881.	1.6	103
126	Bioeconomics of Managed Relocation. Journal of the Association of Environmental and Resource Economists, 2016, 3, 1023-1059.	1.0	12
127	Gardening in the zone of death: an experimental assessment of the absolute elevation limit of vascular plants. Scientific Reports, 2016, 6, 24440.	1.6	26

#	Article	IF	CITATIONS
128	Slow climate velocities of mountain streams portend their role as refugia for cold-water biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4374-4379.	3.3	182
129	Analysis of trophic interactions reveals highly plastic response to climate change in a tri-trophic High-Arctic ecosystem. Polar Biology, 2016, 39, 1467-1478.	0.5	19
130	Ocean acidification affects competition for space: projections of community structure using cellular automata. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152561.	1.2	8
131	Late-glacial and Holocene evolution as a driver of diversity and complexity of the northeastern North American alpine landscapes: a synthesis. Canadian Journal of Earth Sciences, 2016, 53, 494-505.	0.6	7
132	Improving the forecast for biodiversity under climate change. Science, 2016, 353, .	6.0	780
133	Spread rates on fragmented landscapes: the interacting roles of demography, dispersal and habitat availability. Diversity and Distributions, 2016, 22, 1266-1275.	1.9	15
134	Anticipating extinctions of glacial relict populations in mountain refugia. Biological Conservation, 2016, 201, 243-251.	1.9	34
135	The rich sides of mountain summits – a panâ€European view on aspect preferences of alpine plants. Journal of Biogeography, 2016, 43, 2261-2273.	1.4	107
136	Recent changes in alpine vegetation differ among plant communities. Journal of Vegetation Science, 2016, 27, 1177-1186.	1.1	20
137	Goodâ€bye to tropical alpine plant giants under warmer climates? Loss of range and genetic diversity in <i>Lobelia rhynchopetalum</i> . Ecology and Evolution, 2016, 6, 8931-8941.	0.8	93
138	Emerging Opportunities for Landscape Ecological Modelling. Current Landscape Ecology Reports, 2016, 1, 146-167.	1.1	29
139	Phylogenetic assemblage structure of <scp>N</scp> orth <scp>A</scp> merican trees is more strongly shaped by glacial–interglacial climate variability in gymnosperms than in angiosperms. Ecology and Evolution, 2016, 6, 3092-3106.	0.8	40
140	Past climateâ€ d riven range shifts and population genetic diversity in arctic plants. Journal of Biogeography, 2016, 43, 461-470.	1.4	48
141	Knowing the past to forecast the future: a case study on a relictual, endemic species of the SW Alps, Berardia subacaulis. Regional Environmental Change, 2016, 16, 1035-1045.	1.4	7
142	Consideration of climate change impacts and adaptation in EIA practice — Perspectives of actors in Austria and Germany. Environmental Impact Assessment Review, 2016, 57, 78-88.	4.4	33
143	Plant communities and environmental factors in the Guayana Highlands: monitoring for conservation under future climate change. Systematics and Biodiversity, 2016, 14, 327-344.	0.5	5
144	Climate change impacts on endemic, high-elevation lichens in a biodiversity hotspot. Biodiversity and Conservation, 2016, 25, 555-568.	1.2	80
145	Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?. Ecological Modelling, 2016, 326, 63-74.	1.2	66

#	Article	IF	CITATIONS
146	Impacts of precipitation variability on the dynamics of a dry tropical montane forest. Ecological Modelling, 2016, 320, 92-101.	1.2	29
147	Comparative seed germination traits in alpine and subalpine grasslands: higher elevations are associated with warmer germination temperatures. Plant Biology, 2017, 19, 32-40.	1.8	25
148	Climatic warming strengthens a positive feedback between alpine shrubs and fire. Global Change Biology, 2017, 23, 3249-3258.	4.2	39
149	Spatiotemporal heterogeneity of larch budmoth outbreaks in the French Alps over the last 500 years. Canadian Journal of Forest Research, 2017, 47, 667-680.	0.8	21
150	Metaâ€corridor solutions for climateâ€vulnerable plant species groups in South Korea. Journal of Applied Ecology, 2017, 54, 1742-1754.	1.9	32
151	Predictability in community dynamics. Ecology Letters, 2017, 20, 293-306.	3.0	68
152	Evidence of extinction debt through the survival and colonization of each species in semiâ€natural grasslands. Journal of Vegetation Science, 2017, 28, 464-474.	1.1	30
153	Integrating demography, dispersal and interspecific interactions into bird distribution models. Journal of Avian Biology, 2017, 48, 1505-1516.	0.6	40
154	Declines in lowâ€elevation subalpine tree populations outpace growth in highâ€elevation populations with warming. Journal of Ecology, 2017, 105, 1347-1357.	1.9	50
155	Dispersal and extrapolation on the accuracy of temporal predictions from distribution models for the Darwin's frog. Ecological Applications, 2017, 27, 1633-1645.	1.8	22
156	How Do Cold-Adapted Plants Respond to Climatic Cycles? Interglacial Expansion Explains Current Distribution and Genomic Diversity in Primula farinosa L. Systematic Biology, 2017, 66, 715-736.	2.7	26
157	Evidence and mapping of extinction debts for global forest-dwelling reptiles, amphibians and mammals. Scientific Reports, 2017, 7, 44305.	1.6	11
158	A general framework for predicting delayed responses of ecological communities to habitat loss. Scientific Reports, 2017, 7, 998.	1.6	7
159	A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nature Communications, 2017, 8, 15399.	5.8	153
160	Alpine plant species have limited capacity for long-distance seed dispersal. Plant Ecology, 2017, 218, 813-819.	0.7	37
161	Pollution and climate change drive long-term change in Scottish wetland vegetation composition. Biological Conservation, 2017, 210, 72-79.	1.9	17
162	Cryopreserved storage of clonal germplasm in the USDA National Plant Germplasm System. In Vitro Cellular and Developmental Biology - Plant, 2017, 53, 299-308.	0.9	81
163	Experimental soil warming shifts the fungal community composition at the alpine treeline. New Phytologist, 2017, 215, 766-778.	3.5	66

#	Article	IF	CITATIONS
164	Will climate change increase hybridization risk between potential plant invaders and their congeners in Europe?. Diversity and Distributions, 2017, 23, 934-943.	1.9	19
165	Extinction debt and colonization credit delay range shifts of eastern North American trees. Nature Ecology and Evolution, 2017, 1, .	3.4	79
166	Less favourable climates constrain demographic strategies in plants. Ecology Letters, 2017, 20, 969-980.	3.0	83
167	Climate change both facilitates and inhibits invasive plant ranges in New England. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3276-E3284.	3.3	87
168	The contribution of cold air pooling to the distribution of a rare and endemic plant of the Alps. Plant Ecology and Diversity, 2017, 10, 29-42.	1.0	15
169	Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 2017, 355, .	6.0	2,026
170	Arctic and boreal plant species decline at their southern range limits in the Rocky Mountains. Ecology Letters, 2017, 20, 166-174.	3.0	35
171	Ecological theory provides strong support for habitat restoration. Biological Conservation, 2017, 206, 85-91.	1.9	64
172	Vulnerability of eastern <scp>US</scp> tree species to climate change. Global Change Biology, 2017, 23, 3302-3320.	4.2	64
173	Ecology of active rock glaciers and surrounding landforms: climate, soil, plants and arthropods. Boreas, 2017, 46, 185-198.	1.2	20
174	Environmental factors determining the distribution of highland plants at lowâ€altitude algific talus sites. Ecological Research, 2017, 32, 183-191.	0.7	0
175	Paying the colonization credit: converging plant species richness in ancient and post-agricultural forests in NE Germany over five decades. Biodiversity and Conservation, 2017, 26, 735-755.	1.2	20
176	Are the responses of plant species to Quaternary climatic changes idiosyncratic? A demographic perspective from the Western Alps. Plant Ecology and Diversity, 2017, 10, 273-281.	1.0	8
177	The greening of the Himalayas and Tibetan Plateau under climate change. Global and Planetary Change, 2017, 159, 77-92.	1.6	48
178	Debris-covered glaciers as habitat for plant and arthropod species: Environmental framework and colonization patterns. Ecological Complexity, 2017, 32, 42-52.	1.4	10
179	Habitat-based conservation strategies cannot compensate for climate-change-induced rangeÂloss. Nature Climate Change, 2017, 7, 823-827.	8.1	55
180	The High Mountain Conservation in a Changing World. Advances in Global Change Research, 2017, , 3-36.	1.6	13
181	Riders in the sky (islands): Using a megaâ€phylogenetic approach to understand plant species distribution and coexistence at the altitudinal limits of angiosperm plant life. Journal of Biogeography, 2017, 44, 2618-2630.	1.4	31

