The EMEP MSC-W chemical transport model – techni

Atmospheric Chemistry and Physics 12, 7825-7865 DOI: 10.5194/acp-12-7825-2012

Citation Report

#	Article	IF	CITATIONS
6	International collaboration for technological change in the 21st century. International Journal of Technology Management, 1999, 18, 285.	0.2	7
7	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2011, 11, 13061-13143.	1.9	278
8	Air quality trends in Europe over the past decade: a first multi-model assessment. Atmospheric Chemistry and Physics, 2011, 11, 11657-11678.	1.9	164
9	A multi-model study of impacts of climate change on surface ozone in Europe. Atmospheric Chemistry and Physics, 2012, 12, 10423-10440.	1.9	113
10	Future air quality in Europe: a multi-model assessment of projected exposure to ozone. Atmospheric Chemistry and Physics, 2012, 12, 10613-10630.	1.9	81
11	Crop harvest in Denmark and Central Europe contributes to the local load of airborne <i>Alternaria</i> spore concentrations in Copenhagen. Atmospheric Chemistry and Physics, 2012, 12, 11107-11123.	1.9	70
12	Lessons learnt from the first EMEP intensive measurement periods. Atmospheric Chemistry and Physics, 2012, 12, 8073-8094.	1.9	58
13	Modelling of organic aerosols over Europe (2002–2007) using a volatility basis set (VBS) framework: application of different assumptions regarding the formation of secondary organic aerosol. Atmospheric Chemistry and Physics, 2012, 12, 8499-8527.	1.9	193
14	Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007. Atmospheric Chemistry and Physics, 2012, 12, 8727-8750.	1.9	52
15	Governing processes for reactive nitrogen compounds in the European atmosphere. Biogeosciences, 2012, 9, 4921-4954.	1.3	77
16	A model for simulating the timelines of field operations at a European scale for use in complex dynamic models. Biogeosciences, 2012, 9, 4487-4496.	1.3	22
17	Towards the use of dynamic growing seasons in a chemical transport model. Biogeosciences, 2012, 9, 5161-5179.	1.3	6
18	Air quality modelling, simulation, and computational methods: a review. Environmental Reviews, 2013, 21, 149-179.	2.1	48
19	Air Pollution Risks to Northern European Forests in a Changing Climate. Developments in Environmental Science, 2013, , 77-99.	0.5	16
20	Modelling future impacts of air pollution using the multi-scale UK Integrated Assessment Model (UKIAM). Environment International, 2013, 61, 17-35.	4.8	48
21	Investigating the impacts of anthropogenic and biogenic VOC emissions and elevated temperatures during the 2003 ozone episode in the UK. Atmospheric Environment, 2013, 74, 393-401.	1.9	17
22	Health burdens of surface ozone in the UK for a range of future scenarios. Environment International, 2013, 61, 36-44.	4.8	67
23	Ammonia Emissions in Europe. Handbook of Environmental Chemistry, 2013, , 141-163.	0.2	3

#	Article	IF	CITATIONS
24	Assessing interim objectives for acidification, eutrophication and ground-level ozone of the EU National Emission Ceilings Directive with 2001 and 2012 knowledge. Atmospheric Environment, 2013, 75, 129-140.	1.9	24
26	Comparison of tropospheric NO ₂ vertical columns in an urban environment using satellite, multi-axis differential optical absorption spectroscopy, and in situ measurements. Atmospheric Measurement Techniques, 2013, 6, 2907-2924.	1.2	12
27	European atmosphere in 2050, a regional air quality and climate perspective under CMIP5 scenarios. Atmospheric Chemistry and Physics, 2013, 13, 7451-7471.	1.9	87
28	Impact of the vertical emission profiles on background gas-phase pollution simulated from the EMEP emissions over Europe. Atmospheric Chemistry and Physics, 2013, 13, 5987-5998.	1.9	28
29	The effect of climate and climate change on ammonia emissions in Europe. Atmospheric Chemistry and Physics, 2013, 13, 117-128.	1.9	83
30	Scorched Earth: how will changes in the strength of the vegetation sink to ozone deposition affect human health and ecosystems?. Atmospheric Chemistry and Physics, 2013, 13, 6741-6755.	1.9	43
31	Light-absorbing carbon in Europe – measurement and modelling, with a focus on residential wood combustion emissions. Atmospheric Chemistry and Physics, 2013, 13, 8719-8738.	1.9	51
32	Measurement error in time-series analysis: a simulation study comparing modelled and monitored data. BMC Medical Research Methodology, 2013, 13, 136.	1.4	25
33	Assessment of the total, stomatal, cuticular, and soil 2 year ozone budgets of an agricultural field with winter wheat and maize crops. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1120-1132.	1.3	21
34	Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange. Biogeosciences, 2013, 10, 5183-5225.	1.3	116
35	A new top boundary condition for modeling surface diffusive exchange of a generic volatile tracer: theoretical analysis and application to soil evaporation. Hydrology and Earth System Sciences, 2013, 17, 873-893.	1.9	51
36	Have ozone effects on carbon sequestration been overestimated? A new biomass response function for wheat. Biogeosciences, 2014, 11, 4521-4528.	1.3	17
37	Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth. Geoscientific Model Development, 2014, 7, 2435-2475.	1.3	62
38	An evaluation of ambient ammonia concentrations over southern Ontario simulated with different dry deposition schemes within STILT-Chem v0.8. Geoscientific Model Development, 2014, 7, 1037-1050.	1.3	8
39	Can further mitigation of ammonia emissions reduce exceedances of particulate matter air quality standards?. Environmental Science and Policy, 2014, 44, 149-163.	2.4	50
40	Seasonal ozone uptake by a warm-temperate mixed deciduous and evergreen broadleaf forest in western Japan estimated by the Penman–Monteith approach combined with a photosynthesis-dependent stomatal model. Environmental Pollution, 2014, 184, 457-463.	3.7	14
41	Analysis of UK and European NOx and VOC emission scenarios in the Defra model intercomparison exercise. Atmospheric Environment, 2014, 94, 249-257.	1.9	8
42	A fully integrated isoprenoid emissions model coupling emissions to photosynthetic characteristics. Plant, Cell and Environment, 2014, 37, 1965-1980.	2.8	64

