A Survey of MAC Protocols for Mission-Critical Applicat

IEEE Communications Surveys and Tutorials 14, 240-264

DOI: 10.1109/surv.2011.020211.00036

Citation Report

#	Article	IF	Citations
1	System and application knowledge based scheduling of multiple applications in a WSN. , 2012, , .		7
2	A new adaptive MAC protocol with QoS support for heterogeneous wireless sensor networks. , 2012, ,		2
3	Slotted contention-based energy-efficient MAC protocols in delay-sensitive wireless sensor networks. , 2012, , .		1
4	On the Power of Cohorts Multipoint Protocols for Fast and Reliable Safety-Critical Communications in Intelligent Vehicular Networks. , 2012, , .		4
5	Delay bound and reliable data forwarding for wireless sensor networks. , 2012, , .		2
6	A fuzzy-based collaborative localization algorithm for wireless sensor networks. , 2012, , .		4
7	Preamble-Based Medium Access in Wireless Sensor Networks. , 0, , .		2
8	Energy efficient mechanism using flexible medium access control protocol for hybrid wireless sensor networks. Journal of Central South University, 2013, 20, 2165-2174.	1.2	5
10	Analysis of SMAC protocol for missioon critical applications in wireless sensor networks., 2013,,.		5
11	Joint routing and MAC for critical traffic in Industrial Wireless Sensor and Actuator Networks. , $2013,$,.		4
12	QoS assessment for mission-critical Wireless Sensor Network applications. , 2013, , .		3
13	Dynamic Timed Energy Efficient and data collision free MAC protocol for wireless sensor networks. , 2013, , .		1
14	Z-MAC: Performance Evaluation and Enhancements. Procedia Computer Science, 2013, 21, 485-490.	1.2	4
15	Progressive Decentralized TDMA Based MAC: Joint Optimization of Slot Allocation and Frame Lengths. , 2013, , .		3
16	RTH-MAC: A real time hybrid MAC protocol for WSN. , 2013, , .		5
18	Constructing Schedules for Time-Critical Data Delivery in Wireless Sensor Networks. ACM Transactions on Sensor Networks, 2014, 10, 1-31.	2.3	32
19	EE-Hybrid MAC Protocol for Wireless Sensor Networks. Applied Mechanics and Materials, 0, 573, 407-411.	0.2	1
20	M2M Service Platforms: Survey, Issues, and Enabling Technologies. IEEE Communications Surveys and Tutorials, 2014, 16, 61-76.	24.8	266

#	Article	IF	CITATIONS
21	Data Aggregation Scheduling Algorithms in Wireless Sensor Networks: Solutions and Challenges. IEEE Communications Surveys and Tutorials, 2014, 16, 1339-1368.	24.8	76
22	Automated Irrigation System Using a Wireless Sensor Network and GPRS Module. IEEE Transactions on Instrumentation and Measurement, 2014, 63, 166-176.	2.4	548
23	PriorityMAC: A Priority-Enhanced MAC Protocol for Critical Traffic in Industrial Wireless Sensor and Actuator Networks. IEEE Transactions on Industrial Informatics, 2014, 10, 824-835.	7.2	136
24	Design of a low-latency, high-reliability wireless communication system for control applications. , 2014, , .		106
25	Wireless Sensor Systems for Space and Extreme Environments: A Review. IEEE Sensors Journal, 2014, 14, 3955-3970.	2.4	66
26	Survey on the Characterization and Classification of Wireless Sensor Network Applications. IEEE Communications Surveys and Tutorials, 2014, 16, 1860-1890.	24.8	208
27	Dimensioning of Wireless Sensor and Actuator Networks for Guaranteed Delivery Time. , 2014, , .		0
28	Medium access protocol design for time-critical applications in wireless sensor networks. , 2014, , .		0
29	Optimal nonuniform deployment of sensors for distributed detection in wireless sensor networks. ACM Transactions on Sensor Networks, 2014, 10, 1-27.	2.3	6
30	An Industrial Perspective on Wireless Sensor Networks — A Survey of Requirements, Protocols, and Challenges. IEEE Communications Surveys and Tutorials, 2014, 16, 1391-1412.	24.8	294
31	Modeling and Analyzing CSMA/CA Protocol for Energy-Harvesting Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 2015, 11, 257157.	1.3	8
32	An adaptive neighbour detection scheme for rapid configuration of wireless sensor networks. International Journal of Sensor Networks, 2015, 18, 130.	0.2	2
33	Routing Protocols for Structural Health Monitoring of Bridges Using Wireless Sensor Networks. Network Protocols and Algorithms, 2015, 7, 1.	1.0	4
34	Extending the Functionality of Pymote: Low Level Protocols and Simulation Result Analysis. Internatinoal Journal of Sensor Networks and Data Communications, 2015, 04, .	0.1	4
35	QoS-Aware Error Recovery in Wireless Body Sensor Networks Using Adaptive Network Coding. Sensors, 2015, 15, 440-464.	2.1	13
36	Key revocation in wireless sensor networks: a survey on a less-addressed yet vital issue. International Journal of Ad Hoc and Ubiquitous Computing, 2015, 18, 3.	0.3	3
37	On the coexistence of 802.11 and 802.15.4 networks with delay constraints., 2015, , .		2
38	Error characterization of multi-access point WSNs in an aircraft cabin. , 2015, , .		4

