Biochar: A Synthesis of Its Agronomic Impact beyond C

Journal of Environmental Quality 41, 973-989

DOI: 10.2134/jeq2011.0069

Citation Report

#	Article	IF	Citations
1	Green farming systems for the Southeast USA using manure-to-energy conversion platforms. Journal of Renewable and Sustainable Energy, 2012, 4, 041401.	0.8	11
2	Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems. Frontiers in Ecology and the Environment, 2012, 10, 562-570.	1.9	220
3	Environmental Benefits of Biochar. Journal of Environmental Quality, 2012, 41, 967-972.	1.0	270
4	Influence of Feedstock and Pyrolysis Temperature of Biochar Amendments on Transport of <i>Escherichia coli</i> in Saturated and Unsaturated Soil. Environmental Science & Envi	4.6	104
5	Abundant and Stable Char Residues in Soils: Implications for Soil Fertility and Carbon Sequestration. Environmental Science &	4.6	239
6	Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, 2012, 107, 419-428.	4.8	1,095
7	Biochar's role as an alternative N-fertilizer: ammonia capture. Plant and Soil, 2012, 350, 35-42.	1.8	242
8	Biochar's effect on crop productivity and the dependence on experimental conditionsâ€"a meta-analysis of literature data. Plant and Soil, 2013, 373, 583-594.	1.8	580
9	Responses of methane emissions and rice yield to applications of biochar and straw in a paddy field. Journal of Soils and Sediments, 2013, 13, 1450-1460.	1.5	126
10	Impact of biochar field aging on laboratory greenhouse gas production potentials. GCB Bioenergy, 2013, 5, 165-176.	2.5	198
11	Augmenting soil water storage using uncharred switchgrass and pyrolyzed biochars. Soil Use and Management, 2013, 29, 98-104.	2.6	27
12	Compositional and Thermal Evaluation of Lignocellulosic and Poultry Litter Chars via High and Low Temperature Pyrolysis. Bioenergy Research, 2013, 6, 114-130.	2.2	80
13	Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Bioresource Technology, 2013, 148, 196-201.	4.8	471
14	Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Industrial Crops and Products, 2013, 51, 437-443.	2.5	154
15	Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresource Technology, 2013, 130, 463-471.	4.8	301
16	Biochar and its effects on plant productivity and nutrient cycling: a metaâ€analysis. GCB Bioenergy, 2013, 5, 202-214.	2.5	1,175
17	Comparisons of Biochar Properties from Wood Material and Crop Residues at Different Temperatures and Residence Times. Energy & En	2.5	202
18	Preparation and Modification of Carbon Blacks from Wastes. Advanced Materials Research, 0, 666, 111-121.	0.3	0

#	Article	IF	CITATIONS
19	Soil Biochar Quantification via Hyperspectral Unmixing. , 2013, , .		2
20	Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environmental Pollution, 2013, 174, 289-296.	3.7	156
21	Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 2013, 256-257, 1-9.	6.5	287
22	Preliminary laboratory production and characterization of biochars from lignocellulosic municipal waste. Journal of Analytical and Applied Pyrolysis, 2013, 99, 71-78.	2.6	72
23	Towards a carbon-negative sustainable bio-based economy. Frontiers in Plant Science, 2013, 4, 174.	1.7	114
24	Heterogeneous global crop yield response to biochar: a meta-regression analysis. Environmental Research Letters, 2013, 8, 044049.	2.2	214
25	Biochar and Biosolids Increase Tree Growth and Improve Soil Quality for Urban Landscapes. Journal of Environmental Quality, 2013, 42, 1372-1385.	1.0	61
26	A Review of Biochar and Soil Nitrogen Dynamics. Agronomy, 2013, 3, 275-293.	1.3	663
27	Crop residue decomposition in Minnesota biochar-amended plots. Solid Earth, 2014, 5, 499-507.	1.2	21
28	Transport of <i>Escherichia coli </i> , <i>Salmonella typhimurium </i> , and Microspheres in Biochar-Amended Soils with Different Textures. Journal of Environmental Quality, 2014, 43, 371-388.	1.0	42
29	Pelletized Biochar as a Carrier for AM Fungi in the On-Farm System of Inoculum Production in Compost and Vermiculite Mixtures. Compost Science and Utilization, 2014, 22, 253-262.	1.2	17
30	Enhancing carbon sequestration for mitigation and co-benefits in agriculture: actions and novel practices. Carbon Management, 2014, 5, 127-129.	1.2	2
31	Biochar can be used to capture essential nutrients from dairy wastewater and improve soil physico-chemical properties. Solid Earth, 2014, 5, 953-962.	1.2	84
32	Effects of Amendment of Biochar Produced from Woody Biomass on Soil Quality and Crop Yield. , 2014, , .		2
33	Midwest vision for sustainable fuel production. Biofuels, 2014, 5, 687-702.	1.4	17
34	Evaluation of PAH and Metal Contents of Different Biochars for Use in Climate Change Mitigation Systems. , 2014, , .		7
35	Biochar-based bioenergy and its environmental impact in Northwestern Ontario Canada: A review. Journal of Forestry Research, 2014, 25, 737-748.	1.7	22
36	Effects of Soil Amendments on the Abundance of a Parasitic Weed, Yellow Rattle (<i>Rhinanthus) Tj ETQq1 1 0.</i>	7843]4 rg	gBT_fOverlock

3

#	ARTICLE	IF	CITATIONS
37	Inactivation of <i>E. coli</i> O157:H7 in Cultivable Soil by Fast and Slow Pyrolysis-Generated Biochar. Foodborne Pathogens and Disease, 2014, 11, 215-223.	0.8	24
38	Biochar amendment to coarse sandy subsoil improves root growth and increases water retention. Soil Use and Management, 2014, 30, 109-118.	2.6	230
39	Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil. Biology and Fertility of Soils, 2014, 50, 1189-1200.	2.3	85
40	Effect of biochar addition on soil respiration partitioning and root dynamics in an apple orchard. European Journal of Soil Science, 2014, 65, 186-195.	1.8	64
41	Soil biochar amendment in a nature restoration area: effects on plant productivity and community composition. Ecological Applications, 2014, 24, 1167-1177.	1.8	50
42	Improving Maize Growth by Biochar and Biochar-Based Amendment in Light Sierozem in Ningxia. Applied Mechanics and Materials, 0, 707, 251-254.	0.2	0
43	Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability. Agriculture, Ecosystems and Environment, 2014, 191, 83-91.	2.5	150
44	Carbon mineralization in two ultisols amended with different sources and particle sizes of pyrolyzed biochar. Chemosphere, 2014, 103, 313-321.	4.2	77
45	Assessing biochar's ability to reduce bioavailability of aminocyclopyrachlor in soils. Environmental Pollution, 2014, 189, 92-97.	3.7	18
46	Influence of biochar amendments on the sorption–desorption of aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil. Science of the Total Environment, 2014, 470-471, 438-443.	3.9	144
47	Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks. Journal of Soils and Sediments, 2014, 14, 330-343.	1.5	138
48	Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn. Soil Biology and Biochemistry, 2014, 72, 152-162.	4.2	141
49	Sorption properties for black carbon (wood char) after long term exposure in soils. Organic Geochemistry, 2014, 70, 53-61.	0.9	44
50	Characterization of biochar-derived dissolved organic matter using UV–visible absorption and excitation–emission fluorescence spectroscopies. Chemosphere, 2014, 103, 197-204.	4.2	161
51	What is the potential for biogas digesters to improve soil fertility and crop production in Sub-Saharan Africa?. Biomass and Bioenergy, 2014, 70, 58-72.	2.9	50
52	Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity. Biomass and Bioenergy, 2014, 63, 167-176.	2.9	45
53	Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. Journal of Plant Nutrition and Soil Science, 2014, 177, 48-58.	1.1	125
54	Plant growth responses to biochar addition: an Australian soils perspective. Biology and Fertility of Soils, 2014, 50, 1035-1045.	2.3	102

#	Article	IF	CITATIONS
55	Thermochemical Transformation of Agro-biomass into Biochar: Simultaneous Carbon Sequestration and Soil Amendment. , 2014 , , $51-70$.		6
56	Slow pyrolysis of rice straw: Analysis of products properties, carbon and energy yields. Bioresource Technology, 2014, 155, 63-70.	4.8	227
57	Lignocellulosic Biorefineries: Concepts and Possibilities. , 2014, , 255-265.		3
58	Biochar application to soil for climate change mitigation by soil organic carbon sequestration. Journal of Plant Nutrition and Soil Science, 2014, 177, 651-670.	1.1	169
59	Advances and Innovations in Biochar Production and Utilization for Improving Environmental Quality., 2014,, 435-446.		10
60	Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil and Tillage Research, 2014, 144, 184-194.	2.6	142
61	Evaluation of the thermal and environmental stability of switchgrass biochars by Py–GC–MS. Journal of Analytical and Applied Pyrolysis, 2014, 110, 239-247.	2.6	46
62	Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. Soil Biology and Biochemistry, 2014, 69, 110-118.	4.2	148
63	Phosphorus availability from the solid fraction of pig slurry is altered by composting or thermal treatment. Bioresource Technology, 2014, 169, 543-551.	4.8	79
64	Detecting Free Radicals in Biochars and Determining Their Ability to Inhibit the Germination and Growth of Corn, Wheat and Rice Seedlings. Environmental Science & Environmental Science & 12014, 48, 8581-8587.	4.6	330
65	The biochar dilemma. Soil Research, 2014, 52, 217.	0.6	178
66	An evaluation of biochar pre-conditioned with urea ammonium nitrate on maize (<i>Zea mays</i> L.) production and soil biochemical characteristics. Canadian Journal of Soil Science, 2014, 94, 551-562.	0.5	21
67	Effect of pyrolysis temperature on miscanthus (MiscanthusÂ×Âgiganteus) biochar physical, chemical and functional properties. Biomass and Bioenergy, 2014, 62, 149-157.	2.9	171
68	Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. Journal of Analytical and Applied Pyrolysis, 2014, 108, 301-309.	2.6	117
69	Surface Properties and Chemical Composition of Corncob and Miscanthus Biochars: Effects of Production Temperature and Method. Journal of Agricultural and Food Chemistry, 2014, 62, 3791-3799.	2.4	129
70	Hardwood Biochar Influences Calcareous Soil Physicochemical and Microbiological Status. Journal of Environmental Quality, 2014, 43, 681-689.	1.0	70
71	Impacts of Biochar and Other Amendments on Soil-Carbon and Nitrogen Stability: A Laboratory Column Study. Soil Science Society of America Journal, 2014, 78, 1258-1266.	1.2	29
72	Shifting chars? Aligning climate change, carbon abatement, agriculture, land use and food safety and security policies. Carbon Management, 2014, 5, 119-121.	1.2	0

#	Article	IF	Citations
73	Biochar amendment of soil improves resilience to climate change. GCB Bioenergy, 2015, 7, 1084-1091.	2.5	49
74	Biochar – synergies and tradeâ€offs between soil enhancing properties and C sequestration potential. GCB Bioenergy, 2015, 7, 1161-1175.	2.5	75
75	Biochar and Soil Carbon Sequestration. SSSA Special Publication Series, 0, , 175-197.	0.2	15
76	Use and Impact of Biochar and Charcoal in Animal Production Systems. SSSA Special Publication Series, 0, , 199-224.	0.2	16
77	Research and Application of Biochar in North America. SSSA Special Publication Series, 0, , 475-494.	0.2	9
78	Agricultural and Environmental Applications of Biochar: Advances and Barriers. SSSA Special Publication Series, 0, , 495-504.	0.2	11
79	Regional Considerations for Targeted Use of Biochar in Agriculture and Remediation in Australia. SSSA Special Publication Series, 0, , 445-474.	0.2	2
80	Aqueous Leaching of Organic Acids and Dissolved Organic Carbon from Various Biochars Prepared at Different Temperatures. Journal of Environmental Quality, 2015, 44, 684-695.	1.0	62
81	Life cycle environmental impact assessment of biochar-based bioenergy production and utilization in Northwestern Ontario, Canada. Journal of Forestry Research, 2015, 26, 799-809.	1.7	24
82	Why shortâ€term biochar application has no yield benefits: evidence from three fieldâ€grown crops. Soil Use and Management, 2015, 31, 241-250.	2.6	46
83	Optimizing the production of activated carbon from fast pyrolysis char. Technology, 2015, 03, 104-113.	1.4	9
84	Plant growth responses to biochar amendment of Mediterranean soils deficient in iron and phosphorus. Journal of Plant Nutrition and Soil Science, 2015, 178, 567-575.	1.1	13
85	Effect of Wood Biochar in Manureâ€Applied Sand Columns on Leachate Quality. Journal of Environmental Quality, 2015, 44, 1720-1728.	1.0	35
86	Efficacy of Chicken Litter and Wood Biochars and Their Activated Counterparts in Heavy Metal Clean up from Wastewater. Agriculture (Switzerland), 2015, 5, 806-825.	1.4	31
87	Metal Leaching in Mine Tailings: Short-Term Impact of Biochar and Wood Ash Amendments. Journal of Environmental Quality, 2015, 44, 275-285.	1.0	11
88	Effects of Biochar Blends on Microbial Community Composition in Two Coastal Plain Soils. Agriculture (Switzerland), 2015, 5, 1060-1075.	1.4	23
89	Biochar for Soil Improvement: Evaluation of Biochar from Gasification and Slow Pyrolysis. Agriculture (Switzerland), 2015, 5, 1076-1115.	1.4	82
90	Sustainability Issues and Opportunities in the Sugar and Sugar-Bioproduct Industries. Sustainability, 2015, 7, 12209-12235.	1.6	51

