Neuraminidase inhibitor resistance in influenza viruses

Antiviral Therapy 17, 159-173 DOI: 10.3851/imp2067

Citation Report

#	Article	IF	CITATIONS
1	Understanding Influenza Virus Resistance to Antiviral Agents; Early Warning Signs for Wider Community Circulation. Journal of Infectious Diseases, 2012, 206, 145-147.	1.9	16
2	Influenza A(H1N1)pdm09: beyond the pandemic. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2012, 30, 54-57.	0.3	5
3	Influenza A(H1N1)pdm09 virus: viral characteristics and genetic evolution. Enfermedades Infecciosas Y MicrobiologÃa ClÁnica, 2012, 30, 10-17.	0.3	13
4	Synthesis and Anti-influenza A Virus Activity of 2,2-Dialkylamantadines and Related Compounds. ACS Medicinal Chemistry Letters, 2012, 3, 1065-1069.	1.3	33
5	Antiviral Agents Against Influenza Viruses. Journal of Bacteriology and Virology, 2012, 42, 284.	0.0	11
6	Glycolytic control of vacuolar-type ATPase activity: A mechanism to regulate influenza viral infection. Virology, 2013, 444, 301-309.	1.1	110
7	In silico study on multidrug resistance conferred by I223R/H275Y double mutant neuraminidase. Molecular BioSystems, 2013, 9, 2764.	2.9	16
8	Mutation effects of neuraminidases and their docking with ligands: a molecular dynamics and free energy calculation study. Journal of Computer-Aided Molecular Design, 2013, 27, 935-950.	1.3	28
9	Reduced susceptibility to all neuraminidase inhibitors of influenza H1N1 viruses with haemagglutinin mutations and mutations in non-conserved residues of the neuraminidase. Journal of Antimicrobial Chemotherapy, 2013, 68, 2210-2221.	1.3	40
10	Cell Culture-Selected Substitutions in Influenza A(H3N2) Neuraminidase Affect Drug Susceptibility Assessment. Antimicrobial Agents and Chemotherapy, 2013, 57, 6141-6146.	1.4	41
11	A comprehensive map of the influenza A virus replication cycle. BMC Systems Biology, 2013, 7, 97.	3.0	97
12	Neuraminidase inhibitors for influenza B virus infection: Efficacy and resistance. Antiviral Research, 2013, 100, 520-534.	1.9	107
14	Dancing with chemical formulae of antivirals: A panoramic view (Part 2). Biochemical Pharmacology, 2013, 86, 1397-1410.	2.0	34
15	Dissecting influenza virus pathogenesis uncovers a novel chemical approach to combat the infection. Virology, 2013, 435, 92-101.	1.1	58
16	Neuraminidase inhibitor susceptibility testing of influenza type B viruses in China during 2010 and 2011 identifies viruses with reduced susceptibility to oseltamivir and zanamivir. Antiviral Research, 2013, 97, 240-244.	1.9	23
17	Influenza antiviral resistance in the Asia-Pacific region during 2011. Antiviral Research, 2013, 97, 206-210.	1.9	35
18	Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance. Influenza and Other Respiratory Viruses, 2013, 7, 25-36.	1.5	291
19	Pseudovirus-based neuraminidase inhibition assays reveal potential H5N1 drug-resistant mutations. Protein and Cell, 2013, 4, 356-363.	4.8	4

# 20	ARTICLE Guidance for clinical and public health laboratories testing for influenza virus antiviral drug susceptibility in Europe. Journal of Clinical Virology, 2013, 57, 5-12.	IF 1.6	CITATIONS 27
21	Point-Counterpoint: Is the Era of Viral Culture Over in the Clinical Microbiology Laboratory?. Journal of Clinical Microbiology, 2013, 51, 2-8.	1.8	78
22	Antiviral Susceptibility of Highly Pathogenic Avian Influenza A(H5N1) Viruses Isolated from Poultry, Vietnam, 2009–2011. Emerging Infectious Diseases, 2013, 19, 1963-1971.	2.0	30
