Integrated energy storage and electrochromic function storage smart window

Energy and Environmental Science 5, 8384 DOI: 10.1039/c2ee21643d

Citation Report

#	Article	IF	CITATIONS
3	Electropolymerized Polyaniline Stabilized Tungsten Oxide Nanocomposite Films: Electrochromic Behavior and Electrochemical Energy Storage. Journal of Physical Chemistry C, 2012, 116, 25052-25064.	1.5	218
4	SnO2-microtube-assembled cloth for fully flexible self-powered photodetector nanosystems. Nanoscale, 2013, 5, 7831.	2.8	91
5	High performance visible and near-infrared region electrochromic smart windows based on the different structures of polyoxometalates. Electrochimica Acta, 2013, 113, 240-247.	2.6	42
6	Electrochromic switching and nanoscale electrical properties of a poly(5-cyano) Tj ETQq1 1 0.784314 rgBT /Overlo 2013, 54, 5801-5811.	ock 10 Tf ! 1.8	50 627 Td 23
7	Hexavalent chromium synthesized polyaniline nanostructures: Magnetoresistance and electrochemical energy storage behaviors. Polymer, 2013, 54, 5974-5985.	1.8	36
8	A new electrodeposition approach for preparing polyoxometalates-based electrochromic smart windows. Journal of Materials Chemistry A, 2013, 1, 216-220.	5.2	59
9	Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polymer, 2013, 54, 1820-1831.	1.8	278
10	Highâ€Performance Twoâ€Ply Yarn Supercapacitors Based on Carbon Nanotubes and Polyaniline Nanowire Arrays. Advanced Materials, 2013, 25, 1494-1498.	11.1	555
11	Polymer brush stabilized amorphous MnO2 on graphene oxide sheets as novel electrode materials for high performance supercapacitors. Journal of Materials Chemistry A, 2013, 1, 8587.	5.2	24
12	Construction of High-Capacitance 3D CoO@Polypyrrole Nanowire Array Electrode for Aqueous Asymmetric Supercapacitor. Nano Letters, 2013, 13, 2078-2085.	4.5	1,250
14	Enhanced supercapacitor performance using hierarchical TiO2 nanorod/Co(OH)2 nanowall array electrodes. Electrochimica Acta, 2014, 136, 105-111.	2.6	40
15	Conducting Polymer Nanowire Arrays for High Performance Supercapacitors. Small, 2014, 10, 14-31.	5.2	685
16	Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films, 2014, 564, 1-38.	0.8	816
17	A Mechanically and Electrically Selfâ€Healing Supercapacitor. Advanced Materials, 2014, 26, 3638-3643.	11.1	351
18	Low-Cost High-Performance Solid-State Asymmetric Supercapacitors Based on MnO ₂ Nanowires and Fe ₂ O ₃ Nanotubes. Nano Letters, 2014, 14, 731-736.	4.5	1,035
19	Polyelectrolytes exceeding ITO flexibility in electrochromic devices. Journal of Materials Chemistry C, 2014, 2, 9874-9881.	2.7	23
20	Facile Synthesis of Graphite/PEDOT/MnO ₂ Composites on Commercial Supercapacitor Separator Membranes as Flexible and High-Performance Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2014, 6, 10506-10515.	4.0	205
21	Stretchable and Semitransparent Conductive Hybrid Hydrogels for Flexible Supercapacitors. ACS Nano, 2014, 8, 7138-7146.	7.3	186

#	Article	IF	CITATIONS
22	Flexible solid-state supercapacitors based on a conducting polymer hydrogel with enhanced electrochemical performance. Journal of Materials Chemistry A, 2014, 2, 19726-19732.	5.2	132
23	Temperature-responsive hydrogel with ultra-large solar modulation and high luminous transmission for "smart window―applications. Journal of Materials Chemistry A, 2014, 2, 13550-13555.	5.2	224
24	Transparent and flexible organic semiconductor nanofilms with enhanced thermoelectric efficiency. Journal of Materials Chemistry A, 2014, 2, 7288-7294.	5.2	210
25	Novel solution-processable, dedoped semiconductors for application in thermoelectric devices. Journal of Materials Chemistry A, 2014, 2, 13380-13387.	5.2	101
26	Integrated smart electrochromic windows for energy saving and storage applications. Chemical Communications, 2014, 50, 608-610.	2.2	175
27	Highly Conductive, Capacitive, Flexible and Soft Electrodes Based on a 3D Graphene–Nanotube–Palladium Hybrid and Conducting Polymer. Small, 2014, 10, 5023-5029.	5.2	12
28	Largeâ€Scale Fabrication of Pseudocapacitive Glass Windows that Combine Electrochromism and Energy Storage. Angewandte Chemie - International Edition, 2014, 53, 11935-11939.	7.2	207
29	A perspective on the production of dye-sensitized solar modules. Energy and Environmental Science, 2014, 7, 3952-3981.	15.6	381
30	Core-Spun Carbon Nanotube Yarn Supercapacitors for Wearable Electronic Textiles. ACS Nano, 2014, 8, 4571-4579.	7.3	228
31	Layer-by-Layer assembled hybrid multilayer thin film electrodes based on transparent cellulose nanofibers paper for flexible supercapacitors applications. Journal of Power Sources, 2014, 249, 148-155.	4.0	111
35	Self-Stacked Reduced Graphene Oxide Nanosheets Coated with Cobalt-Nickel Hydroxide by One-Step Electrochemical Deposition toward Flexible Electrochromic Supercapacitors. Small, 2015, 11, 4666-4672.	5.2	105
36	Chemically Crosslinked Hydrogel Film Leads to Integrated Flexible Supercapacitors with Superior Performance. Advanced Materials, 2015, 27, 7451-7457.	11.1	386
39	Electrochemical properties of carbon from oil palm kernel shell for high performance supercapacitors. Electrochimica Acta, 2015, 174, 78-86.	2.6	145
40	VO ₂ /hydrogel hybrid nanothermochromic material with ultra-high solar modulation and luminous transmission. Journal of Materials Chemistry A, 2015, 3, 1121-1126.	5.2	179
41	Flexible fiber energy storage and integrated devices: recent progress and perspectives. Materials Today, 2015, 18, 265-272.	8.3	146
42	Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy, 2015, 12, 258-267.	8.2	360
43	Facile route for multi-walled carbon nanotube coating with polyaniline: tubular morphology nanocomposites for supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2015, 26, 7438-7444.	1.1	25
44	Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers. AIP Advances, 2015, 5, .	0.6	19