#	ARTICLE	IF	Citations
91	Biochar Soil Amendment Effects on Arsenic Availability to Mountain Brome (<i>Bromus) Tj ETQq0 0 0 rgBT /Over</i>	lock 10 Tf	50,742 Td (n
92	Influence of biochar, mycorrhizal inoculation, and fertilizer rate on growth and flowering of Pelargonium (Pelargonium zonale L.) plants. Frontiers in Plant Science, 2015, 6, 429.	1.7	60
93	BIOCHAR: PYROGENIC CARBON FOR AGRICULTURAL USE - A CRITICAL REVIEW. Revista Brasileira De Ciencia Do Solo, 2015, 39, 321-344.	0.5	141
94	Changes in Soil Chemistry following Wood and Grass Biochar Amendments to an Acidic Agricultural Production Soil. Agronomy Journal, 2015, 107, 1440-1446.	0.9	19
95	Properties of biochar obtained from pyrolysis of bamboo shoot shell. Journal of Analytical and Applied Pyrolysis, 2015, 114, 172-178.	2.6	83
96	Peanut shell biochar improves soil properties and peanut kernel quality on a red Ferrosol. Journal of Soils and Sediments, 2015, 15, 2220-2231.	1.5	44
97	Biochar and forest restoration: a review and meta-analysis of tree growth responses. New Forests, 2015, 46, 931-946.	0.7	147
98	Experimental Studies on Thermal and Catalytic Slow Pyrolysis of Groundnut Shell to Pyrolytic Oil. Applied Mechanics and Materials, 0, 787, 67-71.	0.2	1
99	A one-year short-term biochar application improved carbon accumulation in large macroaggregate fractions. Catena, 2015, 127, 26-31.	2,2	78
100	Physical and chemical characterization of biochars produced from coppiced wood of thirteen tree species for use in horticultural substrates. Industrial Crops and Products, 2015, 66, 44-51.	2.5	50
101	Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three year mesocosm experiment. Science of the Total Environment, 2015, 514, 147-154.	3.9	252
102	Effect of biochar amendment on yield and photosynthesis of peanut on two types of soils. Environmental Science and Pollution Research, 2015, 22, 6112-6125.	2.7	170
103	Multifaceted application of crop residue biochar as a tool for sustainable agriculture: An ecological perspective. Ecological Engineering, 2015, 77, 324-347.	1.6	117
104	Nutrient Transport in Soils Amended with Biochar: A Transient Model with Two Stationary Phases and Intraparticle Diffusion. Industrial & Engineering Chemistry Research, 2015, 54, 4123-4135.	1.8	12
105	Mapping Thermomechanical Pulp Sludge (TMPS) Biochar Characteristics for Greenhouse Produce Safety. Journal of Agricultural and Food Chemistry, 2015, 63, 1648-1657.	2.4	13
106	Effect of biochar amendment on PAH dissipation and indigenous degradation bacteria in contaminated soil. Journal of Soils and Sediments, 2015, 15, 313-322.	1.5	54
107	Effects of activated charcoal and tannin added to compost and to soil on carbon dioxide, nitrous oxide and ammonia volatilization. Journal of Plant Nutrition and Soil Science, 2015, 178, 218-228.	1.1	12
108	Reverse engineering of biochar. Bioresource Technology, 2015, 183, 163-174.	4.8	33

#	Article	IF	CITATIONS
109	Are soil–water functions affected by biochar application?. Geoderma, 2015, 249-250, 1-11.	2.3	113
110	Characterization of fast-pyrolysis bio-oil distillation residues and their potential applications. Journal of Analytical and Applied Pyrolysis, 2015, 114, 179-186.	2.6	56
111	Impact of biochar amendment on the growth, physiology and fruit of a young commercial apple orchard. Trees - Structure and Function, 2015, 29, 1817-1826.	0.9	40
112	Activated carbon decreases invasive plant growth by mediating plant–microbe interactions. AoB PLANTS, 2015, 7, .	1.2	16
113	Biochar alters nitrogen transformations but has minimal effects on nitrous oxide emissions in an organically managed lettuce mesocosm. Biology and Fertility of Soils, 2015, 51, 573-582.	2.3	84
114	Effects of Biochar on Yield, Nutrient Recovery, and Soil Properties in a Canola (Brassica napus) Tj ETQq1 1 0.7843 Bioenergy Research, 2015, 8, 1183-1196.	14 rgBT /0 2.2	Overlock 10 34
115	Non-monotonic influence of biochar dose on bean seedling growth and susceptibility to Rhizoctonia solani: the "Shifted Rmax-Effect― Plant and Soil, 2015, 395, 125-140.	1.8	86
116	Switchgrass Biochar Effects on Plant Biomass and Microbial Dynamics in Two Soils from Different Regions. Pedosphere, 2015, 25, 329-342.	2.1	40
117	pH effects of the addition of three biochars to acidic Indonesian mineral soils. Soil Science and Plant Nutrition, 2015, 61, 821-834.	0.8	96
118	Creeping bentgrass growth in sand-based root zones with or without biochar. Scientia Horticulturae, 2015, 197, 592-596.	1.7	20
119	Influence of biochar application on nutritional quality of tomato (Lycopersicon esculentum). Crop and Pasture Science, 2015, 66, 747.	0.7	45
120	Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agriculture, Ecosystems and Environment, 2015, 213, 72-85.	2.5	267
121	Biochar for Sustainable Soil Health: A Review of Prospects and Concerns. Pedosphere, 2015, 25, 639-653.	2.1	107
122	Stable carbon compounds in soils: Their origin and functions. Eurasian Soil Science, 2015, 48, 997-1008.	0.5	34
123	Fate of Soil Organic Carbon and Polycyclic Aromatic Hydrocarbons in a Vineyard Soil Treated with Biochar. Environmental Science & Environmental Scienc	4.6	46
124	Self-sustained carbonization of oil palm biomass produced an acceptable heating value charcoal with low gaseous emission. Journal of Cleaner Production, 2015, 89, 257-261.	4.6	25
125	Physical and chemical characterization of waste wood derived biochars. Waste Management, 2015, 36, 256-268.	3.7	297
126	Costâ€benefit analysis of using biochar to improve cereals agriculture. GCB Bioenergy, 2015, 7, 850-864.	2.5	77

#	Article	IF	CITATIONS
127	Evaluation of biochar-anaerobic potato digestate mixtures as renewable components of horticultural potting media. Industrial Crops and Products, 2015, 65, 467-471.	2.5	33
128	Characterization of chemical–physical, structural and morphological properties of biochars from biowastes produced at different temperatures. Journal of Soils and Sediments, 2015, 15, 792-804.	1.5	111
129	Characteristics and Applications of Biochar for Environmental Remediation: A Review. Critical Reviews in Environmental Science and Technology, 2015, 45, 939-969.	6.6	362
130	Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest. GCB Bioenergy, 2015, 7, 1062-1074.	2.5	73
131	Biochar as a global change adaptation: predicting biochar impacts on crop productivity and soil quality for a tropical soil with the Environmental Policy Integrated Climate (EPIC) model. Mitigation and Adaptation Strategies for Global Change, 2015, 20, 1437-1458.	1.0	39
132	Biochar Applications to Agricultural Soils in Temperate Climates – More Than Carbon Sequestration?. , 2016, , 291-314.		2
133	Rotary Kiln Minerals Process Applications. , 2016, , 231-264.		3
134	<i>Pleurotus</i> Spent Mushroom Compost as Green Supplementary Nutrient in Tissue Culture. MATEC Web of Conferences, 2016, 47, 05010.	0.1	1
135	Displacing Inorganic Nitrogen in Lignocellulosic Feedstock Production Systems. Agronomy Journal, 2016, 108, 109-116.	0.9	17
136	Biochar in thermal and thermochemical biorefineriesâ€"production of biochar as a coproduct. , 2016, , 655-671.		8
137	Life Cycle Analysis of Biochar. , 2016, , 46-69.		7
138	Carbon Abatement and Emissions Associated with the Gasification of Walnut Shells for Bioenergy and Biochar Production. PLoS ONE, 2016, 11, e0150837.	1.1	18
139	Application of Biochar Produced From Biowaste Materials for Environmental Protection and Sustainable Agriculture Production., 2016,, 73-89.		12
140	Opportunities and Uses of Biochar on Forest Sites in North America. , 2016, , 315-335.		18
141	Application of Two Bioenergy Byproducts with Contrasting Carbon Availability to a Prairie Soil: Three-Year Crop Response and Changes in Soil Biological and Chemical Properties. Agronomy, 2016, 6, 13.	1.3	12
142	A model for mechanistic and system assessments of biochar effects on soils and crops and tradeâ€offs. GCB Bioenergy, 2016, 8, 1028-1045.	2.5	45
143	Characterization of organic compounds in a mixed feedstock biochar generated from Australian agricultural residues. Journal of Analytical and Applied Pyrolysis, 2016, 120, 441-449.	2.6	25
144	Dedicated Energy Crops and Crop Residues for Bioenergy Feedstocks in the Central and Eastern USA. Bioenergy Research, 2016, 9, 384-398.	2.2	93

#	Article	IF	CITATIONS
145	Life cycle cost and economic assessment of biochar-based bioenergy production and biochar land application in Northwestern Ontario, Canada. Forest Ecosystems, 2016, 3, .	1.3	64
146	BIOCHARS IN SOILS: TOWARDS THE REQUIRED LEVEL OF SCIENTIFIC UNDERSTANDING. Journal of Environmental Engineering and Landscape Management, 2016, 25, 192-207.	0.4	48
147	Microbial Ecology Analysis of Biochar-Augmented Soils. , 2016, , 1-40.		5
148	Microbial Ecology of the Rhizosphere and Its Response to Biochar Augmentation. , 2016, , 199-220.		O
149	Effects of the physicochemical properties of biochar and soil on moisture sorption. Journal of Renewable and Sustainable Energy, 2016, 8, 064702.	0.8	5
150	Longâ€ŧerm effect of biochar on the stabilization of recent carbon: soils with historical inputs of charcoal. GCB Bioenergy, 2016, 8, 371-381.	2.5	71
151	Soil leaching as affected by the amendment with biochar and compost. Agriculture, Ecosystems and Environment, 2016, 226, 56-64.	2.5	53
152	Ammonium retention by oxidized biochars produced at different pyrolysis temperatures and residence times. RSC Advances, 2016, 6, 41907-41913.	1.7	63
153	Biochar physico-chemical properties as affected by environmental exposure. Science of the Total Environment, 2016, 563-564, 237-246.	3.9	110
154	Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica) Tj ETQq1 1 0.7 Agriculture, 2016, 5, 43-53.	84314 rgE 2.0	3T /Overlock 1 142
154 155			
	Agriculture, 2016, 5, 43-53. Is current biochar research addressing global soil constraints for sustainable agriculture?.	2.0	142
155	Agriculture, 2016, 5, 43-53. Is current biochar research addressing global soil constraints for sustainable agriculture?. Agriculture, Ecosystems and Environment, 2016, 226, 25-32. Assessment of Trace Element Accumulation by Earthworms in an Orchard Soil Remediation Study	2.0	96
155 156	Agriculture, 2016, 5, 43-53. Is current biochar research addressing global soil constraints for sustainable agriculture?. Agriculture, Ecosystems and Environment, 2016, 226, 25-32. Assessment of Trace Element Accumulation by Earthworms in an Orchard Soil Remediation Study Using Soil Amendments. Water, Air, and Soil Pollution, 2016, 227, 1. Designing advanced biochar products for maximizing greenhouse gas mitigation potential. Critical	2.5	96 8
155 156 157	Agriculture, 2016, 5, 43-53. Is current biochar research addressing global soil constraints for sustainable agriculture?. Agriculture, Ecosystems and Environment, 2016, 226, 25-32. Assessment of Trace Element Accumulation by Earthworms in an Orchard Soil Remediation Study Using Soil Amendments. Water, Air, and Soil Pollution, 2016, 227, 1. Designing advanced biochar products for maximizing greenhouse gas mitigation potential. Critical Reviews in Environmental Science and Technology, 2016, 46, 1367-1401. Ecotoxicity tests on solid residues from microwave induced pyrolysis of different organic residues:	2.5	96 8 86
155 156 157	Agriculture, 2016, 5, 43-53. Is current biochar research addressing global soil constraints for sustainable agriculture?. Agriculture, Ecosystems and Environment, 2016, 226, 25-32. Assessment of Trace Element Accumulation by Earthworms in an Orchard Soil Remediation Study Using Soil Amendments. Water, Air, and Soil Pollution, 2016, 227, 1. Designing advanced biochar products for maximizing greenhouse gas mitigation potential. Critical Reviews in Environmental Science and Technology, 2016, 46, 1367-1401. Ecotoxicity tests on solid residues from microwave induced pyrolysis of different organic residues: An addendum. Journal of Analytical and Applied Pyrolysis, 2016, 121, 329-332. Biochar and manure amendments impact soil nutrients and microbial enzymatic activities in a semi-arid	2.5 2.5 1.1 6.6	96 8 86
155 156 157 158	Agriculture, 2016, 5, 43-53. Is current biochar research addressing global soil constraints for sustainable agriculture?. Agriculture, Ecosystems and Environment, 2016, 226, 25-32. Assessment of Trace Element Accumulation by Earthworms in an Orchard Soil Remediation Study Using Soil Amendments. Water, Air, and Soil Pollution, 2016, 227, 1. Designing advanced biochar products for maximizing greenhouse gas mitigation potential. Critical Reviews in Environmental Science and Technology, 2016, 46, 1367-1401. Ecotoxicity tests on solid residues from microwave induced pyrolysis of different organic residues: An addendum. Journal of Analytical and Applied Pyrolysis, 2016, 121, 329-332. Biochar and manure amendments impact soil nutrients and microbial enzymatic activities in a semi-arid irrigated maize cropping system. Agriculture, Ecosystems and Environment, 2016, 233, 404-414. Achieving environmentally sustainable growing media for soilless plant cultivation systems – A	2.5 2.5 1.1 6.6 2.6	96 8 86 6