23	Influenza A Virus Entry: Implications in Virulence and Future Therapeutics. Advances in Virology, 2013, 2013, 1-9.	0.5	15
24	Pharmacokinetics of Zanamivir following Intravenous Administration to Subjects with and without Renal Impairment. Antimicrobial Agents and Chemotherapy, 2013, 57, 2967-2971.	1.4	13
25	A Prospective Intervention Study on Higher-Dose Oseltamivir Treatment in Adults Hospitalized With Influenza A and B Infections. Clinical Infectious Diseases, 2013, 57, 1511-1519.	2.9	77
26	Evaluation of Three Influenza Neuraminidase Inhibition Assays for Use in a Public Health Laboratory Setting during the 2011–2012 Influenza Season. Public Health Reports, 2013, 128, 75-87.	1.3	15
27	R292K Substitution and Drug Susceptibility of Influenza A(H7N9) Viruses. Emerging Infectious Diseases, 2013, 19, 1521-1524.	2.0	63
28	How to approach and treat viral infections in ICU patients. BMC Infectious Diseases, 2014, 14, 321.	1.3	25
29	Cytokine Storm Plays a Direct Role in the Morbidity and Mortality from Influenza Virus Infection and is Chemically Treatable with a Single Sphingosine-1-Phosphate Agonist Molecule. Current Topics in Microbiology and Immunology, 2014, 378, 129-147.	0.7	68
30	Drug susceptibility surveillance of influenza viruses circulating in the <scp>U</scp> nited <scp>S</scp> tates in 2011â€2012: application of the <scp>WHO</scp> antiviral working group criteria. Influenza and Other Respiratory Viruses, 2014, 8, 258-265.	1.5	33
31	A Review of the Antiviral Susceptibility of Human and Avian Influenza Viruses over the Last Decade. Scientifica, 2014, 2014, 1-10.	0.6	37
32	Antiviral Resistance in Influenza Viruses. Clinics in Laboratory Medicine, 2014, 34, 387-408.	0.7	17
33	A novel pyrosequencing assay for the detection of neuraminidase inhibitor resistance-conferring mutations among clinical isolates of avian H7N9 influenza virus. Virus Research, 2014, 179, 119-124.	1.1	16
34	A Conformational Restriction in the Influenza A Virus Neuraminidase Binding Site by R152 Results in a Combinational Effect of I222T and H274Y on Oseltamivir Resistance. Antimicrobial Agents and Chemotherapy, 2014, 58, 1639-1645.	1.4	15
35	Within-host influenza dynamics: A small-scale mathematical modeling approach. BioSystems, 2014, 118, 51-59.	0.9	25
36	Fitness Costs for Influenza B Viruses Carrying Neuraminidase Inhibitor-Resistant Substitutions: Underscoring the Importance of E119A and H274Y. Antimicrobial Agents and Chemotherapy, 2014, 58, 2718-2730.	1.4	41
37	In-silico modelling and identification of a possible inhibitor of H1N1 virus. Asian Pacific Journal of Tropical Disease, 2014, 4, S467-S476.	0.5	5

#	Article	IF	Citations
38	The effect of the MDCK cell selected neuraminidase D151G mutation on the drug susceptibility assessment of influenza A(H3N2) viruses. Antiviral Research, 2014, 101, 93-96.	1.9	29
39	Development of Novel Potent Orally Bioavailable Oseltamivir Derivatives Active against Resistant Influenza A. Journal of Medicinal Chemistry, 2014, 57, 759-769.	2.9	77
40	Computer-Guided Approach to Access the Anti-influenza Activity of Licorice Constituents. Journal of Natural Products, 2014, 77, 563-570.	1.5	38
41	Antiviral Susceptibility of Variant Influenza A(H3N2)v Viruses Isolated in the United States from 2011 to 2013. Antimicrobial Agents and Chemotherapy, 2014, 58, 2045-2051.	1.4	29
42	The relationship between in vivo antiviral activity and pharmacokinetic parameters of peramivir in influenza virus infection model in mice. Antiviral Research, 2014, 109, 110-115.	1.9	6