#	Article	IF	Citations
39	Communication in Cyber-Physical Systems. , 2015, , .		5
40	An overview of slot assignment (SA) for TDMA. , 2015, , .		3
41	An efficient MAC scheme in wireless sensor network with energy harvesting (EHWSN) for cloud based applications. , 2015, , .		14
42	A Hybrid MAC Scheme to Improve the Transmission Performance in Body Sensor Networks. Wireless Personal Communications, 2015, 80, 1263-1279.	1.8	9
43	Symphony: A Framework for Accurate and Holistic WSN Simulation. Sensors, 2015, 15, 4677-4699.	2.1	4
44	A MAC transmission strategy in sparse Vehicular Delay-Tolerant Sensor Networks. Wireless Networks, 2015, 21, 2237-2252.	2.0	4
45	A Survey of TDMA Scheduling Schemes in Wireless Multihop Networks. ACM Computing Surveys, 2015, 47, 1-39.	16.1	67
46	Enabling Real-Time Context-Aware Collaboration through 5G and Mobile Edge Computing. , 2015, , .		118
47	Evaluation of cognitive radio for mission-critical and time-critical WSAN in industrial environments under interference. , $2015, , .$		10
48	Time-synchronized Wireless Sensor Network for structural health monitoring applications in railway environments. , 2015, , .		6
49	A Distributed Reconfiguration Approach for Quality-of-Service Provisioning in Dynamic Heterogeneous Wireless Sensor Networks. ACM Transactions on Sensor Networks, 2015, 11, 1-41.	2.3	1
50	RM-MAC: A routing-enhanced multi-channel MAC protocol in duty-cycle sensor networks. , 2015, , .		2
51	A Survey of Low-Power Transceivers and Their Applications. IEEE Circuits and Systems Magazine, 2015, 15, 6-17.	2.6	45
52	Sensor Medium Access Control (SMAC)-based epilepsy patients monitoring system. , 2015, , .		15
53	Performance Analysis of Different Link Layer Protocols in Wireless Sensor Networks (WSN). Wireless Personal Communications, 2015, 84, 3075-3089.	1.8	3
54	An energy-efficient multiconstrained QoS aware MAC protocol for body sensor networks. Multimedia Tools and Applications, 2015, 74, 5353-5374.	2.6	21
55	An Energy-Efficient MAC Protocol for Medical Emergency Monitoring Body Sensor Networks. Sensors, 2016, 16, 385.	2.1	13
56	Study on generic functionality for quality of service control in M2M communications. , 2016, , .		1

