A Mitochondrial Pyruvate Carrier Required for Pyruvat , and Humans

Science 337, 96-100 DOI: 10.1126/science.1218099

Citation Report

#	Article	IF	CITATIONS
2	Carbohydrate Metabolism I. , 2011, , 115-133.		2
3	Heptahelical protein PQLC2 is a lysosomal cationic amino acid exporter underlying the action of cysteamine in cystinosis therapy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3434-43.	7.1	138
4	The Mitochondrial Pyruvate Carrier: Has It Been Unearthed at Last?. Cell Metabolism, 2012, 16, 141-143.	16.2	38
5	Targeting Cancer Metabolism. Clinical Cancer Research, 2012, 18, 5537-5545.	7.0	125
6	An electron dense substrate to study mitochondrial import sites in situ. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, S34.	1.0	0
7	Identification and Functional Expression of the Mitochondrial Pyruvate Carrier. Science, 2012, 337, 93-96.	12.6	588
8	Mitochondria and cancer. Nature Reviews Cancer, 2012, 12, 685-698.	28.4	1,829
10	Identification of the sodium-dependent pyruvate transporter located in plastid envelops. Journal of Pesticide Sciences, 2012, 37, 381-385.	1.4	0
11	A Mitochondrial Mystery, Solved. Science, 2012, 337, 41-43.	12.6	32
12	Biogenesis of mitochondrial carrier proteins: Molecular mechanisms of import into mitochondria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 494-502.	4.1	56
13	Inhibition of Mitochondrial Pyruvate Transport by Zaprinast Causes Massive Accumulation of Aspartate at the Expense of Glutamate in the Retina. Journal of Biological Chemistry, 2013, 288, 36129-36140.	3.4	72
14	Hallmarks of a new era in mitochondrial biochemistry. Genes and Development, 2013, 27, 2615-2627.	5.9	146
15	Cardiac PI3K-Akt Impairs Insulin-Stimulated Glucose Uptake Independent of mTORC1 and GLUT4 Translocation. Molecular Endocrinology, 2013, 27, 172-184.	3.7	61
17	Cell Metabolomics. OMICS A Journal of Integrative Biology, 2013, 17, 495-501.	2.0	153
18	Enzymes involved in l-lactate metabolism in humans. Mitochondrion, 2013, 13, 615-629.	3.4	71
19	The role of membrane transport in metabolic engineering of plant primary metabolism. Current Opinion in Biotechnology, 2013, 24, 256-262.	6.6	26
20	Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5422-5427.	7.1	239
21	Mitochondrial Energy and Redox Signaling in Plants. Antioxidants and Redox Signaling, 2013, 18, 2122-2144.	5.4	154

ATION REDO

CITATION	DEDODT
CHAHON	REPORT

#	Article	IF	CITATIONS
22	Targeting mitochondrial oxidative metabolism as an approach to treat heart failure. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 857-865.	4.1	111
23	Lack of association between MPC2 variants and schizophrenia in a replication study of Han Chinese. Neuroscience Letters, 2013, 552, 120-123.	2.1	12
24	The long and winding road to the mitochondrial pyruvate carrier. Cancer & Metabolism, 2013, 1, 6.	5.0	61
25	Which way does the citric acid cycle turn during hypoxia? The critical role of αâ€ketoglutarate dehydrogenase complex. Journal of Neuroscience Research, 2013, 91, 1030-1043.	2.9	105
26	Understanding Metabolic Regulation and Its Influence on Cell Physiology. Molecular Cell, 2013, 49, 388-398.	9.7	253
27	Metabolic signaling by lactate in the brain. Trends in Neurosciences, 2013, 36, 396-404.	8.6	271
28	Myocardial energetics in heart failure. Basic Research in Cardiology, 2013, 108, 358.	5.9	117
29	Monocarboxylic Acid Transport. , 2013, 3, 1611-1643.		274
30	Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3685-94.	7.1	233
31	Inducible Overexpression of GLUT1 Prevents Mitochondrial Dysfunction and Attenuates Structural Remodeling in Pressure Overload but Does Not Prevent Left Ventricular Dysfunction. Journal of the American Heart Association, 2013, 2, e000301.	3.7	78
32	Metabolic regulation of osteoclast differentiation and function. Journal of Bone and Mineral Research, 2013, 28, 2392-2399.	2.8	176
33	CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14336-14341.	7.1	428
34	Clinical Proof-of-Concept Study With MSDC-0160, a Prototype mTOT-Modulating Insulin Sensitizer. Clinical Pharmacology and Therapeutics, 2013, 93, 352-359.	4.7	70
35	Identification of a Mitochondrial Target of Thiazolidinedione Insulin Sensitizers (mTOT)—Relationship to Newly Identified Mitochondrial Pyruvate Carrier Proteins. PLoS ONE, 2013, 8, e61551.	2.5	141
36	Novel Insulin Sensitizer Modulates Nutrient Sensing Pathways and Maintains β-Cell Phenotype in Human Islets. PLoS ONE, 2013, 8, e62012.	2.5	25
37	The Modulation of the Symbiont/Host Interaction between Wolbachia pipientis and Aedes fluviatilis Embryos by Glycogen Metabolism. PLoS ONE, 2014, 9, e98966.	2.5	20
38	A Minimal Dose of Electrically Induced Muscle Activity Regulates Distinct Gene Signaling Pathways in Humans with Spinal Cord Injury. PLoS ONE, 2014, 9, e115791.	2.5	26
41	The ongoing story: the mitochondria pyruvate carrier 1 in plant stress response in Arabidopsis. Plant Signaling and Behavior, 2014, 9, e973810.	2.4	11

#	Article	IF	CITATIONS
42	<scp>M</scp> sp1/ <scp>ATAD</scp> 1 maintains mitochondrial function by facilitating the degradation of mislocalized tailâ€anchored proteins. EMBO Journal, 2014, 33, 1548-1564.	7.8	172
43	BCKDH: The Missing Link in Apicomplexan Mitochondrial Metabolism Is Required for Full Virulence of Toxoplasma gondii and Plasmodium berghei. PLoS Pathogens, 2014, 10, e1004263.	4.7	115
44	Heart Failure and Loss of Metabolic Control. Journal of Cardiovascular Pharmacology, 2014, 63, 302-313.	1.9	45
45	The Apicoplast and Mitochondrion ofÂToxoplasma gondii. , 2014, , 297-350.		5
46	Renal Cortical Pyruvate Depletion during AKI. Journal of the American Society of Nephrology: JASN, 2014, 25, 998-1012.	6.1	65
47	Metabolism–Secretion Coupling and Mitochondrial Calcium Activities in Clonal Pancreatic β-Cells. Vitamins and Hormones, 2014, 95, 63-86.	1.7	4
48	Coordinated Metabolic Transitions During <i>Drosophila</i> Embryogenesis and the Onset of Aerobic Glycolysis. G3: Genes, Genomes, Genetics, 2014, 4, 839-850.	1.8	112
49	Evidence for Several Cysteine Transport Mechanisms in the Mitochondrial Membranes of Arabidopsis thaliana. Plant and Cell Physiology, 2014, 55, 64-73.	3.1	28
50	Changing appetites: the adaptive advantages of fuel choice. Trends in Cell Biology, 2014, 24, 118-127.	7.9	42
51	Intravenous (â^')-epicatechin reduces myocardial ischemic injury by protecting mitochondrial function. International Journal of Cardiology, 2014, 175, 297-306.	1.7	41
52	The functions of cardiolipin in cellular metabolism–potential modifiers of the Barth syndrome phenotype. Chemistry and Physics of Lipids, 2014, 179, 49-56.	3.2	38
53	Nucleocytosolic Depletion of the Energy Metabolite Acetyl-Coenzyme A Stimulates Autophagy and Prolongs Lifespan. Cell Metabolism, 2014, 19, 431-444.	16.2	221
54	Mitochondrial metabolism and stress response of yeast: Applications in fermentation technologies. Journal of Bioscience and Bioengineering, 2014, 117, 383-393.	2.2	44
55	Regulation of pyruvate metabolism and human disease. Cellular and Molecular Life Sciences, 2014, 71, 2577-2604.	5.4	587
56	Methods for studying metabolism in Drosophila. Methods, 2014, 68, 105-115.	3.8	363
57	Regulation of pyruvate metabolism in metabolic-related diseases. Reviews in Endocrine and Metabolic Disorders, 2014, 15, 99-110.	5.7	50
58	Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure. Circulation: Cardiovascular Genetics, 2014, 7, 266-276.	5.1	76
59	Mitochondrial transporters of the SLC25 family and associated diseases: a review. Journal of Inherited Metabolic Disease, 2014, 37, 565-575.	3.6	169

#	Article	IF	CITATIONS
60	Differential sensitivities to lactate transport inhibitors of breast cancer cell lines. Endocrine-Related Cancer, 2014, 21, 27-38.	3.1	54
61	Improved sake metabolic profile during fermentation due to increased mitochondrial pyruvate dissimilation. FEMS Yeast Research, 2014, 14, 249-260.	2.3	14
62	A Guide to the Metabolic Pathways and Function of Metabolites Observed in Human Brain 1H Magnetic Resonance Spectra. Neurochemical Research, 2014, 39, 1-36.	3.3	391
63	Rewiring Mitochondrial Pyruvate Metabolism: Switching Off the Light in Cancer Cells?. Molecular Cell, 2014, 56, 343-344.	9.7	13
64	Regulation of Substrate Utilization by the Mitochondrial Pyruvate Carrier. Molecular Cell, 2014, 56, 425-435.	9.7	243
65	Towards an integrative model of C4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C4 species. Journal of Experimental Botany, 2014, 65, 3579-3593.	4.8	102
66	Minireview: Challenges and Opportunities in Development of PPAR Agonists. Molecular Endocrinology, 2014, 28, 1756-1768.	3.7	138
67	Tailoring strain construction strategies for muconic acid production in S. cerevisiae and E. coli. Metabolic Engineering Communications, 2014, 1, 19-28.	3.6	35
68	A Role for the Mitochondrial Pyruvate Carrier as a Repressor of the Warburg Effect and Colon Cancer Cell Growth. Molecular Cell, 2014, 56, 400-413.	9.7	294
69	Variability of the transporter gene complement in ammonia-oxidizing archaea. Trends in Microbiology, 2014, 22, 665-675.	7.7	81
70	Protein Acetylation and Acetyl Coenzyme A Metabolism in Budding Yeast. Eukaryotic Cell, 2014, 13, 1472-1483.	3.4	96
71	The Switch from Fermentation to Respiration in <i>Saccharomyces cerevisiae</i> Is Regulated by the Ert1 Transcriptional Activator/Repressor. Genetics, 2014, 198, 547-560.	2.9	31
72	Balancing glycolysis and mitochondrial OXPHOS: Lessons from the hematopoietic system and exercising muscles. Mitochondrion, 2014, 19, 3-7.	3.4	14
73	Glutamine Oxidation Maintains the TCA Cycle and Cell Survival during Impaired Mitochondrial Pyruvate Transport. Molecular Cell, 2014, 56, 414-424.	9.7	504
74	Matrix Revisited. Circulation Research, 2014, 114, 717-729.	4.5	85
75	Structures of bacterial homologues of SWEET transporters in two distinct conformations. Nature, 2014, 515, 448-452.	27.8	144
76	Mitochondrial target of thiazolidinediones. Diabetes, Obesity and Metabolism, 2014, 16, 1048-1054.	4.4	26
77	The Fatty Acid Beta-Oxidation Pathway Is Important for Decidualization of Endometrial Stromal Cells in Both Humans and Mice1. Biology of Reproduction, 2014, 90, 34.	2.7	49

#	Article	IF	CITATIONS
78	SDHAF4 Promotes Mitochondrial Succinate Dehydrogenase Activity and Prevents Neurodegeneration. Cell Metabolism, 2014, 20, 241-252.	16.2	88
79	Caloric restriction mimetics: towards a molecular definition. Nature Reviews Drug Discovery, 2014, 13, 727-740.	46.4	200
80	Mitochondrial Metabolism of Pyruvate Is Essential for Regulating Glucose-stimulated Insulin Secretion. Journal of Biological Chemistry, 2014, 289, 13335-13346.	3.4	69
81	Metabolic control at the cytosol–mitochondria interface in different growth phases of CHO cells. Metabolic Engineering, 2014, 23, 9-21.	7.0	38
82	Dietary Fat and Hepatic Lipogenesis: Mitochondrial Citrate Carrier as a Sensor of Metabolic Changes1. Advances in Nutrition, 2014, 5, 217-225.	6.4	24
83	The impact of genomic variability on gene expression in environmental <scp><i>S</i></scp> <i>accharomyces cerevisiae</i> strains. Environmental Microbiology, 2014, 16, 1378-1397.	3.8	59
84	Comprehensive review on lactate metabolism in human health. Mitochondrion, 2014, 17, 76-100.	3.4	420
85	NRGA1, a Putative Mitochondrial Pyruvate Carrier, Mediates ABA Regulation of Guard Cell Ion Channels and Drought Stress Responses in Arabidopsis. Molecular Plant, 2014, 7, 1508-1521.	8.3	65
86	A SUF Fe-S Cluster Biogenesis System in the Mitochondrion-Related Organelles of the Anaerobic Protist Pygsuia. Current Biology, 2014, 24, 1176-1186.	3.9	94
87	Mitochondrial Pyruvate Carrier 2 Hypomorphism in Mice Leads to Defects in Glucose-Stimulated Insulin Secretion. Cell Reports, 2014, 7, 2042-2053.	6.4	94
88	Mitochondria and Energy Metabolism: Networks, Mechanisms, and Control. Series in Cellular and Clinical Imaging, 2014, , 3-40.	0.2	1
89	Novel Metabolic Pathways of Sake Yeast Regulated by Mitochondrial Activity and Degradation, and Development of Brewing Technologies Based on the Insights Journal of the Brewing Society of Japan, 2014, 109, 335-345.	0.3	0
90	Diabetic silkworms for evaluation of therapeutically effective drugs against type II diabetes. Scientific Reports, 2015, 5, 10722.	3.3	32
91	The AP-3 adaptor complex mediates sorting of yeast and mammalian PQ-loop-family basic amino acid transporters to the vacuolar/lysosomal membrane. Scientific Reports, 2015, 5, 16665.	3.3	31
92	Cell cycle progression is regulated by intertwined redox oscillators. Theoretical Biology and Medical Modelling, 2015, 12, 10.	2.1	56
93	Metabolic plasticity maintains proliferation in pyruvate dehydrogenase deficient cells. Cancer & Metabolism, 2015, 3, 7.	5.0	56
94	Carbohydrate Metabolism I. , 2015, , 165-185.		6
95	Cerebral metabolism following traumatic brain injury: new discoveries with implications for treatment. Frontiers in Neuroscience, 2014, 8, 408.	2.8	75

