Algae Under Pressure and in Hot Water

Science 338, 1039-1040 DOI: 10.1126/science.1224310

Citation Report

#	Article	IF	CITATIONS
1	Cellobiose Decomposition in Hot-Compressed Water: Importance of Isomerization Reactions. Industrial & Engineering Chemistry Research, 2013, 52, 17006-17014.	3.7	36
2	Oil extraction by aminoparticle-based H2O2 activation via wet microalgae harvesting. RSC Advances, 2013, 3, 12802.	3.6	51
3	An α-glucan isolated as a co-product of biofuel by hydrothermal liquefaction of Chlorella sorokiniana biomass. Algal Research, 2013, 2, 230-236.	4.6	28
5	Lipid extractions from docosahexaenoic acid (DHA)-rich and oleaginous Chlorella sp. biomasses by organic-nanoclays. Bioresource Technology, 2013, 137, 74-81.	9.6	66
6	Hydrothermal upgrading of algae paste: Application of ³¹ Pâ€NMR. Environmental Progress and Sustainable Energy, 2013, 32, 1002-1012.	2.3	15
7	A perspective on algae, the environment, and energy. Environmental Progress and Sustainable Energy, 2013, 32, 877-883.	2.3	27
8	Hydrothermal Treatment of Protein, Polysaccharide, and Lipids Alone and in Mixtures. Energy & Fuels, 2014, 28, 7501-7509.	5.1	183
9	Solvents for sustainable chemical processes. Green Chemistry, 2014, 16, 1034-1055.	9.0	192
10	Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies. Environmental Sciences: Processes and Impacts, 2014, 16, 1204-1222.	3.5	119
11	Assessing the critical role of ecological goods and services in microalgal biofuel life cycles. RSC Advances, 2014, 4, 44980-44990.	3.6	11
12	Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production. RSC Advances, 2014, 4, 49672-49722.	3.6	76
13	Insights into the Primary Decomposition Mechanism of Cellobiose under Hydrothermal Conditions. Industrial & Engineering Chemistry Research, 2014, 53, 14607-14616.	3.7	22
14	Catalytic Hydrothermal Liquefaction of a Microalga in a Two-Chamber Reactor. Industrial & Engineering Chemistry Research, 2014, 53, 11939-11944.	3.7	25
15	Hydrothermal catalytic processing of pretreated algal oil: A catalyst screening study. Fuel, 2014, 120, 141-149.	6.4	125
17	A review of bio-oil production from hydrothermal liquefaction of algae. Renewable and Sustainable Energy Reviews, 2015, 48, 776-790.	16.4	298
18	Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition. Green Chemistry, 2015, 17, 3584-3599.	9.0	158
19	Industrialization prospects for hydrogen production by coal gasification in supercritical water and novel thermodynamic cycle power generation system with no pollution emission. Science China Technological Sciences, 2015, 58, 1989-2002.	4.0	88
20	Thermochemical conversion of low-lipid microalgae for the production of liquid fuels: challenges and opportunities. RSC Advances, 2015, 5, 18673-18701.	3.6	120

#	Article	IF	CITATIONS
21	Hydrothermal liquefaction of harvested high-ash low-lipid algal biomass from Dianchi Lake: Effects of operational parameters and relations of products. Bioresource Technology, 2015, 184, 336-343.	9.6	79
22	Hydrous pyrolysis of Scenedesmus algae and algaenan-like residue. Organic Geochemistry, 2015, 85, 89-101.	1.8	17
23	Site Variation in Life Cycle Energy and Carbon Footprints of Mallee Biomass Production in Western Australia. Energy & Fuels, 2015, 29, 3748-3752.	5.1	9
24	Catalytic upgrading of pretreated algal oil with a two-component catalyst mixture in supercritical water. Algal Research, 2015, 9, 186-193.	4.6	40
25	Experimental Investigation on the Gasification Kinetic Model of a Char Particle in Supercritical Water. Energy & Fuels, 2015, 29, 8053-8057.	5.1	33
26	Hydrothermal Reactions of Biomolecules Relevant for Microalgae Liquefaction. Industrial & Engineering Chemistry Research, 2015, 54, 11733-11758.	3.7	128
27	Catalytic gasification of indole in supercritical water. Applied Catalysis B: Environmental, 2015, 166-167, 202-210.	20.2	39
28	Advances in direct transesterification of algal oils from wet biomass. Bioresource Technology, 2015, 184, 267-275.	9.6	156
29	Direct production of aviation fuels from microalgae lipids in water. Fuel, 2015, 139, 678-683.	6.4	55
30	Review of Water Consumption and Water Conservation Technologies in the Algal Biofuel Process. Water Environment Research, 2016, 88, 21-28.	2.7	11
31	Hydrothermal gasification of Cladophora glomerata macroalgae over its hydrochar as a catalyst for hydrogen-rich gas production. Bioresource Technology, 2016, 222, 232-241.	9.6	96
32	Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char. Bioresource Technology, 2016, 219, 643-651.	9.6	113
33	<i>In-Situ</i> Transesterification of <i>Chlorella vulgaris</i> Using Carbon-Dot Functionalized Strontium Oxide as a Heterogeneous Catalyst under Microwave Irradiation. Energy & Fuels, 2016, 30, 10602-10610.	5.1	35
34	Assessing the potential of polyculture to accelerate algal biofuel production. Algal Research, 2016, 19, 264-277.	4.6	58
35	Directional liquefaction coupling fractionation of lignocellulosic biomass for platform chemicals. Green Chemistry, 2016, 18, 3124-3138.	9.0	64
36	Prospects for commercial production of diatoms. Biotechnology for Biofuels, 2017, 10, 16.	6.2	104
37	Thermochemical liquefaction characteristics of Cyanobacteria in subcritical and supercritical et al. et al. et a ethanol-water mixture. International Journal of Energy Research, 2017, 41, 1460-1473.	4.5	7
38	Hydrothermal Processing in Biorefineries. , 2017, , .		41