#	Article	IF	CITATIONS
57	Performance analysis of variable Smart Grid traffic over ad hoc Wireless Mesh Networks. , 2016, , .		7
58	Loss recovery scheme using adaptive data collector node (ADCN) in wireless sensor network. , 2016, , .		0
59	Model-Checking Assisted Protocol Design for Ultra-reliable Low-Latency Wireless Networks. , 2016, , .		9
60	From RTAI to RT-Preempt a quantative approach in replacing Linux based dual kernel real-time operating systems with Linux RT-Preempt in distributed real-time networks for educational ICT systems. , 2016, , .		4
61	End-to-end reliability- and delay-aware scheduling with slot sharing for wireless sensor networks. , $2016, , .$		12
62	Impact of redundant sensor deployment over data gathering performance: A model based approach. Journal of Network and Computer Applications, 2016, 67, 26-42.	5.8	2
63	Meta-survey on medium access control surveys in wireless sensor networks. International Journal of Distributed Sensor Networks, 2016, 12, 155014771666278.	1.3	5
64	Energy-efficient MAC schemes for Delay-Tolerant Sensor Networks. , 2016, , .		3
65	External network control on quality of service of M2M mission-critical applications in 4G., 2016, , .		0
66	An improved wireless MAC protocol for priority based data delivery. , 2016, , .		3
67	Medium access prioritizing in the heterogeneous low-rate wireless PANs. , 2016, , .		0
68	Comparative Examination on Architecture and Protocol of Industrial Wireless Sensor Network Standards. IEEE Communications Surveys and Tutorials, 2016, 18, 2197-2219.	24.8	143
69	Pymote 2.0: Development of an Interactive Python Framework for Wireless Network Simulations. IEEE Internet of Things Journal, 2016, 3, 1182-1188.	5. 5	11
70	End-to-End Reliability-Aware Scheduling for Wireless Sensor Networks. IEEE Transactions on Industrial Informatics, 2016, 12, 758-767.	7.2	91
71	Information Exchange in Randomly Deployed Dense WSNs With Wireless Energy Harvesting Capabilities. IEEE Transactions on Wireless Communications, 2016, 15, 3008-3018.	6.1	70
72	Game-Theoretic Multi-Channel Multi-Access in Energy Harvesting Wireless Sensor Networks. IEEE Sensors Journal, 2016, 16, 4587-4594.	2.4	19
73	WirArb: A New MAC Protocol for Time Critical Industrial Wireless Sensor Network Applications. IEEE Sensors Journal, 2016, 16, 2127-2139.	2.4	58
74	An energy-efficient QoS routing for wireless sensor networks using self-stabilizing algorithm. Ad Hoc Networks, 2016, 37, 240-255.	3.4	32

#	Article	IF	CITATIONS
75	Researches on the dynamic data routing and recharging schemes for rechargeable wireless sensor networks deployed in 3-dimensional spaces. Wireless Networks, 2017, 23, 1035-1044.	2.0	1
76	Link Scheduling Scheme with Shared Links and Virtual Tokens for Industrial Wireless Sensor Networks. Mobile Networks and Applications, 2017, 22, 1083-1099.	2.2	4
77	A Wireless Cloud Network Platform for Industrial Process Automation: Critical Data Publishing and Distributed Sensing. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 592-603.	2.4	41
78	Secure provenance in Wireless Sensor Networks - a survey of provenance schemes. , 2017, , .		5
79	Deterministic real-time access point concepts for industrial hybrid Ethernet/IEEE 802.11 networks. , 2017, , .		5
80	Evaluation of a duty-cycled asynchronous X-MAC protocol for vehicular sensor networks. Eurasip Journal on Wireless Communications and Networking, 2017, 2017, .	1.5	14
81	Scheduling for IEEE802.15.4-TSCH and slow channel hopping MAC in low power industrial wireless networks: A survey. Computer Communications, 2017, 114, 84-105.	3.1	90
82	REWIMO. ACM Transactions on Sensor Networks, 2017, 13, 1-42.	2.3	18
83	Survey and systematic mapping of industrial Wireless Sensor Networks. Journal of Network and Computer Applications, 2017, 97, 96-125.	5.8	74
84	Optimizing mission critical data dissemination in massive IoT networks. , 2017, , .		16
85	TDMA Versus CSMA/CA for Wireless Multihop Communications: A Stochastic Worst-Case Delay Analysis. IEEE Transactions on Industrial Informatics, 2017, 13, 877-887.	7.2	25
86	Communication and Networking for the Industrial Internet of Things. Springer Series in Wireless Technology, 2017, , 317-346.	1.1	6
87	A novel method based on fuzzy logic to set the arbitration threshold in wirarb for time critical applications in wireless sensor network. , 2017, , .		1
88	A multi-service adaptive wireless communication protocol for industrial networks. , 2017, , .		0
89	Expected Completion Time Aware Message Scheduling for UM-BUS Interconnected System. IEEE Access, 2017, 5, 27477-27490.	2.6	1
90	Energy Efficient Clustering Based Network Protocol Stack for 3D Airborne Monitoring System. Journal of Computer Networks and Communications, 2017, 2017, 1-13.	1.2	2
91	Superframe Duration Allocation Schemes to Improve the Throughput of Cluster-Tree Wireless Sensor Networks. Sensors, 2017, 17, 249.	2.1	19
92	Alternative Path Communication in Wide-Scale Cluster-Tree Wireless Sensor Networks Using Inactive Periods. Sensors, 2017, 17, 1049.	2.1	4