#	Article	IF	CITATIONS
182	Rapid warming forces contrasting growth trends of subalpine fir (Abies fabri) at higher- and lower-elevations in the eastern Tibetan Plateau. Forest Ecology and Management, 2017, 402, 135-144.	1.4	44
183	At the intersection of cultural and natural heritage: Distribution and conservation of the type localities of Italian endemic vascular plants. Biological Conservation, 2017, 214, 109-118.	1.9	46
184	From patches to richness: assessing the potential impact of landscape transformation on biodiversity. Ecosphere, 2017, 8, e02004.	1.0	13
186	<i>Rangifer</i> management controls a climateâ€sensitive tundra state transition. Ecological Applications, 2017, 27, 2416-2427.	1.8	42
187	Human disturbance and upward expansion of plants in a warming climate. Nature Climate Change, 2017, 7, 577-580.	8.1	97
188	Climate Change Impacts on Ecosystem Services in High Mountain Areas: A Literature Review. Mountain Research and Development, 2017, 37, 179-187.	0.4	152
189	Climates on the move: Implications of climate warming for species distributions in mountains of the northeastern United States. Agricultural and Forest Meteorology, 2017, 246, 272-280.	1.9	26
190	Impact of climate change on alpine vegetation of mountain summits in Norway. Ecological Research, 2017, 32, 579-593.	0.7	71
191	Snowlines and Treelines in the Tropical Andes. Annals of the American Association of Geographers, 2017, 107, 429-440.	1.5	25
192	Climatic microrefugia under anthropogenic climate change: implications for species redistribution. Ecography, 2017, 40, 253-266.	2.1	249
193	Habitat distribution modelling to identify areas of high conservation value under climate change for Mangifera sylvatica Roxb. of Bangladesh. Land Use Policy, 2017, 60, 223-232.	2.5	39
194	Fineâ€grain, largeâ€domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. Ecography, 2017, 40, 1003-1013.	2.1	90
195	Non-destructive biomass estimation of herbaceous plant individuals: A transferable method between contrasted environments. Ecological Indicators, 2017, 72, 769-776.	2.6	16
196	ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 2017, 40, 774-787.	2.1	703
197	Adaptive and plastic responses of <i>Quercus petraea</i> populations to climate across Europe. Global Change Biology, 2017, 23, 2831-2847.	4.2	92
198	Effects of altitude on county economic development in China. Journal of Mountain Science, 2018, 15, 406-418.	0.8	11
199	Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains. Journal of Biogeography, 2018, 45, 1334-1344.	1.4	115
200	Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 2018, 556, 231-234.	13.7	580

#	Article	IF	CITATIONS
201	Retreat to refugia: Severe habitat contraction projected for endemic alpine plants of the Olympic Peninsula. American Journal of Botany, 2018, 105, 760-778.	0.8	15
202	Microrefugia and Climate Change Adaptation: A Practical Guide for Wildland Managers. , 2018, , 289-300.		Ο
203	Range dynamics of mountain plants decrease with elevation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1848-1853.	3.3	284
204	Reconstructing geographical parthenogenesis: effects of niche differentiation and reproductive mode on Holocene range expansion of an alpine plant. Ecology Letters, 2018, 21, 392-401.	3.0	32
205	Elevation patterns of plant diversity and recent altitudinal range shifts in Sinai's highâ€mountain flora. Journal of Vegetation Science, 2018, 29, 255-264.	1.1	8
206	Are Cedrus atlantica forests in the Rif Mountains of Morocco heading towards local extinction?. Holocene, 2018, 28, 1023-1037.	0.9	33
207	Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Science of the Total Environment, 2018, 624, 1429-1442.	3.9	169
208	Preserving genetic connectivity in the European Alps protected area network. Biological Conservation, 2018, 218, 99-109.	1.9	16
209	Soil water storage appears to compensate for climatic aridity at the xeric margin of European tree species distribution. European Journal of Forest Research, 2018, 137, 79-92.	1.1	17
210	Symbolic species as a cultural ecosystem service in the European Alps: insights and open issues. Landscape Ecology, 2018, 33, 711-730.	1.9	44
211	Modeling impacts of climate change on the geographic distribution of medicinal plant <i>Fritillaria cirrhosa</i> D. Don. Plant Biosystems, 2018, 152, 349-355.	0.8	28
212	Managing consequences of climateâ€driven species redistribution requires integration of ecology, conservation and social science. Biological Reviews, 2018, 93, 284-305.	4.7	154
213	Seed origin and warming constrain lodgepole pine recruitment, slowing the pace of population range shifts. Global Change Biology, 2018, 24, 197-211.	4.2	20
214	Projecting the future of an alpine ungulate under climate change scenarios. Global Change Biology, 2018, 24, 1136-1149.	4.2	40
215	Why georeferencing matters: Introducing a practical protocol to prepare species occurrence records for spatial analysis. Ecology and Evolution, 2018, 8, 765-777.	0.8	46
216	Forecasting range shifts of a coldâ€adapted species under climate change: are genomic and ecological diversity within species crucial for future resilience?. Ecography, 2018, 41, 1357-1369.	2.1	28
217	Lags in the response of mountain plant communities to climate change. Global Change Biology, 2018, 24, 563-579.	4.2	279
218	Enough space in a warmer world? Microhabitat diversity and smallâ€scale distribution of alpine plants on mountain summits. Diversity and Distributions, 2018, 24, 252-261.	1.9	49