#	ARTICLE Application of mitochondrial pyruvate carrier blocker UK5099 creates metabolic reprogram and	IF	CITATIONS
96	greater stem-like properties in LnCap prostate cancer cells <i>in vitro</i> . Oncotarget, 2015, 6, 37758-37769.	1.8	57
97	Late-onset caloric restriction alters skeletal muscle metabolism by modulating pyruvate metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E942-E949.	3.5	22
98	Reduced Ssy1-Ptr3-Ssy5 (SPS) Signaling Extends Replicative Life Span by Enhancing NAD+ Homeostasis in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2015, 290, 12753-12764.	3.4	20
99	Sirt3 binds to and deacetylates mitochondrial pyruvate carrier 1 to enhance its activity. Biochemical and Biophysical Research Communications, 2015, 468, 807-812.	2.1	42
100	The Transcription Factor E4F1 Coordinates CHK1-Dependent Checkpoint and Mitochondrial Functions. Cell Reports, 2015, 11, 220-233.	6.4	38
101	The spectrum of pyruvate oxidation defects in the diagnosis of mitochondrial disorders. Journal of Inherited Metabolic Disease, 2015, 38, 391-403.	3.6	44
102	Low-frequency stimulation regulates metabolic gene expression in paralyzed muscle. Journal of Applied Physiology, 2015, 118, 723-731.	2.5	25
103	Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes. EMBO Journal, 2015, 34, 911-924.	7.8	98
104	Power2: The power of yeast genetics applied to the powerhouse of the cell. Trends in Endocrinology and Metabolism, 2015, 26, 59-68.	7.1	25
105	Single muscle fiber proteomics reveals unexpected mitochondrial specialization. EMBO Reports, 2015, 16, 387-395.	4.5	163
106	Malleable Mitochondrion of Trypanosoma brucei. International Review of Cell and Molecular Biology, 2015, 315, 73-151.	3.2	88
107	Metabolic remodeling: a pyruvate transport affair. EMBO Journal, 2015, 34, 835-837.	7.8	7
108	Identification and application of keto acids transporters in Yarrowia lipolytica. Scientific Reports, 2015, 5, 8138.	3.3	28
109	The twisted relation between Pnu and SWEET transporters. Trends in Biochemical Sciences, 2015, 40, 183-188.	7.5	16
110	Surveying the lipogenesis landscape in Yarrowia lipolytica through understanding the function of a Mga2p regulatory protein mutant. Metabolic Engineering, 2015, 31, 102-111.	7.0	66
111	Metabolic Needs and Capabilities of Toxoplasma gondii through Combined Computational and Experimental Analysis. PLoS Computational Biology, 2015, 11, e1004261.	3.2	92
112	Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochemical Journal, 2015, 466, 443-454.	3.7	188
113	Drivers of the Warburg Phenotype. Cancer Journal (Sudbury, Mass), 2015, 21, 56-61.	2.0	51

#	Article	IF	Citations
114	The regulation of neuronal mitochondrial metabolism by calcium. Journal of Physiology, 2015, 593, 3447-3462.	2.9	130
115	Cardiac Energy Metabolic Alterations in Pressure Overload–Induced Left and Right Heart Failure (2013) Tj ETQ	q1_1_0.784 1.7	4314 rgBT /O
116	Monitoring Mitochondrial Pyruvate Carrier Activity in Real Time Using a BRET-Based Biosensor: Investigation of the Warburg Effect. Molecular Cell, 2015, 59, 491-501.	9.7	76
117	NH4+ triggers the release of astrocytic lactate via mitochondrial pyruvate shunting. Proceedings of the United States of America, 2015, 112, 11090-11095.	7.1	67
118	Metabolic Myoglobinuria. Current Neurology and Neuroscience Reports, 2015, 15, 69.	4.2	9
119	Metabolic Capacity of Mitochondrion-related Organelles in the Free-living Anaerobic Stramenopile Cantina marsupialis. Protist, 2015, 166, 534-550.	1.5	12
120	Hepatic Mitochondrial Pyruvate Carrier 1 Is Required for Efficient Regulation of Gluconeogenesis and Whole-Body Glucose Homeostasis. Cell Metabolism, 2015, 22, 669-681.	16.2	193
121	Loss of Mitochondrial Pyruvate Carrier 2 in the Liver Leads to Defects in Gluconeogenesis and Compensation via Pyruvate-Alanine Cycling. Cell Metabolism, 2015, 22, 682-694.	16.2	179
122	Cancer's Fuel Choice: New Flavors for a Picky Eater. Molecular Cell, 2015, 60, 514-523.	9.7	120
123	Compartmentalizing metabolic pathway in Candida glabrata for acetoin production. Metabolic Engineering, 2015, 28, 1-7.	7.0	43
124	An Insulin-Sensitizing Thiazolidinedione, Which Minimally Activates PPARγ, Does Not Cause Bone Loss. Journal of Bone and Mineral Research, 2015, 30, 481-488.	2.8	37
125	Mitochondrial pyruvate import and its effects on homeostasis. Current Opinion in Cell Biology, 2015, 33, 35-41.	5.4	57
126	Mitochondrial calcium and the regulation of metabolism in the heart. Journal of Molecular and Cellular Cardiology, 2015, 78, 35-45.	1.9	156
127	Screening the yeast genome for energetic metabolism pathways involved in a phenotypic response to the anti-cancer agent 3-bromopyruvate. Oncotarget, 2016, 7, 10153-10173.	1.8	18
128	13C MRS and LC–MS Flux Analysis of Tumor Intermediary Metabolism. Frontiers in Oncology, 2016, 6, 135.	2.8	23
129	Metabolic Pathways and Cycles. , 2016, , 39-55.		12
130	An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion. Molecular Metabolism, 2016, 5, 602-614.	6.5	36
131	Mitochondrial Pyruvate Import Promotes Long-Term Survival of Antibody-Secreting Plasma Cells. Immunity, 2016, 45, 60-73.	14.3	212

#	Article	IF	CITATIONS
132	MPC1-like Is a Placental Mammal-specific Mitochondrial Pyruvate Carrier Subunit Expressed in Postmeiotic Male Germ Cells. Journal of Biological Chemistry, 2016, 291, 16448-16461.	3.4	30
133	Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinson's disease. Science Translational Medicine, 2016, 8, 368ra174.	12.4	143
134	Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype. Biotechnology for Biofuels, 2016, 9, 258.	6.2	87
135	A Method for Multiplexed Measurement of Mitochondrial Pyruvate Carrier Activity. Journal of Biological Chemistry, 2016, 291, 7409-7417.	3.4	18
136	The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters. Biochemical Journal, 2016, 473, 929-936.	3.7	93
137	Improvement of isobutanol production in Saccharomyces cerevisiae by increasing mitochondrial import of pyruvate through mitochondrial pyruvate carrier. Applied Microbiology and Biotechnology, 2016, 100, 7591-7598.	3.6	27
138	Re-programming tumour cell metabolism to treat cancer: no lone target for lonidamine. Biochemical Journal, 2016, 473, 1503-1506.	3.7	25
139	Requirement for the Mitochondrial Pyruvate Carrier in Mammalian Development Revealed by a Hypomorphic Allelic Series. Molecular and Cellular Biology, 2016, 36, 2089-2104.	2.3	47
140	Mitochondrial Sirt3 supports cell proliferation by regulating glutamine-dependent oxidation in renal cell carcinoma. Biochemical and Biophysical Research Communications, 2016, 474, 547-553.	2.1	36
141	Alternative reactions at the interface of glycolysis and citric acid cycle in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2016, 16, fow017.	2.3	36
142	Mitochondria and the hallmarks of cancer. FEBS Journal, 2016, 283, 803-814.	4.7	100
143	Emerging model systems for functional genomics analysis of Crassulacean acid metabolism. Current Opinion in Plant Biology, 2016, 31, 100-108.	7.1	51
144	The Crabtree and Warburg effects: Do metabolite-induced regulations participate in their induction?. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1139-1146.	1.0	35
145	Pyruvate transport systems in organelles: future directions in C4 biology research. Current Opinion in Plant Biology, 2016, 31, 143-148.	7.1	12
146	The Plant Mitochondrial Transportome: Balancing Metabolic Demands with Energetic Constraints. Trends in Plant Science, 2016, 21, 662-676.	8.8	32
147	Transport of haloacids across biological membranes. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 3061-3070.	2.6	5
148	Cardiac Metabolism in Perspective. , 2016, 6, 1675-1699.		28
149	Immune Cell Metabolism in Systemic Lupus Erythematosus. Current Rheumatology Reports, 2016, 18, 66.	4.7	30

#	Article	IF	CITATIONS
150	Orphan proteins of unknown function in the mitochondrial intermembrane space proteome: New pathways and metabolic cross-talk. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2613-2623.	4.1	12
151	Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nature Reviews Drug Discovery, 2016, 15, 786-804.	46.4	254
152	The anticancer agent 3-bromopyruvate: a simple but powerful molecule taken from the lab to the bedside. Journal of Bioenergetics and Biomembranes, 2016, 48, 349-362.	2.3	55
153	The Pancreatic Î ² -Cell: A Bioenergetic Perspective. Physiological Reviews, 2016, 96, 1385-1447.	28.8	86
154	Glucose-independent Acetate Metabolism Promotes Melanoma Cell Survival and Tumor Growth. Journal of Biological Chemistry, 2016, 291, 21869-21879.	3.4	50
155	MPC1 and MPC2 expressions are associated with favorable clinical outcomes in prostate cancer. BMC Cancer, 2016, 16, 894.	2.6	31
156	E4F1 controls a transcriptional program essential for pyruvate dehydrogenase activity. Proceedings of the United States of America, 2016, 113, 10998-11003.	7.1	27
157	The Earliest Stages of Mitochondrial Adaptation to Low Oxygen Revealed in a Novel Rhizarian. Current Biology, 2016, 26, 2729-2738.	3.9	46
158	E4F1-mediated control of pyruvate dehydrogenase activity is essential for skin homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11004-11009.	7.1	22
159	Metabolically engineered Saccharomyces cerevisiae for branched-chain ester productions. Journal of Biotechnology, 2016, 239, 90-97.	3.8	17
160	Induction of triglyceride accumulation and mitochondrial maintenance in muscle cells by lactate. Scientific Reports, 2016, 6, 33732.	3.3	27
161	Mitochondrial Carriers Link the Catabolism of Hydroxyaromatic Compounds to the Central Metabolism in Candida parapsilosis. G3: Genes, Genomes, Genetics, 2016, 6, 4047-4058.	1.8	7
162	Mitochondrial pyruvate carrier function and cancer metabolism. Current Opinion in Genetics and Development, 2016, 38, 102-109.	3.3	40
163	Human CNNM2 is not a Mg2+ transporter per se. Pflugers Archiv European Journal of Physiology, 2016, 468, 1223-1240.	2.8	38
164	Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose. Redox Biology, 2016, 8, 271-284.	9.0	3
165	Regulation of Clucose Metabolism – A Perspective From Cell Bioprocessing. Trends in Biotechnology, 2016, 34, 638-651.	9.3	103
166	Channels and transporters in cell metabolism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2359-2361.	4.1	3
167	Mitochondrial pyruvate carrier in <scp><i>T</i></scp> <i>rypanosoma brucei</i> . Molecular Microbiology, 2016, 100, 442-456.	2.5	14