CITATION REPORT

#	Article	IF	CITATIONS
39	Elemental migration and characterization of products during hydrothermal liquefaction of cornstalk. Bioresource Technology, 2017, 243, 9-16.	9.6	72
40	Application of Algae as Cosubstrate To Enhance the Processability of Willow Wood for Continuous Hydrothermal Liquefaction. Industrial & Engineering Chemistry Research, 2017, 56, 4562-4571.	3.7	33
41	An Insight into the Selective Conversion of Bamboo Biomass to Ethyl Glycosides. ACS Sustainable Chemistry and Engineering, 2017, 5, 5880-5886.	6.7	19
42	Hydrothermal liquefaction of Cyanidioschyzon merolae and the influence of catalysts on products. Bioresource Technology, 2017, 223, 91-97.	9.6	89
43	A review of thermochemical conversion of microalgal biomass for biofuels: chemistry and processes. Green Chemistry, 2017, 19, 44-67.	9.0	216
44	Supercritical fluid extraction of biofuels from biomass. Environmental Chemistry Letters, 2017, 15, 29-41.	16.2	46
45	Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities. Marine Drugs, 2017, 15, 388.	4.6	270
46	Transglycosylation: A Key Reaction to Access Alkylpolyglycosides from Lignocellulosic Biomass. ChemSusChem, 2018, 11, 1395-1409.	6.8	20
47	Supercritical water gasification of microalgae over a two-component catalyst mixture. Science of the Total Environment, 2018, 630, 243-253.	8.0	46
48	Biogas liquid digestate grown Chlorella sp. for biocrude oil production via hydrothermal liquefaction. Science of the Total Environment, 2018, 635, 70-77.	8.0	39
49	A review on hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews, 2018, 81, 1378-1392.	16.4	807
50	Hydrothermal Conversion of Cd-Enriched Rice Straw and Cu-Enriched <i>Elsholtzia splendens</i> with the Aims of Harmless Treatment and Resource Reuse. Industrial & Engineering Chemistry Research, 2018, 57, 15683-15689.	3.7	16
51	Catalytic hydrothermal liquefaction of spirulina to bio-oil in the presence of formic acid over palladium-based catalysts. Algal Research, 2018, 33, 156-164.	4.6	34
52	Biodiversity improves the ecological design of sustainable biofuel systems. GCB Bioenergy, 2018, 10, 752-765.	5.6	27
53	Co-hydrothermal carbonization of food waste-woody biomass blend towards biofuel pellets production. Bioresource Technology, 2018, 267, 371-377.	9.6	88
54	Influence of Fe/HZSM-5 catalyst on elemental distribution and product properties during hydrothermal liquefaction of Nannochloropsis sp Algal Research, 2018, 35, 1-9.	4.6	28
55	Hydrothermal conversion of the hyperaccumulator Sedum alfredii Hance for efficiently recovering heavy metals and bio-oil. Journal of Environmental Chemical Engineering, 2019, 7, 103321.	6.7	25
56	Catalytic supercritical water gasification of aqueous phase directly derived from microalgae hydrothermal liquefaction. International Journal of Hydrogen Energy, 2019, 44, 26181-26192.	7.1	32