#	Article	IF	CITATIONS
219	The Cedars of Lebanon, the Limits of Restoration, and Cultural Loss. Ecological Restoration, 2018, 36, 261-262.	0.5	3
220	Relationship between Spatiotemporal Variations of Climate, Snow Cover and Plant Phenology over the Alps—An Earth Observation-Based Analysis. Remote Sensing, 2018, 10, 1757.	1.8	39
221	Vegetation trends over eleven years on mountain summits in NW Argentina. Ecology and Evolution, 2018, 8, 11554-11567.	0.8	28
222	Expert-based and correlative models to map habitat quality: Which gives better support to conservation planning?. Global Ecology and Conservation, 2018, 16, e00513.	1.0	52
223	Transgenerational and Within-Generation Plasticity in Response to Climate Change: Insights from a Manipulative Field Experiment across an Elevational Gradient. American Naturalist, 2018, 192, 698-714.	1.0	39
224	Interactions between global change components drive plant species richness patterns within communities in mountain grasslands independently of topography. Journal of Vegetation Science, 2018, 29, 1029-1039.	1.1	4
225	Forecasted homogenization of high Arctic vegetation communities under climate change. Journal of Biogeography, 2018, 45, 2576-2587.	1.4	22
226	Existing Climate Change Will Lead to Pronounced Shifts in the Diversity of Soil Prokaryotes. MSystems, 2018, 3, .	1.7	41
227	A new method for jointly assessing effects of climate change and nitrogen deposition on habitats. Biological Conservation, 2018, 228, 52-61.	1.9	11
228	The compounding consequences of wildfire and climateÂchange for a highâ€elevation wildflower (<i>SaxifragaÂaustromontana</i>). Journal of Biogeography, 2018, 45, 2755-2765.	1.4	7
229	Distribution of Plant Species and Dispersal Traits along Environmental Gradients in Central Mediterranean Summits. Diversity, 2018, 10, 58.	0.7	17
230	The transient response of ecosystems to climate change is amplified by trophic interactions. Oikos, 2018, 127, 1822-1833.	1.2	11
231	Climate change leads to accelerated transformation of highâ€elevation vegetation in the central Alps. New Phytologist, 2018, 220, 447-459.	3.5	143
232	Geographic Range Dynamics Drove Ancient Hybridization in a Lineage of Angiosperms. American Naturalist, 2018, 192, 171-187.	1.0	19
233	How to best threshold and validate stacked species assemblages? Community optimisation might hold the answer. Methods in Ecology and Evolution, 2018, 9, 2155-2166.	2.2	27
234	Climate limits on European forest structure across space and time. Global and Planetary Change, 2018, 169, 168-178.	1.6	12
235	Impact of Climate Change on Spider Species Distribution Along the La Plata River Basin, Southern South America: Projecting Future Range Shifts for the Genus <i>Stenoterommata</i> (Araneae,) Tj ETQq0 0 0 rgB1	/ Q.v erlock	• 10 Tf 50 97

#	Article	IF	CITATIONS
237	Outstanding Challenges in the Transferability of Ecological Models. Trends in Ecology and Evolution, 2018, 33, 790-802.	4.2	403
238	The spatial structure of phylogenetic and functional diversity in the United States and Canada: An example using the sedge family (Cyperaceae). Journal of Systematics and Evolution, 2018, 56, 449-465.	1.6	31
239	Extinction debt in a biodiversity hotspot: the case of the Chilean Winter Rainfall-Valdivian Forests. Landscape and Ecological Engineering, 2019, 15, 1-12.	0.7	13
240	Highlighting declines of coldâ€demanding plant species in lowlands under climate warming. Ecography, 2019, 42, 36-44.	2.1	17
241	Understanding extinction debts: spatio–temporal scales, mechanisms and a roadmap for future research. Ecography, 2019, 42, 1973-1990.	2.1	77
242	Increasing phylogenetic stochasticity at high elevations on summits across a remote North American wilderness. American Journal of Botany, 2019, 106, 958-970.	0.8	4
243	Life history traits predict colonization and extinction lags of desert plant species since the Last Glacial Maximum. Ecology, 2019, 100, e02817.	1.5	14
244	Niche syndromes reveal climate-driven extinction threat to island endemic conifers. Nature Climate Change, 2019, 9, 627-631.	8.1	13
245	Distributional shifts in ectomycorrizhal fungal communities lag behind climate-driven tree upward migration in a conifer forest-high elevation shrubland ecotone. Soil Biology and Biochemistry, 2019, 137, 107545.	4.2	12
246	Effects of Holocene climate changes on alpine ecosystems: Nonequilibrium dynamics drive insect species richness on alpine islands. Journal of Biogeography, 2019, 46, 2248-2259.	1.4	8
247	Protecting endemic seed plants on the Tibetan Plateau under future climate change: migration matters. Journal of Plant Ecology, 2019, 12, 962-971.	1.2	21
248	Meta-modeling on detailed geography for accurate prediction of invasive alien species dispersal. Scientific Reports, 2019, 9, 16237.	1.6	6
249	On the frequency of northern and mountain genetic variants of widespread species: essential biodiversity information in a warmer world. Botanical Journal of the Linnean Society, 2019, 191, 440-474.	0.8	19
250	Climate change shifts natural selection and the adaptive potential of the perennial forb <i>Boechera stricta</i> in the Rocky Mountains. Evolution; International Journal of Organic Evolution, 2019, 73, 2247-2262.	1.1	30
251	Are mountaintops climate refugia for plants under global warming? A lesson from high-mountain oaks in tropical rainforest. Alpine Botany, 2019, 129, 175-183.	1.1	20
252	Could plant diversity metrics explain climate-driven vegetation changes on mountain summits of the GLORIA network?. Biodiversity and Conservation, 2019, 28, 3575-3596.	1.2	19
253	Global warming threatens conservation status of alpine EU habitat types in the European Eastern Alps. Regional Environmental Change, 2019, 19, 2411-2421.	1.4	17
254	Contrasting impacts of climate change on the vegetation of windy ridges and snowbeds in the Swiss Alps. Alpine Botany, 2019, 129, 95-105.	1.1	18

#	Article	IF	CITATIONS
255	Extinction debts and colonization credits of non-forest plants in the European Alps. Nature Communications, 2019, 10, 4293.	5.8	63
256	Climate change, range shifts, and the disruption of a pollinator-plant complex. Scientific Reports, 2019, 9, 14048.	1.6	32
257	Redefining temperate forest responses to climate and disturbance in the eastern United States: New insights at the mesoscale. Global Ecology and Biogeography, 2019, 28, 557-575.	2.7	28
258	Multiscale climate change impacts on plant diversity in the Atacama Desert. Global Change Biology, 2019, 25, 1733-1745.	4.2	40
259	Muddy Boots Beget Wisdom: Implications for Rare or Endangered Plant Species Distribution Models. Diversity, 2019, 11, 10.	0.7	9
260	Low resistance of montane and alpine grasslands to abrupt changes in temperature and precipitation regimes. Arctic, Antarctic, and Alpine Research, 2019, 51, 215-231.	0.4	32
261	Evaluating climatic threats to habitat types based on co-occurrence patterns of characteristic species. Basic and Applied Ecology, 2019, 38, 23-35.	1.2	4
262	Extinction debt and delayed colonization have had comparable but unique effects on plant community–climate lags since the Last Glacial Maximum. Global Ecology and Biogeography, 2019, 28, 1067-1077.	2.7	7
263	Connectivity for species on the move: supporting climateâ€driven range shifts. Frontiers in Ecology and the Environment, 2019, 17, 270-278.	1.9	78
264	Tracking microhabitat temperature variation with <scp>iB</scp> utton data loggers. Applications in Plant Sciences, 2019, 7, e01237.	0.8	13
265	Responses of alpine plant communities to climate warming. , 2019, , 297-346.		13
266	Extinction risks of a Mediterranean neo-endemism complex of mountain vipers triggered by climate change. Scientific Reports, 2019, 9, 6332.	1.6	31
267	Effects of climate change and horticultural use on the spread of naturalized alien garden plants in Europe. Ecography, 2019, 42, 1548-1557.	2.1	2
268	Climate change-induced range shift of the endemic epiphytic lichen <i>Lobaria pindarensis</i> in the Hindu Kush Himalayan region. Lichenologist, 2019, 51, 157-173.	0.5	10
269	Mountain plant communities: Uncertain sentinels?. Progress in Physical Geography, 2019, 43, 521-543.	1.4	39
270	Patterns of Endemism in Turkey, the Meeting Point of Three Global Biodiversity Hotspots, Based on Three Diverse Families of Vascular Plants. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	38
271	Broader niches revealed by fossil data do not reduce estimates of range loss and fragmentation of African montane trees. Global Ecology and Biogeography, 2019, 28, 992-1003.	2.7	3
272	Thermoregulatory traits combine with range shifts to alter the future of montane ant assemblages. Global Change Biology, 2019, 25, 2162-2173.	4.2	16