#	Article	IF	CITATIONS
168	The mitochondrial pyruvate carrier in health and disease: To carry or not to carry?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2436-2442.	4.1	91
169	Reduced Histone Expression or a Defect in Chromatin Assembly Induces Respiration. Molecular and Cellular Biology, 2016, 36, 1064-1077.	2.3	26
170	Pyruvate and Metabolic Flexibility: Illuminating a Path Toward Selective Cancer Therapies. Trends in Biochemical Sciences, 2016, 41, 219-230.	7.5	104
171	Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Metabolic Engineering, 2016, 36, 80-89.	7.0	73
172	Bonded Cumomer Analysis of Human Melanoma Metabolism Monitored by 13C NMR Spectroscopy of Perfused Tumor Cells. Journal of Biological Chemistry, 2016, 291, 5157-5171.	3.4	22
173	Glucose Oxidation Is Critical for CD4+ T Cell Activation in a Mouse Model of Systemic Lupus Erythematosus. Journal of Immunology, 2016, 196, 80-90.	0.8	132
174	Analysis of Mitochondrial Proteins in the Surviving Myocardium after Ischemia Identifies Mitochondrial Pyruvate Carrier Expression as Possible Mediator of Tissue Viability. Molecular and Cellular Proteomics, 2016, 15, 246-255.	3.8	23
175	Pyruvate antioxidant roles in human fibroblasts and embryonic stem cells. Molecular and Cellular Biochemistry, 2017, 429, 137-150.	3.1	40
176	Glutaminolysis: A Hallmark of Cancer Metabolism. Annual Review of Biomedical Engineering, 2017, 19, 163-194.	12.3	528
177	Decreased Mitochondrial Pyruvate Transport Activity in the Diabetic Heart. Journal of Biological Chemistry, 2017, 292, 4423-4433.	3.4	44
178	Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death. Journal of Cell Biology, 2017, 216, 1091-1105.	5.2	140
179	A mathematical model predicting host mitochondrial pyruvate transporter activity to be a critical regulator of Mycobacterium tuberculosis pathogenicity. BioSystems, 2017, 155, 1-9.	2.0	3
180	Intratumor Heterogeneity in Primary Kidney Cancer Revealed by Metabolic Profiling of Multiple Spatially Separated Samples within Tumors. EBioMedicine, 2017, 19, 31-38.	6.1	50
181	Molecular Basis for Mitochondrial Signaling. Biological and Medical Physics Series, 2017, , .	0.4	4
182	Energy Metabolism of the Osteoblast: Implications for Osteoporosis. Endocrine Reviews, 2017, 38, 255-266.	20.1	272
183	Functional Properties of the Mitochondrial Carrier System. Trends in Cell Biology, 2017, 27, 633-644.	7.9	86
184	Substrate Selection and Its Impact on Mitochondrial Respiration and Redox. Biological and Medical Physics Series, 2017, , 349-375.	0.4	7
185	The D″actate dehydrogenase MoDLD1 is essential for growth and infectionâ€related development in <i>Magnaporthe oryzae</i> . Environmental Microbiology, 2017, 19, 3938-3958.	3.8	5

#	Article	IF	CITATIONS
186	Mitochondrial Bioenergetics and Dysfunction in Failing Heart. Advances in Experimental Medicine and Biology, 2017, 982, 65-80.	1.6	49
187	Estrogen regulates spatially distinct cardiac mitochondrial subpopulations. Mitochondrion, 2017, 35, 87-96.	3.4	10
188	The beneficial metabolic effects of insulin sensitizers are not attenuated by mitochondrial pyruvate carrier 2 hypomorphism. Experimental Physiology, 2017, 102, 985-999.	2.0	18
189	Individualâ€specific variation in the respiratory activities of HMECs and their bioenergetic response to IGF1 and TNFα. Journal of Cellular Physiology, 2017, 232, 2750-2765.	4.1	3
190	Multilayered control of peroxisomal activity upon salt stress in <scp><i>S</i></scp> <i>accharomyces cerevisiae</i> . Molecular Microbiology, 2017, 104, 851-868.	2.5	20
191	Expression and putative role of mitochondrial transport proteins in cancer. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 641-654.	1.0	58
192	Systems Biology of Metabolism. Annual Review of Biochemistry, 2017, 86, 245-275.	11.1	173
193	Measuring Mitochondrial Pyruvate Oxidation. Neuromethods, 2017, , 321-338.	0.3	0
194	Metabolic Reprogramming in Brain Tumors. Annual Review of Pathology: Mechanisms of Disease, 2017, 12, 515-545.	22.4	82
195	Pioglitazone inhibits mitochondrial pyruvate metabolism and glucose production in hepatocytes. FEBS Journal, 2017, 284, 451-465.	4.7	27
196	Molecular and Physiological Logics of the Pyruvate-Induced Response of a Novel Transporter in <i>Bacillus subtilis</i> . MBio, 2017, 8, .	4.1	35
197	Metabolomic Analysis Reveals That the <i>Drosophila melanogaster</i> Gene <i>lysine</i> Influences Diverse Aspects of Metabolism. Genetics, 2017, 207, 1255-1261.	2.9	5
198	Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression. Journal of Biological Chemistry, 2017, 292, 16942-16954.	3.4	48
199	Metabolism in time and space – exploring the frontier of developmental biology. Development (Cambridge), 2017, 144, 3193-3198.	2.5	19
200	α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nature Immunology, 2017, 18, 985-994.	14.5	715
201	Treating fatty liver disease by modulating mitochondrial pyruvate metabolism. Hepatology Communications, 2017, 1, 193-197.	4.3	21
202	Lactate dehydrogenase activity drives hair follicle stem cell activation. Nature Cell Biology, 2017, 19, 1017-1026.	10.3	203
203	Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nature Cell Biology, 2017, 19, 1027-1036.	10.3	238

#	Article	IF	CITATIONS
204	Zinc enhances the cellular energy supply to improve cell motility and restore impaired energetic metabolism in a toxic environment induced by OTA. Scientific Reports, 2017, 7, 14669.	3.3	27
205	The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity. Molecular Metabolism, 2017, 6, 1468-1479.	6.5	67
206	Endothelial Cell Autophagy Maintains Shear Stress–Induced Nitric Oxide Generation via Glycolysis-Dependent Purinergic Signaling to Endothelial Nitric Oxide Synthase. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1646-1656.	2.4	75
207	Metabolomic Studies in <i>Drosophila</i> . Genetics, 2017, 206, 1169-1185.	2.9	51
209	Carbon Metabolism. , 2017, , 297-321.		0
210	Mitochondrial Bioenergetics Pathways in Chlamydomonas. Microbiology Monographs, 2017, , 59-95.	0.6	2
211	Chronic activation of AMP-activated protein kinase increases monocarboxylate transporter 2 and 4 expression in skeletal muscle1. Journal of Animal Science, 2017, 95, 3552-3562.	0.5	2
212	MSDC-0160 and MSDC-0602 Binding with Human Mitochondrial Pyruvate Carrier (MPC) 1 and 2 Heterodimer. International Journal of Knowledge Discovery in Bioinformatics, 2017, 7, 43-67.	0.8	7
213	Cerebral Gluconeogenesis and Diseases. Frontiers in Pharmacology, 2016, 7, 521.	3.5	55
214	Dioxygen and Metabolism; Dangerous Liaisons in Cardiac Function and Disease. Frontiers in Physiology, 2017, 8, 1044.	2.8	3
215	A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC). ELife, 2017, 6, .	6.0	23
216	Mitochondrial pyruvate carrier 1 mediates abscisic acid-regulated stomatal closure and the drought response by affecting cellular pyruvate content in Arabidopsis thaliana. BMC Plant Biology, 2017, 17, 217.	3.6	28
217	Mitochondrial pyruvate carrier modulates the epithelial-mesenchymal transition in cholangiocarcinoma. Oncology Reports, 2018, 39, 1276-1282.	2.6	12
218	Overexpression of MPC1 inhibits the proliferation, migration, invasion, and stem cell-like properties of gastric cancer cells. OncoTargets and Therapy, 2017, Volume 10, 5151-5163.	2.0	12
219	Metabo-Devo: A metabolic perspective of development. Mechanisms of Development, 2018, 154, 12-23.	1.7	28
220	Activation of Pyruvate Dehydrogenase by Sodium Dichloroacetate Shifts Metabolic Consumption from Amino Acids to Glucose in IPEC-J2 Cells and Intestinal Bacteria in Pigs. Journal of Agricultural and Food Chemistry, 2018, 66, 3793-3800.	5.2	7
221	Human mitochondrial pyruvate carrier 2 as an autonomous membrane transporter. Scientific Reports, 2018, 8, 3510.	3.3	39
222	MPC1 is essential for PGC-11±-induced mitochondrial respiration and biogenesis. Biochemical Journal, 2018, 475, 1687-1699.	3.7	23

		CITATION R	EPORT	
# 223	ARTICLE The Science and Translation of Lactate Shuttle Theory. Cell Metabolism, 2018, 27, 757-	785.	IF 16.2	CITATIONS
224	Glucose metabolism during in vitro maturation of mouse oocytes: An study using RNA i Journal of Cellular Physiology, 2018, 233, 6952-6964.	nterference.	4.1	17
225	Inhibition of the Mitochondrial Pyruvate Carrier by Tolylfluanid. Endocrinology, 2018, 1	59, 609-621.	2.8	12
226	The regulation of host cellular and gut microbial metabolism in the development and pr colorectal cancer. Critical Reviews in Microbiology, 2018, 44, 436-454.	evention of	6.1	22
227	Respiromics – An integrative analysis linking mitochondrial bioenergetics to molecula Molecular Metabolism, 2018, 9, 4-14.	r signatures.	6.5	12
228	Observation of acetyl phosphate formation in mammalian mitochondria using real-time NMR metabolomics. Proceedings of the National Academy of Sciences of the United St 2018, 115, 4152-4157.	in-organelle ates of America,	7.1	37
229	Prognostic role of mitochondrial pyruvate carrier in isocitrate dehydrogenase–mutan Journal of Neurosurgery, 2018, 130, 56-66.	t glioma.	1.6	14
230	The Force Is Strong with This One: Metabolism (Over)powers Stem Cell Fate. Trends in 2018, 28, 551-559.	Cell Biology,	7.9	32
231	A Narrative Review of Potential Future Antidiabetic Drugs: Should We Expect More?. In Clinical Biochemistry, 2018, 33, 121-131.	lian Journal of	1.9	14
232	Enhanced pyruvate production in <i>Candida glabrata</i> by carrier engineering. Bioted Bioengineering, 2018, 115, 473-482.	chnology and	3.3	22
233	Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases. Cell Me 27, 22-41.	tabolism, 2018,	16.2	496
234	Development of a fluorescent capillary biosensor based on self-assembled AuNP/LDH fo intracellular pyruvate. Analyst, The, 2018, 143, 700-708.	r micro-volume	3.5	7
235	Fatty acid oxidation alleviates the energy deficiency caused by the loss of MPC1 in MPC Biochemical and Biophysical Research Communications, 2018, 495, 1008-1013.	:1+/â^' mice.	2.1	19
236	Nuclear Encoded Mitochondrial Proteins in Metabolite Transport and Oxidation Pathwa Metabolism of Nutrients. , 2018, , .	y Connecting		0
237	Hypoxia induces lactate secretion and glycolytic efflux by downregulating mitochondria carrier levels in human umbilical vein endothelial cells. Molecular Medicine Reports, 201	ıl pyruvate 8, 18, 1710-1717.	2.4	15
238	Targeting Metabolism, Insulin Resistance, and Diabetes to Treat Nonalcoholic Steatohe Diabetes, 2018, 67, 2485-2493.	patitis.	0.6	82
239	SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism. Scienc	ce, 2018, 362, .	12.6	154
240	Pyruvate Treatment Restores the Effectiveness of Chemotherapeutic Agents in Human Adenocarcinoma and Pleural Mesothelioma Cells. International Journal of Molecular Sci 19, 3550.	Colon ences, 2018,	4.1	6

#	Article	IF	CITATIONS
241	Impairments in Oxidative Glucose Metabolism in Epilepsy and Metabolic Treatments Thereof. Frontiers in Cellular Neuroscience, 2018, 12, 274.	3.7	54
242	Methionine supplementation stimulates mitochondrial respiration. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1901-1913.	4.1	17
243	Mitochondrial Diagnostics: A Multiplexed Assay Platform for Comprehensive Assessment of Mitochondrial Energy Fluxes. Cell Reports, 2018, 24, 3593-3606.e10.	6.4	87
244	Mild Impairment of Mitochondrial OXPHOS Promotes Fatty Acid Utilization in POMC Neurons and Improves Glucose Homeostasis in Obesity. Cell Reports, 2018, 25, 383-397.e10.	6.4	26
245	PPARÎ ³ -sparing thiazolidinediones as insulin sensitizers. Design, synthesis and selection of compounds for clinical development. Bioorganic and Medicinal Chemistry, 2018, 26, 5870-5884.	3.0	9
246	Acetate Production from Glucose and Coupling to Mitochondrial Metabolism in Mammals. Cell, 2018, 175, 502-513.e13.	28.9	269
247	Function of mitochondrial pyruvate carriers in hepatocellular carcinoma patients. Oncology Letters, 2018, 15, 9110-9116.	1.8	12
248	Mitochondrial Metabolism and Aging in Yeast. International Review of Cell and Molecular Biology, 2018, 340, 1-33.	3.2	24
249	The multifaceted contributions of mitochondria to cellular metabolism. Nature Cell Biology, 2018, 20, 745-754.	10.3	969
250	Targeting energy metabolism via the mitochondrial pyruvate carrier as a novel approach to attenuate neurodegeneration. Molecular Neurodegeneration, 2018, 13, 28.	10.8	57
251	Stem Cell Metabolism in Cancer and Healthy Tissues: Pyruvate in the Limelight. Frontiers in Pharmacology, 2017, 8, 958.	3.5	40
252	Seipin regulates lipid homeostasis by ensuring calciumâ€dependent mitochondrial metabolism. EMBO Journal, 2018, 37, .	7.8	69
253	Investigating the NAD-ME biochemical pathway within C4 grasses using transcript and amino acid variation in C4 photosynthetic genes. Photosynthesis Research, 2018, 138, 233-248.	2.9	13
254	Proton Transport Chains in Glucose Metabolism: Mind the Proton. Frontiers in Neuroscience, 2018, 12, 404.	2.8	18
255	Proteomic Analysis of Differentially-Expressed Proteins in the Liver of Streptozotocin-Induced Diabetic Rats Treated with Parkia biglobosa Protein Isolate. Molecules, 2018, 23, 156.	3.8	4
256	Exploring the cellular network of metabolic flexibility in the adipose tissue. Genes and Nutrition, 2018, 13, 17.	2.5	12
257	Artefactual formation of pyruvate from inâ€source conversion of lactate. Rapid Communications in Mass Spectrometry, 2018, 32, 1163-1168.	1.5	6
258	Downregulation of COUPâ€ʿTFII inhibits glioblastoma growth via targeting MPC1. Oncology Letters, 2018, 15, 9697-9702.	1.8	13