#	Article	IF	CITATIONS
45	Graphene-based materials for flexible supercapacitors. Chemical Society Reviews, 2015, 44, 3639-3665.	18.7	1,015
46	Pure inorganic multi-color electrochromic thin films: vanadium-substituted Dawson type polyoxometalate based electrochromic thin films with tunable colors from transparent to blue and purple. Journal of Materials Chemistry C, 2015, 3, 5175-5182.	2.7	20
47	All-Organic Electrochromic Supercapacitor Electrodes. Journal of the Electrochemical Society, 2015, 162, A2805-A2810.	1.3	39
48	Electropolymerized polyaniline/manganese iron oxide hybrids with an enhanced color switching response and electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 20778-20790.	5.2	55
49	Flexible electronics based on inorganic nanowires. Chemical Society Reviews, 2015, 44, 161-192.	18.7	429
50	A Solution-Processable (Tetraaniline- <i>b</i> -Polyethylene Glycol) ₃ Star-Shaped Rod-Coil Block Copolymer with Enhanced Electrochromic Properties. Macromolecular Rapid Communications, 2016, 37, 343-350.	2.0	28
51	A New Design Paradigm for Smart Windows: Photocurable Polymers for Quasiâ€Solid Photoelectrochromic Devices with Excellent Longâ€Term Stability under Real Outdoor Operating Conditions. Advanced Functional Materials, 2016, 26, 1127-1137.	7.8	109
52	Integration: An Effective Strategy to Develop Multifunctional Energy Storage Devices. Advanced Energy Materials, 2016, 6, 1501867.	10.2	138
53	Highly Stable Transparent Conductive Silver Grid/PEDOT:PSS Electrodes for Integrated Bifunctional Flexible Electrochromic Supercapacitors. Advanced Energy Materials, 2016, 6, 1501882.	10.2	391
54	Conducting polymer hydrogel materials for high-performance flexible solid-state supercapacitors. Science China Materials, 2016, 59, 412-420.	3.5	62
55	Smart Electronic Textiles. Angewandte Chemie - International Edition, 2016, 55, 6140-6169.	7.2	460
56	Engineering micro-supercapacitors of graphene nanowalls/Ni heterostructure based on microfabrication technology. Applied Physics Letters, 2016, 109, .	1.5	17
57	Development of Candle Soot Based Carbon Nanoparticles (CNPs)/Polyaniline Electrode and Its Comparative Study with CNPs/MnO2 in Supercapacitors. Electrochimica Acta, 2016, 210, 190-198.	2.6	25
58	Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires. Chemical Communications, 2016, 52, 6296-6299.	2.2	383
59	Photoâ€Rechargeable Electric Energy Storage Systems. Advanced Energy Materials, 2016, 6, 1500369.	10.2	157
60	Perovskite Photovoltachromic Supercapacitor with All-Transparent Electrodes. ACS Nano, 2016, 10, 5900-5908.	7.3	159
61	Equipment-Free Deposition of Graphene-Based Molybdenum Oxide Nanohybrid Langmuir–Blodgett Films for Flexible Electrochromic Panel Application. ACS Applied Materials & Interfaces, 2016, 8, 21539-21544.	4.0	22
62	Electrolytes for Electrochemical Supercapacitors. Electrochemical Energy Storage and Conversion, 2016, , 31-254.	0.0	5

D

#	Article	IF	CITATIONS
63	Conductive polymers for next-generation energy storage systems: recent progress and new functions. Materials Horizons, 2016, 3, 517-535.	6.4	272
64	Perovskite solar cell powered electrochromic batteries for smart windows. Materials Horizons, 2016, 3, 588-595.	6.4	148
65	Multifunctional Energy Storage and Conversion Devices. Advanced Materials, 2016, 28, 8344-8364.	11.1	420
66	Roll-to-Roll sputtered ITO/Cu/ITO multilayer electrode for flexible, transparent thin film heaters and electrochromic applications. Scientific Reports, 2016, 6, 33868.	1.6	104
67	Nano nickel oxide coated graphene/polyaniline composite film with high electrochemical performance for flexible supercapacitor. Electrochimica Acta, 2016, 211, 1066-1075.	2.6	84
68	Smarte elektronische Textilien. Angewandte Chemie, 2016, 128, 6248-6277.	1.6	11
69	Electrodeposited Conducting Polyaniline Nanowire Arrays Aligned on Carbon Nanotubes Network for High Performance Supercapacitors and Sensors. Electrochimica Acta, 2016, 199, 234-241.	2.6	98
70	Conducting tetraaniline derivatives with fast switching time, enhanced contrast and coloration efficiency. Electrochimica Acta, 2016, 192, 422-430.	2.6	24
71	High performance two-ply carbon nanocomposite yarn supercapacitors enhanced with a platinum filament and in situ polymerized polyaniline nanowires. Journal of Materials Chemistry A, 2016, 4, 3828-3834.	5.2	42
72	Electrochromic energy storage devices. Materials Today, 2016, 19, 394-402.	8.3	415
73	Highly stable and flexible ITO-free electrochromic films with bi-functional stacked MoO 3 /Ag/MoO 3 structures. Electrochimica Acta, 2016, 189, 184-189.	2.6	29
74	Ultra-large optical modulation of electrochromic porous WO ₃ film and the local monitoring of redox activity. Chemical Science, 2016, 7, 1373-1382.	3.7	198
75	Polyaniline nanofibers: broadening applications for conducting polymers. Chemical Society Reviews, 2017, 46, 1510-1525.	18.7	484
76	Bi-functional flexible electrodes based on tungsten trioxide/zinc oxide nanocomposites for electrochromic and energy storage applications. Electrochimica Acta, 2017, 227, 61-68.	2.6	86
77	The coaxial nanostructure of ruthenium oxide thin films coated onto the vertically grown graphitic nanofibers for electrochemical supercapacitor. Surface and Coatings Technology, 2017, 320, 263-269.	2.2	19
78	A new type of gasochromic material: conducting polymers with catalytic nanoparticles. Chemical Communications, 2017, 53, 3242-3245.	2.2	33
79	Silver Nanowire/Conducting Polymer Nanocomposite Electrochromic Supercapacitor Electrodes. Journal of the Electrochemical Society, 2017, 164, A721-A727.	1.3	39
80	Designing an All olidâ€6tate Tungsten Oxide Based Electrochromic Switch with a Superior Cycling Efficiency. Advanced Materials Interfaces, 2017, 4, 1700124.	1.9	21