#	Article	IF	CITATIONS
273	Alternative reproductive adaptations predict asymmetric responses to climate change in lizards. Scientific Reports, 2019, 9, 5093.	1.6	13
274	Detecting the influence of climate and humans on pine forests across the dry valleys of eastern Nepal's Koshi River basin. Forest Ecology and Management, 2019, 440, 12-22.	1.4	11
275	Presence of an invasive species reverses latitudinal clines of multiple traits in a native species. Global Change Biology, 2019, 25, 620-628.	4.2	12
276	The complete chloroplast genome sequence of the Pseudostellaria okamotoi Ohwi (Caryophyllaceae). Mitochondrial DNA Part B: Resources, 2019, 4, 174-175.	0.2	6
277	A minimalist model of extinction and range dynamics of virtual mountain species driven by warming temperatures. PLoS ONE, 2019, 14, e0213775.	1.1	18
278	Projecting biological impacts from climate change like a climate scientist. Wiley Interdisciplinary Reviews: Climate Change, 2019, 10, e585.	3.6	20
279	Global buffering of temperatures under forest canopies. Nature Ecology and Evolution, 2019, 3, 744-749.	3.4	374
280	LiDAR-derived topography and forest structure predict fine-scale variation in daily surface temperatures in oak savanna and conifer forest landscapes. Agricultural and Forest Meteorology, 2019, 269-270, 192-202.	1.9	21
281	Lost at high latitudes: Arctic and endemic plants under threat as climate warms. Diversity and Distributions, 2019, 25, 809-821.	1.9	38
282	Species distribution modelling and seed germination of four threatened snow lotus (Saussurea), and their implication for conservation. Global Ecology and Conservation, 2019, 17, e00565.	1.0	7
283	Relative effects of elevational and habitat constraints on alpine spring biodiversity. Annales De Limnologie, 2019, 55, 20.	0.6	2
284	Increases in thermophilus plants in an arid alpine community in response to experimental warming. Arctic, Antarctic, and Alpine Research, 2019, 51, 201-214.	0.4	8
285	Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests, 2019, 10, 989.	0.9	28
286	Current and future distributions of Espeletiinae (Asteraceae) in the Venezuelan Andes based on statistical downscaling of climatic variables and niche modelling. Plant Ecology and Diversity, 2019, 12, 633-647.	1.0	26
287	Elevational rear edges shifted at least as much as leading edges over the last century. Global Ecology and Biogeography, 2019, 28, 533-543.	2.7	75
288	Advances in Microclimate Ecology Arising from Remote Sensing. Trends in Ecology and Evolution, 2019, 34, 327-341.	4.2	229
289	Alpine species in dynamic insular ecosystems through time: conservation genetics and niche shift estimates of the endemic and vulnerable <i>Viola cheiranthifolia</i> . Annals of Botany, 2019, 123, 505-519.	1.4	10
290	Climate and land-cover change alter bumblebee species richness and community composition in subalpine areas. Biodiversity and Conservation, 2019, 28, 639-653.	1.2	43

		CITATION RE	PORT	
#	Article		IF	CITATIONS
291	Impact of climate change on the distribution range and niche dynamics of Himalayan b treeline species in Himalayas. Biodiversity and Conservation, 2019, 28, 2345-2370.	irch, a typical	1.2	82
292	Improving niche projections of plant species under climate change: Silene acaulis on thas a case study. Climate Dynamics, 2019, 52, 1413-1423.	e British Isles	1.7	14
293	Thermal niche predictors of alpine plant species. Ecology, 2020, 101, e02891.		1.5	34
294	Adaptive introgression as a driver of local adaptation to climate in European white oak Phytologist, 2020, 226, 1171-1182.	s. New	3.5	117
295	The role of climate and biotic factors in shaping current distributions and potential fut European Neocrepidodera (Coleoptera, Chrysomelidae). Insect Conservation and Diver 47-62.	ure shifts of sity, 2020, 13,	1.4	18
296	Disentangling observer error and climate change effects in longâ€ŧerm monitoring of a species composition and cover. Journal of Vegetation Science, 2020, 31, 14-25.	lpine plant	1.1	19
297	Climate change disrupts local adaptation and favours upslope migration. Ecology Lette 181-192.	ers, 2020, 23,	3.0	93
298	Vulnerability of high-elevation endemic salamanders to climate change: A case study w Knob Salamander (Plethodon punctatus). Global Ecology and Conservation, 2020, 21,		1.0	6
299	Dieback and expansions: species-specific responses during 20Âyears of amplified warm Alps. Alpine Botany, 2020, 130, 1-11.	iing in the high	1.1	24
300	Climate change may accelerate the decline of desert riparian forest in the lower Tarim I Northwestern China: Evidence from tree-rings of Populus euphratica. Ecological Indicat 105997.		2.6	40
301	Evidence for phosphorus limitation in high-elevation unvegetated soils, Niwot Ridge, C Biogeochemistry, 2020, 147, 1-13.	olorado.	1.7	9
304	Climate Change and Alpine Screes: No Future for Glacial Relict Papaver occidentale (Pa Western Prealps. Diversity, 2020, 12, 346.	paveraceae) in	0.7	7
305	Species. , 2020, , 47-113.			0
306	Populations. , 2020, , 114-224.			0
307	Waterborne Disease. , 2020, , 225-339.			0
308	Afterthoughts and Outlook. , 2020, , 340-361.			0
311	Demographic back asting reveals that subtle dimensions of climate change have str population viability. Journal of Ecology, 2020, 108, 2557-2570.	ong effects on	1.9	8
312	Plasticity of haemoglobin concentration and thermoregulation in a mountain lizard. Jou Thermal Biology, 2020, 92, 102656.	urnal of	1.1	12

#	Article	IF	CITATIONS
313	Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Nature Communications, 2020, 11, 5601.	5.8	47
314	A crossâ€scale framework to support a mechanistic understanding and modelling of marine climateâ€driven species redistribution, from individuals to communities. Ecography, 2020, 43, 1764-1778.	2.1	22
315	Alpine Tundra Contraction under Future Warming Scenarios in Europe. Atmosphere, 2020, 11, 698.	1.0	8
316	Can microclimate offer refuge to an upland bird species under climate change?. Landscape Ecology, 2020, 35, 1907-1922.	1.9	14
317	<scp>Nemoâ€age</scp> : Spatially explicit simulations of ecoâ€evolutionary dynamics in stageâ€structured populations under changing environments. Methods in Ecology and Evolution, 2020, 11, 1227-1236.	2.2	17
318	Climate change and the future of endemic flora in the South Western Alps: relationships between niche properties and extinction risk. Regional Environmental Change, 2020, 20, 1.	1.4	19
319	Soil and microbial nutrient status are heterogeneous within an elevational belt on a neotropical mountain. Pedobiologia, 2020, 83, 150689.	0.5	6
320	The bryophyte flora of an Alpine limestone area (Queyras, Hautes Alpes, France). Journal of Bryology, 2020, 42, 365-377.	0.4	0
321	Biotic rescaling reveals importance of species interactions for variation in biodiversity responses to climate change. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22858-22865.	3.3	42
322	Assessing the state of knowledge of contemporary climate change and primates. Evolutionary Anthropology, 2020, 29, 317-331.	1.7	15
323	Habitat availability disproportionally amplifies climate change risks for lowland compared to alpine species. Global Ecology and Conservation, 2020, 23, e01113.	1.0	14
324	Spatial distribution, niche ecology and conservation genetics of Degenia velebitica (Brassicaceae), a narrow endemic species of the north-western Dinaric Alps. Plant Systematics and Evolution, 2020, 306, 1.	0.3	5
325	Long term persistence of aspen in snowdrift-dependent ecosystems. Forest Ecology and Management, 2020, 462, 118005.	1.4	5
326	Competition and demography rather than dispersal limitation slow down upward shifts of trees' upper elevation limits in the Alps. Journal of Ecology, 2020, 108, 2416-2430.	1.9	31
327	Glacier shrinkage and slope processes create habitat at high elevation and microrefugia across treeline for alpine plants during warm stages. Catena, 2020, 193, 104626.	2.2	30
328	Current Changes in Alpine Ecosystems of Pacific Islands. , 2020, , 607-619.		3
329	Risk and Uncertainty of Losing Suitable Habitat Areas Under Climate Change Scenarios: A Case Study for 109 Gymnosperm Species in China. Environmental Management, 2020, 65, 517-533.	1.2	10
330	Range-wide neutral and adaptive genetic structure of an endemic herb from Amazonian Savannas. AoB PLANTS, 2020, 12, plaa003.	1.2	19