#	Article	IF	CITATIONS
163	Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar. Journal of Cleaner Production, 2016, 135, 1054-1064.	4.6	182
164	Biochar addition reduced net N mineralization of a coastal wetland soil in the Yellow River Delta, China. Geoderma, 2016, 282, 120-128.	2.3	65
165	Biochars and hydrochars as substrate constituents for soilless growth of myrtle and mastic. Industrial Crops and Products, 2016, 94, 132-142.	2.5	36
166	Biochar prepared from castor oil cake at different temperatures: A voltammetric study applied for Pb2+, Cd2+ and Cu2+ ions preconcentration. Journal of Hazardous Materials, 2016, 318, 526-532.	6.5	66
167	Crop Yield Response to Increasing Biochar Rates. Journal of Crop Improvement, 2016, 30, 703-712.	0.9	13
168	Current economic obstacles to biochar use in agriculture and climate change mitigation. Carbon Management, 2016, 7, 183-190.	1.2	39
169	Biochar from microwave pyrolysis of biomass: A review. Biomass and Bioenergy, 2016, 94, 228-244.	2.9	293
170	Reviewing, Combining, and Updating the Models for the Nanostructure of Non-Graphitizing Carbons Produced from Oxygen-Containing Precursors. Energy & Energy & 2016, 30, 7811-7826.	2.5	63
171	Influence of pyrolysis temperature and hardwood species on resulting biochar properties and their effect on azimsulfuron sorption as compared to other sorbents. Science of the Total Environment, 2016, 566-567, 1454-1464.	3.9	51
172	Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study. Scientific Reports, 2016, 6, 25127.	1.6	80
173	Characterizing Properties of Biochar Produced from Simulated Human Feces and Its Potential Applications. Journal of Environmental Quality, 2016, 45, 734-742.	1.0	8
174	Trace Metals in Biochars from Biodegradable By-products of Industrial Processes. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	18
175	Soil Health, Crop Productivity, Microbial Transport, and Mine Spoil Response to Biochars. Bioenergy Research, 2016, 9, 454-464.	2.2	48
176	Integration of biochar with animal manure and nitrogen for improving maize yields and soil properties in calcareous semi-arid agroecosystems. Field Crops Research, 2016, 195, 28-35.	2.3	62
177	Potential application of gasification to recycle food waste and rehabilitate acidic soil from secondary forests on degraded land in Southeast Asia. Journal of Environmental Management, 2016, 172, 40-48.	3.8	57
178	Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water-holding capacity and fertility of sandy soil. Science of the Total Environment, 2016, 566-567, 387-397.	3.9	104
179	Effect of biochar on nutrient retention and nectarine tree performance: A threeâ€year field trial. Journal of Plant Nutrition and Soil Science, 2016, 179, 336-346.	1.1	32
180	Wood Bioenergy and Soil Productivity Research. Bioenergy Research, 2016, 9, 507-517.	2.2	12

#	ARTICLE	IF	CITATIONS
181	Hardwood biochar and manure co-application to a calcareous soil. Chemosphere, 2016, 142, 84-91.	4.2	44
182	Biochars reduce infection rates of the root-lesion nematode Pratylenchus penetrans and associated biomass loss in carrot. Soil Biology and Biochemistry, 2016, 95, 11-18.	4.2	60
183	Impact of switchgrass biochars with supplemental nitrogen on carbon-nitrogen mineralization in highly weathered Coastal Plain Ultisols. Chemosphere, 2016, 145, 135-141.	4.2	25
184	Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy, 2016, 84, 37-48.	2.9	383
185	Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China. Science of the Total Environment, 2016, 544, 203-210.	3.9	89
186	Spatiotemporal dynamics of phosphorus release, oxygen consumption and greenhouse gas emissions after localised soil amendment with organic fertilisers. Science of the Total Environment, 2016, 554-555, 119-129.	3.9	27
187	Partial oxidation of sewage sludge briquettes in a updraft fixed bed. Waste Management, 2016, 49, 204-211.	3.7	20
188	Successful scaling-up of self-sustained pyrolysis of oil palm biomass under pool-type reactor. Waste Management and Research, 2016, 34, 176-180.	2.2	12
189	Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems. Science of the Total Environment, 2016, 550, 459-470.	3.9	146
190	Complete utilization of non-edible oil seeds of Cascabela thevetia through a cascade of approaches for biofuel and by-products. Bioresource Technology, 2016, 213, 111-120.	4.8	28
191	Variable effects of biochar and P solubilizing microbes on crop productivity in different soil conditions. Agroecology and Sustainable Food Systems, 2016, 40, 145-168.	1.0	44
192	Adsorption and desorption of phosphate on biochars. Journal of Environmental Chemical Engineering, 2016, 4, 37-46.	3.3	118
193	Physico-chemical characterization of biochars from solid municipal waste for use in soil amendment. Journal of Analytical and Applied Pyrolysis, 2016, 118, 42-53.	2.6	74
194	Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties. Bioresource Technology, 2016, 201, 121-132.	4.8	143
195	Influence of Willow Biochar Amendment on Soil Nitrogen Availability and Greenhouse Gas Production in Two Fertilized Temperate Prairie Soils. Bioenergy Research, 2016, 9, 157-171.	2.2	40
196	A comparison between microalgae virtual biorefinery arrangements for bio-oil production based on lab-scale results. Journal of Cleaner Production, 2016, 130, 58-67.	4.6	62
197	Sewage sludge biochar: effects on soil fertility and growth of radish. Biological Agriculture and Horticulture, 2016, 32, 127-138.	0.5	78
198	Pyrolytic Treatment and Fertility Enhancement of Soils Contaminated with Heavy Hydrocarbons. Environmental Science & Environme	4.6	89

#	Article	IF	CITATIONS
199	Pig slurry acidification, separation technology and thermal conversion affect phosphorus availability in soil amended with the derived solid fractions, chars or ashes. Plant and Soil, 2016, 401, 93-107.	1.8	20
200	Ameliorating soil chemical properties of a hard setting subsoil layer in Coastal Plain USA with different designer biochars. Chemosphere, 2016, 142, 168-175.	4.2	20
201	Designer, acidic biochar influences calcareous soil characteristics. Chemosphere, 2016, 142, 184-191.	4.2	79
202	Review of the Effects of Biochar Amendment on Soil Properties and Carbon Sequestration. Journal of Hazardous, Toxic, and Radioactive Waste, 2016, 20, .	1.2	63
203	Biochars multifunctional role as a novel technology in the agricultural, environmental, and industrial sectors. Chemosphere, 2016, 142, 1-3.	4.2	47
204	Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar. Chemosphere, 2016, 142, 48-55.	4.2	75
205	Biochar for crop production: potential benefits and risks. Journal of Soils and Sediments, 2017, 17, 685-716.	1.5	331
206	Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. Journal of Soils and Sediments, 2017, 17, 780-789.	1.5	208
207	Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil. Plant Physiology and Biochemistry, 2017, 110, 147-157.	2.8	55
208	Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biocharâ€amended soil: a review. GCB Bioenergy, 2017, 9, 990-1004.	2.5	117
209	Indigenous Charcoal and Biochar Production: Potential for Soil Improvement under Shifting Cultivation Systems. Land Degradation and Development, 2017, 28, 811-821.	1.8	47
210	Approaches for adding value to anaerobically digested dairy fiber. Renewable and Sustainable Energy Reviews, 2017, 72, 254-268.	8.2	15
211	Soil CO 2 emission partitioning, bacterial community profile and gene expression of Nitrosomonas spp. and Nitrobacter spp. of a sandy soil amended with biochar and compost. Applied Soil Ecology, 2017, 112, 79-89.	2.1	21
212	Initial biochar effects on plant productivity derive from N fertilization. Plant and Soil, 2017, 415, 435-448.	1.8	22
213	Coupled biochar amendment and limited irrigation strategies do not affect a degraded soil food web in a maize agroecosystem, compared to the native grassland. GCB Bioenergy, 2017, 9, 1344-1355.	2.5	28
214	Impact of Biochar on Soil Fertility and Behaviour of Xenobiotics in Soil. Soil Biology, 2017, , 299-318.	0.6	0
215	Pyrolysis of industrial waste lignin: Analysis of product yields and character. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 458-464.	1.2	13
216	Biochar-based nursery substrates: The effect of peat substitution on reduced salinity. Urban Forestry and Urban Greening, 2017, 23, 27-34.	2.3	23

#	ARTICLE	IF	CITATIONS
217	Effect of biochars produced from solid organic municipal waste on soil quality parameters. Journal of Environmental Management, 2017, 192, 271-280.	3.8	96
218	Biochar-Induced Changes in Soil Resilience: Effects of Soil Texture and Biochar Dosage. Pedosphere, 2017, 27, 236-247.	2.1	80
219	Adsorption of phenanthrene and pyrene by biochar produced from the excess sludge: experimental studies and theoretical analysis. International Journal of Environmental Science and Technology, 2017, 14, 1889-1896.	1.8	28
220	Mitigating biochar phytotoxicity via lanthanum (La) participation in pyrolysis. Environmental Science and Pollution Research, 2017, 24, 10267-10278.	2.7	14
221	Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. Journal of Environmental Management, 2017, 197, 732-749.	3.8	272
222	Influence of surface chemistry of carbon materials on their interactions with inorganic nitrogen contaminants in soil and water. Chemosphere, 2017, 184, 532-547.	4.2	42
223	Potential of Biocharâ€Amended Soil to Enhance Crop Productivity under Deficit Irrigation. Irrigation and Drainage, 2017, 66, 600-614.	0.8	12
224	Pyrogenic carbon and its role in contaminant immobilization in soils. Critical Reviews in Environmental Science and Technology, 2017, 47, 795-876.	6.6	72
225	Impact of biochar application on the productivity of a temperate vegetable cropping system. New Zealand Journal of Crop and Horticultural Science, 2017, 45, 277-288.	0.7	12
226	Degradation of dimethyl disulphide in soil with or without biochar amendment. Pest Management Science, 2017, 73, 1830-1836.	1.7	17
227	Biochar Soil Additions Affect Herbicide Fate: Importance of Application Timing and Feedstock Species. Journal of Agricultural and Food Chemistry, 2017, 65, 3109-3117.	2.4	48
228	Effect of pyrolysis time and temperature on the characterization of biochars derived from biomass. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 933-940.	1.2	24
229	Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment. Agriculture, Ecosystems and Environment, 2017, 236, 21-29.	2.5	67
230	Multi-year and multi-location soil quality and crop biomass yield responses to hardwood fast pyrolysis biochar. Geoderma, 2017, 289, 46-53.	2.3	54
231	Potassium enriched biochar production by thermal plasma processing of banana peduncle for soil application. Journal of Analytical and Applied Pyrolysis, 2017, 123, 165-172.	2.6	46
232	Stabilization of mercury in sediment by using biochars under reducing conditions. Journal of Hazardous Materials, 2017, 325, 120-128.	6.5	52
233	Initial biochar properties related to the removal of As, Se, Pb, Cd, Cu, Ni, and Zn from an acidic suspension. Chemosphere, 2017, 170, 216-224.	4.2	29
234	Soil water content and photosynthetic capacity of spring wheat as affected by soil application of nitrogen-enriched biochar in a semiarid environment. Photosynthetica, 2017, 55, 532-542.	0.9	28

#	Article	IF	Citations
235	Yield-scaled N 2 O emissions were effectively reduced by biochar amendment of sandy loam soil under maize - wheat rotation in the North China Plain. Atmospheric Environment, 2017, 170, 58-70.	1.9	51
236	Evaluation of climate change impacts and effectiveness of adaptation options on crop yield in the Southeastern United States. Field Crops Research, 2017, 214, 228-238.	2.3	26
237	Biochar decreased the temperature sensitivity of soil carbon decomposition in a paddy field. Agriculture, Ecosystems and Environment, 2017, 249, 156-164.	2.5	54
238	Biochar improves phosphorus use efficiency of organic-inorganic fertilizers, maize-wheat productivity and soil quality in a low fertility alkaline soil. Field Crops Research, 2017, 214, 25-37.	2.3	153
239	Biochar soil amendments for increased crop yields: How to design a "designer―biochar. AICHE Journal, 2017, 63, 5425-5437.	1.8	15
240	Potential of miscanthus biochar to improve sandy soil health, in situ nickel immobilization in soil and nutritional quality of spinach. Chemosphere, 2017, 185, 1144-1156.	4.2	55
241	Combined effects of biochar amendment, leguminous cover crop addition and snow removal on nitrogen leaching losses and nitrogen retention over winter and subsequent yield of a test crop (Eruca sativa L.). Soil Biology and Biochemistry, 2017, 114, 220-228.	4.2	11
242	High rates of gasified rice hull biochar affect geranium and tomato growth in a soilless substrate. Journal of Plant Nutrition, 2017, 40, 1816-1828.	0.9	16
243	Incorporation of Biochar Carbon into Stable Soil Aggregates: The Role of Clay Mineralogy and Other Soil Characteristics. Pedosphere, 2017, 27, 694-704.	2.1	31
244	Torrefied wood effects on the seedling quality of <i>Zelkova serrata</i> and <i>Fraxinus rhynchophylla</i> in a containerized production system. Forest Science and Technology, 2017, 13, 145-151.	0.3	7
245	Thermochemical Conversion of Biomass Storage Covers to Reduce Ammonia Emissions from Dairy Manure. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	5
246	THE EFFECT OF BIOCHAR ON PLANT DISEASES: WHAT SHOULD WE LEARN WHILE DESIGNING BIOCHAR SUBSTRATES?. Journal of Environmental Engineering and Landscape Management, 2017, 25, 105-113.	0.4	79
247	Soil Aggregate Dynamics Influenced by Biochar Addition using the ¹³ C Natural Abundance Method. Soil Science Society of America Journal, 2017, 81, 612-621.	1.2	9
248	Pyrolysis in auger reactors for biochar and bio-oil production: A review. Biosystems Engineering, 2017, 161, 80-92.	1.9	89
249	Microbial functional diversity responses to 2 years since biochar application in silt-loam soils on the Loess Plateau. Ecotoxicology and Environmental Safety, 2017, 144, 578-584.	2.9	35
250	The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied Soil Ecology, 2017, 119, 156-170.	2.1	487
251	Temperature and reaction atmosphere effects on the properties of corn stover biochar. Environmental Progress and Sustainable Energy, 2017, 36, 696-707.	1.3	17
252	The molecular properties of biochar carbon released in dilute acidic solution and its effects on maize seed germination. Science of the Total Environment, 2017, 576, 858-867.	3.9	53