#	Article	IF	CITATIONS
43	Estimation of the long-range transport contribution from secondary inorganic components to urban background PM10 concentrations in south-western Sweden during 1986–2010. Atmospheric Environment, 2014, 89, 93-101.	1.9	14
44	Spatio-temporal trends of nitrogen deposition and climate effects on Sphagnum productivity in European peatlands. Environmental Pollution, 2014, 187, 73-80.	3.7	20
45	A more cost-effective geomatic approach to modelling PM10 dispersion across Europe. Applied Geography, 2014, 55, 108-116.	1.7	7
46	Differences in the Spatial Distribution and Chemical Composition of PM10 Between the UK and Poland. Environmental Modeling and Assessment, 2014, 19, 179-192.	1.2	18
47	Ragweed pollen source inventory for France – The second largest centre of Ambrosia in Europe. Atmospheric Environment, 2014, 83, 62-71.	1.9	50
48	Nitrogen deposition in Spain: Modeled patterns and threatened habitats within the Natura 2000 network. Science of the Total Environment, 2014, 485-486, 450-460.	3.9	49
49	Retrospective modeling outdoor air pollution at a fine spatial scale in France, 1989–2008. Atmospheric Environment, 2014, 92, 267-279.	1.9	24
50	Nitrogen deposition and exceedance of critical loads for nutrient nitrogen in Irish grasslands. Science of the Total Environment, 2014, 470-471, 216-223.	3.9	28
51	Mapping correlations between nitrogen concentrations in atmospheric deposition and mosses for natural landscapes in Europe. Ecological Indicators, 2014, 36, 563-571.	2.6	36
52	Impacts of climate and emission changes on nitrogen deposition in Europe: a multi-model study. Atmospheric Chemistry and Physics, 2014, 14, 6995-7017.	1.9	103
53	Uncertainties in assessing the environmental impact of amine emissions from a CO ₂ capture plant. Atmospheric Chemistry and Physics, 2014, 14, 8533-8557.	1.9	23
54	Biogenic SOA formation through gas-phase oxidation and gas-to-particle partitioning – a comparison between process models of varying complexity. Atmospheric Chemistry and Physics, 2014, 14, 11853-11869.	1.9	12
55	Biotic stress: a significant contributor to organic aerosol in Europe?. Atmospheric Chemistry and Physics, 2014, 14, 13643-13660.	1.9	40
56	Modelling NO ₂ concentrations at the street level in the GAINS integrated assessment model: projections under current legislation. Atmospheric Chemistry and Physics, 2014, 14, 813-829.	1.9	53
57	The role of long-range transport and domestic emissions in determining atmospheric secondary inorganic particle concentrations across the UK. Atmospheric Chemistry and Physics, 2014, 14, 8435-8447.	1.9	94
58	Sensitivity of air pollution simulations with LOTOS-EUROS to the temporal distribution of anthropogenic emissions. Atmospheric Chemistry and Physics, 2014, 14, 939-955.	1.9	49
59	Factors controlling temporal variability of near-ground atmospheric ²²² Rn concentration over central Europe. Atmospheric Chemistry and Physics, 2014, 14, 9567-9581.	1.9	18
60	Mean annual population exposure to atmospheric particulate matter in Poland. International Journal of Environment and Pollution, 2015, 58, 89.	0.2	1

#	Article	IF	CITATIONS
61	Application of WRF-Chem to forecasting PM _{10 concentration over Poland. International Journal of Environment and Pollution, 2015, 58, 280.}	0.2	14
62	Subalpine Pyrenees received higher nitrogen deposition than predicted by EMEP and CHIMERE chemistry-transport models. Scientific Reports, 2015, 5, 12942.	1.6	11
63	MACC regional multi-model ensemble simulations of birch pollen dispersion in Europe. Atmospheric Chemistry and Physics, 2015, 15, 8115-8130.	1.9	70
64	The impact of speciated VOCs on regional ozone increment derived from measurements at the UK EMEP supersites between 1999 and 2012. Atmospheric Chemistry and Physics, 2015, 15, 8361-8380.	1.9	12
65	Effects of global change during the 21st century on the nitrogen cycle. Atmospheric Chemistry and Physics, 2015, 15, 13849-13893.	1.9	168
66	Trends and drivers of ozone human health and vegetation impact metrics from UK EMEP supersite measurements (1990–2013). Atmospheric Chemistry and Physics, 2015, 15, 4025-4042.	1.9	24
67	An evaluation of ozone dry deposition in global scale chemistry climate models. Atmospheric Chemistry and Physics, 2015, 15, 6419-6436.	1.9	120
68	Particulate emissions from residential wood combustion in Europe – revised estimates and an evaluation. Atmospheric Chemistry and Physics, 2015, 15, 6503-6519.	1.9	193
69	Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics, 2015, 15, 8217-8299.	1.9	641
70	Atmospheric black carbon and sulfate concentrations in Northeast Greenland. Atmospheric Chemistry and Physics, 2015, 15, 9681-9692.	1.9	66
71	Evaluating the climate and air quality impacts of short-lived pollutants. Atmospheric Chemistry and Physics, 2015, 15, 10529-10566.	1.9	365
72	Model calculations of the effects of present and future emissions of air pollutants from shipping in the Baltic Sea and the North Sea. Atmospheric Chemistry and Physics, 2015, 15, 783-798.	1.9	91
73	Influence of local air pollution on the deposition of peroxyacetyl nitrate to a nutrient-poor natural grassland ecosystem. Atmospheric Chemistry and Physics, 2015, 15, 899-911.	1.9	10
74	Is the ozone climate penalty robust in Europe?. Environmental Research Letters, 2015, 10, 084015.	2.2	48
75	Chemical footprints of anthropogenic nitrogen deposition on recent soil C : N ratios in Europe. Biogeosciences, 2015, 12, 4113-4119.	1.3	29
76	Methodology for evaluating lateral boundary conditions in the regional chemical transport model MATCH (v5.5.0) using combined satellite and ground-based observations. Geoscientific Model Development, 2015, 8, 3747-3763.	1.3	11
77	Future Premature Mortality Due to O3, Secondary Inorganic Aerosols and Primary PM in Europe — Sensitivity to Changes in Climate, Anthropogenic Emissions, Population and Building Stock. International Journal of Environmental Research and Public Health, 2015, 12, 2837-2869.	1.2	52
78	A regional air quality forecasting system over Europe: the MACC-II daily ensemble production. Geoscientific Model Development, 2015, 8, 2777-2813.	1.3	214