#	Article	IF	CITATIONS
93	Data Loss Prevention Scheme Using ADCN with Effective Tour Strategy in Wireless Sensor Network. Advances in Intelligent Systems and Computing, 2018, , 39-49.	0.5	0
94	Safe-WirelessHART: A Novel Framework Enabling Safety-Critical Applications Over Industrial WSNs. IEEE Transactions on Industrial Informatics, 2018, 14, 3513-3523.	7.2	19
95	Surveillance of sensitive fenced areas using duty-cycled wireless sensor networks with asymmetrical links. Journal of Network and Computer Applications, 2018, 112, 41-52.	5.8	26
96	A survey of hybrid MAC protocols for machine-to-machine communications. Telecommunication Systems, 2018, 69, 141-165.	1.6	5
97	A Critical Analysis of Research Potential, Challenges, and Future Directives in Industrial Wireless Sensor Networks. IEEE Communications Surveys and Tutorials, 2018, 20, 39-95.	24.8	181
98	Secure Low Latency Communication for Constrained Industrial IoT Scenarios. , 2018, , .		29
99	Dynamic Priority Based Reliable Real-Time Communications for Infrastructure-Less Networks. IEEE Access, 2018, 6, 67338-67359.	2.6	6
100	SM3-MAC: a Multichannel Collision-Free MAC Protocol for Wireless Sensor Networks. , 2018, , .		2
101	FRP: A novel fast rerouting protocol with multi-link-failure recovery for mission-critical WSN. Future Generation Computer Systems, 2018, 89, 148-165.	4.9	5
102	Self-Learning-Based Data Aggregation Scheduling Policy in Wireless Sensor Networks. Journal of Sensors, 2018, 2018, 1-12.	0.6	14
103	Medium Access Control in Wireless Network-on-Chip: A Context Analysis., 2018, 56, 172-178.		52
104	Energyâ€efficient and trafficâ€adaptive Zâ€medium access control protocol in wireless sensor networks. IET Wireless Sensor Systems, 2018, 8, 208-214.	1.3	4
105	Wireless energy harvesting: Empirical results and practical considerations for Internet of Things. Journal of Network and Computer Applications, 2018, 121, 149-158.	5.8	45
106	A WSN-based approach for prioritising emergency vehicles : Performance analysis of medium access control. , 2018, , .		1
107	IEEE 802.15.4 as the MAC Protocol for Internet of Things (IoT) Applications for Achieving QoS and Energy Efficiency. Lecture Notes in Networks and Systems, 2019, , 127-132.	0.5	6
108	Critical review on slope monitoring systems with a vision of unifying WSN and IoT. IET Wireless Sensor Systems, 2019, 9, 167-180.	1.3	15
110	Achieving Maximum Reliability in Deadline-Constrained Random Access With Multiple-Packet Reception. IEEE Transactions on Vehicular Technology, 2019, 68, 5997-6008.	3.9	13
111	Routing techniques in wireless nanonetworks: A survey. Nano Communication Networks, 2019, 21, 100250.	1.6	23