#	Article	IF	CITATIONS
331	The new locally endemic genus Yazdana (Caryophyllaceae) and patterns of endemism highlight the high conservation priority of the poorly studied Shirkuh Mountains (central Iran). Journal of Systematics and Evolution, 2020, 58, 339-353.	1.6	8
332	Strategies for severe drought survival and recovery in a Pyrenean relict species. Physiologia Plantarum, 2020, 169, 276-290.	2.6	4
333	Invasive species interact with climatic variability to reduce success of natives. Ecology, 2020, 101, e03022.	1.5	23
334	Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sensing of Environment, 2020, 239, 111626.	4.6	142
335	Climate limitation at the cold edge: contrasting perspectives from species distribution modelling and a transplant experiment. Ecography, 2020, 43, 637-647.	2.1	35
336	Plant community diversity will decline more than increase under climatic warming. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190106.	1.8	61
337	Distribution, trade-offs and drought vulnerability of a high-mountain Pyrenean endemic plant species, Saxifraga longifolia. Global Ecology and Conservation, 2020, 22, e00916.	1.0	5
338	Local extinction risk under climate change in a neotropical asymmetrically dispersed epiphyte. Journal of Ecology, 2020, 108, 1553-1564.	1.9	18
339	Microclimatic effects on alpine plant communities and flower-visitor interactions. Scientific Reports, 2020, 10, 1366.	1.6	37
340	Forest dynamics and carbon storage under climate change in a subtropical mountainous region in central China. Ecosphere, 2020, 11, e03072.	1.0	8
341	Reintroduction modelling: A guide to choosing and combining models for species reintroductions. Journal of Applied Ecology, 2020, 57, 1233-1243.	1.9	18
342	Topography and human pressure in mountain ranges alter expected species responses to climate change. Nature Communications, 2020, 11, 1974.	5.8	86
343	Plant'sâ€eye view of temperature governs elevational distributions. Global Change Biology, 2020, 26, 4094-4103.	4.2	17
344	The fate of páramo plant assemblages in the sky islands of the northern Andes. Journal of Vegetation Science, 2020, 31, 967-980.	1.1	39
345	Climate suitability as a predictor of conservation translocation failure. Conservation Biology, 2020, 34, 1473-1481.	2.4	24
346	Resident vegetation modifies climate-driven elevational shift of a mountain sedge. Alpine Botany, 2021, 131, 13-25.	1.1	5
347	Temporal variability is key to modelling the climatic niche. Diversity and Distributions, 2021, 27, 473-484.	1.9	24
348	Using Climatic Credits to Pay the Climatic Debt. Trends in Ecology and Evolution, 2021, 36, 104-112.	4.2	3

#	Article	IF	CITATIONS
349	A review of the methods for studying biotic interactions in phenological analyses. Methods in Ecology and Evolution, 2021, 12, 227-244.	2.2	8
350	Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation. Plant Diversity, 2021, 43, 181-191.	1.8	49
351	The Consequences of Glacier Retreat Are Uneven Between Plant Species. Frontiers in Ecology and Evolution, 2021, 8, .	1.1	29
352	Altitudinal Vascular Plant Richness and Climate Change in the Alpine Zone of the Lefka Ori, Crete. Diversity, 2021, 13, 22.	0.7	13
353	Phenology determines leaf functional traits across Rhododendron species in the Sikkim Himalaya. Alpine Botany, 2021, 131, 63-72.	1.1	11
354	Macroecological context predicts species' responses to climate warming. Global Change Biology, 2021, 27, 2088-2101.	4.2	16
355	Extreme drought reduces climatic disequilibrium in dryland plant communities. Oikos, 2021, 130, 680-690.	1.2	7
356	Regional differences in rapid evolution during severe drought. Evolution Letters, 2021, 5, 130-142.	1.6	21
357	Contrasting multitaxon responses to climate change in Mediterranean mountains. Scientific Reports, 2021, 11, 4438.	1.6	25
358	Drivers of local extinction risk in alpine plants under warming climate. Ecology Letters, 2021, 24, 1157-1166.	3.0	37
359	The Evolutionary History, Diversity, and Ecology of Willows (Salix L.) in the European Alps. Diversity, 2021, 13, 146.	0.7	17
360	Predictive distribution modeling of Swertia bimaculata in Darjeeling-Sikkim Eastern Himalaya using MaxEnt: current and future scenarios. Ecological Processes, 2021, 10, .	1.6	26
361	Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change. Scientific Reports, 2021, 11, 9159.	1.6	21
362	Improvements in reports of species redistribution under climate change are required. Science Advances, 2021, 7, .	4.7	56
363	Climate Change Affects Vegetation Differently on Siliceous and Calcareous Summits of the European Alps. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	12
364	Geographical distribution and migration routes of the medical bryophyte, Climacium dendroides, under climate warming in China. Plant Biosystems, 0, , 1-8.	0.8	2
365	Dynamics in plant diversity and composition on Australian alpine summits over time. Biodiversity and Conservation, 2021, 30, 1855-1880.	1.2	8
366	Few changes in native Australian alpine plant morphology, despite substantial local climate change. Ecology and Evolution, 2021, 11, 4854-4865.	0.8	7