#	Article	IF	CITATIONS
80	Modelling PM2.5 impact indicators in Europe: Health effects and legal compliance. Environmental Modelling and Software, 2015, 74, 201-211.	1.9	77
81	MATCH-SALSA – Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model – Part 1: Model description and evaluation. Geoscientific Model Development, 2015, 8, 171-189.	1.3	46
82	The natural emissions model (NEMO): Description, application and model evaluation. Atmospheric Environment, 2015, 122, 493-504.	1.9	22
83	Modelling the contributions to marine acidification from deposited SOx, NOx, and NHx in the Baltic Sea: Past and present situations. Continental Shelf Research, 2015, 111, 234-249.	0.9	25
84	Including the temporal change in PM2.5 concentration in the assessment of human health impact: Illustration with renewable energy scenarios to 2050. Environmental Impact Assessment Review, 2015, 52, 62-68.	4.4	15
85	ESLab application to a boreal watershed in southern Finland: preparing for a virtual research environment of ecosystem services. Landscape Ecology, 2015, 30, 561-577.	1.9	8
86	Modelling street level PM ₁₀ concentrations across Europe: source apportionment and possible futures. Atmospheric Chemistry and Physics, 2015, 15, 1539-1553.	1.9	62
88	Review and Integration of Biosphere-Atmosphere Modelling of Reactive Trace Gases and Volatile Aerosols. , 2015, , .		1
89	Modelling atmospheric oxidation of 2-aminoethanol (MEA) emitted from post-combustion capture using WRF–Chem. Science of the Total Environment, 2015, 527-528, 185-202.	3.9	21
90	Modeling the Processing of Aerosol and Trace Gases in Clouds and Fogs. Chemical Reviews, 2015, 115, 4157-4198.	23.0	234
91	Performance of European chemistry transport models as function of horizontal resolution. Atmospheric Environment, 2015, 112, 90-105.	1.9	85
93	Life Cycle Impact Assessment. LCA Compendium, 2015, , .	0.8	123
94	Evaluation of the performance of different atmospheric chemical transport models and inter-comparison of nitrogen and sulphur deposition estimates for the UK. Atmospheric Environment, 2015, 119, 131-143.	1.9	61
95	Investigating the sensitivity of health benefits to focussed PM2.5 emission abatement strategies. Environmental Modelling and Software, 2015, 74, 268-283.	1.9	9
96	The impact of meteorological forcings on gas phase air pollutants over Europe. Atmospheric Environment, 2015, 119, 240-257.	1.9	12
97	Analysis of meteorology–chemistry interactions during air pollution episodes using online coupled models within AQMEII phase-2. Atmospheric Environment, 2015, 115, 527-540.	1.9	61
99	Equilibrium absorptive partitioning theory between multiple aerosol particle modes. Geoscientific Model Development, 2016, 9, 3617-3637.	1.3	0
104	Improved source term description in Eulerian models in ARGOS. Radioprotection, 2016, 51, S125-S127.	0.5	3

ARTICLE

IF CITATIONS

A process-based model for ammonia emission from urine patches, GAG (Generation of Ammonia from) Tj ETQq0 0 Q rgBT /Overlock 10 T

107	Ozone air quality simulations with WRF-Chem (v3.5.1) over Europe: model evaluation and chemical mechanism comparison. Geoscientific Model Development, 2016, 9, 3699-3728.	1.3	73
108	Improving the spatial resolution of air-quality modelling at a European scale – development and evaluation of the Air Quality Re-gridder Model (AQR v1.1). Geoscientific Model Development, 2016, 9, 4475-4489.	1.3	13
109	Air quality modelling in the Berlin–Brandenburg region using WRF-Chem v3.7.1: sensitivity to resolution of model grid and input data. Geoscientific Model Development, 2016, 9, 4339-4363.	1.3	77
111	The UK particulate matter air pollution episode of March–April 2014: more than Saharan dust. Environmental Research Letters, 2016, 11, 044004.	2.2	40
112	Comparing concentrationâ€based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests. Global Change Biology, 2016, 22, 1608-1627.	4.2	83
113	Investigation of the influence of liquid surface films on O ₃ and PAN deposition to plant leaves coated with organic/inorganic solution. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,239.	1.2	24
114	Removal of Ozone by Urban and Peri-Urban Forests: Evidence from Laboratory, Field, and Modeling Approaches. Journal of Environmental Quality, 2016, 45, 224-233.	1.0	26
115	Variation of the NMVOC speciation in the solvent sector and the sensitivity of modelled tropospheric ozone. Atmospheric Environment, 2016, 135, 59-72.	1.9	20
116	A Modeling Comparison of Mercury Deposition from Current Anthropogenic Mercury Emission Inventories. Environmental Science & Technology, 2016, 50, 5154-5162.	4.6	53
117	Impacts of natural emission sources on particle pollution levels in Europe. Atmospheric Environment, 2016, 137, 171-185.	1.9	28
118	Empirical estimates of size-resolved precipitation scavenging coefficients for ultrafine particles. Atmospheric Environment, 2016, 143, 133-138.	1.9	17
119	Assessing the role of soil water limitation in determining the Phytotoxic Ozone Dose (PODY) thresholds. Atmospheric Environment, 2016, 147, 88-97.	1.9	39
120	Effect of industrial dust on precipitation chemistry in the Czech Republic (Central Europe) from 1850 to 2013. Water Research, 2016, 103, 30-37.	5.3	53
121	Comment on â€~Anav <i>etÂal</i> . (2016) Comparing concentrationâ€based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests' Global Change Biology, 22(4), 1608–1627, doi:10.1111/gcb.13138. Global Change Biology, 2016, 22, 3257-3258.	4.2	1
122	Cost-effective reductions of PM2.5 concentrations and exposure in Italy. Atmospheric Environment, 2016, 140, 84-93.	1.9	15
123	Increased phytotoxic O3 dose accelerates autumn senescence in an O3-sensitive beech forest even under the present-level O3. Scientific Reports, 2016, 6, 32549.	1.6	17
124	Global and regional radiative forcing from 20â€ ⁻ % reductions in BC, OC and SO ₄ – an HTAP2 multi-model study. Atmospheric Chemistry and Physics, 2016, 16, 13579-13599.	1.9	42