#	Article	IF	CITATIONS
112	Analysis and Evaluation of a Wired/Wireless Hybrid Architecture for Distributed Control Systems With Mobility Requirements. IEEE Access, 2019, 7, 95915-95931.	2.6	9
113	Analysis and Evaluation of Self-Organizing TDMA for Industrial Applications. , 2019, , .		2
114	A Joint Scheduling and Beamforming Scheme for RoF-Aided MC-SSN. IEEE Access, 2019, 7, 29245-29252.	2.6	5
115	Medium Access Control for Unmanned Aerial Vehicle Based Mission Critical Wireless Sensor Networks in 3D Monitoring Networks. IEEE Access, 2019, 7, 102274-102283.	2.6	5
116	Reinforcement Learning Based Stochastic Shortest Path Finding in Wireless Sensor Networks. IEEE Access, 2019, 7, 157807-157817.	2.6	25
117	Distributed clusters classification algorithm for indoor wireless sensor networks using pre-defined knowledge-based database. , 2019, , .		1
118	QoS mechanisms for MAC protocols in wireless sensor networks: a survey. IET Communications, 2019, 13, 2045-2062.	1.5	21
119	Time-Critical Transmission Protocols in Wireless Sensor Networks: A Survey. Advances in Intelligent Systems and Computing, 2019, , 351-364.	0.5	6
120	ADMC-MAC: Energy efficient adaptive MAC protocol for mission critical applications in WSN. Sustainable Computing: Informatics and Systems, 2019, 23, 21-28.	1.6	20
121	Wireless Network Design for Emerging IIoT Applications: Reference Framework and Use Cases. Proceedings of the IEEE, 2019, 107, 1166-1192.	16.4	40
122	Energy Efficiency Trade-Off Between Duty-Cycling and Wake-Up Radio Techniques in IoT Networks. Wireless Personal Communications, 2019, 107, 1951-1971.	1.8	56
123	Spectrum handoff strategy for cognitive radio-based MAC for real-time industrial wireless sensor and actuator networks. Computer Networks, 2019, 152, 186-198.	3.2	14
124	Distributed signal processing for dense 5G IoT platforms: Networking, synchronization, interference detection and radio sensing. Ad Hoc Networks, 2019, 89, 9-21.	3.4	17
125	Performance evaluation of ADMC-MAC mission critical protocol for wireless sensor networks. Journal of Discrete Mathematical Sciences and Cryptography, 2019, 22, 1407-1422.	0.5	5
126	OnDisc: Online Latency-Sensitive Job Dispatching and Scheduling in Heterogeneous Edge-Clouds. IEEE/ACM Transactions on Networking, 2019, 27, 2472-2485.	2.6	62
127	A Survey on the Programmability of Wireless MAC Protocols. IEEE Communications Surveys and Tutorials, 2019, 21, 1064-1092.	24.8	6
128	Software Defined Mission-Critical Wireless Sensor Network: Architecture and Edge Offloading Strategy. IEEE Access, 2019, 7, 10383-10391.	2.6	31
129	Design, analysis and implementation of a time-bounded spectrum handoff algorithm for real-time industrial wireless sensor and actuator networks. Journal of Network and Computer Applications, 2019, 125, 1-16.	5.8	2

#	ARTICLE	IF	CITATIONS
130	Data Driven Cyber-Physical System for Landslide Detection. Mobile Networks and Applications, 2019, 24, 991-1002.	2.2	44
132	A Dynamic TDMA Scheduling Strategy for MANETs Based on Service Priority. Sensors, 2020, 20, 7218.	2.1	5
133	Decentralized State-Driven Multiple Access and Information Fusion of Mission-Critical IoT Sensors for 5G Wireless Networks. IEEE Journal on Selected Areas in Communications, 2020, 38, 869-884.	9.7	13
134	Implementation of a Topology Independent MAC (TiMAC) Policy on a Low-Cost IoT System. Future Internet, 2020, 12, 86.	2.4	1
135	Intelligent Resource Collaboration in Mobile Target Tracking Oriented Mission-Critical Sensor Networks. IEEE Access, 2020, 8, 10971-10980.	2.6	9
136	Recovery of Hop Count Matrices for the Sensing Nodes in Internet of Things. IEEE Internet of Things Journal, 2020, 7, 5128-5139.	5. 5	3
137	Media Access Control in Large-Scale Internet of Things: A Review. IEEE Access, 2020, 8, 55834-55859.	2.6	17
139	Design and Implementation of ZigBee Based Low-Power Wireless Sensor and Actuator Network (WSAN) for Automation of Urban Garden Irrigation Systems. , 2021, , .		5
140	AODR: An Automatic On-Demand Retransmission Scheme for WIA-FA Networks. IEEE Transactions on Vehicular Technology, 2021, 70, 6094-6107.	3.9	8
141	A Machine Learning based Mission Critical Data Transmission Protocol in Wireless Sensor Networks. , 2021, , .		18
142	Stochastic Network Calculus Model for Delay Distribution of Time Division Multiple Access and Carrier Sense Multiple Access in Underwater Acoustic Wireless Communication. Revista GEINTEC, 2021, 11, 2885-2901.	0.2	1
143	Securing Industrial Cyber–Physical Systems: A Run-Time Multilayer Monitoring. IEEE Transactions on Industrial Informatics, 2021, 17, 6251-6259.	7.2	9
144	Towards scalable, secure, and smart mission-critical IoT systems. , 2021, , .		5
145	Probabilistic Model Checking of AODV. Lecture Notes in Computer Science, 2020, , 54-73.	1.0	1
146	A Scalable Redundant TDMA Protocol for High-Density WSNs Inside an Aircraft. Lecture Notes in Electrical Engineering, 2014, , 165-177.	0.3	6
147	Recent advances in energy efficient-QoS aware MAC protocols for wireless sensor network. International Journal of Advanced Computer Research, 2018, 8, 212-228.	1.2	16
148	Techniques for Allocation of Sensors in Shared Wireless Sensor Networks. Journal of Networks, 2015, 10, .	0.4	7
149	Energy Efficient MAC Protocols for Wireless Sensor Network: A Survey. International Journal of Wireless and Mobile Networks, 2013, 5, 75-89.	0.1	10