#	Article	IF	Citations
253	Interactions between biochar and litter priming: A three-source 14C and \hat{l} 13C partitioning study. Soil Biology and Biochemistry, 2017, 104, 49-58.	4.2	38
254	Biocharâ€stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere. New Phytologist, 2017, 213, 1393-1404.	3.5	201
255	Increased retention of soil nitrogen over winter by biochar application: Implications of biochar pyrolysis temperature for plant nitrogen availability. Agriculture, Ecosystems and Environment, 2017, 236, 61-68.	2.5	37
256	Advances and future directions of biochar characterization methods and applications. Critical Reviews in Environmental Science and Technology, 2017, 47, 2275-2330.	6.6	194
257	Plant Availability of Phosphorus in Five Gasification Biochars. Frontiers in Sustainable Food Systems, 2017, 1, .	1.8	9
258	Biochar Amendment of Soils According to their Physicochemical Properties. Japan Agricultural Research Quarterly, 2017, 51, 117-127.	0.1	20
259	Impact of Biochar Formulation on the Release of Particulate Matter and on Short-Term Agronomic Performance. Sustainability, 2017, 9, 1131.	1.6	16
260	Biochar., 2017,,.		4
261	Can Phosphate Salts Recovered from Manure Replace Conventional Phosphate Fertilizer?. Agriculture (Switzerland), 2017, 7, 1.	1.4	63
262	Is There a Positive Synergistic Effect of Biochar and Compost Soil Amendments on Plant Growth and Physiological Performance?. Agronomy, 2017, 7, 13.	1.3	50
263	Impact of Different Agricultural Waste Biochars on Maize Biomass and Soil Water Content in a Brazilian Cerrado Arenosol. Agronomy, 2017, 7, 49.	1.3	31
264	The Production of Engineered Biochars in a Vertical Auger Pyrolysis Reactor for Carbon Sequestration. Energies, 2017, 10, 288.	1.6	48
265	The Effects of Biochar and Its Combination with Compost on Lettuce (<i>Lactuca sativa</i> L) Growth, Soil Properties, and Soil Microbial Activity and Abundance. International Journal of Agronomy, 2017, 2017, 1-12.	0.5	117
266	Examining the Potential of Forest Residue-Based Amendments for Post-Wildfire Rehabilitation in Colorado, USA. Scientifica, 2017, 2017, 1-10.	0.6	11
267	Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS ONE, 2017, 12, e0176884.	1.1	380
268	Preliminary screening of the effect of biochar properties and soil incorporation rate on lettuce growth to guide research and educate the public through extension. Journal of Agricultural Extension and Rural Development, 2017, 9, 1-4.	0.2	8
269	Consistency of biochar properties over time and production scales: A characterisation of standard materials. Journal of Analytical and Applied Pyrolysis, 2018, 132, 200-210.	2.6	91
270	Activating biochar by manipulating the bacterial and fungal microbiome through preâ€conditioning. New Phytologist, 2018, 219, 363-377.	3.5	45

#	ARTICLE	IF	CITATIONS
271	Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Science of the Total Environment, 2018, 625, 320-335.	3.9	374
272	Biochars from local agricultural waste residues contribute to soil quality and plant growth in a Cerrado region (Brazil) Arenosol. GCB Bioenergy, 2018, 10, 272-286.	2.5	36
273	Biochar production and applications in soil fertility and carbon sequestration – a sustainable solution to crop-residue burning in India. RSC Advances, 2018, 8, 508-520.	1.7	156
274	Surface oxygenation of biochar through ozonization for dramatically enhancing cation exchange capacity. Bioresources and Bioprocessing, 2018, 5, .	2.0	41
275	Effect of biochar addition on hydraulic functions of two textural soils. Geoderma, 2018, 326, 88-95.	2.3	88
276	A role for the gibberellin pathway in biochar-mediated growth promotion. Scientific Reports, 2018, 8, 5389.	1.6	46
277	Crop response to biochar under differing irrigation levels in the southeastern USA. Journal of Crop Improvement, 2018, 32, 305-317.	0.9	15
278	Effects of wood biochar addition on growth of cherry radish (Raphanus sativus L. var. radculus) Tj ETQq1 1 0.784	314 rgBT 0.2	/Oyerlock 10
279	Plant response to biochar, compost, and mycorrhizal fungal amendments in postâ€mine sandpits. Restoration Ecology, 2018, 26, 63-72.	1.4	52
280	Effect of biochar derived from faecal matter on yield and nutrient content of lettuce (Lactuca sativa) in two contrasting soils. Environmental Systems Research, 2018, 6, .	1.5	22
281	Enhanced growth of halophyte plants in biocharâ€amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation. Plant, Cell and Environment, 2018, 41, 517-532.	2.8	194
282	Influence of pyrolysis conditions on nitrogen speciation in a biochar †preparation-application†process. Journal of the Energy Institute, 2018, 91, 916-926.	2.7	25
283	A new approach to soil solarization: Addition of biochar to the effect of soil temperature and quality and yield parameters of lettuce (Lactuca Sativa L. Duna). Scientia Horticulturae, 2018, 228, 153-161.	1.7	29
284	Comparative analysis of physicochemical, nutrient, and spectral properties of agricultural residue biochars as influenced by pyrolysis temperatures. Journal of Material Cycles and Waste Management, 2018, 20, 1115-1127.	1.6	34
285	Amendment of a hardwood biochar with compost tea: effects on plant growth, insect damage and the functional diversity of soil microbial communities. Biological Agriculture and Horticulture, 2018, 34, 88-106.	0.5	24
286	The influence of lignocellulose and hemicellulose biochar on photosynthesis and water use efficiency in seedlings from a Northeastern U.S. pine-oak ecosystem. Journal of Sustainable Forestry, 2018, 37, 25-37.	0.6	14
287	Impact of biochar properties on soil conditions and agricultural sustainability: A review. Land Degradation and Development, 2018, 29, 2124-2161.	1.8	184
288	The potential value of biochar in the mitigation of gaseous emission of nitrogen. Science of the Total Environment, 2018, 612, 257-268.	3.9	69

#	Article	IF	CITATIONS
289	Short-term greenhouse emission lowering effect of biochars from solid organic municipal wastes. International Journal of Environmental Science and Technology, 2018, 15, 1093-1102.	1.8	7
290	Land Applications of Biochar: An Emerging Area. Energy, Environment, and Sustainability, 2018, , 171-197.	0.6	7
291	Pyrolysis temperature during biochar production alters its subsequent utilization by microorganisms in an acid arable soil. Land Degradation and Development, 2018, 29, 2183-2188.	1.8	53
292	Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products. Waste Management, 2018, 72, 99-118.	3.7	181
293	Poinsettia Growth and Development Response to Container Root Substrate with Biochar. Horticulturae, $2018, 4, 1$.	1.2	39
294	Public Acceptance of Pre-Commercial Thinning and Energy and Soil Amendment Products from Post-Harvest Residues in Western Forests of the United States. Applied Engineering in Agriculture, 2018, 34, 99-108.	0.3	1
295	Return on Investment from Biochar Application. Crop, Forage and Turfgrass Management, 2018, 4, 1-6.	0.2	7
296	Biochar Amendment to Soil for Sustainable Agriculture. Sustainable Agriculture Reviews, 2018, , 207-227.	0.6	3
297	Biochar for sustainable soil and environment: a comprehensive review. Arabian Journal of Geosciences, 2018, 11, 1.	0.6	20
298	Effects of biochar on carbon pool, N mineralization, microbial biomass and microbial respiration from mollisol. African Journal of Agricultural Research Vol Pp, 2018, 13, 2570-2578.	0.2	1
299	Impact of <i>Melaleuca quinquenervia</i> Biochar on <i>Phaseolus vulgaris</i> Growth, Soil Nutrients, and Microbial Gas Flux. Journal of Environmental Quality, 2018, 47, 1487-1495.	1.0	5
300	Biochar as a potential soil additive for improving soil physical properties—a review. Arabian Journal of Geosciences, 2018, 11, 1.	0.6	45
301	Soil Matrix Determines the Outcome of Interaction Between Mycorrhizal Symbiosis and Biochar for Andropogon gerardii Growth and Nutrition. Frontiers in Microbiology, 2018, 9, 2862.	1.5	16
302	Weak Effects of Biochar and Nitrogen Fertilization on Switchgrass Photosynthesis, Biomass, and Soil Respiration. Agriculture (Switzerland), 2018, 8, 143.	1.4	13
303	Bamboo Biochar Pyrolyzed at Low Temperature Improves Tomato Plant Growth and Fruit Quality. Agriculture (Switzerland), 2018, 8, 153.	1.4	35
304	Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus x giganteus). Energies, 2018, 11, 2535.	1.6	43
305	Effects of Steel Slag and Biochar Incorporation on Active Soil Organic Carbon Pools in a Subtropical Paddy Field. Agronomy, 2018, 8, 135.	1.3	28
306	Microwave assisted preparation of activated carbon from biomass: A review. Renewable and Sustainable Energy Reviews, 2018, 92, 958-979.	8.2	330

#	Article	IF	Citations
307	Negative emissionsâ€"Part 3: Innovation and upscaling. Environmental Research Letters, 2018, 13, 063003.	2.2	224
308	Impact of biochar addition on soil properties and water-fertilizer productivity of tomato in semi-arid region of Inner Mongolia, China. Geoderma, 2018, 331, 100-108.	2.3	94
309	Biochar for Carbon Sequestration. , 2018, , 365-385.		3
310	Pyrolysis of human feces: Gas yield analysis and kinetic modeling. Waste Management, 2018, 79, 214-222.	3.7	31
311	Production and Composition of Pyrogenic Dissolved Organic Matter From a Logical Series of Laboratory-Generated Chars. Frontiers in Earth Science, 2018, 6, .	0.8	49
312	Activated Carbon, Biochar and Charcoal: Linkages and Synergies across Pyrogenic Carbon's ABCs. Water (Switzerland), 2018, 10, 182.	1.2	195
313	Biochar effects on the seedling quality of Quercus serrata and Prunus sargentiiin a containerized production system. Forest Science and Technology, 2018, 14, 112-118.	0.3	7
314	Effects of biochar amendment on net greenhouse gas emissions and soil fertility in a double rice cropping system: A 4-year field experiment. Agriculture, Ecosystems and Environment, 2018, 262, 83-96.	2.5	108
315	Short-term biochar application induced variations in C and N mineralization in a compost-amended tropical soil. Environmental Science and Pollution Research, 2018, 25, 25715-25725.	2.7	20
316	Pyrolysis temperature and heating time affect rice hull biochar properties. Acta Horticulturae, 2018, , 145-152.	0.1	0
317	Phosphorus Distribution in Soils Treated with Bioenergy Co-product Materials following Corn Growth. Agronomy Journal, 2018, 110, 850-858.	0.9	3
318	Long term biochar effects on corn yield, soil quality and profitability in the US Midwest. Field Crops Research, 2018, 227, 30-40.	2.3	41
319	Concentration and Release of Phosphorus and Potassium From Lignocellulosic- and Manure-Based Biochars for Fertilizer Reuse. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	31
320	Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield. PLoS ONE, 2018, 13, e0189924.	1.1	54
321	Agronomic effects of biochar and wastewater irrigation in urban crop production of Tamale, northern Ghana. Nutrient Cycling in Agroecosystems, 2019, 115, 231-247.	1,1	23
322	Application of pyrogenic carbonaceous product for immobilisation of potentially toxic elements in railway sleepers and polluted soil. International Journal of Environmental Science and Technology, 2019, 16, 23-36.	1.8	3
323	Changes in root traits explain the variability of biochar effects on fruit production in eight agronomic species. Organic Agriculture, 2019, 9, 139-153.	1,2	7
324	Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils. Geoderma, 2019, 336, 1-11.	2.3	156