#	Article	IF	Citations
81	Healable Transparent Electronic Devices. Advanced Functional Materials, 2017, 27, 1606339.	7.8	118
82	Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films. ACS Applied Materials & Interfaces, 2017, 9, 17865-17871.	4.0	80
83	Excellent electrochromic properties of tungsten oxide films with a mesoporous structure. Journal of Materials Science: Materials in Electronics, 2017, 28, 10049-10055.	1.1	10
84	Foldable All-Solid-State Supercapacitors Integrated with Photodetectors. Advanced Functional Materials, 2017, 27, 1604639.	7.8	83
85	MnO _x -decorated carbonized porous silicon nanowire electrodes for high performance supercapacitors. Energy and Environmental Science, 2017, 10, 1505-1516.	15.6	109
86	Photoresponsive Smart Coloration Electrochromic Supercapacitor. Advanced Materials, 2017, 29, 1606728.	11.1	123
87	Solutionâ€Processed Porous Tungsten Molybdenum Oxide Electrodes for Energy Storage Smart Windows. Advanced Materials Technologies, 2017, 2, 1700047.	3.0	48
88	Synthesis, characterization and theoretical studies on novel organic–inorganic hybrid ion–gel polymer thin films from a γ-Fe ₂ O ₃ doped polyvinylpyrrolidone–N-butylpyridinium tetrafluoroborate composite via intramolecular thermal polymerization. RSC Advances. 2017. 7. 16623-16636.	1.7	8
89	Inkjet Printed Large Area Multifunctional Smart Windows. Advanced Energy Materials, 2017, 7, 1602598.	10.2	239
90	Recent advances in multifunctional electrochromic energy storage devices and photoelectrochromic devices. Science China Chemistry, 2017, 60, 13-37.	4.2	92
91	Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors. Nano Research, 2017, 10, 1880-1887.	5.8	64
92	Selfâ€Doped Oligoaniline Electrochromic Devices: Fabrication and Effect of the Oligoaniline Molecular Architecture. ChemElectroChem, 2017, 4, 521-532.	1.7	14
93	Recent Advances in Electrochromic Smart Fenestration. Advanced Sustainable Systems, 2017, 1, 1700074.	2.7	110
94	Facile Solution Synthesis of Tungsten Trioxide Doped with Nanocrystalline Molybdenum Trioxide for Electrochromic Devices. Scientific Reports, 2017, 7, 13258.	1.6	42
95	A pinecone-inspired hierarchical vertically aligned nanosheet array electrode for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 23349-23360.	5.2	41
96	A roll-to-roll process for multi-responsive soft-matter composite films containing Cs _x WO ₃ nanorods for energy-efficient smart window applications. Nanoscale Horizons, 2017, 2, 319-325.	4.1	111
97	In-situ fabrication of nanosheet arrays on copper foil as a new substrate for binder-free high-performance electrochemical supercapacitors. Journal of Electroanalytical Chemistry, 2017, 802, 48-56.	1.9	13
98	Electrochromic Asymmetric Supercapacitor Windows Enable Direct Determination of Energy Status by the Naked Eye. ACS Applied Materials & Interfaces, 2017, 9, 34085-34092.	4.0	134

#	Article	IF	Citations
# 99	Rollâ€ŧoâ€Roll Production of Transparent Silverâ€Nanofiberâ€Network Electrodes for Flexible		288
99	Electrochromic Smart Windows. Advanced Materials, 2017, 29, 1703238.	11.1	288
100	Stretchable Electronic Sensors of Nanocomposite Network Films for Ultrasensitive Chemical Vapor Sensing. Small, 2017, 13, 1701697.	5.2	70
101	Deformable and Transparent Ionic and Electronic Conductors for Soft Energy Devices. Advanced Energy Materials, 2017, 7, 1701369.	10.2	63
102	Engineered Fabrication of Hierarchical Frameworks with Tuned Pore Structure and N,O-Co-Doping for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 31940-31949.	4.0	53
103	Electrochemical studies of silicon nitride electron blocking layer for all-solid-state inorganic electrochromic device. Electrochimica Acta, 2017, 252, 331-337.	2.6	26
104	Thermochromic Ionogel: A New Class of Stimuli Responsive Materials with Super Cyclic Stability for Solar Modulation. Chemistry of Materials, 2017, 29, 6947-6955.	3.2	88
105	Conductive polymer-based bioelectrochemical assembly for in vitro cytotoxicity evaluation: Renoprotective assessment of Salvia officinalis against carbon tetrachloride induced nephrotoxicity. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2304-2314.	1.1	5
106	Trifunctional NiO–Ag–NiO electrodes for ITO-free electrochromic supercapacitors. Journal of Materials Chemistry C, 2017, 5, 8408-8414.	2.7	43
107	Embedded Ag Grid Electrodes as Current Collector for Ultraflexible Transparent Solid-State Supercapacitor. ACS Applied Materials & Interfaces, 2017, 9, 27649-27656.	4.0	66
108	The Functionalization of Miniature Energyâ€Storage Devices. Small Methods, 2017, 1, 1700211.	4.6	23
109	Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White. ACS Applied Materials & Interfaces, 2017, 9, 29872-29880.	4.0	149
110	Self-similar Hierarchical Wrinkles as a Potential Multifunctional Smart Window with Simultaneously Tunable Transparency, Structural Color, and Droplet Transport. ACS Applied Materials & Interfaces, 2017, 9, 26510-26517.	4.0	85
111	Hydrothermal synthesis of WO3 nanoflowers on etched ITO and their electrochromic properties. Electrochimica Acta, 2017, 246, 1112-1120.	2.6	48
112	Thermally evaporated indium-free, transparent, flexible SnO2/AgPdCu/SnO2 electrodes for flexible and transparent thin film heaters. Scientific Reports, 2017, 7, 2550.	1.6	37
113	Electrically Driving Sensors Based onÂPolymer. , 2017, , 287-323.		0
114	Flexible Electronic Devices Based on Polymers. , 2017, , 325-354.		7
115	Hydrothermally prepared α-MnSe nanoparticles as a new pseudocapacitive electrode material for supercapacitor. Electrochimica Acta, 2018, 268, 403-410.	2.6	84
116	Hierarchical 1D nanofiber-2D nanosheet-shaped self-standing membranes for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 9161-9171.	5.2	45

щ		IF	CITATIONS
# 117	ARTICLE Large-Scale Color-Changing Thin Film Energy Storage Device with High Optical Contrast and Energy Storage Capacity. ACS Applied Energy Materials, 2018, 1, 1658-1663.	1F 2.5	CITATIONS
118	Enhanced electrochromic and energy storage performance in mesoporous WO ₃ film and its application in a bi-functional smart window. Nanoscale, 2018, 10, 8162-8169.	2.8	116
119	Improvement of color retention properties of Ag deposition-based electrochromic device by introducing anion exchange membrane. MRS Communications, 2018, 8, 498-503.	0.8	11
120	Hierarchically porous carbon derived from biomass: Effect of mesopore and heteroatom-doping on electrochemical performance. Applied Surface Science, 2018, 460, 8-16.	3.1	69
121	Achieving rapid Li-ion insertion kinetics in TiO ₂ mesoporous nanotube arrays for bifunctional high-rate energy storage smart windows. Nanoscale, 2018, 10, 3254-3261.	2.8	38
122	Transparent and flexible Sb-doped SnO ₂ films with a nanoscale AgTi alloyed interlayer for heat generation and shielding applications. RSC Advances, 2018, 8, 2599-2609.	1.7	15
123	Functionalizing New Intercalation Chemistry for Subâ€Nanometerâ€Scaled Interlayer Engineering of 2D Transition Metal Oxides and Chalcogenides. Advanced Materials Interfaces, 2018, 5, 1701385.	1.9	17
124	New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy and Environmental Science, 2018, 11, 476-526.	15.6	364
125	Self-supported one-dimensional materials for enhanced electrochromism. Nanoscale Horizons, 2018, 3, 261-292.	4.1	54
126	A Novel Blue to Transparent Polymer for Electrochromic Supercapacitor Electrodes. Electroanalysis, 2018, 30, 266-273.	1.5	26
127	Visualized UV Photodetectors Based on Prussian Blue/TiO ₂ for Smart Irradiation Monitoring Application. Advanced Materials Technologies, 2018, 3, 1700288.	3.0	63
128	Atomic Layer Deposition of Nickel on ZnO Nanowire Arrays for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 468-476.	4.0	30
129	All-solid-state high-energy planar asymmetric supercapacitors based on all-in-one monolithic film using boron nitride nanosheets as separator. Energy Storage Materials, 2018, 10, 24-31.	9.5	55
130	A Review on Flexible and Transparent Energy Storage System. Materials, 2018, 11, 2280.	1.3	23
131	Inkjet-printed metal oxide nanoparticles on elastomer for strain-adaptive transmissive electrochromic energy storage systems. Science and Technology of Advanced Materials, 2018, 19, 759-770.	2.8	44
132	Dual-Function Electrochromic Supercapacitors Displaying Real-Time Capacity in Color. ACS Applied Materials & Interfaces, 2018, 10, 43993-43999.	4.0	82
133	Hydrated tungsten oxide nanosheet electrodes for broadband electrochromism and energy storage. Materials Today Energy, 2018, 10, 380-387.	2.5	25
134	Recent Progress in Microâ€6upercapacitor Design, Integration, and Functionalization. Small Methods, 2019, 3, 1800367.	4.6	154