43	Comparing Clinical Characteristics Between Hospitalized Adults With Laboratory-Confirmed Influenza A and B Virus Infection. Clinical Infectious Diseases, 2014, 59, 252-255.	2.9	104
44	The epidemiology and spread of drug resistant human influenza viruses. Current Opinion in Virology, 2014, 8, 22-29.	2.6	161
45	Molecular epidemiology and evolution of A(H1N1)pdm09 and H3N2 virus during winter 2012–2013 in Beijing, China. Infection, Genetics and Evolution, 2014, 26, 228-240.	1.0	18
47	Evaluation of safety and efficacy of intravenous zanamivir in the treatment of hospitalized Japanese patients with influenza: an open-label, single-arm study. Antiviral Therapy, 2014, 20, 415-423.	0.6	8
48	Identification of Novel Compounds against an R294K Substitution of Influenza A (H7N9) Virus Using Ensemble Based Drug Virtual Screening. International Journal of Medical Sciences, 2015, 12, 163-176.	1.1	16
49	Understanding the cross-resistance of oseltamivir to H1N1 and H5N1 influenza A neuraminidase mutations using multidimensional computational analyses. Drug Design, Development and Therapy, 2015, 9, 4137.	2.0	11
50	Clinical Implications of Antiviral Resistance in Influenza. Viruses, 2015, 7, 4929-4944.	1.5	148
51	Ferret models of viral pathogenesis. Virology, 2015, 479-480, 259-270.	1.1	142
52	Zanamivir Amidoxime- and N-Hydroxyguanidine-Based Prodrug Approaches to Tackle Poor Oral Bioavailability. Journal of Pharmaceutical Sciences, 2015, 104, 3208-3219.	1.6	19
53	Genetic stability of live attenuated vaccines against potentially pandemic influenza viruses. Vaccine, 2015, 33, 7008-7014.	1.7	5
54	Influenza A viruses of swine circulating in the United States during 2009–2014 are susceptible to neuraminidase inhibitors but show lineage-dependent resistance to adamantanes. Antiviral Research, 2015, 117, 10-19.	1.9	15
55	Competitive Fitness of Influenza B Viruses with Neuraminidase Inhibitor-Resistant Substitutions in a Coinfection Model of the Human Airway Epithelium. Journal of Virology, 2015, 89, 4575-4587.	1.5	23
56	Complementary assays helping to overcome challenges for identifying neuraminidase inhibitors. Future Virology, 2015, 10, 77-88.	0.9	23

#	Article	IF	CITATIONS
57	Peramivir: evidence to support the use of the first approved intravenous therapy for influenza. Future Virology, 2015, 10, 937-948.	0.9	4
58	Difluorosialic acids, potent novel influenza virus neuraminidase inhibitors, induce fewer drug resistance-associated neuraminidase mutations than does oseltamivir. Virus Research, 2015, 210, 126-132.	1.1	6
59	Unique Determinants of Neuraminidase Inhibitor Resistance among N3, N7, and N9 Avian Influenza Viruses. Journal of Virology, 2015, 89, 10891-10900.	1.5	43
60	Characterization of Drug-Resistant Influenza A(H7N9) Variants Isolated From an Oseltamivir-Treated Patient in Taiwan. Journal of Infectious Diseases, 2015, 211, 249-257.	1.9	73
61	Profiling and Characterization of Influenza Virus N1 Strains Potentially Resistant to Multiple Neuraminidase Inhibitors. Journal of Virology, 2015, 89, 287-299.	1.5	54
62	Influenza A(H1N1)pdm09 resistance and cross-decreased susceptibility to oseltamivir and zanamivir ant vir antiviral drugs. Journal of Medical Virology, 2015, 87, 45-56.	2.5	18
63	Multivalent Effect in Influenza Hemagglutinin-Binding Activity of Sugar-Mimic Peptide. Kobunshi Ronbunshu, 2016, 73, 62-68.	0.2	4
64	Reassortant Eurasian Avian-Like Influenza A(H1N1) Virus from a Severely Ill Child, Hunan Province, China, 2015. Emerging Infectious Diseases, 2016, 22, 1930-1936.	2.0	39