#	ARTICLE	IF	CITATIONS
 259	Berberine Reduces Pyruvate-driven Hepatic Glucose Production by Limiting Mitochondrial Import of	6.1	21
	Pyruvate is an effective substitute for glutamate in regulating porcine nitrogen excretion. Journal of		
260	Animal Science, 2018, 96, 3804-3814.	0.5	10
261	ACP Acylation Is an Acetyl-CoA-Dependent Modification Required for Electron Transport Chain Assembly. Molecular Cell, 2018, 71, 567-580.e4.	9.7	71
262	Reprogramming Yeast Metabolism from Alcoholic Fermentation to Lipogenesis. Cell, 2018, 174, 1549-1558.e14.	28.9	215
263	Lapachol inhibits glycolysis in cancer cells by targeting pyruvate kinase M2. PLoS ONE, 2018, 13, e0191419.	2.5	55
264	Microenvironmental control of glucose metabolism in tumors by regulation of pyruvate dehydrogenase. International Journal of Cancer, 2019, 144, 674-686.	5.1	49
265	Mitochondrial plasticity in cell fate regulation. Journal of Biological Chemistry, 2019, 294, 13852-13863.	3.4	98
266	Sex Differences in Intestinal Carbohydrate Metabolism Promote Food Intake and Sperm Maturation. Cell, 2019, 178, 901-918.e16.	28.9	101
267	A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin. Cancer & Metabolism, 2019, 7, 9.	5.0	6
268	Lactate dehydrogenase and glycerol-3-phosphate dehydrogenase cooperatively regulate growth and carbohydrate metabolism during <i>Drosophila melanogaster</i> larval development. Development (Cambridge), 2019, 146, .	2.5	28
269	Maternal Lipid Metabolism Directs Fetal Liver Programming following Nutrient Stress. Cell Reports, 2019, 29, 1299-1310.e3.	6.4	14
270	Repression of mitochondrial metabolism for cytosolic pyruvate-derived chemical production in Saccharomyces cerevisiae. Microbial Cell Factories, 2019, 18, 177.	4.0	11
271	Disrupting Mitochondrial Pyruvate Uptake Directs Glutamine into the TCA Cycle away from Glutathione Synthesis and Impairs Hepatocellular Tumorigenesis. Cell Reports, 2019, 28, 2608-2619.e6.	6.4	63
272	Targeting the Mitochondrial Pyruvate Carrier for Neuroprotection. Brain Sciences, 2019, 9, 238.	2.3	12
273	Treating Hepatic Steatosis and Fibrosis by Modulating Mitochondrial Pyruvate Metabolism. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 275-284.	4.5	27
274	<i>AGP30</i> : Cd tolerance related gene associate with mitochondrial pyruvate carrier 1. Plant Signaling and Behavior, 2019, 14, 1629269.	2.4	6
275	Inhibition of ERRα Prevents Mitochondrial Pyruvate Uptake Exposing NADPH-Generating Pathways as Targetable Vulnerabilities in Breast Cancer. Cell Reports, 2019, 27, 3587-3601.e4.	6.4	29
276	Comparative proteomic study of liver lipid droplets and mitochondria in mice housed at different temperatures. FEBS Letters, 2019, 593, 2118-2138.	2.8	13

#	ARTICLE	IF	CITATIONS
277	MPC1 deletion is associated with poor prognosis and temozolomide resistance in glioblastoma. Journal of Neuro-Oncology, 2019, 144, 293-301.	2.9	22
278	Supplementation with hydrogen-producing composition confers beneficial effects on physiology and life span in Drosophila. Heliyon, 2019, 5, e01679.	3.2	12
279	Glucagon upâ€regulates hepatic mitochondrial pyruvate carrier 1 through cAMPâ€responsive elementâ€binding protein; inhibition of hepatic gluconeogenesis by ginsenoside <scp>Rb1</scp> . British Journal of Pharmacology, 2019, 176, 2962-2976.	5.4	26
280	The MELAS mutation m.3243A>C alters the expression of mitochondrial tRNA fragments. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1433-1449.	4.1	24
281	Contributions of Mitochondrial Dysfunction to \hat{I}^2 Cell Failure in Diabetes Mellitus. , 2019, , 217-243.		2
282	Metabolic perturbations after pediatric TBI: It's not just about glucose. Experimental Neurology, 2019, 316, 74-84.	4.1	17
283	Loss of GCN5L1 in cardiac cells limits mitochondrial respiratory capacity under hyperglycemic conditions. Physiological Reports, 2019, 7, e14054.	1.7	9
284	Dynamic mitochondrial responses to a high-fat diet in Drosophila melanogaster. Scientific Reports, 2019, 9, 4531.	3.3	25
285	Development of an efficient cytosolic isobutanol production pathway in Saccharomyces cerevisiae by optimizing copy numbers and expression of the pathway genes based on the toxic effect of α-acetolactate. Scientific Reports, 2019, 9, 3996.	3.3	26
286	Plasma cells: You are what you eat. Immunological Reviews, 2019, 288, 161-177.	6.0	41
287	Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. Journal of Psychiatric Research, 2019, 114, 178-207.	3.1	81
288	Mitochondrial pyruvate carrier 1 expression controls cancer epithelialâ€mesenchymal transition and radioresistance. Cancer Science, 2019, 110, 1331-1339.	3.9	36
289	The yeast mitochondrial pyruvate carrier is a heteroâ€dimer in its functional state. EMBO Journal, 2019, 38, .	7.8	45
290	Clycerol as a substrate for Saccharomyces cerevisiae based bioprocesses – Knowledge gaps regarding the central carbon catabolism of this â€~non-fermentable' carbon source. Biotechnology Advances, 2019, 37, 107378.	11.7	44
291	HIF-1α Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma. Cell Reports, 2019, 27, 226-237.e4.	6.4	197
292	Synaptic energy metabolism and neuronal excitability, in sickness and health. Journal of Inherited Metabolic Disease, 2019, 42, 220-236.	3.6	36
293	MPC1 deficiency accelerates lung adenocarcinoma progression through the STAT3 pathway. Cell Death and Disease, 2019, 10, 148.	6.3	21
294	Mitochondrial Pyruvate Carriers Prevent Cadmium Toxicity by Sustaining the TCA Cycle and Glutathione Synthesis. Plant Physiology, 2019, 180, 198-211.	4.8	51

#	Article	IF	CITATIONS
295	Loss of MPC1 reprograms retinal metabolism to impair visual function. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3530-3535.	7.1	83
296	Regulation of Drosophila Intestinal Stem Cell Proliferation by Enterocyte Mitochondrial Pyruvate Metabolism. G3: Genes, Genomes, Genetics, 2019, 9, 3623-3630.	1.8	14
297	A genetic toolkit for the analysis of metabolic changes in Drosophila provides new insights into metabolic responses to stress and malignant transformation. Scientific Reports, 2019, 9, 19945.	3.3	11
298	Mitochondrial metabolism: a common link between neuroinflammation and neurodegeneration. Behavioural Pharmacology, 2019, 30, 641-651.	1.7	31
300	Mineral-Enriched Deep-Sea Water Modulates Lactate Metabolism via PGC-1α-Mediated Metabolic Reprogramming. Marine Drugs, 2019, 17, 611.	4.6	6
301	Regulation of the pyruvate metabolism node by monogene and polygene engineering of HEK-293 cells. RSC Advances, 2019, 9, 35760-35770.	3.6	0
302	Toward a better understanding of folate metabolism in health and disease. Journal of Experimental Medicine, 2019, 216, 253-266.	8.5	109
303	Aerobic Oxidative Dehydrogenation of Ethyl Lactate Over Reduced MoVNbOx Catalysts. Catalysis Letters, 2019, 149, 840-850.	2.6	11
304	Mitochondrial pyruvate import is a metabolic vulnerability in androgen receptor-driven prostate cancer. Nature Metabolism, 2019, 1, 70-85.	11.9	110
305	Mitochondrial Biology and Medicine. , 2019, , 267-322.		2
306	Regulation of the fermentative metabolism in apple fruit exposed to low-oxygen stress reveals a high flexibility. Postharvest Biology and Technology, 2019, 149, 118-128.	6.0	29
307	Loss of mitochondrial calcium uniporter rewires skeletal muscle metabolism and substrate preference. Cell Death and Differentiation, 2019, 26, 362-381.	11.2	53
308	Mitochondrial pyruvate carrier 1 functions as a tumor suppressor and predicts the prognosis of human renal cell carcinoma. Laboratory Investigation, 2019, 99, 191-199.	3.7	28
309	Cell organelles and yeast longevity: an intertwined regulation. Current Genetics, 2020, 66, 15-41.	1.7	10
310	Convergent Evolution of Hydrogenosomes from Mitochondria by Gene Transfer and Loss. Molecular Biology and Evolution, 2020, 37, 524-539.	8.9	38
311	A novel KDM5A/MPC-1 signaling pathway promotes pancreatic cancer progression via redirecting mitochondrial pyruvate metabolism. Oncogene, 2020, 39, 1140-1151.	5.9	37
312	Metabolic coordination of T cell quiescence and activation. Nature Reviews Immunology, 2020, 20, 55-70.	22.7	393
313	L-lactic acidosis: pathophysiology, classification, and causes; emphasis on biochemical andÂmetabolic basis. Kidney International, 2020, 97, 75-88.	5.2	46

#	Article	IF	CITATIONS
314	Altered Gene Expression along the Glycolysis–Cholesterol Synthesis Axis Is Associated with Outcome in Pancreatic Cancer. Clinical Cancer Research, 2020, 26, 135-146.	7.0	121
315	Effects of dietary calcium pyruvate on gastrointestinal tract development, intestinal health and growth performance of newly weaned piglets fed lowâ€protein diets. Journal of Applied Microbiology, 2020, 128, 355-365.	3.1	14
316	Deletion of Voltage-Dependent Anion Channel 1 knocks mitochondria down triggering metabolic rewiring in yeast. Cellular and Molecular Life Sciences, 2020, 77, 3195-3213.	5.4	25
317	The Race to Bash NASH: Emerging Targets and Drug Development in a Complex Liver Disease. Journal of Medicinal Chemistry, 2020, 63, 5031-5073.	6.4	67
318	The mitochondrial carrier pathway transports non-canonical substrates with an odd number of transmembrane segments. BMC Biology, 2020, 18, 2.	3.8	34
319	A Chemical Proteomic Probe for the Mitochondrial Pyruvate Carrier Complex. Angewandte Chemie, 2020, 132, 3924-3927.	2.0	0
320	A Chemical Proteomic Probe for the Mitochondrial Pyruvate Carrier Complex. Angewandte Chemie - International Edition, 2020, 59, 3896-3899.	13.8	10
321	Glutamine Skipping the Q into Mitochondria. Trends in Molecular Medicine, 2020, 26, 6-7.	6.7	9
322	New drugs for NAFLD: lessons from basic models to the clinic. Hepatology International, 2020, 14, 8-23.	4.2	61
323	Regulation of Tumor Initiation by the Mitochondrial Pyruvate Carrier. Cell Metabolism, 2020, 31, 284-300.e7.	16.2	103
324	Impact of short- and long-term electrically induced muscle exercise on gene signaling pathways, gene expression, and PGC1a methylation in men with spinal cord injury. Physiological Genomics, 2020, 52, 71-80.	2.3	17
325	Role of the Mitochondrial Pyruvate Carrier in the Occurrence of Metabolic Inflexibility in Drosophila melanogaster Exposed to Dietary Sucrose. Metabolites, 2020, 10, 411.	2.9	7
326	Metabolite regulation of the mitochondrial calcium uniporter channel. Cell Calcium, 2020, 92, 102288.	2.4	13
327	Biogenesis of Mitochondrial Metabolite Carriers. Biomolecules, 2020, 10, 1008.	4.0	32
328	Mitochondrial pyruvate carrier: a potential target for diabetic nephropathy. BMC Nephrology, 2020, 21, 274.	1.8	6
329	Enzalutamide, an Androgen Receptor Antagonist, Enhances Myeloid Cell–Mediated Immune Suppression and Tumor Progression. Cancer Immunology Research, 2020, 8, 1215-1227.	3.4	26
330	Insights on the Quest for the Structure–Function Relationship of the Mitochondrial Pyruvate Carrier. Biology, 2020, 9, 407.	2.8	4
331	Warburg-like Metabolic Reprogramming in Aging Intestinal Stem Cells Contributes to Tissue Hyperplasia. Cell Reports, 2020, 33, 108423.	6.4	36