#	Article	IF	CITATIONS
135	Sprayâ€On Reduced Graphene Oxideâ€Poly(vinyl alcohol) Supercapacitors for Flexible Energy and Power. Advanced Materials Interfaces, 2018, 5, 1801237.	1.9	11
136	A Flexible Wearable Pressure Sensor with Bioinspired Microcrack and Interlocking for Fullâ€Range Human–Machine Interfacing. Small, 2018, 14, e1803018.	5.2	156
137	VO2@SiO2/Poly(N-isopropylacrylamide) Hybrid Nanothermochromic Microgels for Smart Window. Industrial & Engineering Chemistry Research, 2018, 57, 12801-12808.	1.8	33
138	Polythiophene -viologen bilayer for electro-trichromic device. Solar Energy Materials and Solar Cells, 2018, 188, 249-254.	3.0	64
139	A novel MnO2/Ti3C2Tx MXene nanocomposite as high performance electrode materials for flexible supercapacitors. Electrochimica Acta, 2018, 290, 695-703.	2.6	146
140	Constructing in-chip micro-supercapacitors of 3D graphene nanowall/ruthenium oxides electrode through silicon-based microfabrication technique. Journal of Power Sources, 2018, 401, 204-212.	4.0	40
141	Surface plasmon resonance effect for a new structure of Ag/WO 3 nanorod-shell nanocomposits and application in smart window. Journal of Molecular Structure, 2018, 1169, 25-30.	1.8	12
142	Thermal control of transmission property by phase transition in cholesteric liquid crystals. Journal of Materials Chemistry C, 2018, 6, 6520-6525.	2.7	31
143	Control of Transmittance by Thermally Induced Phase Transition in Guest–Host Liquid Crystals. Advanced Sustainable Systems, 2018, 2, 1800066.	2.7	19
144	High-Performance Cable-Type Flexible Rechargeable Zn Battery Based on MnO ₂ @CNT Fiber Microelectrode. ACS Applied Materials & Interfaces, 2018, 10, 24573-24582.	4.0	174
145	Copper molybdenum sulfide anchored nickel foam: a high performance, binder-free, negative electrode for supercapacitors. Nanoscale, 2018, 10, 13883-13888.	2.8	59
146	Al ³⁺ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy and Environmental Science, 2018, 11, 2884-2892.	15.6	248
147	Roll-to-roll sputtered and patterned Cu2â^'xO/Cu/Cu2â^'xO multilayer grid electrode for flexible smart windows. RSC Advances, 2018, 8, 26968-26977.	1.7	11
148	Smart OLED Lighting on Electrochromic Glass. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800102.	0.8	5
149	2.6 Dye-Sensitized Materials. , 2018, , 150-181.		1
150	A Deformable and Highly Robust Ethyl Cellulose Transparent Conductor with a Scalable Silver Nanowires Bundle Micromesh. Advanced Materials, 2018, 30, e1802803.	11.1	95
151	Integrated electrochromism and energy storage applications based on tungsten trioxide monohydrate nanosheets by novel one-step low temperature synthesis. Solar Energy Materials and Solar Cells, 2018, 183, 59-65.	3.0	29
152	Self-shading by optical or thermal control of transmittance with liquid crystals doped with push-pull azobenzene. Solar Energy Materials and Solar Cells, 2018, 183, 146-150.	3.0	26

ARTICLE IF CITATIONS # A bifunctional triphenylamine-based electrochromic polymer with excellent self-healing performance. 153 2.6 25 Electrochimica Acta, 2018, 286, 296-303. Hierarchical porous PANI/MIL-101 nanocomposites based solid-state flexible supercapacitor. 154 2.6 74 Electrochimica Acta, 2018, 281, 582-593. 156 Automated energy storage using carbon nanostructured materials., 2019, , 395-409. 0 Bifunctional aligned hexagonal/amorphous tungsten oxide core/shell nanorod arrays with enhanced electrochromic and pseudocapacitive performance. Journal of Materials Chemistry A, 2019, 7, 16867-16875. Mixed ion-electron conducting PEO/PEDOT: PSS miscible blends with intense electrochromic 158 1.8 19 response. Polymer, 2019, 184, 121900. PAM-PNIPAM/W-doped VO2 thermochromic hydrogel film with high solar modulation capability for smart windows deployment. Optical Materials, 2019, 97, 109367. 1.7 Chemical Polymerization of Hydroxymethyl and Chloromethyl Functionalized PEDOT:PSS. ACS Applied 160 2.0 16 Polymer Materials, 2019, 1, 3103-3114. Mechano-thermo-chromic device with supersaturated salt hydrate crystal phase change. Science 161 26 Advances, 2019, 5, eaav4916. Uniform generation of NiCo2S4 with 3D honevcomb-like network structure on carbon cloth as 162 advanced electrode materials for flexible supercapacitors. Journal of Colloid and Interface Science, 5.0 67 2019, 556, 743-752. Characterization of the Ge/Bi2O3 Interfaces. Materials Research, 2019, 22, . An intelligent and portable power storage device able to visualize the energy status. Journal of 164 5.2 38 Materials Chemistry A, 2019, 7, 23028-23037. High-Performance Asymmetric Electrochromic-Supercapacitor Device Based on Poly(indole-6-carboxylicacid)/TiO₂ Nanocomposites. ACS Applied Materials & amp; 4.0 Interfaces, 2019, 11, 6491-6501. An Ultra-High-Energy Density Supercapacitor; Fabrication Based on Thiol-functionalized Graphene 166 1.9 63 Oxide Scrolls. Nanomaterials, 2019, 9, 148. Engineering the volumetric effect of Polypyrrole for auto-deformable supercapacitor. Chemical Engineering Journal, 2019, 374, 59-67. 6.6 Spray-processable, large-area, patterned and all-solid-state electrochromic device based on 168 3.0 50 silica/polyaniline nanocomposites. Solar Energy Materials and Solar Cells, 2019, 200, 109951. Polyaniline nanoparticle coated graphene oxide composite nanoflakes for bifunctional multicolor electrochromic and supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 13497-13508. Paper-based metasurface: Turning waste-paper into a solution for electromagnetic pollution. Journal 170 4.6 51 of Cleaner Production, 2019, 234, 588-596. A monolithic integrated ultra-flexible all-solid-state supercapacitor based on a polyaniline 171 5.2 conducting polymer. Journal of Materials Chemistry A, 2019, 7, 15378-15386.