65	Novel Highly Pathogenic Avian A(H5N2) and A(H5N8) Influenza Viruses of Clade 2.3.4.4 from North America Have Limited Capacity for Replication and Transmission in Mammals. MSphere, 2016, 1, .	1.3	56
66	Persistent Infection of Drug-resistant Influenza A Virus during Chemotherapy for Malignant Lymphoma. Internal Medicine, 2016, 55, 1807-1810.	0.3	0
67	Avian H11 influenza virus isolated from domestic poultry in a Colombian live animal market. Emerging Microbes and Infections, 2016, 5, 1-9.	3.0	19
68	Phenotypic and genotypic analysis of influenza viruses isolated from adult subjects during a phase II study of intravenous zanamivir in hospitalised subjects. Antiviral Research, 2016, 134, 144-152.	1.9	12
69	Platform for determining the inhibition profile of neuraminidase inhibitors in an influenza virus N1 background. Journal of Virological Methods, 2016, 237, 192-199.	1.0	7
70	Resistance to Mutant Group 2 Influenza Virus Neuraminidases of an Oseltamivir-Zanamivir Hybrid Inhibitor. Journal of Virology, 2016, 90, 10693-10700.	1.5	23
71	Molecular Basis for Differential Patterns of Drug Resistance in Influenza N1 and N2 Neuraminidase. Journal of Chemical Theory and Computation, 2016, 12, 6098-6108.	2.3	20
72	Antiviral drug resistance as an adaptive process. Virus Evolution, 2016, 2, vew014.	2.2	162
73	Design, Synthesis, and Evaluation of 3â€((4â€{ <i>t</i> â€Butyl)â€2â€{2â€benzylidenehydrazinyl)thiazolâ€5â€yl)methyl)quinolinâ€2(1 <i>H</i>)â€one Neuraminidase Inhibitors. Chinese Journal of Chemistry, 2016, 34, 403-411.	2S 22.35	14
74	A Balance between Inhibitor Binding and Substrate Processing Confers Influenza Drug Resistance. Journal of Molecular Biology, 2016, 428, 538-553.	2.0	36

#	Article	IF	CITATIONS
75	The Path of Least Resistance: Mechanisms to Reduce Influenza's Sensitivity to Oseltamivir. Journal of Molecular Biology, 2016, 428, 533-537.	2.0	1
76	Virological surveillance of influenza and other respiratory viruses during six consecutive seasons from 2006 to 2012 in Catalonia, Spain. Clinical Microbiology and Infection, 2016, 22, 564.e1-564.e9.	2.8	18
77	Drug-Resistant and Genetic Evolutionary Analysis of Influenza Virus from Patients During the 2013 and 2014 Influenza Season in Beijing. Microbial Drug Resistance, 2017, 23, 253-260.	0.9	10
78	Prospective Surveillance of Antiviral Resistance in Hospitalized Infants Less than 12 Months of Age with A(H3N2) Influenza Infection and Treated with Oseltamivir. Antiviral Therapy, 2017, 22, 515-522.	0.6	6
79	Human infections with novel reassortant H5N6 avian influenza viruses in China. Emerging Microbes and Infections, 2017, 6, 1-2.	3.0	27
80	Genesis and Dissemination of Highly Pathogenic H5N6 Avian Influenza Viruses. Journal of Virology, 2017, 91, .	1.5	57
81	Finding the right combination antiviral therapy for influenza. Lancet Infectious Diseases, The, 2017, 17, 1221-1222.	4.6	8
82	Drug Susceptibility Evaluation of an Influenza A(H7N9) Virus by Analyzing Recombinant Neuraminidase Proteins. Journal of Infectious Diseases, 2017, 216, S566-S574.	1.9	33
83	Type II transmembrane serine proteases as potential target for anti-influenza drug discovery. Expert Opinion on Drug Discovery, 2017, 12, 1139-1152.	2.5	20
84	The pharmacological management of severe influenza infection – â€~existing and emerging therapies'. Expert Review of Clinical Pharmacology, 2017, 10, 81-95.	1.3	15
85	Antiviral Agents Against Respiratory Viruses. , 2017, , 1318-1326.e2.		11