#	Article	IF	CITATIONS
125	Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters. Atmospheric Chemistry and Physics, 2016, 16, 14169-14202.	1.9	80
126	Evaluation of the performance of four chemical transport models in predicting the aerosol chemical composition in Europe in 2005. Atmospheric Chemistry and Physics, 2016, 16, 6041-6070.	1.9	34
127	Simulating secondary organic aerosol from missing diesel-related intermediate-volatility organic compound emissions during the Clean Air for LondonÂ(ClearfLo) campaign. Atmospheric Chemistry and Physics, 2016, 16, 6453-6473.	1.9	60
128	Impacts of the 2014–2015 Holuhraun eruption on the UK atmosphere. Atmospheric Chemistry and Physics, 2016, 16, 11415-11431.	1.9	16
129	Multi-model evaluation of short-lived pollutant distributions over east Asia during summer 2008. Atmospheric Chemistry and Physics, 2016, 16, 10765-10792.	1.9	17
130	The influence of temperature on ozone production under varying NO _{<i>x</i>} conditions – a modelling study. Atmospheric Chemistry and Physics, 2016, 16, 11601-11615.	1.9	146
131	Presentation of the EURODELTA III intercomparison exercise – evaluation of the chemistry transport models' performance on criteria pollutants and joint analysis with meteorology. Atmospheric Chemistry and Physics, 2016, 16, 12667-12701.	1.9	109
132	Model simulations of cooking organic aerosol (COA) over the UK using estimates of emissions based on measurements at two sites in London. Atmospheric Chemistry and Physics, 2016, 16, 13773-13789.	1.9	36
133	Mid-21st century air quality at the urban scale under the influence of changed climate and emissions – case studies for Paris and Stockholm. Atmospheric Chemistry and Physics, 2016, 16, 1877-1894.	1.9	15
134	The sensitivities of emissions reductions for the mitigation of UK PM _{2.5} . Atmospheric Chemistry and Physics, 2016, 16, 265-276.	1.9	70
135	Will a perfect model agree with perfect observations? The impact of spatial sampling. Atmospheric Chemistry and Physics, 2016, 16, 6335-6353.	1.9	108
136	A model study of the pollution effects of the first 3 months of the Holuhraun volcanic fissure: comparison with observations and air pollution effects. Atmospheric Chemistry and Physics, 2016, 16, 9745-9760.	1.9	8
137	Myocardial infarction, ST-elevation and non-ST-elevation myocardial infarction and modelled daily pollution concentrations: a case-crossover analysis of MINAP data. Open Heart, 2016, 3, e000429.	0.9	21
138	Spatial and chemical patterns of PM2.5 - differences between a maritime and an inland country. Ecological Chemistry and Engineering S, 2016, 23, 61-69.	0.3	2
139	Foliar and soil concentrations and stoichiometry of nitrogen and phosphorous across <scp>E</scp> uropean <i><scp>P</scp>inus sylvestris</i> forests: relationships with climate, <scp>N</scp> deposition and tree growth. Functional Ecology, 2016, 30, 676-689.	1.7	99
140	Ammonia emission time profiles based on manure transport data improve ammonia modelling across north western Europe. Atmospheric Environment, 2016, 131, 83-96.	1.9	36
141	Spatially valid data of atmospheric deposition of heavy metals and nitrogen derived by moss surveys for pollution risk assessments of ecosystems. Environmental Science and Pollution Research, 2016, 23, 10457-10476.	2.7	35
142	Impacts of regional climate change on air quality projections and associated uncertainties. Climatic Change, 2016, 136, 309-324.	1.7	34

#	Article	IF	CITATIONS
143	Assessing chemistry schemes and constraints in air quality models used to predict ozone in London against the detailed Master Chemical Mechanism. Faraday Discussions, 2016, 189, 589-616.	1.6	6
144	Spatial interpolation of N concentrations and \hat{I} 15 N values in the moss Hypnum cupressiforme collected in the forests of Slovenia. Ecological Indicators, 2016, 61, 366-377.	2.6	8
146	Trends in population exposure to particulate matter in urban areas of Greece during the last decade. Science of the Total Environment, 2017, 581-582, 399-412.	3.9	8
147	High-resolution modelling of air pollution and deposition over the Netherlands with plume, grid and hybrid modelling. Atmospheric Environment, 2017, 155, 140-153.	1.9	7
148	Modelling trends in ammonia in the Netherlands over the period 1990–2014. Atmospheric Environment, 2017, 154, 20-30.	1.9	32
149	Particulate matter air pollution in Europe in aÂ+2°C warming world. Atmospheric Environment, 2017, 154, 129-140.	1.9	19
150	VOC emission rates over London and South East England obtained by airborne eddy covariance. Faraday Discussions, 2017, 200, 599-620.	1.6	23
151	Investigating sources of measured forest-atmosphere ammonia fluxes using two-layer bi-directional modelling. Agricultural and Forest Meteorology, 2017, 237-238, 80-94.	1.9	21
152	Modelling and mapping heavy metal and nitrogen concentrations in moss in 2010 throughout Europe by applying Random Forests models. Atmospheric Environment, 2017, 156, 146-159.	1.9	22
153	Contrasting effects of nitrogen addition on soil respiration in two Mediterranean ecosystems. Environmental Science and Pollution Research, 2017, 24, 26160-26171.	2.7	15
154	Managing future air quality in megacities: A case study for Delhi. Atmospheric Environment, 2017, 161, 99-111.	1.9	63
155	Joint analysis of deposition fluxes and atmospheric concentrations of inorganic nitrogen and sulphur compounds predicted by six chemistry transport models in the frame of the EURODELTAIII project. Atmospheric Environment, 2017, 151, 152-175.	1.9	27
156	Predicting Air Pollution in East Asia. , 2017, , 387-403.		1
157	Impact of excess NO _x emissions from diesel cars on air quality, public health and eutrophication in Europe. Environmental Research Letters, 2017, 12, 094017.	2.2	120
158	Deposition of sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison to historical observations. Tellus, Series B: Chemical and Physical Meteorology, 2022, 69, 1328945.	0.8	147
159	Modelling long-term impacts of changes in climate, nitrogen deposition and ozone exposure on carbon sequestration of European forest ecosystems. Science of the Total Environment, 2017, 605-606, 1097-1116.	3.9	40
160	The contribution of nitrogen deposition to the eutrophication signal in understorey plant communities of European forests. Ecology and Evolution, 2017, 7, 214-227.	0.8	41
161	Surface air quality implications of volcanic injection heights. Atmospheric Environment, 2017, 166, 510-518.	1.9	2