#	Article	IF	CITATIONS
172	Deep Eutectic Solvent with Prussian Blue and Tungsten Oxide for Green and Low-Cost Electrochromic Devices. ACS Applied Electronic Materials, 2019, 1, 1038-1045.	2.0	24
173	Hybrid Transparent PEDOT:PSS Molybdenum Oxide Battery-like Supercapacitors. ACS Applied Energy Materials, 2019, 2, 4629-4639.	2.5	50
174	Influence of single-nanoparticle electrochromic dynamics on the durability and speed of smart windows. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12666-12671.	3.3	38
175	Patterned Flexible Electrochromic Device Based on Monodisperse Silica/Polyaniline Core/Shell Nanospheres. Journal of the Electrochemical Society, 2019, 166, H343-H350.	1.3	32
176	High-temperature adaptive and robust ultra-thin inorganic all-solid-state smart electrochromic energy storage devices. Nano Energy, 2019, 62, 46-54.	8.2	73
177	Color-changeable gold luster film based on polyaniline and poly(3,4-ethylenedioxythiophene). Thin Solid Films, 2019, 677, 33-38.	0.8	2
178	The effect of oxidation concentration on the adhesion between flexible substrate and metal layer in metal transfer process using UV curable polymer. Journal of Micromechanics and Microengineering, 2019, 29, 065007.	1.5	0
179	Transparent Conductive Dielectricâ `Metalâ `Dielectric Structures for Electrochromic Applications Fabricated by High-Power Impulse Magnetron Sputtering. ACS Applied Materials & Interfaces, 2019, 11, 14871-14881.	4.0	45
180	Energy storage smart window with transparent-to-dark electrochromic behavior and improved pseudocapacitive performance. Chemical Engineering Journal, 2019, 370, 1459-1466.	6.6	75
181	Directly grown high-performance WO ₃ films by a novel one-step hydrothermal method with significantly improved stability for electrochromic applications. Journal of Materials Chemistry A, 2019, 7, 13956-13967.	5.2	67
182	Dual-Mode Switchable Liquid-Crystal Window. Physical Review Applied, 2019, 12, .	1.5	14
183	A self-rechargeable electrochromic battery based on electrodeposited polypyrrole film. Solar Energy Materials and Solar Cells, 2019, 192, 1-7.	3.0	69
184	Polyindole vertical nanowire array based electrochromic-supercapacitor difunctional device for energy storage and utilization. European Polymer Journal, 2019, 113, 29-35.	2.6	66
185	A facile preparation of SiO2/PEDOT core/shell nanoparticle composite film for electrochromic device. Journal of Materials Science: Materials in Electronics, 2019, 30, 3994-4005.	1.1	12
186	Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Chemical Reviews, 2019, 119, 120-194.	23.0	436
187	A novel heterostructure of oriented core/shell tungsten oxide nanorod arrays for electrochromo-pseudocapacitor. Scripta Materialia, 2020, 174, 1-5.	2.6	20
188	Rational Design of Nanostructured Electrode Materials toward Multifunctional Supercapacitors. Advanced Functional Materials, 2020, 30, 1902564.	7.8	252
189	Experimental and numerical study of energy loss through double-glazed windows. Heat and Mass Transfer, 2020, 56, 727-747.	1.2	6

	CITATION REF	PORT	
#	ARTICLE Bistable silver electrode to maintain	IF 3.0	Citations 30
191	the mirror state without power supply. Solar Energy Materials and Solar Cells, 2020, 205, 110247.	3.0	30
192	Smart supercapacitors from materials to devices. InformaÄnÃ-Materiály, 2020, 2, 113-125.	8.5	145
193	Recent Progress of Fiber Shaped Lighting Devices for Smart Display Applications—A Fibertronic Perspective. Advanced Materials, 2020, 32, e1903488.	11.1	81
194	Triple Layer Tungsten Trioxide, Graphene, and Polyaniline Composite Films for Combined Energy Storage and Electrochromic Applications. Polymers, 2020, 12, 49.	2.0	23
195	A Highly Stable and Tunable Visibleâ€Nearâ€IR Electrochromic Allâ€inâ€One Gel Device. ChemPhotoChem, 2020, 4, 357-365.	1.5	15
196	A high-performance electrochromic device assembled with hexagonal WO3 and NiO/PB composite nanosheet electrodes towards energy storage smart window. Solar Energy Materials and Solar Cells, 2020, 207, 110337.	3.0	78
197	Fusing electrochromic technology with other advanced technologies: A new roadmap for future development. Materials Science and Engineering Reports, 2020, 140, 100524.	14.8	227
198	Preparation and characterization of mesoporous activated carbons from nonporous hard carbon via enhanced steam activation strategy. Materials Chemistry and Physics, 2020, 242, 122454.	2.0	27
199	Pulsed laser rusted stainless steel: a robust electrode material applied for energy storage and generation applications. Sustainable Energy and Fuels, 2020, 4, 1242-1253.	2.5	11
200	Integrated electrochromic supercapacitors with visual energy levels boosted by coating onto carbon nanotube conductive networks. Solar Energy Materials and Solar Cells, 2020, 206, 110330.	3.0	29
202	Highly efficient dark to transparent electrochromic electrode with charge storing ability based on polyaniline and functionalized nickel oxide composite linked through a binding agent. Electrochimica Acta, 2020, 331, 135359.	2.6	27
203	Ionic Conductive Gels for Optically Manipulatable Microwave Stealth Structures. Advanced Science, 2020, 7, 1902162.	5.6	57
204	An extensible and tunable full-opaque cascade smart electrochromic device. Solar Energy Materials and Solar Cells, 2020, 218, 110740.	3.0	10
205	An improvement in the coloration properties of Ag deposition-based plasmonic EC devices by precise control of shape and density of deposited Ag nanoparticles. Nanoscale, 2020, 12, 23975-23983.	2.8	15
206	Transparent and flexible high-power supercapacitors based on carbon nanotube fibre aerogels. Nanoscale, 2020, 12, 16980-16986.	2.8	21
207	Stretchable and Shelf-Stable All-Polymer Supercapacitors Based on Sealed Conductive Hydrogels. ACS Applied Energy Materials, 2020, 3, 8850-8857.	2.5	8
208	Bifunctional electrochromic-energy storage materials with enhanced performance obtained by hybridizing TiO ₂ nanowires with POMs. New Journal of Chemistry, 2020, 44, 15475-15482.	1.4	9
209	SubPc-Br/NiMoO4 composite as a high-performance supercapacitor electrode materials. Journal of Applied Electrochemistry, 2020, 50, 1007-1018.	1.5	8