86	Synthesis and Antiâ€influenza Virus Activity of Novel bis(4 <i>H</i> â€chromeneâ€3â€carbonitrile) Derivatives. Journal of Heterocyclic Chemistry, 2017, 54, 1854-1862.	1.4	47
87	Different Inhibitory Potencies of Oseltamivir Carboxylate, Zanamivir, and Several Tannins on Bacterial and Viral Neuraminidases as Assessed in a Cell-Free Fluorescence-Based Enzyme Inhibition Assay. Molecules, 2017, 22, 1989.	1.7	23
88	Protective Effect of Panax notoginseng Root Water Extract against Influenza A Virus Infection by Enhancing Antiviral Interferon-Mediated Immune Responses and Natural Killer Cell Activity. Frontiers in Immunology, 2017, 8, 1542.	2.2	40
89	Discovery and Characterization of Diazenylaryl Sulfonic Acids as Inhibitors of Viral and Bacterial Neuraminidases. Frontiers in Microbiology, 2017, 8, 205.	1.5	13
90	Antiviral resistance due to deletion in the neuraminidase gene and defective interfering-like viral polymerase basic 2 RNA of influenza A virus subtype H3N2. Journal of Clinical Virology, 2018, 102, 1-6.	1.6	3
91	Surveillance for antiviral resistance among influenza viruses circulating in Algeria during five consecutive influenza seasons (2009â€⊋014). Journal of Medical Virology, 2018, 90, 844-853.	2.5	6
92	Treatment with broadly neutralizing influenza antibodies reduces severity of secondary pneumococcal pneumonia in mice. Journal of Medical Virology, 2018, 90, 1431-1437.	2.5	5

#	Article	IF	CITATIONS
93	Genetic characterization of influenza A(H3N2) viruses from 2014 to 2017 in Yantai, east of China. Laboratoriums Medizin, 2018, 42, 89-97.	0.1	0
94	Emergence of Eurasian Avian-Like Swine Influenza A (H1N1) Virus from an Adult Case in Fujian Province, China. Virologica Sinica, 2018, 33, 282-286.	1.2	21
95	Interferons: Reprogramming the Metabolic Network against Viral Infection. Viruses, 2018, 10, 36.	1.5	54
96	Kinetic, Thermodynamic, and Structural Analysis of Drug Resistance Mutations in Neuraminidase from the 2009 Pandemic Influenza Virus. Viruses, 2018, 10, 339.	1.5	17
97	Host-directed combinatorial RNAi improves inhibition of diverse strains of influenza A virus in human respiratory epithelial cells. PLoS ONE, 2018, 13, e0197246.	1.1	13
98	Influenza A/H3N2 virus infection in immunocompromised ferrets and emergence of antiviral resistance. PLoS ONE, 2018, 13, e0200849.	1.1	15
99	Orally Efficacious Broad-Spectrum Ribonucleoside Analog Inhibitor of Influenza and Respiratory Syncytial Viruses. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	162
100	Inactivated Influenza Vaccines. , 2018, , 456-488.e21.		14
101	Naturally occurring mutations in PB1 affect influenza A virus replication fidelity, virulence, and adaptability. Journal of Biomedical Science, 2019, 26, 55.	2.6	14
102	Human infection with a novel reassortant Eurasian-avian lineage swine H1N1 virus in northern China. Emerging Microbes and Infections, 2019, 8, 1535-1545.	3.0	31
103	Effect of influenza H1N1 neuraminidase V116A and I117V mutations on NA activity and sensitivity to NA inhibitors. Antiviral Research, 2019, 169, 104539.	1.9	11
104	Neuraminidase inhibitors as a strategy for influenza treatment: pros, cons and future perspectives. Expert Opinion on Pharmacotherapy, 2019, 20, 1711-1718.	0.9	39
105	Community spread and late season increased incidence of oseltamivirâ€resistant influenza A(H1N1) viruses in Norway 2016. Influenza and Other Respiratory Viruses, 2019, 13, 372-381.	1.5	11