		CITATION R	EPORT	
#	Article		IF	CITATIONS
332	Sequence Features of Mitochondrial Transporter Protein Families. Biomolecules, 2020,	, 10, 1611.	4.0	21
333	Enhanced Production of Ethyl Lactate in <i>Saccharomyces cerevisiae</i> by Genetic N Journal of Agricultural and Food Chemistry, 2020, 68, 13863-13870.	Modification.	5.2	11
334	SLC25A51 is a mammalian mitochondrial NAD+ transporter. Nature, 2020, 588, 174-1	.79.	27.8	158
335	On the Detection and Functional Significance of the Protein–Protein Interactions of Transport Proteins. Biomolecules, 2020, 10, 1107.	Mitochondrial	4.0	8
336	Enhanced pyruvate metabolism in plastids by overexpression of putative plastidial pyru transporter in Phaeodactylum tricornutum. Biotechnology for Biofuels, 2020, 13, 120.	uvate	6.2	20
337	The Multifaceted Pyruvate Metabolism: Role of the Mitochondrial Pyruvate Carrier. Bio 2020, 10, 1068.	molecules,	4.0	65
338	Metabolic Roles of Plant Mitochondrial Carriers. Biomolecules, 2020, 10, 1013.		4.0	11
339	Mitochondrial Pyruvate Carrier Function in Health and Disease across the Lifespan. Bio 2020, 10, 1162.	molecules,	4.0	16
340	The SLC25 Carrier Family: Important Transport Proteins in Mitochondrial Physiology ar Physiology, 2020, 35, 302-327.	าd Pathology.	3.1	77
341	Mitochondrial pyruvate carrier abundance mediates pathological cardiac hypertrophy. Metabolism, 2020, 2, 1223-1231.	Nature	11.9	68
342	Mitochondrial pyruvate carriers are required for myocardial stress adaptation. Nature N 2020, 2, 1248-1264.	Vletabolism,	11.9	87
343	Nutritional modulation of heart failure in mitochondrial pyruvate carrier–deficient m Metabolism, 2020, 2, 1232-1247.	ice. Nature	11.9	74
344	Ketone bodies for the starving heart. Nature Metabolism, 2020, 2, 1183-1185.		11.9	23
345	Quantitative Assessment of Blood Lactate in Shock: Measure of Hypoxia or Beneficial BioMed Research International, 2020, 2020, 1-24.	Energy Source.	1.9	13
346	Mechanism of futile creatine cycling in thermogenesis. American Journal of Physiology Endocrinology and Metabolism, 2020, 319, E947-E949.	-	3.5	3
347	The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism Cancer. Journal of Diabetes and Metabolic Disorders, 2020, 19, 1731-1775.	in Diabetes and	1.9	6
348	Metabolic Characterization and Consequences of Mitochondrial Pyruvate Carrier Defic Drosophila melanogaster. Metabolites, 2020, 10, 363.	siency in	2.9	10
349	Transmembrane Facilitation of Lactate/H+ Instead of Lactic Acid Is Not a Question of S Cell Viability. Membranes, 2020, 10, 236.	Semantics but of	3.0	14

#	Article	IF	CITATIONS
350	Forces, Fluxes, and Fuels: Tracking mitochondrial metabolism by integrating measurements of membrane potential, respiration, and metabolites. American Journal of Physiology - Cell Physiology, 2021, 320, C80-C91.	4.6	10
351	Selective Alanine Transporter Utilization Creates a Targetable Metabolic Niche in Pancreatic Cancer. Cancer Discovery, 2020, 10, 1018-1037.	9.4	104
352	Lower oxygen consumption and Complex I activity in mitochondria isolated from skeletal muscle of fetal sheep with intrauterine growth restriction. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E67-E80.	3.5	29
353	Characteristic Analysis of Homo- and Heterodimeric Complexes of Human Mitochondrial Pyruvate Carrier Related to Metabolic Diseases. International Journal of Molecular Sciences, 2020, 21, 3403.	4.1	15
354	20,000 picometers under the <scp>OMM</scp> : diving into the vastness of mitochondrial metabolite transport. EMBO Reports, 2020, 21, e50071.	4.5	29
355	Defining the Substrate Spectrum of the TIM22 Complex Identifies Pyruvate Carrier Subunits as Unconventional Cargos. Current Biology, 2020, 30, 1119-1127.e5.	3.9	29
356	T Cell–Expressed microRNA-155 Reduces Lifespan in a Mouse Model of Age-Related Chronic Inflammation. Journal of Immunology, 2020, 204, 2064-2075.	0.8	18
357	Mapping mitochondrial respiratory chain deficiencies by respirometry: Beyond the Mito Stress Test. Experimental Neurology, 2020, 328, 113282.	4.1	16
358	Mitochondrial Pyruvate Carrier 1 Promotes Peripheral T Cell Homeostasis through Metabolic Regulation of Thymic Development. Cell Reports, 2020, 30, 2889-2899.e6.	6.4	34
359	Recent progress on the role and molecular mechanism of chicken ovalbumin upstream promoter-transcription factor II in cancer. Journal of International Medical Research, 2020, 48, 030006052091923.	1.0	Ο
360	Harnessing sub-organelle metabolism for biosynthesis of isoprenoids in yeast. Synthetic and Systems Biotechnology, 2020, 5, 179-186.	3.7	40
361	Targeting Altered Energy Metabolism in Colorectal Cancer: Oncogenic Reprogramming, the Central Role of the TCA Cycle and Therapeutic Opportunities. Cancers, 2020, 12, 1731.	3.7	37
362	Pyruvate metabolism redirection for biological production of commodity chemicals in aerobic fungus Aspergillus oryzae. Metabolic Engineering, 2020, 61, 225-237.	7.0	20
363	The tortuous path of lactate shuttle discovery: From cinders and boards to the lab and ICU. Journal of Sport and Health Science, 2020, 9, 446-460.	6.5	32
364	Defective Mitochondrial Pyruvate Flux Affects Cell Bioenergetics in Alzheimer's Disease-Related Models. Cell Reports, 2020, 30, 2332-2348.e10.	6.4	67
365	The fuel and engine: The roles of reprogrammed metabolism in metastasis of primary liver cancer. Genes and Diseases, 2020, 7, 299-307.	3.4	12
366	Tumour metabolism and its unique properties in prostate adenocarcinoma. Nature Reviews Urology, 2020, 17, 214-231.	3.8	88
367	Stress-seventy subfamily A 4, A member of HSP70, confers yeast cadmium tolerance in the loss of mitochondria pyruvate carrier 1. Plant Signaling and Behavior, 2020, 15, 1719312.	2.4	2

#	Article	IF	CITATIONS
368	Metabolic reprogramming and disease progression in cancer patients. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165721.	3.8	45
369	Mitochondrial Pyruvate Carriers are not Required for Adipogenesis but areÂRegulated by Highâ€Fat Feeding in Brown Adipose Tissue. Obesity, 2020, 28, 293-302.	3.0	6
370	miR-26a is Involved in Glycometabolism and Affects Boar Sperm Viability by Targeting PDHX. Cells, 2020, 9, 146.	4.1	11
371	Plant Mitochondrial Carriers: Molecular Gatekeepers That Help to Regulate Plant Central Carbon Metabolism. Plants, 2020, 9, 117.	3.5	23
372	Metabolic Regulation of Tissue Stem Cells. Trends in Cell Biology, 2020, 30, 566-576.	7.9	49
373	Systems Biochemistry Approaches to Defining Mitochondrial Protein Function. Cell Metabolism, 2020, 31, 669-678.	16.2	16
374	Mitochondrial pyruvate and fatty acid flux modulate MICU1-dependent control of MCU activity. Science Signaling, 2020, 13, .	3.6	48
375	Expansion of the Transporter-Opsin-G protein-coupled receptor superfamily with five new protein families. PLoS ONE, 2020, 15, e0231085.	2.5	11
376	Effects of adding sodium dichloroacetate to low-protein diets on nitrogen balance and amino acid metabolism in the portal-drained viscera and liver of pigs. Journal of Animal Science and Biotechnology, 2020, 11, 36.	5.3	7
377	Mitochondrial lactate metabolism: history and implications for exercise and disease. Journal of Physiology, 2021, 599, 863-888.	2.9	97
378	Getting out what you put in: Copper in mitochondria and its impacts on human disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118867.	4.1	103
379	The PGC1α/NRF1-MPC1 axis suppresses tumor progression and enhances the sensitivity to sorafenib/doxorubicin treatment in hepatocellular carcinoma. Free Radical Biology and Medicine, 2021, 163, 141-152.	2.9	23
380	Golgi-Dependent Copper Homeostasis Sustains Synaptic Development and Mitochondrial Content. Journal of Neuroscience, 2021, 41, 215-233.	3.6	17
381	Mitochondrial pyruvate carrier as a key regulator of fever and neuroinflammation. Brain, Behavior, and Immunity, 2021, 92, 90-101.	4.1	6
382	Altered gene expression in glycolysis–cholesterol synthesis axis correlates with outcome of triple-negative breast cancer. Experimental Biology and Medicine, 2021, 246, 560-571.	2.4	8
383	Alterations in mitochondrial glucose carbon metabolism in epilepsy and targeted metabolic treatments. , 2021, , 653-677.		2
384	The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure. Cell Metabolism, 2021, 33, 629-648.e10.	16.2	137
385	The anaerobic threshold: 50+ years of controversy. Journal of Physiology, 2021, 599, 737-767.	2.9	156

#	Article	IF	CITATIONS
386	Impaired mitochondrial bioenergetics in psychiatric disorders. , 2021, , 195-221.		1
387	Characterization of drug-induced human mitochondrial ADP/ATP carrier inhibition. Theranostics, 2021, 11, 5077-5091.	10.0	12
388	The two-cell model of glucose metabolism: a hypothesis of schizophrenia. Molecular Psychiatry, 2021, 26, 1738-1747.	7.9	8
389	Gut stem cells: Interplay with immune system, microbiota, and aging. , 2021, , 177-186.		1
390	Heart failure—emerging roles for the mitochondrial pyruvate carrier. Cell Death and Differentiation, 2021, 28, 1149-1158.	11.2	22
391	MSDC-0160 and MSDC-0602 Binding with Human Mitochondrial Pyruvate Carrier (MPC) 1 and 2 Heterodimer. , 2021, , 427-455.		0
392	Amino Acid Homeostasis in Mammalian Cells with a Focus on Amino Acid Transport. Journal of Nutrition, 2022, 152, 16-28.	2.9	29
393	A SIRT1 Activator, Ginsenoside Rc, Promotes Energy Metabolism in Cardiomyocytes and Neurons. Journal of the American Chemical Society, 2021, 143, 1416-1427.	13.7	69
394	The distinct roles of calcium in rapid control of neuronal glycolysis and the tricarboxylic acid cycle. ELife, 2021, 10, .	6.0	51
396	Lactate in contemporary biology: a phoenix risen. Journal of Physiology, 2022, 600, 1229-1251.	2.9	85
397	Development of Novel Mitochondrial Pyruvate Carrier Inhibitors to Treat Hair Loss. Journal of Medicinal Chemistry, 2021, 64, 2046-2063.	6.4	16
398	The Power of Yeast in Modelling Human Nuclear Mutations Associated with Mitochondrial Diseases. Genes, 2021, 12, 300.	2.4	15
399	Cardiometabolism as an Interlocking Puzzle between the Healthy and Diseased Heart: New Frontiers in Therapeutic Applications. Journal of Clinical Medicine, 2021, 10, 721.	2.4	19
400	Lactic Acid Fermentation Is Required for NLRP3 Inflammasome Activation. Frontiers in Immunology, 2021, 12, 630380.	4.8	29
401	The Importance of Mitochondrial Pyruvate Carrier in Cancer Cell Metabolism and Tumorigenesis. Cancers, 2021, 13, 1488.	3.7	29
402	Identification and Development of Subtypes With Poor Prognosis in Pan-Gynecological Cancer Based on Gene Expression in the Glycolysis-Cholesterol Synthesis Axis. Frontiers in Oncology, 2021, 11, 636565.	2.8	7
403	Decreased Expression of MPC2 Contributes to Aerobic Glycolysis and Colorectal Cancer Proliferation by Activating mTOR Pathway. Journal of Immunology Research, 2021, 2021, 1-12.	2.2	6
404	Metabolic Reprogramming by Reduced Calorie Intake or Pharmacological Caloric Restriction Mimetics for Improved Cancer Immunotherapy. Cancers, 2021, 13, 1260.	3.7	13