#	Article	IF	CITATIONS
210	Unveiling the electrochromic mechanism of Prussian Blue by electronic transition analysis. Nano Energy, 2020, 78, 105148.	8.2	39
211	Oneâ€Dimensional <i>¨E</i> –d Conjugated Coordination Polymer for Electrochromic Energy Storage Device with Exceptionally High Performance. Advanced Science, 2020, 7, 1903109.	5.6	72
212	Quasi-Solid-State Electrochromic Cells with Energy Storage Properties Made with Inkjet Printing. Materials, 2020, 13, 3241.	1.3	8
213	Flexible Poly(vinyl alcohol)–Polyaniline Hydrogel Film with Vertically Aligned Channels for an Integrated and Self-Healable Supercapacitor. ACS Applied Energy Materials, 2020, 3, 9408-9416.	2.5	59
214	Extremely fast electrochromic supercapacitors based on mesoporous WO3 prepared by an evaporation-induced self-assembly. NPG Asia Materials, 2020, 12, .	3.8	76
215	Electrochromic and Electrofluorochromic Performance of Novel Polysiloxane bearing Tetraaniline and Fluorescein Groups. International Journal of Electrochemical Science, 2020, , 9245-9255.	0.5	1
216	High-performance electrochromo-supercapacitors based on the synergetic effect between aqueous Al ³⁺ and ordered hexagonal tungsten oxide nanorod arrays. Journal of Materials Chemistry A, 2020, 8, 9927-9938.	5.2	33
217	A Wearable Supercapacitor Based on Conductive PEDOT:PSSâ€Coated Cloth and a Sweat Electrolyte. Advanced Materials, 2020, 32, e1907254.	11.1	282
218	Carrier concentration dependency of plasma frequency in SilnZnO/Ag/SilnZnO transparent multilayer. Physica B: Condensed Matter, 2020, 592, 412242.	1.3	4
219	Effect of independently controllable electrolyte ion content on the performance of all-solid-state electrochromic devices. Chemical Engineering Journal, 2020, 398, 125628.	6.6	42
220	Electrochromic Conjugated Polymers for Multifunctional Smart Windows with Integrative Functionalities. Advanced Materials Technologies, 2020, 5, 1900890.	3.0	102
221	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117
222	Raw hibiscus extract as redox active biomaterial for novel herbal electrochromic device. Solar Energy Materials and Solar Cells, 2020, 215, 110588.	3.0	21
223	Fluorinated Oleophilic Electrochromic Copolymer Based on 3â€(Nâ€Trifluoroacetamido)thiophene and 3,4â€Ethylenedioxythiophene (EDOT). ChemElectroChem, 2020, 7, 3038-3043.	1.7	5
224	Enhanced Electrochemical Performance of a Hybrid Supercapacitive Material Based on Ternary Doped Polyaniline/Activated Carbon Composite. Energy & Fuels, 2020, 34, 10148-10159.	2.5	18
225	Hydrogel smart windows. Journal of Materials Chemistry A, 2020, 8, 10007-10025.	5.2	154
226	Multifunctional micro-/nanoscaled structures based on polyaniline: an overview of modern emerging devices. Materials Today Chemistry, 2020, 16, 100249.	1.7	41
227	Solution-Processed Transparent Electrodes for Emerging Thin-Film Solar Cells. Chemical Reviews, 2020, 120, 2049-2122.	23.0	152

#	Article	IF	CITATIONS
228	Smart Electrochromic Supercapacitors Made of Metal Mesh Electrodes with Polyaniline as Charge Storage Indicator. Energy Technology, 2020, 8, 1901364.	1.8	20
229	Thermal Conversion of Triazine-Based Covalent Organic Frameworks to Nitrogen-Doped Nanoporous Carbons and Their Capacitor Performance. Bulletin of the Chemical Society of Japan, 2020, 93, 414-420.	2.0	12
230	Multifunctional electrochromic energy storage devices by chemical cross-linking: impact of a WO3·H2O nanoparticle-embedded chitosan thin film on amorphous WO3 films. NPG Asia Materials, 2020, 12, .	3.8	42
231	Semitransparent Energyâ€Storing Functional Photovoltaics Monolithically Integrated with Electrochromic Supercapacitors. Advanced Functional Materials, 2020, 30, 1909601.	7.8	51
232	Effect of Ligand Treatment on the Tuning of Infrared Plasmonic Indium Tin Oxide Nanocrystal Electrochromic Devices. Advanced Engineering Materials, 2020, 22, 2000112.	1.6	15
233	High performance organic-inorganic hybrid material with multi-color change and high energy storage capacity for intelligent supercapacitor application. Journal of Alloys and Compounds, 2021, 855, 157480.	2.8	34
234	Aerosolâ€deposited Al ₂ O ₃ /PTFE hydrophobic coatings with adjustable transparency. Journal of the American Ceramic Society, 2021, 104, 1716-1725.	1.9	6
235	Electrochemical Supercapacitors: From Mechanism Understanding to Multifunctional Applications. Advanced Energy Materials, 2021, 11, 2003311.	10.2	109
236	Wearable fabric supercapacitors using supersonically sprayed reduced graphene and tin oxide. Journal of Alloys and Compounds, 2021, 856, 157902.	2.8	29
237	Highâ€efficiency solar energy conversion using infrared focusing and reflection system. International Journal of Energy Research, 2021, 45, 5544-5554.	2.2	5
238	PANI/MoO _{3â^'x} shell–core composites with enhanced rate and cycling performance for flexible solid-state supercapacitors and electrochromic applications. New Journal of Chemistry, 2021, 45, 10654-10663.	1.4	15
239	Self-assembled Co(OH)2/functionalized MWNTs/porous graphene ternary binder-free hybrid for supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 151-167.	1.1	7
240	ITO-free large area PDLC smart windows: a cost-effective fabrication using spray coated SnO ₂ on an invisible Al mesh. Journal of Materials Chemistry A, 2021, 9, 23157-23168.	5.2	26
241	Miniaturized energy storage: microsupercapacitor based on two-dimensional materials. , 2021, , 311-358.		3
242	Multi-functional Electrochromic Devices: Integration Strategies Based on Multiple and Single Devices. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 115.	0.6	5
243	Ultrasound irradiation mediated preparation of antimony sulfoiodide (SbSI) nanorods as a high-capacity electrode for electrochemical supercapacitors. Materials Chemistry Frontiers, 2021, 5, 2303-2312.	3.2	13
244	A patterned phase-changing vanadium dioxide film stacking with VO2 nanoparticle matrix for high performance energy-efficient smart window applications. Applied Physics Letters, 2021, 118, .	1.5	14
245	Smart Thermally Switchable Liquid Crystal Window. Advanced Photonics Research, 2021, 2, 2000156.	1.7	12