106	Epidemiological and genetic characterization of pH1N1 and H3N2 influenza viruses circulated in MENA region during 2009–2017. BMC Infectious Diseases, 2019, 19, 314.	1.3	24
107	Molecular influenza surveillance at a tertiary university hospital during four consecutive seasons (2012–2016) in Catalonia, Spain. Vaccine, 2019, 37, 2470-2476.	1.7	4
108	Detection and Characterization of Influenza B Virus with Reduced Neuraminidase Susceptibility in a Stem Cell Transplant Recipient. Open Forum Infectious Diseases, 2019, 6, ofz493.	0.4	1
109	Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenzaa. Clinical Infectious Diseases, 2019, 68, e1-e47.	2.9	449
110	<i>In Vitro</i> and <i>In Vivo</i> Characterization of Novel Neuraminidase Substitutions in Influenza A(H1N1)pdm09 Virus Identified Using Laninamivir-Mediated <i>In Vitro</i> Selection. Journal of Virology, 2019, 93, .	1.5	6

#	Article	IF	CITATIONS
111	Emergence of an Eurasian avian-like swine influenza A (H1N1) virus from mink in China. Veterinary Microbiology, 2020, 240, 108509.	0.8	9
112	Next-Generation Sequencing: An Eye-Opener for the Surveillance of Antiviral Resistance in Influenza. Trends in Biotechnology, 2020, 38, 360-367.	4.9	37
113	Development of A4 antibody for detection of neuraminidase I223R/H275Y-associated antiviral multidrug-resistant influenza virus. Nature Communications, 2020, 11, 3418.	5.8	10
114	Emerging HxNy Influenza A Viruses. Cold Spring Harbor Perspectives in Medicine, 2022, 12, a038406.	2.9	30
115	Laninamivir-Interferon Lambda 1 Combination Treatment Promotes Resistance by Influenza A Virus More Rapidly than Laninamivir Alone. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	5
116	Triple combination therapy of favipiravir plus two monoclonal antibodies eradicates influenza virus from nude mice. Communications Biology, 2020, 3, 219.	2.0	8
117	Characterization of neuraminidase inhibitor-resistant influenza virus isolates from immunocompromised patients in the Republic of Korea. Virology Journal, 2020, 17, 94.	1.4	9
118	Molecular evolution and characterization of hemagglutinin and neuraminidase of influenza A(H1N1)pdm09 viruses isolated in Beijing, China, during the 2017–2018 and 2018–2019 influenza seasons. Archives of Virology, 2021, 166, 179-189.	0.9	8
119	The H ⁺ -ATPase (V-ATPase): from proton pump to signaling complex in health and disease. American Journal of Physiology - Cell Physiology, 2021, 320, C392-C414.	2.1	71
120	Management of Influenza Virus Infections (Orthomyxoviridae). , 2021, , 160-174.		0
121	Drug Design Strategies to Avoid Resistance in Direct-Acting Antivirals and Beyond. Chemical Reviews, 2021, 121, 3238-3270.	23.0	40
124	Antiviral Resistance in Influenza Viruses: Clinical and Epidemiological Aspects. , 2017, , 1165-1183.		3
125	An I436N substitution confers resistance of influenza A(H1N1)pdm09 viruses to multiple neuraminidase inhibitors without affecting viral fitness. Journal of General Virology, 2018, 99, 292-302.	1.3	11
126	1222 Neuraminidase Mutations Further Reduce Oseltamivir Susceptibility of Indonesian Clade 2.1 Highly Pathogenic Avian Influenza A(H5N1) Viruses. PLoS ONE, 2013, 8, e66105.	1.1	21
127	Molecular Surveillance of Antiviral Drug Resistance of Influenza A/H3N2 Virus in Singapore, 2009-2013. PLoS ONE, 2015, 10, e0117822.	1.1	8
128	Competitive Fitness of Influenza B Viruses Possessing E119A and H274Y Neuraminidase Inhibitor Resistance–Associated Substitutions in Ferrets. PLoS ONE, 2016, 11, e0159847.	1.1	9