#	Article	IF	Citations
325	Short-term effects of organo-mineral enriched biochar fertiliser on ginger yield and nutrient cycling. Journal of Soils and Sediments, 2019, 19, 668-682.	1.5	33
326	A social-ecological system evaluation to implement sustainably a biochar system in South India. Agronomy for Sustainable Development, 2019, 39, 1.	2.2	14
327	Root growth dynamic and plant performance of nectarine trees amended with biochar and compost. Scientia Horticulturae, 2019, 257, 108710.	1.7	19
328	Removal of Cr(VI) from water using pineapple peel derived biochars: Adsorption potential and re-usability assessment. Journal of Molecular Liquids, 2019, 293, 111497.	2.3	165
329	Dynamic Effect of Fresh and Aged Biochar on the Behavior of the Herbicide Mesotrione in Soils. Journal of Agricultural and Food Chemistry, 2019, 67, 9450-9459.	2.4	17
330	Addition of Biochar to a Sandy Desert Soil: Effect on Crop Growth, Water Retention and Selected Properties. Agronomy, 2019, 9, 327.	1.3	52
331	Mycoremediation of Environmental Pollutants from Contaminated Soil., 2019,, 239-274.		10
332	Ammonium Sorbed to Zeolite Is Partly Available to Wheat in the First Growth Cycle. Agronomy, 2019, 9, 122.	1.3	2
333	Study of the Mechanism of Migration and Transformation of Biochar-N and Its Utilization by Plants in Farmland Ecosystems. ACS Sustainable Chemistry and Engineering, 2019, 7, 17606-17615.	3.2	5
334	Effects of three types of soil amendments on yield and soil nitrogen balance of maize-wheat rotation system in the Hetao Irrigation Area, China. Journal of Arid Land, 2019, 11, 904-915.	0.9	15
335	The-Proof-of-Concept of Biochar Floating Cover Influence on Water pH. Water (Switzerland), 2019, 11, 1802.	1.2	13
336	A sustainability evaluation method integrating the energy, economic and environment in remanufacturing systems. Journal of Cleaner Production, 2019, 239, 118100.	4.6	50
337	The impact of biochar on soil carbon sequestration: Meta-analytical approach to evaluating environmental and economic advantages. Journal of Environmental Management, 2019, 250, 109466.	3.8	86
338	Biochar Effects on Two Tropical Tree Species and Its Potential as a Tool for Reforestation. Forests, 2019, 10, 678.	0.9	27
339	Biochar Surface Oxygenation by Ozonization for Super High Cation Exchange Capacity. ACS Sustainable Chemistry and Engineering, 2019, 7, 16410-16418.	3.2	60
340	Phytotoxicity of Corncob Biochar before and after Heat Treatment and Washing. Sustainability, 2019, 11, 30.	1.6	37
341	Amendment-assisted revegetation of mine tailings: improvement of tailings quality and biomass production. International Journal of Phytoremediation, 2019, 21, 425-434.	1.7	13
342	The Influence of Biochar and Solid Digestate on Rose-Scented Geranium (Pelargonium graveolens) Tj $$ ETQq 11 0.	784314 rg	gBT_/Overlock

#	Article	IF	CITATIONS
343	The Impact of Woody Biochar on Microbial Processes in Conventionally and Organically Managed Arable soils. Communications in Soil Science and Plant Analysis, 2019, 50, 1387-1402.	0.6	7
344	A quantitative understanding of the role of co-composted biochar in plant growth using meta-analysis. Science of the Total Environment, 2019, 685, 741-752.	3.9	93
345	Biochar application and summer temperatures reduce N2O and enhance CH4 emissions in a Mediterranean agroecosystem: Role of biologically-induced anoxic microsites. Science of the Total Environment, 2019, 685, 1075-1086.	3.9	39
346	Engineered Polymeric and Nano-materials for Taming Salty Soils and Waters Used for Crop Production. , 2019, , 391-405.		3
347	Poultry Litter, Biochar, and Fertilizer Effect on Corn Yield, Nutrient Uptake, N2O and CO2 Emissions. Environments - MDPI, 2019, 6, 55.	1.5	17
348	Biochar in sugar beet production and nutrition. Ciencia Rural, 2019, 49, .	0.3	2
349	Assessing the viability of soil successive straw biochar amendment based on a five-year column trial with six different soils: Views from crop production, carbon sequestration and net ecosystem economic benefits. Journal of Environmental Management, 2019, 245, 173-186.	3.8	23
350	Role of Nutrient-Enriched Biochar as a Soil Amendment during Maize Growth: Exploring Practical Alternatives to Recycle Agricultural Residuals and to Reduce Chemical Fertilizer Demand. Sustainability, 2019, 11, 3211.	1.6	155
351	Effect of soil and water management practices on crop productivity in tropical inland valley swamps. Agricultural Water Management, 2019, 222, 82-91.	2.4	10
352	Designer Biochars Impact on Corn Grain Yields, Biomass Production, and Fertility Properties of a Highly-Weathered Ultisol. Environments - MDPI, 2019, 6, 64.	1.5	20
353	Variation in Feedstock Wood Chemistry Strongly Influences Biochar Liming Potential. Soil Systems, 2019, 3, 26.	1.0	42
354	Nitrate sorption to biochar following chemical oxidation. Science of the Total Environment, 2019, 669, 938-947.	3.9	57
355	Biochar for soil amendment., 2019,, 109-146.		25
356	A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere, 2019, 227, 345-365.	4.2	204
357	Use of raw and acidified biochars as constituents of growth media for forest seedling production. New Forests, 2019, 50, 1063-1086.	0.7	9
358	Biochar compost blends facilitate switchgrass growth in mine soils by reducing Cd and Zn bioavailability. Biochar, 2019, 1, 97-114.	6.2	74
359	Effects of different biochar amendments on carbon loss and leachate characterization from an agricultural soil. Chemosphere, 2019, 226, 625-635.	4.2	31
360	Soil lead immobilization by biochars in short-term laboratory incubation studies. Environment International, 2019, 127, 190-198.	4.8	70

#	ARTICLE	IF	CITATIONS
361	Recent developments in biomass-derived carbon as a potential sustainable material for super-capacitor-based energy storage and environmental applications. Journal of Analytical and Applied Pyrolysis, 2019, 140, 54-85.	2.6	118
362	Biochar Effects on Bacterial Community and Metabolic Pathways in Continuously Cotton-Cropped Soil. Journal of Soil Science and Plant Nutrition, 2019, 19, 249-261.	1.7	14
363	Characterisation of livestock biochars and their effect on selected soil properties and maize early growth stage in soils of Eastern Cape province, South Africa. South African Journal of Plant and Soil, 2019, 36, 199-209.	0.4	10
364	Return on investment from biochar application. Crops & Soils, 2019, 52, 36-41.	0.1	2
365	Effects of biochar amendment on the soil silicon cycle in a soil-rice ecosystem. Environmental Pollution, 2019, 248, 823-833.	3.7	30
366	Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environmental Pollution, 2019, 248, 358-367.	3.7	230
367	Comparison of efficacies of peanut shell biochar and biochar-based compost on two leafy vegetable productivity in an infertile land. Chemosphere, 2019, 224, 151-161.	4.2	30
368	Incentives and inhibiting factors of eco-innovation in the Spanish firms. Journal of Cleaner Production, 2019, 220, 167-176.	4.6	73
369	Food waste to biochars through pyrolysis: A review. Resources, Conservation and Recycling, 2019, 144, 310-320.	5.3	239
370	Biochar enriched with inorganic fertilizer for increasing fertilizer efficiency and soil improvement in acidic upland in East Lampung. IOP Conference Series: Earth and Environmental Science, 2019, 393, 012086.	0.2	0
371	Biochar implications for sustainable agriculture and environment: A review. South African Journal of Botany, 2019, 127, 333-347.	1.2	110
372	Physicochemical properties and morphology of biochars as affected by feedstock sources and pyrolysis temperatures. Biochar, 2019, 1, 325-336.	6.2	38
373	Understanding Activation Effects on Low-Temperature Biochar for Optimization of Herbicide Sorption. Agronomy, 2019, 9, 588.	1.3	40
374	A comprehensive review on physical activation of biochar for energy and environmental applications. Reviews in Chemical Engineering, 2019, 35, 735-776.	2.3	210
375	Greenhouse gas mitigation potential in crop production with biochar soil amendment—a carbon footprint assessment for crossâ€site field experiments from China. GCB Bioenergy, 2019, 11, 592-605.	2.5	38
376	The karrikin â€~calisthenics': Can compounds derived from smoke help in stress tolerance?. Physiologia Plantarum, 2019, 165, 290-302.	2.6	30
377	Biochar and Water Quality. Journal of Environmental Quality, 2019, 48, 2-15.	1.0	35
378	Migration and Transformation Mechanisms of Nutrient Elements (N, P, K) within Biochar in Straw–Biochar–Soil–Plant Systems: A Review. ACS Sustainable Chemistry and Engineering, 2019, 7, 22-32.	3.2	82

#	Article	IF	CITATIONS
379	Review of biochar for the management of contaminated soil: Preparation, application and prospect. Science of the Total Environment, 2019, 659, 473-490.	3.9	310
380	Soil greenhouse gas, carbon content, and tree growth response to biochar amendment in western United States forests. GCB Bioenergy, 2019, 11, 660-671.	2.5	39
381	Future Biochar Research Directions. , 2019, , 423-435.		4
382	Potential Toxic Compounds in Biochar. , 2019, , 349-384.		15
383	Biochar Is a Potential Source of Silicon Fertilizer. , 2019, , 225-238.		6
384	Manure pellet, woodchip and their biochars differently affect wheat yield and carbon dioxide emission from bulk and rhizosphere soils. Science of the Total Environment, 2019, 659, 463-472.	3.9	28
385	Effect of tobacco stem-derived biochar on soil metal immobilization and the cultivation of tobacco plant. Journal of Soils and Sediments, 2019, 19, 2313-2321.	1.5	33
386	Belowground biota responses to maize biochar addition to the soil of a Mediterranean vineyard. Science of the Total Environment, 2019, 660, 1522-1532.	3.9	31
387	Where should we apply biochar?. Environmental Research Letters, 2019, 14, 044005.	2.2	17
388	Changes in sorption and bioavailability of herbicides in soil amended with fresh and aged biochar. Geoderma, 2019, 337, 341-349.	2.3	55
389	Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 2019, 337, 536-554.	2.3	571
390	Growth and development of Easter lily in response to container substrate with biochar. Journal of Horticultural Science and Biotechnology, 2019, 94, 80-86.	0.9	14
391	Impact of rice-husk ash on the soil biophysical and agronomic parameters of wheat crop under a dry tropical ecosystem. Ecological Indicators, 2019, 105, 505-515.	2.6	41
392	Carbon, Nitrogen and Phosphorus Mineralization as Influenced by Type of Organic Residues and Soil Contact Variation in Vertisol of Central India. Agricultural Research, 2020, 9, 232-240.	0.9	7
393	Rice straw biochar improves soil fertility, growth, and yield of rice–wheat system on a sandy loam soil. Experimental Agriculture, 2020, 56, 118-131.	0.4	18
394	Sustainable Production Cases. , 2020, , 281-373.		1
395	Treatment of horizontal silage bunker runoff using biochar amended vegetative filter strips. Journal of Environmental Management, 2020, 253, 109746.	3.8	7
396	Carbon performance and disclosure: A systematic review of governance-related determinants and financial consequences. Journal of Cleaner Production, 2020, 254, 120063.	4.6	125

#	Article	IF	CITATIONS
397	Biochars derived from crop straws increased the availability of applied phosphorus fertilizer for maize in Ultisol and Oxisol. Environmental Science and Pollution Research, 2020, 27, 5511-5522.	2.7	9
398	Assisted phytoremediation of a former mine soil using biochar and iron sulphate: Effects on As soil immobilization and accumulation in three Salicaceae species. Science of the Total Environment, 2020, 710, 136203.	3.9	45
399	Classification of Spanish wineries according to their adoption of measures against climate change. Journal of Cleaner Production, 2020, 244, 118874.	4.6	18
400	Innovation as a driver of ecoâ€innovation in the firm: An approach from the dynamic capabilities theory. Business Strategy and the Environment, 2020, 29, 1494-1503.	8.5	70
401	Biochar amendment improves alpine meadows growth and soil health in Tibetan plateau over a three year period. Science of the Total Environment, 2020, 717, 135296.	3.9	26
402	Effects of licorice extract, probiotic, toxin binder and poultry litter biochar on performance, immune function, blood indices and liver histopathology of broilers exposed to aflatoxin-B1. Poultry Science, 2020, 99, 5896-5906.	1.5	51
403	Short-lived Effects of Olive Pomace Biochar Produced at Different Temperatures on Nitrate (NO ₃ ⁻), Bromide (Br ⁻), Sulfate (SO ₄ ²⁻) and Phosphate (PO ₄ ³⁻) Leaching from Sandy Loam Soils. Communications in Soil Science and Plant Analysis, 2020, 51, 2223-2243.	0.6	6
404	Biochar: A Vital Source for Sustainable Agriculture. , 2020, , .		6
405	Different responses of root exudates to biochar application under elevated CO2. Agriculture, Ecosystems and Environment, 2020, 301, 107061.	2.5	21
406	Sustainable Natural Materials and Their Importance for Waste Management and Stabilization of Soil Pollution., 2020,, 93-141.		2
407	A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports (Amsterdam, Netherlands), 2020, 28, e00570.	2.1	308
408	Biochar Potential in Improving Agricultural Production in East Africa. , 2020, , .		4
409	Four-year continuous residual effects of biochar application to a sandy loam soil on crop yield and N2O and NO emissions under maize-wheat rotation. Agriculture, Ecosystems and Environment, 2020, 302, 107109.	2.5	46
410	Long-term biochar addition alters the characteristics but not the chlorine reactivity of soil-derived dissolved organic matter. Water Research, 2020, 185, 116260.	5.3	29
411	Bibliometric analysis of the evolution of biochar research trends and scientific production. Clean Technologies and Environmental Policy, 2020, 22, 1967-1997.	2.1	21
412	Nitrogen dynamics in a winter-wheat field in Ehime, southwestern Japan. Soil Science and Plant Nutrition, 2020, 66, 772-783.	0.8	0
413	Biochar affects growth and shoot nitrogen in four crops for twoÂsoils., 2020, 3, e20067.		8
414	Making Biodiesel from Waste: A Versatile Chemistry Module to Incorporate Sustainability Education. ACS Symposium Series, 2020, , 93-112.	0.5	2