#	Article	IF	CITATIONS
246	High-Mass Loading Hierarchically Porous Activated Carbon Electrode for Pouch-Type Supercapacitors with Propylene Carbonate-Based Electrolyte. Nanomaterials, 2021, 11, 785.	1.9	14
247	Advances in Electrochemical Energy Devices Constructed with Tungsten Oxide-Based Nanomaterials. Nanomaterials, 2021, 11, 692.	1.9	20
248	3D Hierarchical Carbon-Rich Micro-/Nanomaterials for Energy Storage and Catalysis. Electrochemical Energy Reviews, 2021, 4, 269-335.	13.1	108
250	Operando Raman and UV-Vis spectroscopic investigation of the coloring and bleaching mechanism of self-powered photochromic devices for smart windows. Nano Energy, 2021, 82, 105721.	8.2	34
251	Filtering of yellow light in a liquid-crystal light shutter for higher color contrast and reduced glare. Journal of Molecular Liquids, 2021, 327, 114846.	2.3	3
252	Preliminary study on the performance of a redox capacitor with the use of ionic liquid-based gel polymer electrolyte and polypyrrole electrodes. Journal of Materials Science: Materials in Electronics, 2021, 32, 17629-17636.	1.1	2
253	Leatherâ€Based Multiâ€Stimuli Responsive Chromisms. Advanced Functional Materials, 2021, 31, 2104427.	7.8	16
254	Flexible electrochromic and thermochromic hybrid smart window based on a highly durable ITO/graphene transparent electrode. Chemical Engineering Journal, 2021, 416, 129028.	6.6	38
255	Titanium Dioxide as Energy Storage Material: A Review on Recent Advancement. , 0, , .		2
256	Wearable Supercapacitors, Performance, and Future Trends. , 0, , .		0
257	Fabrication of Metal Nanowire Based Stretchable Mesh Electrode for Wearable Heater Application. Journal of Korean Institute of Metals and Materials, 2021, 59, 575-581.	0.4	5
258	Simultaneous effects of external stimuli on preparation and performance parameters of normally transparent reverse mode polymer-dispersed liquid crystals—a review. Journal of Materials Science, 2021, 56, 18795-18836.	1.7	25
259	A cholesteric liquid crystal smart window with a low operating voltage. Dyes and Pigments, 2022, 197, 109843.	2.0	31
260	Emerging Zn Anodeâ€Based Electrochromic Devices. Small Science, 2021, 1, 2100040.	5.8	35
261	A high-performance electrochromic battery based on complementary Prussian white/Li4Ti5O12 thin film electrodes. Solar Energy Materials and Solar Cells, 2021, 231, 111314.	3.0	20
262	Integrating exceptional visible modulation, near-infrared shielding and energy storage in an all-solid-electrochromic bilayer device. Chemical Engineering Journal, 2021, 423, 130306.	6.6	11
263	Large-area multifunctional electro-chromic-chemical device made of W17O47 nanowires by Zn2+ ion intercalation. Nano Energy, 2021, 89, 106356.	8.2	33
264	Smart Window Based on Angular-Selective Absorption of Solar Radiation with Guest–Host Liquid Crystals. Crystals, 2021, 11, 131.	1.0	10

#	Article	IF	Citations
265	Vanadium substituted Keggin-type POM-based electrochromic films showing high performance in a Li+-based neutral non-aqueous electrolyte. RSC Advances, 2016, 6, 38782-38789.	1.7	10
266	Smart electrochromic supercapacitors based on highly stable transparent conductive graphene/CuS network electrodes. RSC Advances, 2017, 7, 29088-29095.	1.7	35
267	Recent progress in integrated functional electrochromic energy storage devices. Journal of Materials Chemistry C, 2020, 8, 15507-15525.	2.7	68
268	Electrolytes for Electrochemical Supercapacitors. , 0, , .		44
269	Advances in Inorganic All-solid-state Electrochromic Materials and Devices. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2020, 35, 511.	0.6	13
270	Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers. Chemical Society Reviews, 2021, 50, 12702-12743.	18.7	227
271	Viologenâ€Immobilized 2D Polymer Film Enabling Highly Efficient Electrochromic Device for Solarâ€Powered Smart Window. Advanced Materials, 2022, 34, e2106073.	11.1	32
272	Technology Development Trends of Self-Powered Next Generation Smart Windows. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2015, 28, 753-764.	0.0	0
273	Unraveling the Role of Water on the Electrochromic and Electrochemical Properties of Nickel Oxide Electrodes in Electrochromic Pseudocapacitors. Journal of the Electrochemical Society, 2021, 168, 113502.	1.3	3
274	Evaluation and application of phytomass derived activated carbons as electrodes for coin cell supercapacitors. International Journal of Electrochemical Science, 2021, 16, 211251.	0.5	3
275	A Flexible and Transparent Zincâ€Nanofiber Network Electrode for Wearable Electrochromic, Rechargeable Znâ€ion Battery. Small, 2022, 18, e2104462.	5.2	50
276	A New Donor-Acceptor Conjugated Polymer Enables High-Performance Flexible Asymmetric Electrochromic Supercapacitor. SSRN Electronic Journal, 0, , .	0.4	0
277	Wearable Self-Powered Smart Sensors for Portable Nutrition Monitoring. Analytical Chemistry, 2022, 94, 2333-2340.	3.2	27
278	Nanostructured materials for electrochromic energy storage systems. Journal of Materials Chemistry A, 2022, 10, 1179-1226.	5.2	25
279	Energy Saving and Energy Generation Smart Window with Active Control and Antifreezing Functions. Advanced Science, 2022, 9, e2105184.	5.6	32
280	A light-activated TiO2@In2Se3@Ag3PO4 cathode for high-performance Zn-Air batteries. Chemical Engineering Journal, 2022, 434, 134650.	6.6	21
281	A smart flexible supercapacitor enabled by a transparent electrochromic electrode composed of W ₁₈ O ₄₉ nanowires/rGO composite films. Journal of Materials Chemistry A, 2022, 10, 4870-4880.	5.2	26
282	Attaining remarkable switching speed of nickel oxide-based electrode for electrochromic energy storage devices. Surfaces and Interfaces, 2022, 29, 101792.	1.5	4