#	Article	IF	CITATIONS
367	Integrating traditional ecological knowledge into academic research at local and global scales. Regional Environmental Change, 2021, 21, 1.	1.4	25
368	Snow information is required in subcontinental scale predictions of mountain plant distributions. Global Ecology and Biogeography, 2021, 30, 1502-1513.	2.7	8
369	Evidence for Glacial Refugia of the Forest Understorey Species Helleborus niger (Ranunculaceae) in the Southern as Well as in the Northern Limestone Alps. Frontiers in Plant Science, 2021, 12, 683043.	1.7	9
370	Vegetation Reconstruction From Siberia and the Tibetan Plateau Using Modern Analogue Technique–Comparing Sedimentary (Ancient) DNA and Pollen Data. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3
371	The climatic debt is growing in the understorey of temperate forests: Stand characteristics matter. Global Ecology and Biogeography, 2021, 30, 1474-1487.	2.7	28
372	Warming threatens habitat suitability and breeding occupancy of rearâ€edge alpine bird specialists. Ecography, 2021, 44, 1191-1204.	2.1	18
373	Light and energetics at seasonal extremes limit poleward range shifts. Nature Climate Change, 2021, 11, 530-536.	8.1	18
374	Multiâ€ŧaxa colonisation along the foreland of a vanishing equatorial glacier. Ecography, 2021, 44, 1010-1021.	2.1	24
375	Climate Change, Ecosystem Processes and Biological Diversity Responses in High Elevation Communities. Climate, 2021, 9, 87.	1.2	14
376	Sedimentary ancient DNA reveals a threat of warming-induced alpine habitat loss to Tibetan Plateau plant diversity. Nature Communications, 2021, 12, 2995.	5.8	32
377	Evolutionary Rescue as a Mechanism Allowing a Clonal Grass to Adapt to Novel Climates. Frontiers in Plant Science, 2021, 12, 659479.	1.7	3
378	Biodiversity at the global scale: the synthesis continues. American Journal of Botany, 2021, 108, 912-924.	0.8	12
379	Biogeography of amphi-adriatic <i>Gentianella crispata</i> (Gentianaceae): a northern refugium and recent trans-adriatic migration. Plant Biosystems, 2022, 156, 754-768.	0.8	5
380	Wildcards in climate change biology. Ecological Monographs, 2021, 91, e01471.	2.4	9
381	Toward a definition of Essential Mountain Climate Variables. One Earth, 2021, 4, 805-827.	3.6	26
382	Changes in the structure and composition of the â€~Mexical' scrubland bee community along an elevational gradient. PLoS ONE, 2021, 16, e0254072.	1.1	5
383	Climate change impacts on the Alpine, Continental and Mediterranean grassland systems of Italy: A review. Italian Journal of Agronomy, 2021, 16, .	0.4	8
384	Effects of Climate Change vs. Grazing Exclusion on Species Diversity Over 18 Years Along an Elevation Gradient in the European Alps. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	9

	CITATION	KLFORT	
#	ARTICLE	IF	CITATIONS
385	Winter Frosts Reduce Flower Bud Survival in High-Mountain Plants. Plants, 2021, 10, 1507.	1.6	4
386	Predicting species and community responses to global change using structured expert judgement: An Australian mountain ecosystems case study. Global Change Biology, 2021, 27, 4420-4434.	4.2	16
387	Sociohydrology, ecohydrology, and the space-time dynamics of human-altered catchments. Hydrological Sciences Journal, 2021, 66, 1393-1408.	1.2	5
388	Assessing climate change tolerance and the niche breadth-range size hypothesis in rare and widespread alpine plants. Oecologia, 2021, 196, 1233-1245.	0.9	3
389	Endemics determine bioregionalization in the alpine zone of the Irano-Anatolian biodiversity hotspot (South-West Asia). Alpine Botany, 2021, 131, 177-186.	1.1	5
390	Why Is the Alpine Flora Comparatively Robust against Climatic Warming?. Diversity, 2021, 13, 383.	0.7	51
391	Remote sensing variables improve species distribution models for alpine plant species. Basic and Applied Ecology, 2021, 54, 1-13.	1.2	10
392	Individual Nest Site Preferences Do Not Explain Upslope Population Shifts of a Secondary Cavity-Nesting Species. Animals, 2021, 11, 2457.	1.0	0
393	Predicting the potential global distribution of <i>Ageratina adenophora</i> under current and future climate change scenarios. Ecology and Evolution, 2021, 11, 12092-12113.	0.8	29
394	Integrating demography and distribution modeling for the iconic Leontopodium alpinum Colm. in the Romanian Carpathians. Ecology and Evolution, 2021, 11, 12322-12334.	0.8	0
395	Threat patterns and conservation status of endemic vascular flora in Argentina: a quantitative perspective. Phytotaxa, 2021, 520, 21-39.	0.1	6
396	Diversity patterns of cushion plants on the Qinghai-Tibet Plateau: A basic study for future conservation efforts on alpine ecosystems. Plant Diversity, 2022, 44, 231-242.	1.8	7
397	Future Representation of Species' Climatic Niches in Protected Areas: A Case Study With Austrian Endemics. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	6
398	Climate change forecasts suggest that the conservation area network in the Cerrado-Amazon transition zone needs to be expanded. Acta Oecologica, 2021, 112, 103764.	0.5	3
399	Changes of rock glacier vegetation in 25Âyears of climate warming in the Italian Alps. Catena, 2021, 206, 105562.	2.2	10
400	The dominance of Ligularia spp. related to significant changes in soil microenvironment. Ecological Indicators, 2021, 131, 108183.	2.6	9
401	Shaping the niche of Taxus baccata, a modelling exercise using biologically meaningful information. Forest Ecology and Management, 2021, 501, 119688.	1.4	5
402	Climate Change Trends and Ecosystem Resilience in the Hindu Kush Himalayas. , 2020, , 525-552.		12

#	Article	IF	CITATIONS
403	Non-equilibrium in Alpine Plant Assemblages: Shifts in Europe's Summit Floras. Advances in Global Change Research, 2017, , 285-303.	1.6	28
405	Vulnerability and impacts of climate change on forest and freshwater wetland ecosystems in Nepal: A review. Ambio, 2017, 46, 915-930.	2.8	41
407	Global warming and plant–pollinator mismatches. Emerging Topics in Life Sciences, 2020, 4, 77-86.	1.1	128
408	Causes and consequences of variation in snow incidence on the high mountains of Tasmania, 1983–2013. Australian Journal of Botany, 2017, 65, 214.	0.3	13
414	A socioâ€ecological model for predicting impacts of landâ€use and climate change on regional plant diversity in the Austrian Alps. Global Change Biology, 2020, 26, 2336-2352.	4.2	26
415	The Response of the Alpine Dwarf Shrub Salix herbacea to Altered Snowmelt Timing: Lessons from a Multi-Site Transplant Experiment. PLoS ONE, 2015, 10, e0122395.	1.1	101
416	Potential Effects of Climate Change on the Distribution of Cold-Tolerant Evergreen Broadleaved Woody Plants in the Korean Peninsula. PLoS ONE, 2015, 10, e0134043.	1.1	36
417	Multilocus Analyses Reveal Postglacial Demographic Shrinkage of Juniperus morrisonicola (Cupressaceae), a Dominant Alpine Species in Taiwan. PLoS ONE, 2016, 11, e0161713.	1.1	7
418	Life history trade-off moderates model predictions of diversity loss from climate change. PLoS ONE, 2017, 12, e0177778.	1.1	5
419	Ecology of Land Cover Change in Glaciated Tropical Mountains. Revista Peruana De Biologia, 2014, 21, 259-270.	0.1	11
420	Impact of climate change on ivy (Hedera helix L.) expansion in forests of Central Poland. Folia Forestalia Polonica, Series A, 2019, 61, 211-221.	0.1	3
421	Differing Patterns of Genetic Diversity and Inbreeding in Two Rare Serpentine Monardellas in the Northern Sierra Nevada. Madroño, 2018, 65, 10-21.	0.3	3
422	Drivers of treeline shift in different European mountains. Climate Research, 2017, 73, 135-150.	0.4	46
423	Predicting impacts of climate change on forest tree species of Bangladesh: evidence from threatened Dysoxylum binectariferum (Roxb.) Hook.f. ex Bedd. (Meliaceae). IForest, 2017, 10, 154-160.	0.5	11
424	Floristic Composition and Change in Species Diversity over Long Temporal Scales in Upper Bhotekoshi Hydropower Project Area in Nepal. American Journal of Plant Sciences, 2016, 07, 28-47.	0.3	5
425	Use of Medicinal Plant and Its Vulnerability Due to Climate Change in Northern Part of Bangladesh. American Journal of Plant Sciences, 2016, 07, 1782-1793.	0.3	3
426	Can the Iberian Floristic Diversity Withstand Near-Future Climate Change?. Open Journal of Ecology, 2014, 04, 1089-1101.	0.4	6
427	Millipedes step up: species extend their upper elevational limit in the Alps in response to climate warming. Insect Conservation and Diversity, 2022, 15, 61-72.	1.4	12