#	Article	IF	CITATIONS
415	Eco-Friendly Yield and Greenhouse Gas Emissions as Affected by Fertilization Type in a Tropical Smallholder Rice System, Ghana. Sustainability, 2020, 12, 10239.	1.6	4
416	Impact of Biochar on Soil Grain Size. IOP Conference Series: Materials Science and Engineering, 2020, 960, 042018.	0.3	O
417	Are there environmental or agricultural benefits in using forest residue biochar in boreal agricultural clay soil?. Science of the Total Environment, 2020, 731, 138955.	3.9	33
419	Can char carbon enhance soil properties and crop yields in low arbon soils?. Journal of Environmental Quality, 2020, 49, 1251-1263.	1.0	5
420	Effect of biochar application on production parameters of two cowpea cultivars planted in succession in five soils from the Brazilian semiarid region. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	0
421	Short-Term Effects of Organic Amendments on Soil Properties and Maize (Zea maize L.) Growth. Agriculture (Switzerland), 2020, 10, 158.	1.4	11
422	Rice straw biochar impact on physiological and biochemical attributes of <i>Fokienia hodginsii</i> in acidic soil. Scandinavian Journal of Forest Research, 2020, 35, 59-68.	0.5	15
423	Photolability of pyrogenic dissolved organic matter from a thermal series of laboratory-prepared chars. Science of the Total Environment, 2020, 724, 138198.	3.9	31
424	Preliminary evaluation of a decision support tool for biochar amendment. Biochar, 2020, 2, 93-105.	6.2	3
426	Pyrolysis solid coproducts and usage. , 2020, , 239-257.		0
427	Recent trends in biochar production methods and its application as a soil health conditioner: a review. SN Applied Sciences, 2020, 2, 1.	1.5	112
428	Effects of biochar on soil fertility and crop productivity in arid regions: a review. Arabian Journal of Geosciences, 2020, 13, .	0.6	85
429	Combined biochar and nitrogen fertilizer change soil enzyme and microbial activities in a 2-year field trial. European Journal of Soil Biology, 2020, 99, 103212.	1.4	38
430	Role of biochars in soil fertility management of fruit crops. , 2020, , 431-444.		1
431	Biochar and nitrogen application rates effect on phosphorus removal from a mixed grass sward irrigated with reclaimed wastewater. Science of the Total Environment, 2020, 715, 137012.	3.9	19
432	Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Biotechnology, 2020, 19, 191-215.	3.9	1,089
433	Variability of Physical and Chemical Properties of TLUD Stove Derived Biochars. Applied Sciences (Switzerland), 2020, 10, 507.	1.3	14
434	Nutrient management in fruit crops: An organic way. , 2020, , 379-392.		1

#	Article	IF	CITATIONS
435	Effect of biochar on yield and quality of tomato grown on a metal-contaminated soil. Scientia Horticulturae, 2020, 265, 109210.	1.7	55
436	Biochar Application Alleviated Negative Plant-Soil Feedback by Modifying Soil Microbiome. Frontiers in Microbiology, 2020, $11,799$.	1.5	48
437	Impacts of biochar concentration on the growth performance of a leafy vegetable in a tropical city and its global warming potential. Journal of Cleaner Production, 2020, 264, 121678.	4.6	26
438	The effect of urbanization and spatial agglomeration on carbon emissions in urban agglomeration. Environmental Science and Pollution Research, 2020, 27, 24329-24341.	2.7	47
439	Biochar as multi-purpose sustainable technology: experiences from projects in Tanzania. Environment, Development and Sustainability, 2021, 23, 5182-5214.	2.7	26
440	Waste into energy conversion technologies and conversion of food wastes into the potential products: a review. International Journal of Ambient Energy, 2021, 42, 1083-1101.	1.4	26
441	Effects of biochar and 3,4-dimethylpyrazole phosphate (DMPP) on soil ammonia-oxidizing bacteria and nosZ-N2O reducers in the mitigation of N2O emissions from paddy soils. Journal of Soils and Sediments, 2021, 21, 1089-1098.	1.5	8
442	Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods. Microporous and Mesoporous Materials, 2021, 312, 110751.	2.2	139
443	Biochar production: A sustainable solution for crop residue burning and related environmental issues. Environmental Progress and Sustainable Energy, 2021, 40, e13529.	1.3	6
444	The roles of co-composted biochar (COMBI) in improving soil quality, crop productivity, and toxic metal amelioration. Journal of Environmental Management, 2021, 277, 111443.	3.8	89
445	Contrasting short-term responses of soil heterotrophic and autotrophic respiration to biochar-based and chemical fertilizers in a subtropical Moso bamboo plantation. Applied Soil Ecology, 2021, 157, 103758.	2.1	18
446	Recycling pyrolyzed organic waste from plant nurseries, rice production and shrimp industry as peat substitute in potting substrates. Journal of Environmental Management, 2021, 277, 111436.	3.8	21
447	Phytotoxic condensed organic compounds are common in fast but not slow pyrolysis biochars. Bioresource Technology Reports, 2021, 13, 100613.	1.5	8
448	Does biochar improve all soil ecosystem services?. GCB Bioenergy, 2021, 13, 291-304.	2.5	37
449	Alteration of plant physiology by the application of biochar for remediation of metals., 2021,, 245-262.		1
450	Release behavior and generation kinetics of gas product during rice husk pyrolysis in a micro spouted bed reactor. Fuel, 2021, 287, 119417.	3.4	11
451	Biochar amendments show potential for restoration of degraded, contaminated, and infertile soils in agricultural and forested landscapes., 2021,, 209-236.		3
452	The Water-Soluble Pool in Biochar Dominates Maize Plant Growth Promotion Under Biochar Amendment. Journal of Plant Growth Regulation, 2021, 40, 1466-1476.	2.8	12

#	Article	IF	Citations
453	Microwave-assisted pyrolysis of agricultural residues: current scenario, challenges, and future direction. International Journal of Environmental Science and Technology, 2022, 19, 2195-2220.	1.8	30
454	Wood and bark lignin contents of trees from deciduous forests of eastern India. Experimental Results, 2021, 2, .	0.2	1
455	Effects of Biochar Application on Soil Properties, Plant Biomass Production, and Soil Greenhouse Gas Emissions: A Mini-Review. Agricultural Sciences, 2021, 12, 213-236.	0.2	8
456	Temperature sensitivity of litter and soil organic matter decomposition: perspective of soil microbial community structure and function., 2021,, 1-43.		1
457	Biochar Role in the Sustainability of Agriculture and Environment. Sustainability, 2021, 13, 1330.	1.6	64
458	Bioretention for removal of nitrogen: processes, operational conditions, and strategies for improvement. Environmental Science and Pollution Research, 2021, 28, 10519-10535.	2.7	20
459	Influence of the harvest time and the airflow rate on the characteristics of the Arundo biochar produced in a pilot updraft reactor. Biomass Conversion and Biorefinery, 2022, 12, 2525-2539.	2.9	4
460	Effects of the Application of Biochar to Plant Growth and Net Primary Production in an Oak Forest. Forests, 2021, 12, 152.	0.9	5
461	Biochar effects on germination and radicle extension in temperate tree seedlings under field conditions. Canadian Journal of Forest Research, 2021, 51, 10-17.	0.8	7
462	Lettuce growth and nutrient uptake response to winery waste compost and biochar. Acta Horticulturae, 2021, , 233-240.	0.1	0
463	Framework for Climate Change Adaptation of Agriculture and Forestry in Mediterranean Climate Regions. Land, 2021, 10, 161.	1.2	14
464	Nutrient Availability to Maize Crop (Zea mays L.) in Biochar Amended Alkaline Subtropical Soil. Journal of Soil Science and Plant Nutrition, 2021, 21, 1293-1306.	1.7	20
465	Addition of biochar to urea and urine fertilizer for improving soil chemical properties and maize yield in acid upland, East Lampung. IOP Conference Series: Earth and Environmental Science, 2021, 648, 012147.	0.2	0
466	Greater, but not necessarily better: The influence of biochar on soil hydraulic properties. European Journal of Soil Science, 2021, 72, 2033-2048.	1.8	11
467	Biochar Improves Maize Growth but Has a Limited Effect on Soil Properties: Evidence from a Three-Year Field Experiment. Sustainability, 2021, 13, 3617.	1.6	11
468	EFFECT OF ADDING BIOCHAR AND DIFFERENT RATES OF CHEMICAL FERTILIZATION ON GROWTH AND YIELD OF GLOBE ARTICHOKE PLANTS GROWN IN SANDY SOIL. Journal of Productivity and Development, 2021, 26, 325-348.	0.0	0
469	Physiochemical Characterization of Biochars from Six Feedstocks and Their Effects on the Sorption of Atrazine in an Organic Soil. Agronomy, 2021, 11, 716.	1.3	21
470	Microbial Ecotoxicity of Biochars in Agricultural Soil and Interactions with Linear Alkylbenzene Sulfonates. Agronomy, 2021, 11, 828.	1.3	3

#	Article	IF	Citations
471	Soil Mehlich-3-extractable elements as affected by the addition of biochars to a clay soil co-amended with or without a compost. Canadian Journal of Soil Science, 2022, 102, 97-107.	0.5	4
472	Corn Grain and Stover Nutrient Uptake Responses from Sandy Soil Treated with Designer Biochars and Compost. Agronomy, 2021, 11, 942.	1.3	1
473	Biochar and nitrogen application rates alter some forage and soil minerals concentrations and soil leachate quality in a semiarid mixed grassland system. Grassland Science, 0, , .	0.6	0
474	Impact of manure and biochar additions on annual crop growth, nutrient uptake, and fate of 15N-labelled fertilizer in two contrasting temperate prairie soils after four years. Canadian Journal of Soil Science, 0, , 1-22.	0.5	5
475	Effect mechanism of biochar application on soil structure and organic matter in semi-arid areas. Journal of Environmental Management, 2021, 286, 112198.	3.8	30
476	Effects and Economic Sustainability of Biochar Application on Corn Production in a Mediterranean Climate. Molecules, 2021, 26, 3313.	1.7	7
477	Mixing of biochar, vinegar and mushroom residues regulates soil microbial community and increases cucumber yield under continuous cropping regime. Applied Soil Ecology, 2021, 161, 103883.	2.1	27
478	Indaziflam sorption–desorption and its three metabolites from biochars- and their raw feedstock-amended agricultural soils using radiometric technique. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2021, 56, 731-740.	0.7	4
479	Enhanced mineralization of chlorpyrifos bound residues in soil through inoculation of two synergistic degrading strains. Journal of Hazardous Materials, 2021, 412, 125116.	6.5	12
480	Utilization of Eichhornia crassipes biomass for production of biochar and its feasibility in agroecosystems: a review. Environmental Sustainability, 2021, 4, 285-297.	1.4	9
481	The Occurrence of Legacy P Soils and Potential Mitigation Practices Using Activated Biochar. Agronomy, 2021, 11, 1289.	1.3	4
482	Macadamia Husk Compost Improved Physical and Chemical Properties of a Sandy Loam Soil. Sustainability, 2021, 13, 6997.	1.6	11
483	How does the biochar of sugarcane straw pyrolysis temperature change arsenic and lead availabilities and the activity of the microorganisms in a contaminated sediment?. Journal of Soils and Sediments, 2021, 21, 3185-3200.	1.5	8
484	Quantification methods of pyrogenic carbon in soil with soil as a complex matrix: comparing the CTO-375 and Cr ₂ O ₇ methods. Soil Science and Plant Nutrition, 2021, 67, 380-388.	0.8	1
485	Pyrogenic conversion of rice straw and wood to biochar increases aromaticity and carbon accumulation in soil. Carbon Management, 2021, 12, 385-397.	1.2	8
486	Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar, 2021, 3, 255-281.	6.2	358
487	Legume Biochar Fertilizer Can Be an Efficient Alternative to Compost in Integrated Nutrient Management of Paddy (Oryza sativa L.). Journal of Soil Science and Plant Nutrition, 2021, 21, 2673-2688.	1.7	9
488	Mitigation of Degraded Soils by Using Biochar and Compost: a Systematic Review. Journal of Soil Science and Plant Nutrition, 2021, 21, 2718-2738.	1.7	13