#	Article	IF	CITATIONS
162	Mitigating ammonia emission from agriculture reduces PM2.5 pollution in the Hai River Basin in China. Science of the Total Environment, 2017, 609, 1152-1160.	3.9	57
163	Thoughts on Earth System Modeling: From global to regional scale. Earth-Science Reviews, 2017, 171, 456-462.	4.0	13
164	Response on â€~comparing concentrationâ€based (<scp>AOT</scp> 40) and stomatal uptake (<scp>PODY</scp>) metrics for ozone risk assessment to European forests'. Global Change Biology, 2017, 23, e3-e4.	4.2	0
165	Screening of the EMEP source receptor relationships: application to five European countries. Air Quality, Atmosphere and Health, 2017, 10, 497-507.	1.5	10
166	On the spatio-temporal representativeness of observations. Atmospheric Chemistry and Physics, 2017, 17, 9761-9780.	1.9	84
167	Multi-model ensemble simulations of olive pollen distribution in Europe in 2014: current status and outlook. Atmospheric Chemistry and Physics, 2017, 17, 12341-12360.	1.9	25
168	Investigation of global particulate nitrate from the AeroCom phaseÂIII experiment. Atmospheric Chemistry and Physics, 2017, 17, 12911-12940.	1.9	99
169	Reanalysis of and attribution to near-surface ozone concentrations in Sweden during 1990–2013. Atmospheric Chemistry and Physics, 2017, 17, 13869-13890.	1.9	19
170	Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the periodÂ1990–2015. Atmospheric Chemistry and Physics, 2017, 17, 2709-2720.	1.9	87
171	Impact of intercontinental pollution transport on North American ozone air pollution: an HTAP phase 2 multi-model study. Atmospheric Chemistry and Physics, 2017, 17, 5721-5750.	1.9	51
172	Uncertainty assessment and applicability of an inversion method for volcanic ash forecasting. Atmospheric Chemistry and Physics, 2017, 17, 9205-9222.	1.9	4
174	Effect of the long-range transport on the air quality of greater Budapest area. International Journal of Environment and Pollution, 2017, 62, 407.	0.2	8
179	Spatiotemporal evaluation of EMEP4UK-WRF v4.3 atmospheric chemistry transport simulations of health-related metrics for NO ₂ , O ₃ 10, and PM _{2. 5} for 2001–2010. Geoscientific Model Development, 201	1.3 7,	23
180	Vertical Ozone Gradients above Forests. Comparison of Different Calculation Options with Direct Ozone Measurements above a Mature Forest and Consequences for Ozone Risk Assessment. Forests, 2017, 8, 337.	0.9	12
181	Design of an Air Pollution Monitoring Campaign in Beijing for Application to Cohort Health Studies. International Journal of Environmental Research and Public Health, 2017, 14, 1580.	1.2	8
182	Complementing the topsoil information of the Land Use/Land Cover Area Frame Survey (LUCAS) with modelled N2O emissions. PLoS ONE, 2017, 12, e0176111.	1.1	23
183	Socioeconomic and urban-rural differentials in exposure to air pollution and mortality burden in England. Environmental Health, 2017, 16, 104.	1.7	40
186	CHIMERE-2017: from urban to hemispheric chemistry-transport modeling. Geoscientific Model Development, 2017, 10, 2397-2423.	1.3	168

#	Article	IF	CITATIONS
189	Development and evaluation of an ozone deposition scheme for coupling to a terrestrial biosphere model. Biogeosciences, 2017, 14, 45-71.	1.3	18
190	Ship emissions and the use of current air cleaning technology: contributions to air pollution and acidification in the Baltic Sea. Earth System Dynamics, 2017, 8, 901-919.	2.7	15
192	EURODELTA-Trends, a multi-model experiment of air quality hindcast in Europe over 1990–2010. Geoscientific Model Development, 2017, 10, 3255-3276.	1.3	41
193	Curriculum vitae of the LOTOS–EUROS (v2.0) chemistry transport model. Geoscientific Model Development, 2017, 10, 4145-4173.	1.3	100
195	The costs and benefits of a nitrogen emission control area in the Baltic and North Seas. Transportation Research, Part D: Transport and Environment, 2018, 59, 223-236.	3.2	29
196	Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nature Climate Change, 2018, 8, 219-223.	8.1	122
197	Ozone impacts of gas–aerosol uptake in global chemistry transport models. Atmospheric Chemistry and Physics, 2018, 18, 3147-3171.	1.9	36
198	The potential future contribution of shipping to acidification of the Baltic Sea. Ambio, 2018, 47, 368-378.	2.8	23
199	Ozone pollution will compromise efforts to increase global wheat production. Global Change Biology, 2018, 24, 3560-3574.	4.2	163
200	Energy Policy, Air Quality, and Climate Mitigation in South Africa: The Case for Integrated Assessment. , 2018, , 113-138.		2
201	Ozone effects on European forest growth—Towards an integrative approach. Journal of Ecology, 2018, 106, 1377-1389.	1.9	48
202	Choices Behind Numbers: a Review of the Major Air Pollution Health Impact Assessments in Europe. Current Environmental Health Reports, 2018, 5, 34-43.	3.2	17
203	A parameterization of the heterogeneous hydrolysis of N ₂ O ₅ for mass-based aerosol models: improvement of particulate nitrate prediction. Atmospheric Chemistry and Physics, 2018 18 673-689	1.9	35
204	Impact of regional climate change and future emission scenarios on surface O ₃ and PM _{2.5} over India. Atmospheric Chemistry and Physics, 2018, 18, 103-127.	1.9	34
205	Modelling carbonaceous aerosol from residential solid fuel burning with different assumptions for emissions. Atmospheric Chemistry and Physics, 2018, 18, 4497-4518.	1.9	11
206	Modeling emissions for three-dimensional atmospheric chemistry transport models. Journal of the Air and Waste Management Association, 2018, 68, 763-800.	0.9	51
207	Constraining the uncertainty in emissions over India with a regional air quality model evaluation. Atmospheric Environment, 2018, 174, 194-203.	1.9	23
208	A deep stratosphere-to-troposphere ozone transport event over Europe simulated in CAMS global and regional forecast systems: analysis and evaluation. Atmospheric Chemistry and Physics, 2018, 18, 15515-15534.	1.9	34