#	Article	IF	Citations
428	Microrefugia and Climate Change Adaptation: A Practical Guide for Wildland Managers. , 2015, , .		0
429	Progressively approaching the distribution of Passiflora ischnoclada (Passifloraceae) from a single occurrence record. Check List, 2015, 11, 1717.	0.1	1
432	Terrestrische und semiterrestrische Ökosysteme. , 2018, , 109-145.		0
434	Climate Change and Adventure Tourism. , 2020, , 437-469.		1
436	FenologÃa de los ecosistemas de alta montaña en AndalucÃa: Análisis de la tendencia estacional del SAVI (2000-2019). Pirineos, 0, 175, 055.	0.6	0
437	Upward range shift of a dominant alpine shrub related to 50Âyears of snow cover change. Remote Sensing of Environment, 2022, 268, 112773.	4.6	11
438	Using the scientific listing process to better understand climate change risk to threatened species and ecological communities in New South Wales. Pacific Conservation Biology, 2020, 26, 173.	0.5	0
439	Impact of Climate Change on Vegetation Distribution in the Kashmir Himalaya. Topics in Biodiversity and Conservation, 2020, , 1029-1047.	0.3	4
440	How does a wetland plant respond to increasing temperature along a latitudinal gradient?. Ecology and Evolution, 2021, 11, 16228-16238.	0.8	6
441	The World's Mountains in the Anthropocene. Sustainable Development Goals Series, 2022, , 1-144.	0.2	3
444	Range Shifts Under Constant-Speed and Accelerated Climate Warming. Bulletin of Mathematical Biology, 2022, 84, 1.	0.9	20
445	Distribution shifts, potential refugia, and the performance of protected areas under climate change in the <i>Araucaria</i> moist forests ecoregion. Applied Vegetation Science, 2021, 24, e12628.	0.9	7
447	Ecological assessment and environmental niche modelling of Himalayan rhubarb (Rheum webbianum) Tj ETQq0 () 0 rgBT /C 1.1	Overlock 10 T 18
448	Are Temperate Alpine Plants With Distinct Phenology More Vulnerable to Extraordinary Climate Events Than Their Continuously Flowering Relatives in Tropical Mountains?. Frontiers in Ecology and Evolution, 2022, 9, .	1.1	0
449	Anthropogenic climate change increases vulnerability of Magnolia species more in Asia than in the Americas. Biological Conservation, 2022, 265, 109425.	1.9	12
450	Responses of terrestrial bryophytes to simulated climate change in a secondary evergreen broad-leaved forest in southern China. Journal of Forestry Research, 2022, 33, 1481-1492.	1.7	2
451	Topography of the Dolomites modulates range dynamics of narrow endemic plants under climate change. Scientific Reports, 2022, 12, 1398.	1.6	9
452	Geographical divergence of species richness and local homogenization of plant assemblages due to climate change in grasslands. Biodiversity and Conservation, 2022, 31, 797-810.	1.2	3

#	Article	IF	CITATIONS
453	Unveil the unseen: Using LiDAR to capture timeâ€lag dynamics in the herbaceous layer of European temperate forests. Journal of Ecology, 2022, 110, 282-300.	1.9	10
454	Climate warming may increase the frequency of cold-adapted haplotypes in alpine plants. Nature Climate Change, 2022, 12, 77-82.	8.1	12
455	Species Distribution Based-Modelling Under Climate Change: The Case of Two Native Wild Olea europaea Subspecies in Morocco, O. e. subsp. europaea var. sylvestris and O. e. subsp. maroccana. Climate Change Management, 2022, , 21-43.	0.6	6
456	Vegetation Ecology of Debris-Covered Glaciers (DCGs)—Site Conditions, Vegetation Patterns and Implications for DCGs Serving as Quaternary Cold- and Warm-Stage Plant Refugia. Diversity, 2022, 14, 114.	0.7	5
457	Effects of climate change on richness distribution patterns of threatened conifers endemic to China. Ecological Indicators, 2022, 136, 108594.	2.6	12
458	Preserving life on Earth. , 2022, , 503-602.		0
460	Think globally, measure locally: The MIREN standardized protocol for monitoring plant species distributions along elevation gradients. Ecology and Evolution, 2022, 12, e8590.	0.8	11
461	Understanding the biology of species' ranges: when and how does evolution change the rules of ecological engagement?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210027.	1.8	14
462	In Vitro Technology in Plant Conservation: Relevance to Biocultural Diversity. Plants, 2022, 11, 503.	1.6	15
463	A Trade-Off between Robustness to Environmental Fluctuations and Speed of Evolution. American Naturalist, 2022, 200, E16-E35.	1.0	7
464	Different Distribution Patterns of Hoverflies (Diptera: Syrphidae) and Bees (Hymenoptera: Anthophila) Along Altitudinal Gradients in Dolomiti Bellunesi National Park (Italy). Insects, 2022, 13, 293.	1.0	3
465	Patrones de distribución de las especies de Senecio L. (Asteraceae) en el Perú. Revista Peruana De Biologia, 2022, 29, e21463.	0.1	3
466	The danger and indeterminacy of forfeiting perching space of bryophytes from climate shift: a case study for 115 species in China. Environmental Monitoring and Assessment, 2022, 194, 233.	1.3	2
467	A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 2022, 29, 42539-42559.	2.7	356
468	Identifying the Factors behind Climate Diversification and Refugial Capacity in Mountain Landscapes: The Key Role of Forests. Remote Sensing, 2022, 14, 1708.	1.8	5
469	Climate-Change Impacts on the Southernmost Mediterranean Arctic-Alpine Plant Populations. Sustainability, 2021, 13, 13778.	1.6	7
470	Limited Range-Filling Among Endemic Forest Herbs of Eastern North America and Its Implications for Conservation With Climate Change. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3
471	Wildfire catalyzes upward range expansion of trembling aspen in southern Rocky Mountain beetleâ€killed forests. Journal of Biogeography, 2022, 49, 201-214.	1.4	6

#	Article	IF	CITATIONS
472	Central European forest–steppe: An ecosystem shaped by climate, topography and disturbances. Journal of Biogeography, 2022, 49, 1006-1020.	1.4	16
475	Particularities of the highest elevation treeline in the world: Polylepis tarapacana Phil. as a model to study ecophysiological adaptations to extreme environments. Flora: Morphology, Distribution, Functional Ecology of Plants, 2022, 292, 152076.	0.6	3
476	What Does the Future Hold for Páramo Plants? A Modelling Approach. Frontiers in Ecology and Evolution, 0, 10, .	1.1	5
477	Assessing the impact of climate change on threatened endemic vascular plants of Argentina. Folia Geobotanica, 2022, 57, 49-69.	0.4	1
479	Biodiversity and ecology of plants and arthropods on the last preserved glacier of the Apennines mountain chain (Italy). Holocene, 2022, 32, 853-865.	0.9	5
480	Temporal beta diversity patterns reveal global change impacts in closed mountain grasslands. Plant Biosystems, 2023, 157, 233-242.	0.8	2
481	Extinction dynamics: The interplay of species traits and the spatial scales of metapopulation declines. Ecology, 0, , .	1.5	0
482	Large-scale diachronic surveys of the composition and dynamics of plant communities in Pyrenean snowbeds. Plant Ecology, 0, , .	0.7	0
483	Genetic Variation in Gaultheria nummularioides (Ericaceae: Gaultherieae) from the Sky Islands of the Himalaya-Hengduan Mountains. Diversity, 2022, 14, 652.	0.7	1
484	Interplay between conservatism and divergence in climatic niche evolution of Brassicaceae tribe Eudemeae shaped their distribution across the different environments of the Andes. Botanical Journal of the Linnean Society, 2022, 200, 314-343.	0.8	3
485	Conceptual and methodological issues in structured population models of plants. Botanical Sciences, 0, 100, .	0.3	2
486	Ecological lags govern the pace and outcome of plant community responses to 21stâ€century climate change. Ecology Letters, 2022, 25, 2156-2166.	3.0	4
487	The predictive performance of processâ€explicit range change models remains largely untested. Ecography, 2023, 2023, .	2.1	1
488	Macroevolutionary perspectives on Anthropocene extinction. Biological Conservation, 2022, 274, 109733.	1.9	8
489	Genetic differentiation, demographic history and distribution models of high alpine endemic vicariants outline the response of species to predicted climate changes in a Central Asian biodiversity hotspot. Ecological Indicators, 2022, 144, 109419.	2.6	11
490	Scientists' warning of threats to mountains. Science of the Total Environment, 2022, 853, 158611.	3.9	24
491	Response of distribution patterns of two closely related species in <i>Taxus</i> genus to climate change since last interâ€glacial. Ecology and Evolution, 2022, 12, .	0.8	3
492	Global warming pushes the distribution range of the two alpine â€~glasshouse' Rheum species north- and upwards in the Eastern Himalayas and the Hengduan Mountains. Frontiers in Plant Science, 0, 13, .	1.7	3