129	Neuraminidase inhibitor susceptibility and neuraminidase enzyme kinetics of human influenza A and B viruses circulating in Thailand in 2010–2015. PLoS ONE, 2018, 13, e0190877.	1.1	7
130	Improving influenza virological surveillance in Europe: strain-based reporting of antigenic and genetic characterisation data, 11 European countries, influenza season 2013/14. Eurosurveillance, 2016, 21, .	3.9	12

#	Article	IF	CITATIONS
131	Monitoring influenza virus susceptibility to oseltamivir using a new rapid assay, iART. Eurosurveillance, 2017, 22, .	3.9	7
132	Development of oseltamivir and zanamivir resistance in influenza A(H1N1)pdm09 virus, Denmark, 2014. Eurosurveillance, 2017, 22, .	3.9	48
133	The re-emergence of highly pathogenic avian influenza H7N9 viruses in humans in mainland China, 2019. Eurosurveillance, 2019, 24, .	3.9	49
134	2012-2013 Influenza update: Hitting a rapidly moving target. Cleveland Clinic Journal of Medicine, 2012, 79, 777-784.	0.6	6
135	Live Attenuated Influenza Vaccines against Highly Pathogenic H5N1avian Influenza: Development and Preclinical Characterization. Journal of Vaccines & Vaccination, 2013, 04, .	0.3	7
136	Integrating Evolutionary Aspects into Dual-Use Discussion: The Cases of Influenza Virus and Enterohaemorrhagic Escherichia coli. Evolution, Medicine and Public Health, 2021, 9, 383-392.	1.1	3
138	Prevention and Control of Influenza Viruses. , 2014, , 163-216.		1
139	Y155H amino acid substitution in influenza A(H1N1)pdm09 viruses does not confer a phenotype of reduced susceptibility to neuraminidase inhibitors. Eurosurveillance, 2014, 19, .	3.9	2
140	Mechanisms of Resistance to Antiviral Agents. , 0, , 1894-1912.		3
141	THE CLINICAL AND LABORATORY EFFECTIVENESS OF OSELTAMIVIR FOR TREATMENT OF INFLUENZA IN HOSPITALIZED PATIENTS. Russian Journal of Infection and Immunity, 2015, 5, 143-147.	0.2	0
142	Respiratory Infections. , 2016, , 755-778.		0
143	Potential for etiotropic treatment of influenza. Family Medicine, 2018, .	0.1	0
144	The selection pressure on the neuraminidase gene of influenza viruses isolated in Ukraine from 2009 to 2015. Microbiology Independent Research Journal, 2019, 6, 60-69.	0.2	0
145	Đ"Đ°Đ²Đ»ĐµĐ½Đ,е Đ¾Ñ,Đ±Đ¾Ñ€Đ° Đ½Đ° Đ³ĐµĐ½ Đ½ĐµĐ¹Ñ€Đ°Đ¼Đ,Đ½Đ,ĐаĐ∙Ñ‹ Đ²Đ,Ñ€Ñ∱ÑĐ¾Đ	² Ð.3Ñ€Ð,E) ;Ð; а, вÑ
147	Identification of a permissive secondary mutation that restores the enzymatic activity of oseltamivir resistance mutation H275Y. Journal of Virology, 2022, , jvi0198221.	1.5	0
148	In Vitro and In Vivo Antiviral Studies of New Heteroannulated 1,2,3-Triazole Glycosides Targeting the Neuraminidase of Influenza A Viruses. Pharmaceuticals, 2022, 15, 351.	1.7	10
150	Vitisin B inhibits influenza A virus replication by multi-targeting neuraminidase and virus-induced oxidative stress. Acta Pharmaceutica Sinica B, 2023, 13, 174-191.	5.7	5
151	Proteomic Identification of Potential Target Proteins of Cathepsin W for Its Development as a Drug Target for Influenza. Microbiology Spectrum, 2022, 10, .	1.2	8

		CITATION R	EPORT	
#	Article		IF	CITATIONS
152	Lessons from resistance analysis in clinical trials of IV zanamivir. Virus Research, 2023,	325, 199039.	1.1	0
153	Detection of reassortant influenza B strains from 2004 to 2015 seasons in Barcelona (Catalonia,) Tj ETQq1 1 0.	784314 rgE 1.1	T /Overlock
154	Phylogenomic analysis uncovers a 9-year variation of Uganda influenza type-A strains f WHO-recommended vaccines and other Africa strains. Scientific Reports, 2023, 13, .	rom the	1.6	0
159	Inactivated and Recombinant Influenza Vaccines. , 2023, , 514-551.e31.			0