#	Article	IF	CITATIONS
405	Mitochondria as Signaling Organelles Control Mammalian Stem Cell Fate. Cell Stem Cell, 2021, 28, 394-408.	11.1	151
406	Harnessing metabolic dependencies in pancreatic cancers. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 482-492.	17.8	81
407	Ketone therapy for heart failure: current evidence for clinical use. Cardiovascular Research, 2022, 118, 977-987.	3.8	23
408	Dual-process brain mitochondria isolation preserves function and clarifies protein composition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
410	The molecular mechanisms of Chlorella sp. responding to high CO2: A study based on comparative transcriptome analysis between strains with high- and low-CO2 tolerance. Science of the Total Environment, 2021, 763, 144185.	8.0	27
412	Glutathione Metabolism and the Novel Role of Mitochondrial GSH in Retinal Degeneration. Antioxidants, 2021, 10, 661.	5.1	45
413	Brown Adipose Tissue Heterogeneity, Energy Metabolism, and Beyond. Frontiers in Endocrinology, 2021, 12, 651763.	3.5	38
414	Mitochondrial Pyruvate Carrier Subunits Are Essential for Pyruvate-Driven Respiration, Infectivity, and Intracellular Replication of Trypanosoma cruzi. MBio, 2021, 12, .	4.1	7
415	Systematically Engineered Fatty Acid Catabolite Pathway for the Production of (2 <i>S</i>)-Naringenin in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2021, 10, 1166-1175.	3.8	28
416	ARRB1 Regulates Metabolic Reprogramming to Promote Clycolysis in Stem Cell-Like Bladder Cancer Cells. Cancers, 2021, 13, 1809.	3.7	10
417	Metabolic flexibility via mitochondrial BCAA carrier SLC25A44 is required for optimal fever. ELife, 2021, 10, .	6.0	15
418	Mitochondrial Control of Stem Cell State and Fate: Lessons From Drosophila. Frontiers in Cell and Developmental Biology, 2021, 9, 606639.	3.7	7
419	Excitotoxicity Revisited: Mitochondria on the Verge of a Nervous Breakdown. Trends in Neurosciences, 2021, 44, 342-351.	8.6	27
420	Mitochondrial pyruvate carrier 1: a novel prognostic biomarker that predicts favourable patient survival in cancer. Cancer Cell International, 2021, 21, 288.	4.1	11
421	Pan-cancer characterization of metabolism-related biomarkers identifies potential therapeutic targets. Journal of Translational Medicine, 2021, 19, 219.	4.4	8
422	Energy metabolism in brown adipose tissue. FEBS Journal, 2021, 288, 3647-3662.	4.7	35
423	Application of Q-TOF–MS based metabonomics techniques to analyze the plasma metabolic profile changes on rats following death due to acute intoxication of phorate. International Journal of Legal Medicine, 2021, 135, 1437-1447.	2.2	0
424	Mitochondrial localization and moderated activity are key to murine erythroid enucleation. Blood Advances, 2021, 5, 2490-2504.	5.2	16

#	Article	IF	CITATIONS
425	Emerging therapeutic approaches for the treatment of NAFLD and type 2 diabetes mellitus. Nature Reviews Endocrinology, 2021, 17, 484-495.	9.6	224
426	The mitochondrial pyruvate carrier (MPC) complex mediates one of three pyruvate-supplying pathways that sustain Arabidopsis respiratory metabolism. Plant Cell, 2021, 33, 2776-2793.	6.6	39
427	Structural Mechanism of Transport of Mitochondrial Carriers. Annual Review of Biochemistry, 2021, 90, 535-558.	11.1	31
428	CRISPR screens in physiologic medium reveal conditionally essential genes in human cells. Cell Metabolism, 2021, 33, 1248-1263.e9.	16.2	77
429	Lung but not brain cancer cell malignancy inhibited by commonly used anesthetic propofol during surgery: Implication of reducing cancer recurrence risk. Journal of Advanced Research, 2021, 31, 1-12.	9.5	11
430	Filtering of Data-Driven Gene Regulatory Networks Using Drosophila melanogaster as a Case Study. Frontiers in Genetics, 2021, 12, 649764.	2.3	2
431	Balancing energy expenditure and storage with growth and biosynthesis during Drosophila development. Developmental Biology, 2021, 475, 234-244.	2.0	18
432	Roles of MicroRNAs in Glucose and Lipid Metabolism in the Heart. Frontiers in Cardiovascular Medicine, 2021, 8, 716213.	2.4	8
433	Mitochondrial pyruvate carrier regulates the lignocellulosic decomposition rate through metabolism in <i>Ganoderma lucidum</i> . FEMS Microbiology Letters, 2021, 368, .	1.8	4
435	New insights into TCR \hat{I}^2 -selection. Trends in Immunology, 2021, 42, 735-750.	6.8	37
436	Mitochondrial Metabolism behind Region-Specific Resistance to Ischemia-Reperfusion Injury in Gerbil Hippocampus. Role of PKCβII and Phosphate-Activated Glutaminase. International Journal of Molecular Sciences, 2021, 22, 8504.	4.1	5
437	Metabolic decisions in development and disease—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 55-73.	3.8	6
438	Learning from Yeast about Mitochondrial Carriers. Microorganisms, 2021, 9, 2044.	3.6	5
439	Genetic dissection of complex traits using hierarchical biological knowledge. PLoS Computational Biology, 2021, 17, e1009373.	3.2	1
440	Perturbed Brain Glucose Metabolism Caused by Absent SIRT3 Activity. Cells, 2021, 10, 2348.	4.1	4
441	Ablation of mitochondrial DNA results in widespread remodeling of the mitochondrial complexome. EMBO Journal, 2021, 40, e108648.	7.8	18
443	Insights into a Pyruvate Sensing and Uptake System in Vibrio campbellii and Its Importance for Virulence. Journal of Bacteriology, 2021, 203, e0029621.	2.2	4
445	Targeting adaptive cellular responses to mitochondrial bioenergetic deficiencies in human disease. FEBS Journal, 2022, 289, 6969-6993.	4.7	5

#	Article	IF	CITATIONS
446	Isobutanol production by Candida glabrata – A potential organism for future fuel demands. Fuel, 2021, 306, 121634.	6.4	3
448	Rethinking the Citric Acid Cycle: Connecting Pyruvate Carboxylase and Citrate Synthase to the Flow of Energy and Material. International Journal of Molecular Sciences, 2021, 22, 604.	4.1	21
449	The mitochondrial calcium homeostasis orchestra plays its symphony: Skeletal muscle is the guest of honor. International Review of Cell and Molecular Biology, 2021, 362, 209-259.	3.2	7
450	Overexpression of the mitochondrial pyruvate carrier reduces lactate production and increases recombinant protein productivity in CHO cells. Biotechnology and Bioengineering, 2020, 117, 2633-2647.	3.3	11
451	Disorders of Pyruvate Metabolism and the Tricarboxylic Acid Cycle. , 2016, , 187-199.		4
452	NADPH and Glutathione Redox Link TCA Cycle Activity to Endoplasmic Reticulum Homeostasis. IScience, 2020, 23, 101116.	4.1	51
453	The mitochondrial ADP/ATP carrier exists and functions as a monomer. Biochemical Society Transactions, 2020, 48, 1419-1432.	3.4	24
463	Long noncoding RNA Malat1 regulates differential activation of macrophages and response to lung injury. JCl Insight, 2019, 4, .	5.0	97
464	Two human patient mitochondrial pyruvate carrier mutations reveal distinct molecular mechanisms of dysfunction. JCI Insight, 2019, 4, .	5.0	26
465	C-Terminal Binding Protein 1 Modulates Cellular Redox via Feedback Regulation of MPC1 and MPC2 in Melanoma Cells. Medical Science Monitor, 2018, 24, 7614-7624.	1.1	7
466	Chicken or the egg: Warburg effect and mitochondrial dysfunction. F1000prime Reports, 2015, 7, 41.	5.9	64
467	PCR Machines. Materials and Methods, 0, 3, .	0.0	1
468	Temporal Coordination of Carbohydrate Metabolism during Mosquito Reproduction. PLoS Genetics, 2015, 11, e1005309.	3.5	79
469	Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet. PLoS Genetics, 2016, 12, e1006056.	3.5	56
470	Global Gene Expression Profiling through the Complete Life Cycle of Trypanosoma vivax. PLoS Neglected Tropical Diseases, 2015, 9, e0003975.	3.0	31
471	Differential Regulation of Mitochondrial Pyruvate Carrier Genes Modulates Respiratory Capacity and Stress Tolerance in Yeast. PLoS ONE, 2013, 8, e79405.	2.5	36
472	Imaging Mitochondrial Flux in Single Cells with a FRET Sensor for Pyruvate. PLoS ONE, 2014, 9, e85780.	2.5	160
474	Blocking mitochondrial pyruvate import in brown adipocytes induces energy wasting via lipid cycling. EMBO Reports, 2020, 21, e49634.	4.5	31

#	Article	IF	CITATIONS
475	Chronic cold exposure enhances glucose oxidation in brown adipose tissue. EMBO Reports, 2020, 21, e50085.	4.5	33
476	A Genetic Screen Using the <i>Drosophila melanogaster</i> TRiP RNAi Collection To Identify Metabolic Enzymes Required for Eye Development. G3: Genes, Genomes, Genetics, 2019, 9, 2061-2070.	1.8	15
477	Regulation of Carbohydrate Energy Metabolism in. Genetics, 2017, 207, 1231-1253.	2.9	110
478	Rewiring yeast acetate metabolism through MPC1 loss of function leads to mitochondrial damage and decreases chronological lifespan. Microbial Cell, 2014, 1, 393-405.	3.2	17
479	Exogenous pyruvate facilitates cancer cell adaptation to hypoxia by serving as an oxygen surrogate. Oncotarget, 2016, 7, 47494-47510.	1.8	20
480	Establishment of mitochondrial pyruvate carrier 1 (MPC1) gene knockout mice with preliminary gene function analyses. Oncotarget, 2016, 7, 79981-79994.	1.8	17
481	Mitochondrial pyruvate carrier function is negatively linked to Warburg phenotype <i>in vitro</i> and malignant features in esophageal squamous cell carcinomas. Oncotarget, 2017, 8, 1058-1073.	1.8	36
482	Mitochondrial pyruvate carrier function determines cell stemness and metabolic reprogramming in cancer cells. Oncotarget, 2017, 8, 46363-46380.	1.8	50
483	Mechanisms through which lithocholic acid delays yeast chronological aging under caloric restriction conditions. Oncotarget, 2018, 9, 34945-34971.	1.8	11
484	MPC1, a key gene in cancer metabolism, is regulated by COUPTFII in human prostate cancer. Oncotarget, 2016, 7, 14673-14683.	1.8	46
485	Role of Mitochondrial Carriers in Metabolic Engineering. Journal of Bioprocessing & Biotechniques, 2014, 04, .	0.2	3
486	The Mitochondrial Pyruvate Carrier and Metabolic Regulation. CellBio, 2014, 03, 111-117.	1.3	5
487	Mitochondria in Cancer Energy Metabolism: Culprits or Bystanders?. Toxicological Research, 2015, 31, 323-330.	2.1	33
488	Impaired skeletal muscle mitochondrial pyruvate uptake rewires glucose metabolism to drive whole-body leanness. ELife, 2019, 8, .	6.0	54
489	Mitochondrial fusion is required for spermatogonial differentiation and meiosis. ELife, 2019, 8, .	6.0	58
490	Mitochondrial pyruvate carrier is required for optimal brown fat thermogenesis. ELife, 2020, 9, .	6.0	45
491	A highly responsive pyruvate sensor reveals pathway-regulatory role of the mitochondrial pyruvate carrier MPC. ELife, 2020, 9, .	6.0	53
492	Localized Glucose Import, Glycolytic Processing, and Mitochondria Generate a Focused ATP Burst to Power Basement Membrane Invasion. SSRN Electronic Journal, 0, , .	0.4	0

#	Δρτιςι ε	IF	CITATIONS
" 493	Basigin deficiency prevents anaplerosis and ameliorates insulin resistance and hepatosteatosis. JCI Insight, 2021, 6, .	5.0	3
494	Metabolic and Signaling Roles of Ketone Bodies in Health and Disease. Annual Review of Nutrition, 2021, 41, 49-77.	10.1	81
495	Mitochondrial Dysfunction in Metabolic Disease. Indonesian Biomedical Journal, 2012, 4, 119.	0.3	1
497	Analysis of the Role of Mitochondria of Sake Yeast during Sake Brewing and Its Applications in Fermentation Technologies. AGri-Bioscience Monographs, 2013, 3, 1-12.	0.3	1
498	Copper in Mitochondria. 2-Oxoglutarate-Dependent Oxygenases, 2014, , 500-523.	0.8	0
500	De Novo Acetate Production is Coupled to Central Carbon Metabolism in Mammals. SSRN Electronic Journal, 0, , .	0.4	0
507	Structural Insights into the Human Mitochondrial Pyruvate Carrier Complexes. Journal of Chemical Information and Modeling, 2021, 61, 5614-5625.	5.4	5
508	Dihydrolipoamide dehydrogenase, pyruvate oxidation, and acetylation-dependent mechanisms intersecting drug iatrogenesis. Cellular and Molecular Life Sciences, 2021, 78, 7451-7468.	5.4	8
511	Lactate supports a metabolic-epigenetic link in macrophage polarization. Science Advances, 2021, 7, eabi8602.	10.3	70
512	5-Benzylidene, 5-benzyl, and 3-benzylthiazolidine-2,4-diones as potential inhibitors of the mitochondrial pyruvate carrier: Effects on mitochondrial functions and survival in Drosophila melanogaster. European Journal of Pharmacology, 2021, 913, 174627.	3.5	7
513	A Non-Canonical Convergence of Carbohydrate and Glutamine Metabolism is Required After Metabolic Rewiring in a Solid Environment. SSRN Electronic Journal, 0, , .	0.4	0
514	Metabogenomic analysis to functionally annotate the regulatory role of long non-coding RNAs in the liver of cows with different nutrient partitioning phenotype. Genomics, 2022, 114, 202-214.	2.9	5
516	Phenotyping of Drosophila Melanogaster—A Nutritional Perspective. Biomolecules, 2022, 12, 221.	4.0	12
517	Imaging Approaches for the Study of Metabolism in Real Time Using Genetically Encoded Reporters. Frontiers in Cell and Developmental Biology, 2021, 9, 725114.	3.7	4
518	Identification and characterization of novel <scp><i>MPC1</i></scp> gene variants causing mitochondrial pyruvate carrier deficiency. Journal of Inherited Metabolic Disease, 2022, 45, 264-277.	3.6	7
519	Glutamine-Derived Aspartate Biosynthesis in Cancer Cells: Role of Mitochondrial Transporters and New Therapeutic Perspectives. Cancers, 2022, 14, 245.	3.7	12
521	Identification of Novel Mitochondrial Pyruvate Carrier Inhibitors by Homology Modeling and Pharmacophore-Based Virtual Screening. Biomedicines, 2022, 10, 365.	3.2	8
522	Mitochondrial pyruvate carrier inhibitors improve metabolic parameters in diet-induced obese mice. Journal of Biological Chemistry, 2022, 298, 101554.	3.4	20