#	Article	IF	CITATIONS
283	A Fully Selfâ€Powered Cholesteric Smart Window Actuated by Dropletâ€Based Electricity Generator. Advanced Optical Materials, 2022, 10, .	3.6	9
284	Facile Fabrication of Polyaniline/Pbs Nanocomposite for High-Performance Supercapacitor Application. Nanomaterials, 2022, 12, 817.	1.9	32
285	Intelligent windows for electricity generation: A technologies review. Building Simulation, 2022, 15, 1747-1773.	3.0	17
286	Banana Peel and Conductive Polymers-Based Flexible Supercapacitors for Energy Harvesting and Storage. Energies, 2022, 15, 2471.	1.6	15
287	Application of New Energy Thermochromic Composite Thermosensitive Materials of Smart Windows in Recent Years. Molecules, 2022, 27, 1638.	1.7	25
288	Progress and challenges in flexible electrochromic devices. Solar Energy Materials and Solar Cells, 2022, 240, 111709.	3.0	31
289	Solar cell-coupled metallo-supramolecular polymer-based electrochromic device in renewable energy storage and on-demand usage. Solar Energy Materials and Solar Cells, 2022, 239, 111660.	3.0	18
290	Integrated photoelectrochromic supercapacitor for applications in energy storage and smart windows. Journal of Energy Storage, 2022, 51, 104460.	3.9	12
291	Improvement of Stretchable and Washable Carbonâ€Nanotubeâ€Based Textile Supercapacitors by using Molybdenum Trioxide Nanoflakes and Prewashing Treatment. Advanced Materials Technologies, 2022, 7, .	3.0	4
292	Electrochromic Materials Based on Ions Insertion and Extraction. Advanced Optical Materials, 2022, 10, .	3.6	52
293	Lessons learned from 25 years of development of photoelectrochromic devices: A technical review. Renewable and Sustainable Energy Reviews, 2022, 162, 112462.	8.2	12
294	Design of chiral guest-host liquid crystals for a transmittance-tunable smart window. Optical Materials Express, 2022, 12, 2568.	1.6	10
295	Tetra-Carbazole based electroactive donor-acceptor dyes: Effect of the phenyl bridging unit on the electrochromic performance. Dyes and Pigments, 2022, 204, 110467.	2.0	5
297	The growth of organic electrode materials for energy storage applications. , 2022, , 115-144.		1
298	Facile Preparation of Oxygen Vacancy WO _{3-X} @TiO _{2-X} /Poly(indole-6-carboxylic) Tj ETQ Application. ACS Applied Energy Materials, 2022, 5, 8443-8451.	2q0 0 0 rgE 2.5	3T /Overlock 6
299	Studies on the ZnCl2 activated carbons derived from Sabal palmetto and Pterospermum acerifolium leaves for EDLC application. Biomass Conversion and Biorefinery, 0, , .	2.9	6
300	Emerging Electrochromic Materials and Devices for Future Displays. Chemical Reviews, 2022, 122, 14679-14721.	23.0	175
301	The electrochromic properties of the film enhanced by forming WO3 and PANI core–shell structure. Journal of Materials Science: Materials in Electronics, 2022, 33, 20802-20811.	1.1	6

ARTICLE IF CITATIONS A conjugated polymer with Electron-withdrawing cyano group enables for flexible asymmetric 302 6.6 20 electrochromic supercapacitors. Chemical Engineering Journal, 2022, 450, 138386. Ultra-strong ionic liquid-based polymer composite electrolyte for high performance electrochromic devices. Solar Energy Materials and Solar Cells, 2022, 248, 111968. Ultra-fast green microwave assisted synthesis of NaFePO4-C nanocomposites for sodium ion batteries 304 1.6 1 and supercapacitors. Scientific Reports, 2022, 12, . Efficient electrochromic efficiency and stability of amorphous/crystalline tungsten oxide film. 2.8 Journal of Alloys and Compounds, 2023, 930, 167405. Smart windows built with a conductive polymer with net zero energy consumption. Cell Reports 306 2.8 5 Physical Science, 2022, 3, 101100. Novel Prussian White@MnO₂-Based Inorganic Electrochromic Energy Storage Devices with Integrated Flexibility, Multicolor, and Long Life. ACS Applied Materials & amp; Interfaces, 2022, 14, 4.0 48833-48843. Dynamic Electro-, Mechanochromic Materials and Structures for Multifunctional Smart Windows. , 308 0 2023, 73-97. High-performance electrochromic supercapacitor based on a new EDOT-triphenylamine conjugated 2.0 polymer. Dyes and Pigments, 2023, 208, 110889. Dual-function smart windows with dynamic and fast thermal response for building 310 3.0 7 energy-saving/storage. Solar Energy Materials and Solar Cells, 2023, 249, 112048. Enhanced electrochromic capacity performances of hierarchical MnO2-polyaniline/PEDOT:PSS/Ag@Ni nanowires cathode for flexible and rechargeable electrochromic Zn-Ion battery. Chemical 6.6 Engineering Journal, 2023, 452, 139555. Dual-Responsive Hydrogels with Three-Stage Optical Modulation for Smart Windows. ACS Applied 312 7 4.0Materials & amp; Interfaces, 2022, 14, 53314-53322. Enhancing the electrochemical performance of TiO2 based material using microwave air plasma 1.8 treatment with an ECR cavity. Frontiers in Chemistry, 0, 10, . Research in Electrochromic Supercapacitor – A Focused Review. Batteries and Supercaps, 2023, 6, . 314 2.4 12 Dual-Function Self-Powered Electrochromic Batteries with Energy Storage and Display Enabled by 8.8 Potential Difference. ACS Energy Letters, 2023, 8, 306-313. Nanocomposite Electrode of Titanium Dioxide Nanoribbons and Multiwalled Carbon Nanotubes for 316 1.3 4 Energy Storage. Materials, 2023, 16, 595. High performance PANI/MnO2 coral-like nanocomposite anode for flexible and robust electrochromic energy storage device. Solar Energy Materials and Solar Cells, 2023, 253, 112239. Sputter-Deposited Nano-porous ZnO Electrode for Highly Efficient Optoelectronic and Solid-State 319 1.0 1 Energy Storage Devices. Journal of Electronic Materials, 0, , . Applications of thermochromic and electrochromic smart windows: Materials to buildings. Cell 2.8

CITATION REPORT

Reports Physical Science, 2023, 4, 101370.

#	Article	IF	CITATIONS
321	Electrochromic-Induced Rechargeable Aqueous Batteries: An Integrated Multifunctional System for Cross-Domain Applications. Nano-Micro Letters, 2023, 15, .	14.4	15
322	Thermochromic Energy Efficient Windows: Fundamentals, Recent Advances, and Perspectives. Chemical Reviews, 2023, 123, 7025-7080.	23.0	28
323	Aqueous intelligent bi-functional electrochromic-energy storage device on heterostructured nanoarrays:In-situ repairability and Al3+ ion effect. Solar Energy Materials and Solar Cells, 2023, 256, 112339.	3.0	3
325	The effects of MnO2 nanoparticles activated carbon composite on its electrochemical performances of symmetric supercapacitor. AIP Conference Proceedings, 2023, , .	0.3	0
329	Wearable electrochromic materials and devices: from visible to infrared modulation. Journal of Materials Chemistry C, 2023, 11, 7183-7210.	2.7	19
344	Controllable-Assembled Functional Monolayer for Optoelectronic Applications. Journal of Materials Chemistry C, 0, , .	2.7	1