#	Article	IF	CITATIONS
489	Combined effects of biochar and chicken manure on maize (<i>Zea mays</i> L.) growth, lead uptake and soil enzyme activities under lead stress. PeerJ, 2021, 9, e11754.	0.9	15
490	Effects of rice straw biochar and nitrogen fertilizer on ramie (<i>Boehmeria nivea</i> L.) morpho-physiological traits, copper uptake and post-harvest soil characteristics, grown in an aged-copper contaminated soil. Journal of Plant Nutrition, 2022, 45, 11-24.	0.9	21
491	Considerations in Selecting Turkey Bedding Materials. German Journal of Veterinary Research, 2021, 1, 28-36.	0.4	2
492	Effects of cotton straw-derived biochar under different pyrolysis conditions on Pb (II) adsorption properties in aqueous solutions. Journal of Analytical and Applied Pyrolysis, 2021, 157, 105214.	2.6	29
493	The development of CE business models in firms: The role of circular economy capabilities. Technovation, 2021, 106, 102292.	4.2	23
494	Corn Cob-Derived Biochar Improves the Growth of Saline-Irrigated Quinoa in Different Orders of Egyptian Soils. Horticulturae, 2021, 7, 221.	1.2	17
495	Valorization of peanut shell biochar for soil amendment. Journal of Plant Nutrition, 2022, 45, 503-521.	0.9	11
496	Soil Microbial and Physicochemical Changes After the Addition of Biochar, Bacterial Inoculums and Nitrogen Fertilizer. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2021, 69, 501-510.	0.2	0
497	Effects of the application of biochar on soil fertility status, and nutrition and yield of onion grown in a no-tillage system. Archives of Agronomy and Soil Science, 2023, 69, 212-227.	1.3	4
498	Biochar Stability in a Highly Weathered Sandy Soil under Four Years of Continuous Corn Production. Energies, 2021, 14, 6157.	1.6	1
499	Sustainable Approach and Safe Use of Biochar and Its Possible Consequences. Sustainability, 2021, 13, 10362.	1.6	39
500	Assessing the potential of biochar aged by humic substances to enhance plant growth and soil biological activity. Chemical and Biological Technologies in Agriculture, 2021, 8, .	1.9	10
501	Compensation of high nitrogen toxicity and nitrogen deficiency with biochar amendment through enhancement of soil fertility and nitrogen use efficiency promoted rice growth and yield. GCB Bioenergy, 2021, 13, 1765-1784.	2.5	26
502	Effects of soil amendments on fractions and stability of soil organic matter in saline-alkaline paddy. Journal of Environmental Management, 2021, 294, 112993.	3.8	21
503	Properties of biochar and its potential role in climate change mitigation and bioenergy generation: a review. Environmental Sustainability, 0 , 1 .	1.4	0
504	Biochar-amended coastal wetland soil enhances growth of Suaeda salsa and alters rhizosphere soil nutrients and microbial communities. Science of the Total Environment, 2021, 788, 147707.	3.9	28
505	The pH-sensitive sorption governed reduction of Cr(VI) by sludge derived biochar and the accelerating effect of organic acids. Journal of Hazardous Materials, 2022, 423, 127205.	6.5	20
506	Biochar-N fertilizer interaction increases N utilization efficiency by modifying soil C/N component under N fertilizer deep placement modes. Chemosphere, 2022, 286, 131594.	4.2	39

#	Article	IF	CITATIONS
507	Effect of biochar rates on A-mycorrhizal fungi performance and maize plant growth, Phosphorus uptake, and soil P availability under calcareous soil conditions. Communications in Soil Science and Plant Analysis, 2021, 52, 815-831.	0.6	8
508	Arbuscular mycorrhizal fungi and biochar influence simazine decomposition and leaching. GCB Bioenergy, 2021, 13, 708-718.	2.5	10
509	Enrichment of primary macronutrients in biochar for sustainable agriculture: A review. Critical Reviews in Environmental Science and Technology, 2022, 52, 1449-1490.	6.6	39
510	Integrated biochar research: A roadmap. Journal of Soils and Water Conservation, 2021, 76, 24A-29A.	0.8	24
511	Nutrient uptake and growth of potato: Arbuscular mycorrhiza symbiosis interacts with quality and quantity of amended biochars. Journal of Plant Nutrition and Soil Science, 2020, 183, 220-232.	1.1	15
512	Impact of Pyrolysis Techniques on Biochar Characteristics: Application to Soil. , 2020, , 33-52.		3
513	Prospects of Biochar in Alkaline Soils to Mitigate Climate Change., 2020, , 133-149.		9
515	Application of Biochar in Agriculture: A Sustainable Approach for Enhanced Plant Growth, Productivity and Soil Health., 2020,, 107-130.		3
516	Utilization and Management of Agricultural Wastes for Bioenergy Production, Weed Control, and Soil Improvement Through Microbial and Technical Processes., 2020,, 143-173.		1
517	Response of soil microbial biomass and enzymatic activity to biochar amendment in the organic carbon deficient arid soil: a 2-year field study. Arabian Journal of Geosciences, 2019, 12, 1.	0.6	49
518	Comparative study on pharmaceuticals adsorption in reclaimed water desalination concentrate using biochar: Impact of salts and organic matter. Science of the Total Environment, 2017, 601-602, 857-864.	3.9	89
519	Biochar: an improver of nutrient and soil water availability - what is the evidence?. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-19.	0.6	32
520	The effects of biochars on the growth of <i>Zelkova serrata</i> seedlings in a containerized seedling production system. Forest Science and Technology, 2017, 13, 25-30.	0.3	17
522	Role of biochar in promoting circular economy in the agriculture sector. Part 2: A review of the biochar roles in growing media, composting and as soil amendment. Chemical and Biological Technologies in Agriculture, 2020, 7, .	1.9	23
523	Karrikins Identified in Biochars Indicate Post-Fire Chemical Cues Can Influence Community Diversity and Plant Development. PLoS ONE, 2016, 11, e0161234.	1.1	48
524	Biochar from "Kon Tiki" flame curtain and other kilns: Effects of nutrient enrichment and kiln type on crop yield and soil chemistry. PLoS ONE, 2017, 12, e0176378.	1.1	43
525	Effects of corn straw biochar application on soybean growth and alkaline soil properties. BioResources, 2020, 15, 1463-1481.	0.5	23
526	Assessing biochar as a lime replacement for peat substrates. Acta Horticulturae, 2019, , 21-26.	0.1	1

#	Article	IF	Citations
527	Reduction of Diuron Efficacy with Biochar Amendments. International Journal of Environmental Science and Development, 2016, 7, 480-485.	0.2	3
528	The Effect of Biochar, Lime, and Compost on The Properties of Acid Sulphate Soil. Journal of Wetlands Environmental Management, 2020, 8, 157.	0.4	5
529	Biochar Affects Macronutrient Leaching from a Soilless Substrate. Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 1136-1140.	0.5	63
530	Agricultural and Environmental Applications of Biochar: Advances and Barriers. SSSA Special Publication Series, 2016, , .	0.2	22
531	Biochar affects the structure rather than the total biomass of microbial communities in temperate soils. Agricultural and Food Science, 2013, 22, 404-423.	0.3	60
532	Assessing Alternative Organic Amendments as Horticultural Substrates for Growing Trees in Containers1. Journal of Environmental Horticulture, 2017, 35, 66-78.	0.3	10
533	Effects of Biochar on Nutrient Leaching and Begonia Plant Growth1. Journal of Environmental Horticulture, 2018, 36, 126-132.	0.3	2
536	An Introduction to Biochars and Their Uses in Agriculture. Edis, 2013, 2013, .	0.0	3
537	Biochar, Vermicompost, and Compost as Soil Organic Amendments: Influence on Growth Parameters, Nitrate and Chlorophyll Content of Swiss Chard (Beta vulgaris L. var. cycla). Agronomy, 2020, 10, 346.	1.3	32
538	Regular Biochar and Bacteria-Inoculated Biochar Alter the Composition of the Microbial Community in the Soil of a Chinese Fir Plantation. Forests, 2020, 11, 951.	0.9	13
539	Impact of Pyrolysis Temperature on the Properties of Eucalyptus Wood-Derived Biochar. Materials, 2020, 13, 5841.	1.3	42
540	REVIEW: DISSOLVED ORGANIC CARBON CONTENT OF BIOCHAR VARYING WITH THE TYPE OF FEEDSTOCK AND THE PYROLYSIS TEMPERATURE., 2017, , .		1
541	Effects of moderate and high rates of biochar and compost on grapevine growth in a greenhouse experiment. AIMS Agriculture and Food, 2017, 2, 113-128.	0.8	9
542	Effect of Biochar Type and Size on <i> in Vitro </i> Rumen Fermentation of Orchard Grass Hay. Agricultural Sciences, 2017, 08, 316-325.	0.2	19
543	The Influence of Organic Manure and Biochar on Cashew Seedling Performance, Soil Properties and Status. Agricultural Sciences, 2019, 10, 110-120.	0.2	3
544	Biochar Source and Application Rate Effects on Soil Water Retention Determined Using Wetting Curves. Open Journal of Soil Science, 2015, 05, 1-10.	0.3	28
545	Biochar in Nutrient Recyclingâ€"The Effect and Its Use in Wastewater Treatment. Open Journal of Soil Science, 2015, 05, 39-44.	0.3	20
546	Biochar as a Soil Amendment Tool: Effects on Soil Properties and Yield of Maize and Cabbage in Brong-Ahafo Region, Ghana. Open Journal of Soil Science, 2020, 10, 91-108.	0.3	9

#	Article	IF	CITATIONS
547	Biocidal Activity of Fast Pyrolysis Biochar against Escherichia coli O157:H7 in Soil Varies Based on Production Temperature or Age of Biochar. Journal of Food Protection, 2020, 83, 1020-1029.	0.8	7
549	Biochar-Rhizosphere Interactions – a Review. Polish Journal of Microbiology, 2017, 66, 151-161.	0.6	11
550	Genetic Characterization of a Novel Composite Transposon Carrying <i>arm</i> A and <i>aac</i> (<i>6</i>) <i>-lb</i> Genes in an <i>Escherichia coli</i> Isolate from Egypt. Polish Journal of Microbiology, 2017, 66, 163-169.	0.6	20
551	Combined application of biochar and nitrogen fertilizer improves rice yield, microbial activity and N-metabolism in a pot experiment. PeerJ, 2020, 8, e10311.	0.9	49
552	Thermal treatment and leaching of biochar alleviates plant growth inhibition from mobile organic compounds. PeerJ, 2016, 4, e2385.	0.9	39
554	The Effect of Biochar Source on Cotton Seedling Growth and Development and Association with Conventional Fertilizers. International Journal of Plant & Soil Science, 2014, 3, 995-1008.	0.2	4
555	Beneficial Effects of Biochar on Agriculture and Environments. International Research Journal of Pure and Applied Chemistry, 0, , 74-88.	0.2	3
556	Biochar as a Soil Ameliorant: How Biochar Properties Benefit Soil Fertilityâ€"A Review. Journal of Geoscience and Environment Protection, 2021, 09, 28-46.	0.2	13
557	Optimization of pyrolysis regime for chicken manure treatment and biochar production. Water and Environment Journal, 2022, 36, 270-281.	1.0	2
558	Impact of Pyrolysis Time and Temperature on Physicochemical Characteristics of Biochars from Wetland Plants., 2013,, 1039-1044.		0
559	The emerging biochar industry. , 0, , .		0
560	The impact of the drought on grain quality and grain processing. , 0, , .		0
561	Biochar and Wood Ash Amendments for Forestry in the Lake States: Field Report and Initial Results. Journal of Forestry, 2017, , .	0.5	1
562	Effects of Biochar Addition on Nitrogen Leaching Loss in the Vegetable Soil. Journal of Advanced Agricultural Technologies, 2019, 6, 83-90.	0.2	0
563	Automatic Estimation of Soil Biochar Quantity via Hyperspectral Imaging., 2019, , 1608-1635.		0
564	Prospects of Biochar for Carbon Sequestration and Livelihood Improvement in theÂTibetan Grasslands. , 2020, , 185-196.		0
565	Soil Microbial Ecology and Its Role in Soil Carbon Sequestration in Sustainable Agroecosystems Under Climate Change., 2020,, 249-291.		1
566	Biochar: A New Environmental Paradigm in Management of Agricultural Soils and Mitigation of GHG Emission., 2020,, 223-258.		1

#	Article	IF	CITATIONS
568	Biochar and its manure-based feedstock have divergent effects on soil organic carbon and greenhouse gas emissions in croplands. Science of the Total Environment, 2022, 806, 151337.	3.9	38
569	Single Application of Biochar Increases Fertilizer Efficiency, C Sequestration, and pH over the Long-Term in Sandy Soils of Senegal. Sustainability, 2021, 13, 11817.	1.6	9
570	Temperatura e tempo de residência na produção de biochar oriundo de dejetos de galinhas poedeiras. Caderno De Ciências Agrárias, 0, 12, 1-8.	0.0	1
572	The Assessment of Water Retention Efficiency of Different Soil Amendments in Comparison to Water Absorbing Geocomposite. Materials, 2021, 14, 6658.	1.3	7
573	Automatic Estimation of Soil Biochar Quantity via Hyperspectral Imaging. Advances in Environmental Engineering and Green Technologies Book Series, 0, , 220-247.	0.3	0
575	Nature-Based Units as Building Blocks for Resource Recovery Systems in Cities. Water (Switzerland), 2021, 13, 3153.	1.2	11
576	Applying Cassava Stems Biochar Produced from Agronomical Waste to Enhance the Yield and Productivity of Maize in Unfertile Soil. Fermentation, 2021, 7, 277.	1.4	4
577	Effect of Biochar and Manual Vegetation Control on Early Growth and Survival of Planted Jack Pine (<i>Pinus banksiana</i> Lamb.) Seedlings in Northern Minnesota. Forest Science, 2022, 68, 104-112.	0.5	4
578	Recycling of Agro-Wastes for Environmental and Nutritional Security., 2021,, 605-626.		1
579	Does the carbon skeleton of biochar contribute to soil phosphate sorption? A case study from paddy soils with woody biochar amendment. Soil Research, 2021, , .	0.6	1
580	Effects of Biochar on Water Retention in Different Textured Soils: A Meta-Analysis. SSRN Electronic Journal, 0, , .	0.4	0
581	Biochar for sustainable agriculture: Prospects and implications. Advances in Chemical Pollution, Environmental Management and Protection, 2021, 7, 221-262.	0.3	1
582	Biochar granulation enhances plant performance on a green roof substrate. Science of the Total Environment, 2022, 813, 152638.	3.9	18
583	Microwave-assisted catalytic pyrolysis of refuse-derived fuel (RDF) to improve pyrolysis performance and biochar properties. Fuel Processing Technology, 2022, 227, 107129.	3.7	6
584	Young and century-old biochars strongly affect nutrient cycling in a temperate agroecosystem. Agriculture, Ecosystems and Environment, 2022, 328, 107847.	2.5	7
585	Biochar for intensification of plant-related industries to meet productivity, sustainability and economic goals: A review. Resources, Conservation and Recycling, 2022, 179, 106109.	5.3	27
587	Biochar combined with nitrogen fertilizer: a practical approach for increasing the biomass digestibility and yield of rice and promoting food and energy security. Biofuels, Bioproducts and Biorefining, 2022, 16, 1304-1318.	1.9	5
588	Quantitative and qualitative characteristics of dissolved organic matter derived from biochar depending on the modification method and biochar type. Journal of Water Process Engineering, 2022, 46, 102569.	2.6	7