#	Article	IF	CITATIONS
523	BMAL1 drives muscle repair through control of hypoxic NAD ⁺ regeneration in satellite cells. Genes and Development, 2022, 36, 149-166.	5.9	13
524	Highâ€ŧhroughput cellâ€free screening of eukaryotic membrane protein expression in lipidic mimetics. Protein Science, 2022, 31, 639-651.	7.6	7
525	Microbial engineering for the production of isobutanol: current status and future directions. Bioengineered, 2021, 12, 12308-12321.	3.2	27
526	Paradoxical neuronal hyperexcitability in a mouse model of mitochondrial pyruvate import deficiency. ELife, 2022, 11, .	6.0	21
527	Role of Mitochondrial Stress Response in Cancer Progression. Cells, 2022, 11, 771.	4.1	17
528	Major ginsenosides from Panax ginseng promote aerobic cellular respiration and SIRT1-mediated mitochondrial biosynthesis in cardiomyocytes and neurons. Journal of Ginseng Research, 2022, 46, 759-770.	5.7	6
529	Localized glucose import, glycolytic processing, and mitochondria generate a focused ATP burst to power basement-membrane invasion. Developmental Cell, 2022, 57, 732-749.e7.	7.0	22
530	Local recruitment and fueling of the cellular powerplant to support cell invasion. Developmental Cell, 2022, 57, 689-690.	7.0	0
531	A Heme-Binding Transcription Factor BACH1 Regulates Lactate Catabolism Suggesting a Combined Therapy for Triple-Negative Breast Cancer. Cells, 2022, 11, 1177.	4.1	6
532	Transcriptome Analysis on Key Metabolic Pathways in Rhodotorula mucilaginosa Under Pb(II) Stress. Applied and Environmental Microbiology, 2022, 88, e0221521.	3.1	5
533	Mitochondrial pyruvate carrier blockade results in decreased osteoclastogenesis and bone resorption via regulating mitochondrial energy production. Journal of Biological Chemistry, 2022, , 101775.	3.4	2
534	Engineering of Yarrowia lipolytica for producing pyruvate from glycerol. 3 Biotech, 2022, 12, 98.	2.2	0
535	Organelle transporters and inter-organelle communication as drivers of metabolic regulation and cellular homeostasis. Molecular Metabolism, 2022, 60, 101481.	6.5	29
536	Revealing therapeutic targets and mechanism of baicalin for anti-chronic gastritis using proteomic analysis of the gastric tissue. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2022, 1196, 123214.	2.3	1
537	Reprogramming hormone-sensitive prostate cancer to a lethal neuroendocrine cancer lineage by mitochondrial pyruvate carrier (MPC). Molecular Metabolism, 2022, 59, 101466.	6.5	5
538	Key features of inhibitor binding to the human mitochondrial pyruvate carrier hetero-dimer. Molecular Metabolism, 2022, 60, 101469.	6.5	8
539	Non-targeted metabolomics revealing the effects of bisphenol analogues on human liver cancer cells. Chemosphere, 2022, 297, 134088.	8.2	8
541	Mitochondrial Metabolism in Myocardial Remodeling and Mechanical Unloading: Implications for Ischemic Heart Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 789267.	2.4	22

#	Article	IF	CITATIONS
542	Advances of Glycometabolism Engineering in Chinese Hamster Ovary Cells. Frontiers in Bioengineering and Biotechnology, 2021, 9, 774175.	4.1	3
543	Mitochondrial respiratory quiescence: A new model for examining the role of mitochondrial metabolism in development. Seminars in Cell and Developmental Biology, 2023, 138, 94-103.	5.0	6
544	Activating P2Y1 receptors improves function in arteries with repressed autophagy. Cardiovascular Research, 2023, 119, 252-267.	3.8	10
546	The mitochondrial pyruvate carrier regulates memory TÂcell differentiation and antitumor function. Cell Metabolism, 2022, 34, 731-746.e9.	16.2	63
547	Lactate Is Answerable for Brain Function and Treating Brain Diseases: Energy Substrates and Signal Molecule. Frontiers in Nutrition, 2022, 9, 800901.	3.7	15
548	Adipose mitochondrial metabolism controls body growth by modulating systemic cytokine and insulin signaling. Cell Reports, 2022, 39, 110802.	6.4	6
549	Downregulation of mitochondrial pyruvate carrier 2 aggravates neuronal injury in the cortex following cerebral ischemia in rat. Brain Research Bulletin, 2022, 185, 193-202.	3.0	2
550	Mitoribosomal defects aggravate liver cancer via aberrant glycolytic flux and T cell exhaustion. , 2022, 10, e004337.		12
554	The mitochondrial pyruvate carrier at the crossroads of intermediary metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2022, 323, E33-E52.	3.5	13
556	Methanol fixed feeder layers altered the pluripotency and metabolism of bovine pluripotent stem cells. Scientific Reports, 2022, 12, .	3.3	2
558	Cancer cells depend on environmental lipids for proliferation when electron acceptors are limited. Nature Metabolism, 2022, 4, 711-723.	11.9	29
559	Metabolic Mechanisms Connecting Alzheimer's and Parkinson's Diseases: Potential Avenues for Novel Therapeutic Approaches. Frontiers in Molecular Biosciences, 0, 9, .	3.5	4
560	CRISPR/Cas9-mediated point mutations improve α-amylase secretion in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2022, 22, .	2.3	6
562	Simulations of Pathogenic E1α Variants: Allostery and Impact on Pyruvate Dehydrogenase Complex-E1 Structure and Function. Journal of Chemical Information and Modeling, 2022, 62, 3463-3475.	5.4	1
563	Small RNAs derived from tRNA fragmentation regulate the functional maturation of neonatal β cells. Cell Reports, 2022, 40, 111069.	6.4	7
564	Pyruvate Supports RET-Dependent Mitochondrial ROS Production to Control Mycobacterium avium Infection in Human Primary Macrophages. Frontiers in Immunology, 0, 13, .	4.8	1
565	Mitochondrial Engineering of <i>Yarrowia lipolytica</i> for Sustainable Production of α-Bisabolene from Waste Cooking Oil. ACS Sustainable Chemistry and Engineering, 2022, 10, 9644-9653.	6.7	10
566	Molecular and biochemical regulation of skeletal muscle metabolism. Journal of Animal Science, 2022, 100, .	0.5	9

# 567	ARTICLE A practical guide for the analysis, standardization and interpretation of oxygen consumption measurements. Nature Metabolism, 2022, 4, 978-994.	IF 11.9	CITATIONS 28
568	Glycolytic potential enhanced by blockade of pyruvate influx into mitochondria sensitizes prostate cancer to detection and radiotherapy. Cancer Biology and Medicine, 0, , 1-1.	3.0	1
569	Lactic Acid Regulation: A Potential Therapeutic Option in Rheumatoid Arthritis. Journal of Immunology Research, 2022, 2022, 1-11.	2.2	2
570	MicroRNA-mediated reprogramming of glucose, fatty acid and amino acid metabolism in cancer. Genome Instability & Disease, 2023, 4, 47-69.	1.1	1
571	Carbohydrate metabolism I: glycolysis and the tricarboxylic acid cycle. , 2023, , 203-227.		2
573	Ketogenic Diet Treatment of Defects in the Mitochondrial Malate Aspartate Shuttle and Pyruvate Carrier. Nutrients, 2022, 14, 3605.	4.1	9
574	Effects of Ketogenic Diet on Muscle Metabolism in Health and Disease. Nutrients, 2022, 14, 3842.	4.1	10
575	Mitochondrial pyruvate supports lymphoma proliferation by fueling a glutamate pyruvate transaminase 2–dependent glutaminolysis pathway. Science Advances, 2022, 8, .	10.3	11
576	Maintenance of small molecule redox homeostasis in mitochondria. FEBS Letters, 2023, 597, 205-223.	2.8	6
577	Pyruvate transporter <scp>BnaBASS2</scp> impacts seed oil accumulation in <i>Brassica napus</i> . Plant Biotechnology Journal, 2022, 20, 2406-2417.	8.3	10
578	Tracing the lactate shuttle to the mitochondrial reticulum. Experimental and Molecular Medicine, 2022, 54, 1332-1347.	7.7	20
579	Experimental Investigations on the Structure of Yeast Mitochondrial Pyruvate Carriers. Membranes, 2022, 12, 916.	3.0	1
580	Development of an industrial yeast strain for efficient production of 2,3-butanediol. Microbial Cell Factories, 2022, 21, .	4.0	4
581	Classification and Prognostic Characteristics of Hepatocellular Carcinoma Based on Glycolysis Cholesterol Synthesis Axis. Journal of Oncology, 2022, 2022, 1-17.	1.3	1
582	Requirement of hepatic pyruvate carboxylase during fasting, high fat, and ketogenic diet. Journal of Biological Chemistry, 2022, 298, 102648.	3.4	4
583	Principles and functions of metabolic compartmentalization. Nature Metabolism, 2022, 4, 1232-1244.	11.9	28
584	Proteomics unveil a central role for peroxisomes in butyrate assimilation of the heterotrophic Chlorophyte alga Polytomella sp Frontiers in Microbiology, 0, 13, .	3.5	1
585	Profiling subcellular localization of nuclear-encoded mitochondrial gene products in zebrafish. Life Science Alliance, 2023, 6, e202201514.	2.8	2

#	Article	IF	CITATIONS
586	Pyruvate prevents the onset of the cachectic features and metabolic alterations in myotubes downregulating <scp>STAT3</scp> signaling. FASEB Journal, 2022, 36, .	0.5	1
587	A novel signature model based on mitochondrial-related genes for predicting survival of colon adenocarcinoma. BMC Medical Informatics and Decision Making, 2022, 22, .	3.0	2
588	Mitochondrial signal transduction. Cell Metabolism, 2022, 34, 1620-1653.	16.2	112
590	Metabolism and Colorectal Cancer. Annual Review of Pathology: Mechanisms of Disease, 2023, 18, 467-492.	22.4	30
591	Non-bioenergetic roles of mitochondrial GPD2 promote tumor progression. Theranostics, 2023, 13, 438-457.	10.0	2
592	<i>MPC2</i> variants disrupt mitochondrial pyruvate metabolism and cause an early-onset mitochondriopathy. Brain, 2023, 146, 858-864.	7.6	2
593	Proteomic and metabolomic analysis on cadmium-induced mitochondrial toxicity in liver tissues of juvenile olive flounder Paralichthys olivaceus. Frontiers in Marine Science, 0, 9, .	2.5	1
595	Manipulating T-cell metabolism to enhance immunotherapy in solid tumor. Frontiers in Immunology, 0, 13, .	4.8	8
596	Regulation and function of the mammalian tricarboxylic acidÂcycle. Journal of Biological Chemistry, 2023, 299, 102838.	3.4	53
597	Role of Mitochondrial Transporters on Metabolic Rewiring of Pancreatic Adenocarcinoma: A Comprehensive Review. Cancers, 2023, 15, 411.	3.7	5
598	Mitochondrial pyruvate carrier influences ganoderic acid biosynthesis in Ganoderma lucidum. Applied Microbiology and Biotechnology, 2023, 107, 1361-1371.	3.6	1
599	Metabolites as signalling molecules. Nature Reviews Molecular Cell Biology, 2023, 24, 355-374.	37.0	57
601	Metabolic and proteomic indications of diabetes progression in human aqueous humor. PLoS ONE, 2023, 18, e0280491.	2.5	4
602	The SLC25A47 locus controls gluconeogenesis and energy expenditure. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	5
603	The mitochondrial pyruvate carrier complex potentiates the efficacy of proteasome inhibitors in multiple myeloma. Blood Advances, 2023, 7, 3485-3500.	5.2	5
604	Pyruvate dehydrogenase fuels a critical citrate pool that is essential for Th17 cell effector functions. Cell Reports, 2023, 42, 112153.	6.4	7
605	Mitochondrial pyruvate carrier inhibition initiates metabolic crosstalk to stimulate branched chain amino acid catabolism. Molecular Metabolism, 2023, 70, 101694.	6.5	15
606	Glycometabolism reprogramming: Implications for cardiovascular diseases. Progress in Biophysics and Molecular Biology, 2023, 179, 26-37.	2.9	5