#	Article	IF	CITATIONS
150	Routing Protocols and Quality of Services for Security Based Applications Using Wireless Video Sensor Networks. Network Protocols and Algorithms, 2014, 6, 119.	1.0	9
151	Energy efficient security solution for attacks on Wireless Sensor Networks. , 2021, , .		1
152	Recent Advancement of Data-Driven Models in Wireless Sensor Networks: A Survey. Technologies, 2021, 9, 76.	3.0	13
153	Adjacency Matrix Based Energy Efficient Scheduling Using S-Mac Protocol in Wireless Sensor Networks. International Journal of Computer Networks and Communications, 2012, 4, 149-168.	0.3	1
154	Matrix Based Energy Efficient Scheduling With S-MAC Protocol in Wireless Sensor Network. International Journal of Modern Education and Computer Science, 2012, 4, 8-20.	2.4	0
155	Solar Driven Wind Speed Monitoring System Using Wireless or Wired Sensors. Energy and Power Engineering, 2014, 06, 213-221.	0.5	1
156	Latency Improvement Strategies for Reliability-Aware Scheduling in Industrial Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 2015, 2015, 1-10.	1.3	3
158	Scheduling of Multiple Applications in Wireless Sensor Networks Using Knowledge of Applications and Network. International Journal of Information and Computer Science, 2016, 5, 11.	0.3	8
160	Research on Industrial Robot Teaching Pendant based on Android and its Realization. IOSR Journal of Computer Engineering, 2016, 18, 78-83.	0.1	0
161	Development of Smart Automated Irrigation System. International Journal of Environment Agriculture and Biotechnology, 2017, 2, 219-224.	0.0	0
162	Dynamic MAC Protocol Designed for UAV Collision Avoidance System. Advances in Intelligent Systems and Computing, 2018, , 489-498.	0.5	3
163	Autonomous Cooperative Routing for Mission-Critical Applications. Studies in Systems, Decision and Control, 2019, , 11-54.	0.8	1
164	Cyber-physical Autonomous Vehicular System (CAVS): A MAC Layer Perspective., 2020,, 129-152.		2
165	A survey on recent contention-free MAC protocols for static and mobile wireless decentralized networks in IoT. Computer Networks, 2021, 201, 108583.	3.2	6
166	Medium Access Control Protocols for Mission Critical Wireless Sensor Networks. Advances in Intelligent Systems and Computing, 2020, , 67-86.	0.5	1
168	Toward a Data-Driven Cognitive Framework for Adaptive QoS in IoT. IEEE Internet Computing, 2022, 26, 78-87.	3.2	0
171	SMAC-Based WSN Protocol-Current State of the Art, Challenges, and Future Directions. Journal of Computer Networks and Communications, 2022, 2022, 1-29.	1.2	3
172	On the Medium Access Control Protocols Suitable for Wireless Sensor Networks – A Survey. , 2014, 6,		3

#	Article	IF	CITATIONS
173	Distributed Estimation With Adaptive Cluster Learning Over Asynchronous Data Fusion. IEEE Transactions on Aerospace and Electronic Systems, 2023, , 1-12.	2.6	2
174	Cross-Layer Flow Control Methods for Reliable Transmission. Wireless Networks, 2023, , 117-155.	0.3	0
178	Distributed Multi-target Tracking Based on Wireless Sensor Networks. Lecture Notes in Electrical Engineering, 2023, , 375-383.	0.3	0