#	Article	IF	CITATIONS
589	Biochar Rescues Native Trees in the Biodiversity Hotspot of Mauritius. Forests, 2022, 13, 277.	0.9	3
590	The Effects of Rabbit Manure-Derived Biochar on Soil Health and Quality Attributes of Two Mine Tailings. Sustainability, 2022, 14, 1866.	1.6	5
591	Production and environmental applications of activated sludge biochar., 2022,, 387-406.		1
592	Towards predicting biochar impacts on plant-available soil nitrogen content. Biochar, 2022, 4, 1.	6.2	20
593	Phosphorus Availability Enhanced with Combine Application of Organic Amendments and Beneficial Microbes under Soybean-Wheat Cropping System. Communications in Soil Science and Plant Analysis, 2022, 53, 929-943.	0.6	5
594	Application of microbe-impregnated tannery solid waste biochar in soil enhances growth performance of sunflower. Environmental Science and Pollution Research, 2022, 29, 57669-57687.	2.7	7
595	Understanding the Adaptive Mechanisms of Plants to Enhance Phosphorus Use Efficiency on Podzolic Soils in Boreal Agroecosystems. Frontiers in Plant Science, 2022, 13, 804058.	1.7	12
596	Plant-soil nitrogen, carbon and phosphorus content after the addition of biochar, bacterial inoculums and nitrogen fertilizer. Journal of Plant Nutrition, 2023, 46, 541-555.	0.9	5
597	Effective utilization of rice straw in value-added by-products: A systematic review of state of art and future perspectives. Biomass and Bioenergy, 2022, 159, 106411.	2.9	36
598	Polycyclic aromatic hydrocarbons in biochar originated from pyrolysis of aseptic packages (Tetra) Tj ETQq1 1 0.7	84314 rgE 1.6	BT <u>f</u> Overlock
599	Available water capacity of sandy soils as affected by biochar application: A meta-analysis. Catena, 2022, 214, 106281.	2.2	7
600	PRODUCTION OF BIOSORBENTS FROM WASTE OF PROCESSING OF PLANT RAW MATERIALS AND THEIR APPLICATION IN WATER TREATMENT TECHNOLOGIES. Scientific Works, 2022, 2, 38-46.	0.1	0
601	Biochar Amended Soils and Water Systems: Investigation of Physical and Structural Properties. Applied Sciences (Switzerland), 2021, 11, 12108.	1.3	2
602	Sustainable Management of Peanut Shell through Biochar and Its Application as Soil Ameliorant. Sustainability, 2021, 13, 13796.	1.6	11
613	Long-Term Effects of Biochar on Soil Physical and Hydrological Properties in Crosby Silt Loam in Central Ohio, USA. SSRN Electronic Journal, 0, , .	0.4	0
614	Biochar Implications Under Limited Irrigation for Sweet Corn Production in a Semi-Arid Environment. Frontiers in Plant Science, 2022, 13, 853746.	1.7	6
615	A comprehensive review of biochar in removal of organic pollutants from wastewater: Characterization, toxicity, activation/functionalization and influencing treatment factors. Journal of Water Process Engineering, 2022, 47, 102801.	2.6	61
616	Biochar production with amelioration of microwave-assisted pyrolysis: Current scenario, drawbacks and perspectives. Bioresource Technology, 2022, 355, 127303.	4.8	50

#	ARTICLE	IF	CITATIONS
617	Biochar and biochar-polylactic acid composite enhance biodegradation of hexachlorobenzene in soil by altering microbial community. Applied Soil Ecology, 2022, 177, 104521.	2.1	2
618	Biochar <scp>supplyâ€chain</scp> and challenges to commercialization. GCB Bioenergy, 2023, 15, 7-23.	2.5	10
619	Nanoporous carbon materials as a sustainable alternative for the remediation of toxic impurities and environmental contaminants: A review. Science of the Total Environment, 2022, 838, 155943.	3.9	7
620	The Effects of Biochar Made by Oaks on the Growth and Seedling Quality Index of Prunus sargentii in a Containerized Production System. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2019, 52, 20-28.	0.1	O
621			

#	ARTICLE	IF	CITATIONS
635	Review on biochar as an adsorbent material for removal of dyes from waterbodies. International Journal of Environmental Science and Technology, 2023, 20, 9335-9350.	1.8	8
636	Effects of wood ash on physicochemical and morphological characteristics of sludge-derived hydrochar pellets relevant to soil and energy applications. Biomass and Bioenergy, 2022, 163, 106531.	2.9	8
637	Impact of Plant-Based Amendments on Water-Soluble Nitrogen Release Dynamics in Cultivated Peatlands. Nitrogen, 2022, 3, 426-443.	0.6	4
638	Does Loading Ammonium to Sorbents Affect Plant Availability in Soil?. Agriculture (Switzerland), 2022, 12, 1057.	1.4	2
639	Stable polycyclic aromatic carbon (SPAC) formation in wildfire chars and engineered biochars. Science of the Total Environment, 2022, 849, 157610.	3.9	5
641	The productivity effects of macroalgal biochar from <i>Ulva</i> Linnaeus bloom species on <i>Arabidopsis thaliana</i> Linnaeus seedlings. European Journal of Phycology, 2023, 58, 284-299.	0.9	1
642	Combined Effect of Organic Amendments and Seed Placement Techniques on Sorghum Yield Under Salt-Stressed Conditions. Journal of Soil Science and Plant Nutrition, 0, , .	1.7	1
643	Characterization of the Residue (Endocarp) of Acrocomia aculeata and Its Biochars as a Potential Source for Soilless Growing Media. Horticulturae, 2022, 8, 739.	1.2	0
644	Assessing changes to nutrient density and availability following separation, drying, and pyrolysis of manure solids. Bioresource Technology Reports, 2022, 19, 101169.	1.5	0
645	Considerations for evaluating innovative stormwater treatment media for removal of dissolved contaminants of concern with focus on biochar. Chemosphere, 2022, 307, 135753.	4.2	6
646	More carbon per drop to enhance soil carbon sequestration in water-limited environments. Carbon Management, 2022, 13, 450-462.	1.2	0
647	Use of Spent Coffee Ground as an Alternative Fuel and Possible Soil Amendment. Materials, 2022, 15, 6722.	1.3	7
648	Different organic material amendments effects soil nitrogen utilization and crop yield in the North China Plain. Agronomy Journal, 0, , .	0.9	0
649	Biofuel production by co-pyrolysis of sewage sludge and other materials: a review. Environmental Chemistry Letters, 2023, 21, 153-182.	8.3	19
650	Cow bone-derived biochar enhances microbial biomass and alters bacterial community composition and diversity in a smelter contaminated soil. Environmental Research, 2023, 216, 114278.	3.7	11
651	Application of biochar and polyacrylamide to revitalize coastal saline soil quality to improve rice growth. Environmental Science and Pollution Research, 2023, 30, 18731-18747.	2.7	7
652	Employment of Cannabis sativa biochar to improve soil nutrient pool and metal immobilization. Frontiers in Environmental Science, $0,10,10$	1.5	2
653	Recycling of post-consumption food waste through pyrolysis: Feedstock characteristics, products analysis, reactor performance, and assessment of worldwide implementation potentials. Energy Conversion and Management, 2022, 272, 116348.	4.4	8

#	Article	IF	CITATIONS
654	Producing biochar using a custom designed Top-lit Updraft (TLUD) gasifier. Edis, 2014, 2014, .	0.0	0
655	Biochar for Sustainable Phosphorus Management in Agroecosystems. Sustainable Agriculture Reviews, 2023, , 93-114.	0.6	0
657	Modified Biochar as a More Promising Amendment Agent for Remediation of Pesticide-Contaminated Soils: Modification Methods, Mechanisms, Applications, and Future Perspectives. Applied Sciences (Switzerland), 2022, 12, 11544.	1.3	5
658	Effects of modified biochars on the shifts of short-chain fatty acid profile, iron reduction, and bacterial community in paddy soil. FEMS Microbiology Ecology, 2022, 98, .	1.3	1
659	Improvement of rural soil properties and states by biomass carbon under the concept of sustainability: A research progress. Frontiers in Chemistry, 0, 10, .	1.8	0
660	Reapplication of biochar, sewage waste water, and NPK fertilizers affects soil fertility, aggregate stability, and carbon and nitrogen in dry-stable aggregates of semi-arid soil. Science of the Total Environment, 2023, 866, 161203.	3.9	4
661	An Experimentally Validated Selection Protocol for Biochar as a Sustainable Component in Green Roofs., 2023, 1, 176-194.		1
662	The Impact of Biochar and Animal Manure on Soil Properties, Yield, and Quality of Crops., 2023,, 183-196.		0
663	Crop residue management challenges, opportunities and way forward for sustainable food-energy security in India: A review. Soil and Tillage Research, 2023, 228, 105641.	2.6	25
664	Actual Trends in the Usability of Biochar as a High-Value Product of Biomass Obtained through Pyrolysis. Energies, 2023, 16, 355.	1.6	3
665	Vermicompost and Rice Husk Biochar Interaction Ameliorates Nutrient Uptake and Yield of Green Lettuce Under Soilless Culture. Journal of Horticultural Research, 2022, 30, 55-66.	0.4	1
666	Feedstocks and challenges to biofuel development. , 2023, , 93-121.		0
667	Development, evaluation, and optimization of portable pyrolysis system for the production of biochar from tender coconut husk. Biomass Conversion and Biorefinery, 0, , .	2.9	1
668	Biochar as a negative emission technology: A synthesis of field research on greenhouse gas emissions. Journal of Environmental Quality, 2023, 52, 769-798.	1.0	2
669	Effects of nurse shrubs and biochar on planted conifer seedling survival and growth in a high-severity burn patch in New Mexico, USA. Forest Ecology and Management, 2023, 537, 120971.	1.4	1
670	Feedstock and pyrolysis conditions affect suitability of biochar for various sustainable energy and environmental applications. Journal of Analytical and Applied Pyrolysis, 2023, 170, 105881.	2.6	27
671	Enhancement of Yield, Phytochemical Content and Biological Activity of a Leafy Vegetable (Beta) Tj ETQq0 0 0 rg8 2023, 12, 569.	BT /Overlo 1.6	ock 10 Tf 50 1 7
672	Effect of biochar application on rice, wheat, and corn seedlings in hydroponic culture. Journal of Environmental Sciences, 2024, 135, 379-390.	3.2	9

#	ARTICLE	IF	CITATIONS
673	Responses of aquatic vegetables to biochar amended soil and water environments: a critical review. RSC Advances, 2023, 13, 4407-4421.	1.7	5
674	Biochar Extracts Can Modulate the Toxicity of Persistent Free Radicals in the Nematode Caenorhabditis elegans. , 2023, 2, 71-83.		0
675	Properties of Biochar Obtained from Tropical Crop Wastes Under Different Pyrolysis Temperatures and Its Application on Acidic Soil. Agronomy, 2023, 13, 921.	1.3	4
676	Short-Term Biochar Impacts on Crop Performance and Soil Quality in Arid Sandy Loam Soil. Agriculture (Switzerland), 2023, 13, 782.	1.4	2
677	The costs and benefits of biochar production and use: A systematic review. Journal of Cleaner Production, 2023, 408, 137138.	4.6	20
678	Biochar Application to Soil to Improve Fertility. Sustainable Agriculture Reviews, 2023, , 99-120.	0.6	0
679	Enhancement of System and Environmental Performance of High Solids Anaerobic Digestion of Lignocellulosic Banana Waste by Biochar Addition. Sustainability, 2023, 15, 6832.	1.6	0
680	Coconut Shell Biochar, Rhizobium and NPK Fertilizer Increased Soil Chemical Properties and NPK Uptake of Edamame in Inceptisol Tempuran, Magelang, Indonesia., 2023,, 213-228.		0
682	Biomass as a Source of Energy, Fuels and Chemicals. , 2021, , 589-741.		0
684	Food waste conversion into value-added products: Different pathways, current challenges, and opportunities., 2023,, 387-409.		0
696	Distinct Behavior of Biochar Modulating Biogeochemistry of Salt-Affected and Acidic Soil: a Review. Journal of Soil Science and Plant Nutrition, 2023, 23, 2981-2997.	1.7	2
705	Biochar for Sustainable Crop Production. Clean Energy Production Technologies, 2023, , 227-256.	0.3	0
706	Biochar: An Organic Amendment for Sustainable Soil Health. , 2023, , 1-10.		0
710	Faecal sludge pyrolysis as a circular economic approach to waste management and nutrient recovery. Environment, Development and Sustainability, 0, , .	2.7	0
728	Rice straw: status, management and strategies for sustainable development with special emphasis on the Northern India and government-supported initiatives. Clean Technologies and Environmental Policy, O, , .	2.1	0
729	Approaches of Biochar in Ecosystem Management: current scenario and future perspectives. , 0, , .		0
732	Bioprocessing Cassava Bagasse: Part lâ€"Bioproducts and Biochemicals. , 2024, , 85-111.		0
736	Effects of Date Palm Residues Derived Biochar on GHG Emissions and NO3-N Leaching in Urea-Fertilized Desert Soil. Advances in Science, Technology and Innovation, 2024, , 129-132.	0.2	0

Article IF Citations