#	Article	IF	CITATIONS
607	Exon definitive regions for MPC1 microexon splicing and its usage for splicing modulation. Molecular Therapy - Nucleic Acids, 2023, 31, 398-410.	5.1	0
608	The Hepatic Mitochondrial Pyruvate Carrier as a Regulator of Systemic Metabolism and a Therapeutic Target for Treating Metabolic Disease. Biomolecules, 2023, 13, 261.	4.0	6
609	Nutrient transporters: connecting cancer metabolism to therapeutic opportunities. Oncogene, 2023, 42, 711-724.	5.9	5
610	Metabolism and epigenetics at the heart of T cell function. Trends in Immunology, 2023, 44, 231-244.	6.8	11
611	DRP1 mutations associated with EMPF1 encephalopathy alter mitochondrial membrane potential and metabolic programs. Journal of Cell Science, 2023, 136, .	2.0	8
613	Loss of a Functional Mitochondrial Pyruvate Carrier in Komagataella phaffii Does Not Improve Lactic Acid Production from Glycerol in Aerobic Cultivation. Microorganisms, 2023, 11, 483.	3.6	1
615	How Warburg-Associated Lactic Acidosis Rewires Cancer Cell Energy Metabolism to Resist Glucose Deprivation. Cancers, 2023, 15, 1417.	3.7	8
616	Transcriptomics and experimental validation-based approach to understand the effect and mechanism of Huangqin tang interfeience with colitis associated colorectal cancer. Heliyon, 2023, 9, e13739.	3.2	0
617	Mitochondrial pyruvate metabolism regulates the activation of quiescent adult neural stem cells. Science Advances, 2023, 9, .	10.3	19
618	Monitoring live mitochondrial metabolism in realâ€ŧime using NMR spectroscopy. Magnetic Resonance in Chemistry, 2023, 61, 718-727.	1.9	2
619	Glycolytic System in Axons Supplement Decreased ATP Levels after Axotomy of the Peripheral Nerve. ENeuro, 2023, 10, ENEURO.0353-22.2023.	1.9	2
620	The Mitochondrial Pyruvate Carrier Coupling Glycolysis and the Tricarboxylic Acid Cycle Is Required for the Asexual Reproduction of Toxoplasma gondii. Microbiology Spectrum, 2023, 11, .	3.0	2
621	Lactic acid as a systemic product and biomarker of physical load. Studia Biologica = БІОЛОГІЧÐІ СÐ 2023, 17, 115-130.	¢Đ£Đ"І 0.4	Ї Studia Bic O
622	Metaboverse enables automated discovery and visualization of diverse metabolic regulatory patterns. Nature Cell Biology, 2023, 25, 616-625.	10.3	4
624	Mitochondrial metabolism of the facultative parasite Chilodonella uncinata (Alveolata, Ciliophora). Parasites and Vectors, 2023, 16, .	2.5	3
625	Analogy or fallacy, unsafe chemical alternatives: Mechanistic insights into energy metabolism dysfunction induced by Bisphenol analogs in HepC2 cells. Environment International, 2023, 175, 107942.	10.0	2
628	NMR and Patch-Clamp Characterization of Yeast Mitochondrial Pyruvate Carrier Complexes. Biomolecules, 2023, 13, 719.	4.0	0
629	Genetically predicted 486 blood metabolites in relation to risk of colorectal cancer: A Mendelian randomization study. Cancer Medicine, 2023, 12, 13784-13799.	2.8	11

#	Article	IF	CITATIONS
630	Generation of a Yeast Cell Model Potentially Useful to Identify the Mammalian Mitochondrial N-Acetylglutamate Transporter. Biomolecules, 2023, 13, 808.	4.0	2
632	Mitochondrial pyruvate metabolism and glutaminolysis toggle steady-state and emergency myelopoiesis. Journal of Experimental Medicine, 2023, 220, .	8.5	0
633	Loss of the mitochondrial protein Abcb10 results in altered arginine metabolism in MEL and K562Âcells and nutrient stress signaling through ATF4. Journal of Biological Chemistry, 2023, 299, 104877.	3.4	2
637	A novel prognostic model for hepatocellular carcinoma based on pyruvate metabolism-related genes. Scientific Reports, 2023, 13, .	3.3	3
638	SIRT3 Is a Critical Regulator of Mitochondrial Function of Fibroblasts in Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 0, , .	2.9	1
639	Lactate mediated metabolic crosstalk between cancer and immune cells and its therapeutic implications. Frontiers in Oncology, 0, 13, .	2.8	0
640	miRNA-1 promotes acute myeloid leukemia cell pathogenesis through metabolic regulation. Frontiers in Genetics, 0, 14, .	2.3	2
641	Mitochondrial pyruvate carrier-mediated metabolism is dispensable for the classical activation of macrophages. Nature Metabolism, 2023, 5, 804-820.	11.9	7
642	Fifty years of the mitochondrial pyruvate carrier: New insights into its structure, function, and inhibition. Acta Physiologica, 2023, 238, .	3.8	2
643	Comparative proteomic and phosphoproteomic analysis reveals differential heat response mechanism in two congeneric oyster species. Ecotoxicology and Environmental Safety, 2023, 263, 115197.	6.0	3
645	Urine and serum metabolic profiling combined with machine learning for autoimmune disease discrimination and classification. Chemical Communications, 2023, 59, 9852-9855.	4.1	0
646	Advances in Small Molecules of Flavonoids for the Regulation of Gluconeogenesis. Current Topics in Medicinal Chemistry, 2023, 23, .	2.1	0
647	Metabolites and Immune Response in Tumor Microenvironments. Cancers, 2023, 15, 3898.	3.7	3
648	Fibroblast-to-cardiomyocyte lactate shuttle modulates hypertensive cardiac remodelling. Cell and Bioscience, 2023, 13, .	4.8	1
651	<i>GIMPC</i> activated by GCN4 regulates secondary metabolism under nitrogen limitation conditions in <i>Ganoderma lucidum</i> . MBio, 2023, 14, .	4.1	1
652	Systemic proteome phenotypes reveal defective metabolic flexibility in Mecp2 mutants. Human Molecular Genetics, 0, , .	2.9	1
653	Hepatic pyruvate and alanine metabolism are critical and complementary for maintenance of antioxidant capacity and resistance to oxidative insult. Molecular Metabolism, 2023, 77, 101808.	6.5	1
654	Mitochondrial proteome research: the road ahead. Nature Reviews Molecular Cell Biology, 2024, 25, 65-82.	37.0	1

#	Article	IF	CITATIONS
655	Metabolomic analysis of <i>Drosophila melanogaster</i> larvae lacking pyruvate kinase. G3: Genes, Genomes, Genetics, 2023, 14, .	1.8	0
656	Generation of an induced pluripotent stem cell line (BCHNCi003-A) from a patient with mitochondrial pyruvate carrier deficiency caused by biallelic MPC1 mutations. Stem Cell Research, 2023, 72, 103206.	0.7	0
657	Mitochondrial YBX1 promotes cancer cell metastasis by inhibiting pyruvate uptake. , 0, , .		0
658	Insulin sensitizers in 2023: lessons learned and new avenues for investigation. Expert Opinion on Investigational Drugs, 2023, 32, 803-811.	4.1	1
659	Novel Approaches to the Establishment of Local Microenvironment from Resorbable Biomaterials in the Brain In Vitro Models. International Journal of Molecular Sciences, 2023, 24, 14709.	4.1	2
660	Comparison of monochloramination and chlorination of 1,3-diphenylguandine (DPG): Kinetics, transformation products, and cell-based in-vitro testing. Science of the Total Environment, 2024, 906, 167743.	8.0	1
661	Effects of hepatic mitochondrial pyruvate carrier deficiency on de novo lipogenesis and gluconeogenesis in mice. IScience, 2023, 26, 108196.	4.1	0
662	Loss of muscle PDH induces lactic acidosis and adaptive anaplerotic compensation via pyruvate-alanine cycling and glutaminolysis. Journal of Biological Chemistry, 2023, 299, 105375.	3.4	1
663	Screening for new inhibitors of the human Mitochondrial Pyruvate Carrier and their effects on hepatic glucose production and diabetes. Biochimica Et Biophysica Acta - General Subjects, 2023, 1867, 130492.	2.4	0
664	<scp><i>Drosophila</i></scp> tweety facilitates autophagy to regulate mitochondrial homeostasis and bioenergetics in <scp>Glia</scp> . Glia, 2024, 72, 433-451.	4.9	0
665	Blocking Mitochondrial Pyruvate Transport Alters Corneal Myofibroblast Phenotype: A New Target for Treating Fibrosis. , 2023, 64, 36.		2
666	Glycolysis-derived alanine from glia fuels neuronal mitochondria for memory in Drosophila. Nature Metabolism, 2023, 5, 2002-2019.	11.9	2
667	Membrane transporters in cell physiology, cancer metabolism and drug response. DMM Disease Models and Mechanisms, 2023, 16, .	2.4	1
669	Tubular mitochondrial pyruvate carrier disruption elicits redox adaptations that protect from acute kidney injury. Molecular Metabolism, 2024, 79, 101849.	6.5	0
670	Prostate lineage-specific metabolism governs luminal differentiation and response to antiandrogen treatment. Nature Cell Biology, 2023, 25, 1821-1832.	10.3	3
672	Mitochondrial metabolic flexibility is critical for CD8 ⁺ T cell antitumor immunity. Science Advances, 2023, 9, .	10.3	1
673	Intracellular pyruvate–lactate–alanine cycling detected using realâ€ŧime nuclear magnetic resonance spectroscopy of live cells and isolated mitochondria. Magnetic Resonance in Chemistry, 2024, 62, 84-93.	1.9	0
674	OXPHOS capacity is diminished and the phosphorylation system inhibited during diapause in an extremophile, embryos of <i>Artemia franciscana</i> . Journal of Experimental Biology, 0, , .	1.7	1

#	Article	IF	CITATIONS
675	Alterations in mitochondrial structure and function in response to environmental temperature changes in Apostichopus japonicus. Marine Environmental Research, 2024, 194, 106330.	2.5	0
676	Hypoxia induces mitochondrial protein lactylation to limit oxidative phosphorylation. Cell Research, 2024, 34, 13-30.	12.0	4
677	Empowering mitochondrial metabolism: Exploring L-lactate supplementation as a promising therapeutic approach for metabolic syndrome. Metabolism: Clinical and Experimental, 2024, 152, 155787.	3.4	1
678	Energy metabolism and redox balance: How phytochemicals influence heart failure treatment. Biomedicine and Pharmacotherapy, 2024, 171, 116136.	5.6	0
679	Lighting up Pyruvate Metabolism in <i>Saccharomyces cerevisiae</i> by a Genetically Encoded Fluorescent Biosensor. Journal of Agricultural and Food Chemistry, 2024, 72, 1651-1659.	5.2	0
682	Transient anticonvulsant effects of time-restricted feeding in the 6-Hz mouse model. Epilepsy and Behavior, 2024, 151, 109618.	1.7	0
683	Dietary steroids promote body weight growth and induce gametogenesis by increasing the expressions of genes related to cell proliferation of sea cucumber (Apostichopus japonicus). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2024, 49, 101191.	1.0	0
684	Mitochondrial Function in Health and Disease: Responses to Helicobacter pylori Metabolism and Impact in Gastric Cancer Development. Current Topics in Microbiology and Immunology, 2023, , 53-81.	1.1	0
685	Rewiring metabolic flux to simultaneously improve malate production and eliminate byâ€product succinate accumulation by <i>Myceliophthora thermophila</i> . Microbial Biotechnology, 2024, 17, .	4.2	0
686	The opposite role of lactate dehydrogenase a (LDHA) in cervical cancer under energy stress conditions. Free Radical Biology and Medicine, 2024, 214, 2-18.	2.9	1
687	Adapting to stress: The effects of hibernation and hibernacula temperature on the hepatic transcriptome of <i>Rhinolophus pusillus</i> . FASEB Journal, 2024, 38, .	0.5	0
688	Loss of mitochondrial pyruvate carrier 1 supports proline-dependent proliferation and collagen biosynthesis in ovarian cancer. Molecular Metabolism, 2024, 81, 101900.	6.5	0
689	Rat Model of Type 2 Diabetes Mellitus Recapitulates Human Disease in the Anterior Segment of the Eye. American Journal of Pathology, 2024, , .	3.8	0
690	Metabolismâ€focused CRISPR screen unveils mitochondrial pyruvate carrier 1 as a critical driver for PARP inhibitor resistance in lung cancer. Molecular Carcinogenesis, 0, , .	2.7	0
691	Identification of MIMAS, a multifunctional mega-assembly integrating metabolic and respiratory biogenesis factors of mitochondria. Cell Reports, 2024, 43, 113772.	6.4	0
692	Reduced mitochondrial pyruvate carrier expression in hearts with heart failure and reduced ejection fraction patients: ischemic vs. non-ischemic origin. Frontiers in Cardiovascular Medicine, 0, 11, .	2.4	0
693	The Toxoplasma monocarboxylate transporters are involved in the metabolism within the apicoplast and are linked to parasite survival. ELife, 0, 12, .	6.0	0