#	Article	IF	CITATIONS
210	Two-scale multi-model ensemble: is a hybrid ensemble of opportunity telling us more?. Atmospheric Chemistry and Physics, 2018, 18, 8727-8744.	1.9	10
212	Multi-level policies for air quality: implications of national and sub-national emission reductions on population exposure. Air Quality, Atmosphere and Health, 2018, 11, 1121-1135.	1.5	3
213	Aerosol water parameterization: long-term evaluation and importance for climate studies. Atmospheric Chemistry and Physics, 2018, 18, 16747-16774.	1.9	14
214	Preliminary evaluation of CMAQ modelled wet deposition of sulphur and nitrogen over Bulgaria. International Journal of Environment and Pollution, 2018, 64, 161.	0.2	2
216	Deposition means storage and not loss. Environmental Systems Research, 2018, 7, .	1.5	1
220	Long-range transport impacts on surface aerosol concentrations and the contributions to haze events in China: an HTAP2 multi-model study. Atmospheric Chemistry and Physics, 2018, 18, 15581-15600.	1.9	12
221	The impact of future emission policies on tropospheric ozone using a parameterised approach. Atmospheric Chemistry and Physics, 2018, 18, 8953-8978.	1.9	47
224	Large but decreasing effect of ozone on the European carbon sink. Biogeosciences, 2018, 15, 4245-4269.	1.3	44
225	Potential impacts of emissions associated with unconventional hydrocarbon extraction on UK air quality and human health. Air Quality, Atmosphere and Health, 2018, 11, 627-637.	1.5	12
226	Sensitivity assessment of PM _{2.5} simulation to the below-cloud washout schemes in an atmospheric chemical transport model. Tellus, Series B: Chemical and Physical Meteorology, 2022, 70, 1476435.	0.8	10
227	Spatial variation of modelled total, dry and wet nitrogen deposition to forests at global scale. Environmental Pollution, 2018, 243, 1287-1301.	3.7	83
228	Variability in Atmospheric Methane From Fossil Fuel and Microbial Sources Over the Last Three Decades. Geophysical Research Letters, 2018, 45, 11,499.	1.5	46
229	A production-tagged aerosol module for Earth system models, OsloAero5.3 – extensions and updates for CAM5.3-Oslo. Geoscientific Model Development, 2018, 11, 3945-3982.	1.3	44
230	A parameterisation for the co-condensation of semi-volatile organics into multiple aerosol particle modes. Geoscientific Model Development, 2018, 11, 3261-3278.	1.3	5
231	Estimates of the Global Burden of Ambient PM2.5, Ozone, and NO2 on Asthma Incidence and Emergency Room Visits. Environmental Health Perspectives, 2018, 126, 107004.	2.8	209
232	A new method for jointly assessing effects of climate change and nitrogen deposition on habitats. Biological Conservation, 2018, 228, 52-61.	1.9	11
233	Chlorine oxidation of VOCs at a semi-rural site in Beijing: significant chlorine liberation from ClNO ₂ and subsequent gas- and particle-phase Cl–VOC production. Atmospheric Chemistry and Physics, 2018, 18, 13013-13030.	1.9	54
234	Contribution of Poland to Atmospheric Nitrogen Deposition to the Baltic Sea. Water, Air, and Soil Pollution, 2018, 229, 353.	1.1	4