#	Article	IF	CITATIONS
493	Does stress alleviation always intensify plant-plant competition? A case study from alpine meadows with simulation of both climate warming and nitrogen deposition. Ecological Indicators, 2022, 144, 109510.	2.6	0
495	Plant species biogeographic origin shapes their current and future distribution on the world's highest island mountain. Journal of Ecology, 2023, 111, 372-379.	1.9	2
496	Predicted scarcity of suitable habitat for alpine plant communities in northern Japan under climate change. Applied Vegetation Science, 2022, 25, .	0.9	2
498	Climate change alters future distribution of mountain plants, a case study of Astragalus adscendens in Iran. Plant Ecology, 0, , .	0.7	0
500	New Distributional Records and Characterization of the Climatic Niche of Lepturges (Lepturges) limpidus Bates, 1872 (Coleoptera, Cerambycidae): Sink or Source Population?. Insects, 2022, 13, 1069.	1.0	0
501	Environmental Niche Modelling Predicts a Contraction in the Potential Distribution of Two Boreal Owl Species under Different Climate Scenarios. Animals, 2022, 12, 3226.	1.0	2
502	Hotspots of (sub)alpine plants in the Iranoâ€Anatolian global biodiversity hotspot are insufficiently protected. Diversity and Distributions, 2023, 29, 244-253.	1.9	8
503	Climate warming has compounded plant responses to habitat conversion in northern Europe. Nature Communications, 2022, 13, .	5.8	4
504	Species distribution modeling of a cucurbit Herpetospermum darjeelingense in Darjeeling Himalaya, India. Journal of Threatened Taxa, 2022, 14, 22221-22231.	0.1	0
505	Nature-based solutions for climate change adaptation are not located where they are most needed across the Alps. Regional Environmental Change, 2023, 23, .	1.4	6
506	Climatic and Non-Climatic Drivers of Plant Diversity along an Altitudinal Gradient in the Taihang Mountains of Northern China. Diversity, 2023, 15, 66.	0.7	3
507	Understanding local plant extinctions before it is too late: bridging evolutionary genomics with global ecology. New Phytologist, 2023, 237, 2005-2011.	3.5	7
508	Uncertainty and risk of pruned distributional ranges induced by climate shifts for alpine species: a case study for 79 Kobresia species in China. Theoretical and Applied Climatology, 0, , .	1.3	0
509	Zooplankton Fauna of High Mountain Lake Sarıncof Lake (Çamlıhemşin-Rize). Kahramanmaraş Sütçü Üniversitesi Tarım Ve Doğa Dergisi, 0, , .	∕4 İmam 0.2	0
510	Bolkar Dağları Üzerindeki Bazı Yüksek İrtifa Gölleri Bentik Makroomurgasız Faunası. Kahramanma Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 0, , .	araÅŸ 0.2	0
511	Monoculture plantations impede forest recovery: Evidence from the regeneration of lowland subtropical forest in Hong Kong. Frontiers in Forests and Global Change, 0, 6, .	1.0	2
512	Comparative assessment of habitat suitability and niche overlap of three medicinal and melliferous Satureja L. species (Lamiaceae) from the eastern Adriatic region: Exploring potential for cultivation. Ecological Informatics, 2023, 76, 102066.	2.3	2
513	Area, environmental heterogeneity, scale and the conservation of alpine diversity. Journal of Biogeography, 2023, 50, 743-754.	1.4	2

#	Article	IF	CITATIONS
514	Will natura 2000 european network of protected areas support conservation of Southwestern Alps endemic flora under future climate?. Biodiversity and Conservation, 2023, 32, 1353-1367.	1.2	1
515	Biodiversitä und die Nutzung des Waldes. Studien Zum Marketing Natul`rlicher Ressourcen, 2023, , 91-105.	0.0	0
516	Current Symptoms of Climate Change in Boreal Forest Trees and Wildlife. Advances in Global Change Research, 2023, , 747-771.	1.6	1
517	Drought erodes mountain plant community resistance to novel species under a warming climate. Arctic, Antarctic, and Alpine Research, 2023, 55, .	0.4	2
518	Red-listed plants are contracting their elevational range faster than common plants in the European Alps. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	5
519	Overruled by nature: A plastic response to environmental change disconnects a gene and its trait. Molecular Ecology, 2024, 33, .	2.0	5
520	Widespread latitudinal asymmetry in the performance of marginal populations: A metaâ€analysis. Global Ecology and Biogeography, 2023, 32, 842-854.	2.7	1
521	Responses of photosynthesis and chlorophyll fluorescence during light induction in different seedling ages of Mahonia oiwakensis. , 2023, 64, .		1
522	Niche Dynamics Below the Species Level: Evidence from Evaluating Niche Shifts within Quercus aquifolioides. Forests, 2023, 14, 690.	0.9	0
523	Postâ€glacial range formation of temperate forest understorey herbs – Insights from a spatioâ€temporally explicit modelling approach. Global Ecology and Biogeography, 2023, 32, 1046-1058.	2.7	3
524	Main ecological and environmental factors affecting forage yield and quality in alpine summer pastures (<scp>NW″taly</scp> , Gran Paradiso National Park). Grass and Forage Science, 0, , .	1.2	3
525	Using mechanistic insights to predict the climateâ€induced expansion of a key aquatic predator. Ecological Monographs, 2023, 93, .	2.4	0
527	The evolutionary history of rice azaleas (<i>Rhododendron tschonoskii</i> alliance) involved niche evolution to a montane environment. American Journal of Botany, 0, , .	0.8	0
528	Genome-environment associations along elevation gradients in two snowbed species of the North-Eastern Calcareous Alps. BMC Plant Biology, 2023, 23, .	1.6	0
539	The Alpine Avifauna of Tropical Mountains. , 2023, , 336-371.		0
547	The great melt will shape unprotected ecosystems. Nature, 2023, 620, 499-500.	13.7	Ο
554	Patchy range retractions in response to climate change and implications for terrestrial species conservation. Landscape Ecology, 0, , .	1.9	0
558	Latitudinal and Elevational Range Shifts Under Contemporary Climate Change. , 2024, , 690-709.		Ο

ARTICLE

IF CITATIONS