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
57	Supercritical water synthesized Ni/ZrO2 catalyst for hydrogen production from supercritical water gasification of glycerol. International Journal of Hydrogen Energy, 2019, 44, 30917-30926.	7.1	19
58	Comprehensive potential evaluation of the bio-oil production and nutrient recycling from seven algae through hydrothermal liquefaction. Korean Journal of Chemical Engineering, 2019, 36, 1604-1618.	2.7	23
59	Algal Biofuels: Current Status and Key Challenges. Energies, 2019, 12, 1920.	3.1	141
60	Hydrothermal upgradation of algae into value-added hydrocarbons. , 2019, , 435-459.		1
61	Stability and activity of a co-precipitated Mg promoted Ni/Al2O3 catalyst for supercritical waterÂgasification of biomass. International Journal of Hydrogen Energy, 2019, 44, 15842-15852.	7.1	28
62	Conversion of Microalgae Biomass to Biofuels. , 2020, , 149-161.		12
63	Hydrothermal co-liquefaction of chlorella vulgaris with food processing residues, green waste and sewage sludge. Biomass and Bioenergy, 2020, 142, 105796.	5.7	41
64	Bioenergy recovery from wastewater produced by hydrothermal processing biomass: Progress, challenges, and opportunities. Science of the Total Environment, 2020, 748, 142383.	8.0	63
65	Study on Catalyst Deactivation During the Hydrodeoxygenation of Model Compounds. Topics in Catalysis, 2020, 63, 778-792.	2.8	16
66	Sustainable energy and fuels from biomass: a review focusing on hydrothermal biomass processing. Sustainable Energy and Fuels, 2020, 4, 4390-4414.	4.9	140
67	Hydrothermal Reactions of Biomass-Derived Platform Molecules: Distinct Effect of Aprotic and Protic Solvents on Primary Decomposition of Glucose and Fructose in Hot-Compressed Solvent/Water Mixtures. Industrial & Engineering Chemistry Research, 2020, 59, 7336-7345.	3.7	14
68	Highly efficient conversion of oleic acid to heptadecane without external hydrogen source over atomic layer deposited bimetallic NiPt catalysts. Chemical Engineering Journal, 2020, 390, 124603.	12.7	17
69	Efficient and stable supercritical-water-synthesized Ni-based catalysts for supercritical water gasification. Journal of Supercritical Fluids, 2020, 160, 104790.	3.2	15
70	A molecular, elemental, and multiphase kinetic model for the hydrothermal liquefaction of microalgae. Chemical Engineering Journal, 2021, 407, 127007.	12.7	21
71	Hydrothermal Liquefaction of Biomass for Biofuel Production. , 2022, , 165-186.		5
73	Sargassum blooms in the Atlantic Ocean – From a burden to an asset. Algal Research, 2021, 54, 102188.	4.6	23
74	Graphitic carbon embedded FeNi nanoparticles for efficient deoxygenation of stearic acid without using hydrogen and solvent. Fuel, 2021, 292, 120248.	6.4	19
75	Solids Residence Time Impacts Carbon Dynamics and Bioenergy Feedstock Potential in Phototrophic Wastewater Treatment Systems. Environmental Science & Technology, 2021, 55, 12574-12584.	10.0	4

CITATION REPORT

#	Article	IF	CITATIONS
76	Machine learning prediction and optimization of bio-oil production from hydrothermal liquefaction of algae. Bioresource Technology, 2021, 342, 126011.	9.6	82
77	Construct a novel anti-bacteria pool from hydrothermal liquefaction aqueous family. Journal of Hazardous Materials, 2022, 423, 127162.	12.4	8
78	Hydrothermal Liquefaction (HTL): A Promising Pathway for Biorefinery of Algae. , 2017, , 361-391.		9
80	Catalytic upgrading of bio-oil in hydrothermal liquefaction of algae major model components over liquid acids. Energy Conversion and Management, 2017, 154, 336-343.	9.2	38
81	Optimization conditions for native microalgal strains grown on high ammonia-containing wastewater and their biomass utilization. Limnological Review, 2019, 19, 191-198.	0.5	5
82	BİYO-YAĞ ÜRETİMİ İÇİN MİKROALGİN METAL HALOJENÜRLER İLE HİDROTERMAL SIVILAŞTI Faculty of Engineering and Architecture of Gazi University, 2018, 2018, .	RILMASI. J	ournal of the
83	History and recent advances of algal biofuel commercialization. , 2022, , 567-586.		1
84	Machine Learning Predicting Wastewater Properties of the Aqueous Phase Derived from Hydrothermal Treatment of Biomass. SSRN Electronic Journal, 0, , .	0.4	0
85	Sustainable processing of algal biomass for a comprehensive biorefinery. Journal of Biotechnology, 2022, 352, 47-58.	3.8	15
86	Machine learning predicting wastewater properties of the aqueous phase derived from hydrothermal treatment of biomass. Bioresource Technology, 2022, 358, 127348.	9.6	29
87	Thermal processing of biomass for energy and fuel production. Advances in Bioenergy, 2022, , .	1.3	0
88	Sustainable production of biofuels and bioderivatives from aquaculture and marine waste. Frontiers in Chemical Engineering, 0, 4, .	2.7	2
89	The challenge of nitrogen compounds in hydrothermal liquefaction of algae. Journal of Supercritical Fluids, 2023, 196, 105867.	3.2	7
91	Advanced in situ IR spectroscopy study of anisole hydrodeoxygenation over Ni/SiO2 catalysts. Journal of Catalysis, 2023, 427, 115102.	6.2	2
92	Hierarchical porous honeycomb NiCo/C catalyst for decarboxylation of fatty acids and upgrading of sludge bio-crude. Chemical Engineering Science, 2024, 284, 119439.	3.8	0
93	Hydrothermal liquefaction of Chlamydomonas nivalis and Nannochloropsis gaditana microalgae under different operating conditions over copper-exchanged zeolites. Biochemical Engineering Journal, 2024, 205, 109237.	3.6	Ο
94	Thermochemical conversion of microalgae into biofuels. , 2024, , 315-333.		0