#	ARTICLE	IF	CITATIONS
235	The influence of residential and workday population mobility on exposure to air pollution in the UK. Environment International, 2018, 121, 803-813.	4.8	38
236	OpenDrift v1.0: a generic framework for trajectory modelling. Geoscientific Model Development, 2018, 11, 1405-1420.	1.3	153
237	A multi-model comparison of meteorological drivers of surface ozone over Europe. Atmospheric Chemistry and Physics, 2018, 18, 12269-12288.	1.9	42
239	Outlook for clean air in the context of sustainable development goals. Global Environmental Change, 2018, 53, 1-11.	3.6	119
240	Stringent Emission Control Policies Can Provide Large Improvements in Air Quality and Public Health in India. GeoHealth, 2018, 2, 196-211.	1.9	27
241	Sensitivity of stomatal conductance to soil moisture: implications for tropospheric ozone. Atmospheric Chemistry and Physics, 2018, 18, 5747-5763.	1.9	39
242	Modelling study of soil C, N and pH response to air pollution and climate change using European LTER site observations. Science of the Total Environment, 2018, 640-641, 387-399.	3.9	17
243	Review of Road Dust Emissions. , 2018, , 183-203.		11
244	Urban versus rural health impacts attributable to PM _{2.5} and O ₃ in northern India. Environmental Research Letters. 2018. 13. 064010.	2.2	54
245	Development of an inorganic and organic aerosol model (CHIMERE) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf Model Development, 2018, 11, 165-194.	50 387 Td 1.3	(2017&h 36
245 247	Development of an inorganic and organic aerosol model (CHIMERE) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf Model Development, 2018, 11, 165-194. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Global Change Biology, 2018, 24, 4869-4893.	50 387 Td 1.3 4.2	(2017& 36 163
245 247 248	Development of an inorganic and organic aerosol model (CHIMERE) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf Model Development, 2018, 11, 165-194. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Global Change Biology, 2018, 24, 4869-4893. Air quality simulations for London using a coupled regional-to-local modelling system. Atmospheric Chemistry and Physics, 2018, 18, 11221-11245.	50 387 Td 1.3 4.2 1.9	(2017& 36 163 65
245 247 248 249	 Development of an inorganic and organic aerosol model (CHIMERE) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf Model Development, 2018, 11, 165-194. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Global Change Biology, 2018, 24, 4869-4893. Air quality simulations for London using a coupled regional-to-local modelling system. Atmospheric Chemistry and Physics, 2018, 18, 11221-11245. High resolution application of the EMEP MSC-W model over Eastern Europe – Analysis of the EMEP4PL results. Atmospheric Research, 2018, 212, 6-22. 	50 387 Td 1.3 4.2 1.9 1.8	(2017& 36 163 65 20
245 247 248 249 250	Development of an inorganic and organic aerosol model (CHIMERE) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf Model Development, 2018, 11, 165-194. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Global Change Biology, 2018, 24, 4869-4893. Air quality simulations for London using a coupled regional-to-local modelling system. Atmospheric Chemistry and Physics, 2018, 18, 11221-11245. High resolution application of the EMEP MSC-W model over Eastern Europe – Analysis of the EMEP4PL results. Atmospheric Research, 2018, 212, 6-22. Impact on Population Health of Baltic Shipping Emissions. International Journal of Environmental Research and Public Health, 2019, 16, 1954.	50 387 Td 1.3 4.2 1.9 1.8 1.2	(2017&am);; 36 163 65 20 31
245 247 248 249 250	Development of an inorganic and organic aerosol model (CHIMERE) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf Model Development, 2018, 11, 165-194. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Global Change Biology, 2018, 24, 4869-4893. Air quality simulations for London using a coupled regional-to-local modelling system. Atmospheric Chemistry and Physics, 2018, 18, 11221-11245. High resolution application of the EMEP MSC-W model over Eastern Europe – Analysis of the EMEP4PL results. Atmospheric Research, 2018, 212, 6-22. Impact on Population Health of Baltic Shipping Emissions. International Journal of Environmental Research and Public Health, 2019, 16, 1954. Toward the improvement of total nitrogen deposition budgets in the United States. Science of the Total Environment, 2019, 691, 1328-1352.	50 387 Td 1.3 4.2 1.9 1.8 1.2 3.9	(2017&am);; 363 (20) (20) (20) (20) (20) (20) (20) (20)
245 247 248 249 250 251	Development of an inorganic and organic aerosol model (CHIMERE) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf Model Development, 2018, 11, 165-194. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Global Change Biology, 2018, 24, 4869-4893. Air quality simulations for London using a coupled regional-to-local modelling system. Atmospheric Chemistry and Physics, 2018, 18, 11221-11245. High resolution application of the EMEP MSC-W model over Eastern Europe – Analysis of the EMEP4PL results. Atmospheric Research, 2018, 212, 6-22. Impact on Population Health of Baltic Shipping Emissions. International Journal of Environmental Research and Public Health, 2019, 16, 1954. Toward the improvement of total nitrogen deposition budgets in the United States. Science of the Total Environment, 2019, 691, 1328-1352. Impact of long-term nitrogen deposition on the response of dune grassland ecosystems to elevated summer ozone. Environmental Pollution, 2019, 253, 821-830.	50 387 Td 1.3 4.2 1.9 1.8 1.2 3.9 3.7	(2017&am);; 163 65 20 31 29
245 247 248 249 250 251 252	Development of an inorganic and organic aerosol model (CHIMERE) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf Model Development, 2018, 11, 165-194. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Global Change Biology, 2018, 24, 4869-4893. Air quality simulations for London using a coupled regional-to-local modelling system. Atmospheric Chemistry and Physics, 2018, 18, 11221-11245. High resolution application of the EMEP MSC-W model over Eastern Europe – Analysis of the EMEP4PL results. Atmospheric Research, 2018, 212, 6-22. Impact on Population Health of Baltic Shipping Emissions. International Journal of Environmental Research and Public Health, 2019, 16, 1954. Toward the improvement of total nitrogen deposition budgets in the United States. Science of the Total Environment, 2019, 691, 1328-1352. Impact of long-term nitrogen deposition on the response of dune grassland ecosystems to elevated summer ozone. Environmental Pollution, 2019, 253, 821-830. Investigating the behaviour of the CRI-MECH gas-phase chemistry scheme on a regional scale for different seasons using the WRF-Chem model. Atmospheric Research, 2019, 229, 145-156.	50 387 Td 1.3 4.2 1.9 1.8 1.2 3.9 3.7 1.8	(2017&am);;; 163 65 20 31 29 8 8

#	Article	IF	CITATIONS
255	Concomitant occurrence of anthropogenic air pollutants, mineral dust and fungal spores during long-distance transport of ragweed pollen. Environmental Pollution, 2019, 254, 112948.	3.7	36
257	Multi-year trends and determinants of the hydrochemistry of high mountain lakes in the Western Italian Alps. Aquatic Sciences, 2019, 81, 1.	0.6	6
258	Sensitivity of Ozone Dry Deposition to Ecosystemâ€Atmosphere Interactions: A Critical Appraisal of Observations and Simulations. Global Biogeochemical Cycles, 2019, 33, 1264-1288.	1.9	33
260	Application of the SHERPA source-receptor relationships, based on the EMEP MSC-W model, for the assessment of air quality policy scenarios. Atmospheric Environment: X, 2019, 4, 100047.	0.8	4
261	Urban pollution in the Danube and Western Balkans regions: The impact of major PM2.5 sources. Environment International, 2019, 133, 105158.	4.8	17
262	Methodology for Estimating the Lifelong Exposure to PM2.5 and NO2—The Application to European Population Subgroups. Atmosphere, 2019, 10, 507.	1.0	8
265	The Eulerian urban dispersion model EPISODE – PartÂ2: Extensions to the source dispersion and photochemistry for EPISODE–CityChem v1.2 and its application to the city of Hamburg. Geoscientific Model Development, 2019, 12, 3357-3399.	1.3	36
270	Mitigation pathways towards national ambient air quality standards in India. Environment International, 2019, 133, 105147.	4.8	62
271	Dynamic modelling of weathering rates – the benefit over steady-state modelling. Soil, 2019, 5, 33-47.	2.2	10
272	Secondary organic aerosol reduced by mixture of atmospheric vapours. Nature, 2019, 565, 587-593.	13.7	222
273	An evaluation of European nitrogen and sulfur wet deposition and their trends estimated by six chemistry transport models for the period 1990–2010. Atmospheric Chemistry and Physics, 2019, 19, 379-405.	1.9	41
274	Critical load exceedances under equitable nitrogen emission reductions in the EU28. Atmospheric Environment, 2019, 211, 113-119.	1.9	2
275	The CRI v2.2 reduced degradation scheme for isoprene. Atmospheric Environment, 2019, 212, 172-182.	1.9	29
276	Forest monitoring: Substantiating cause-effect relationships. Science of the Total Environment, 2019, 687, 610-617.	3.9	6
277	Advanced methods for uncertainty assessment and global sensitivity analysis of an Eulerian atmospheric chemistry transport model. Atmospheric Chemistry and Physics, 2019, 19, 2881-2898.	1.9	27
278	The EMEP Intensive Measurement Period campaign, 2008–2009: characterizing carbonaceous aerosol at nine rural sites in Europe. Atmospheric Chemistry and Physics, 2019, 19, 4211-4233.	1.9	20
279	Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models. Atmospheric Chemistry and Physics, 2019, 19, 7019-7053.	1.9	68
280	Modelling public health improvements as a result of air pollution control policies in the UK over four decades—1970 to 2010. Environmental Research Letters, 2019, 14, 074001.	2.2	42

#	Article	IF	CITATIONS
281	Impacts of tropospheric ozone and climate change on Mexico wheat production. Climatic Change, 2019, 155, 157-174.	1.7	14
282	Air Quality Improvement Co-benefits of Low-Carbon Pathways toward Well Below the 2 °C Climate Target in China. Environmental Science & Technology, 2019, 53, 5576-5584.	4.6	81
283	Long-term health impact assessment of total PM2.5 in Europe during the 1990–2015 period. Atmospheric Environment: X, 2019, 3, 100032.	0.8	16
284	To what extent can the below-cloud washout effect influence the PM2.5? A combined observational and modeling study. Environmental Pollution, 2019, 251, 338-343.	3.7	8
285	Influence of spatial resolution on population PM2.5 exposure and health impacts. Air Quality, Atmosphere and Health, 2019, 12, 705-718.	1.5	44
286	Development of air quality forecasting system in Macedonia, based on WRF-Chem model. Air Quality, Atmosphere and Health, 2019, 12, 825-836.	1.5	22
287	Understanding transboundary air pollution network: Emissions, depositions and spatio-temporal distribution of pollution in European region. Resources, Conservation and Recycling, 2019, 145, 113-123.	5.3	22
288	Adverse results of the economic crisis: A study on the emergence of enhanced formaldehyde (HCHO) levels seen from satellites over Greek urban sites. Atmospheric Research, 2019, 224, 42-51.	1.8	13
289	Impact of a nitrogen emission control area (NECA) on the future air quality and nitrogen deposition to seawater in the Baltic Sea region. Atmospheric Chemistry and Physics, 2019, 19, 1721-1752.	1.9	39
290	Ensemble forecasts of air quality in eastern China – Part 1: Model description and implementation of the MarcoPolo–Panda prediction system, version 1. Geoscientific Model Development, 2019, 12, 33-67.	1.3	39
293	Urban natural capital accounts: developing a novel approach to quantify air pollution removal by vegetation. Journal of Environmental Economics and Policy, 2019, 8, 413-428.	1.5	30
294	Dynamic Modeling and Target Loads of Sulfur and Nitrogen for Surface Waters in Finland, Norway, Sweden, and the United Kingdom. Environmental Science & Technology, 2019, 53, 5062-5070.	4.6	5
295	Water limitation can negate the effect of higher temperatures on forest carbon sequestration. European Journal of Forest Research, 2019, 138, 287-297.	1.1	24
296	EURODELTA III exercise: An evaluation of air quality models' capacity to reproduce the carbonaceous aerosol. Atmospheric Environment: X, 2019, 2, 100018.	0.8	11
297	Mitigation pathways of air pollution from residential emissions in the Beijing-Tianjin-Hebei region in China. Environment International, 2019, 125, 236-244.	4.8	66
298	Ozone impact on wheat in Europe, Asia and North America – A comparison. Science of the Total Environment, 2019, 664, 908-914.	3.9	36
299	Application of degree-day factors for residential emission estimate and air quality forecasting. International Journal of Environment and Pollution, 2019, 65, 325.	0.2	2
300	Emission projections and limit values of air pollution concentration - a case study using the EMEP4PL model. International Journal of Environment and Pollution, 2019, 65, 164.	0.2	2

#	Article	IF	CITATIONS
301	Applying WRF-CMAQ models for assessment of sulphur and nitrogen deposition in Bulgaria for the years 2016 and 2017. International Journal of Environment and Pollution, 2019, 66, 162.	0.2	4
304	Update and evaluation of the ozone dry deposition in Oslo CTM3 v1.0. Geoscientific Model Development, 2019, 12, 4705-4728.	1.3	6
305	Importance of dry deposition parameterization choice in global simulations of surface ozone. Atmospheric Chemistry and Physics, 2019, 19, 14365-14385.	1.9	25
306	Effects of strengthening the Baltic Sea ECA regulations. Atmospheric Chemistry and Physics, 2019, 19, 13469-13487.	1.9	27
308	Aerosol from Biomass Combustion in Northern Europe: Influence of Meteorological Conditions and Air Mass History. Atmosphere, 2019, 10, 789.	1.0	4
309	Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, 2019, 12, 989-994.	5.4	588
310	Trends of inorganic and organic aerosols and precursor gases in Europe: insights from the EURODELTA multi-model experiment over the 1990–2010 period. Geoscientific Model Development, 2019, 12, 4923-4954.	1.3	29
311	Multimodel simulations of a springtime dust storm over northeastern China: implications of an evaluation of four commonly used air quality models (CMAQ v5.2.1, CAMx v6.50, CHIMERE v2017r4, and) Tj ETQ	2q 1.18 0.78	1432134 rgBT 0
312	Assimilation of PM2.5 ground base observations to two chemical schemes in WRF-Chem – The results for the winter and summer period. Atmospheric Environment, 2019, 200, 178-189.	1.9	21
313	Global and regional model simulations of atmospheric ammonia. Atmospheric Research, 2020, 234, 104702.	1.8	13
314	Nitrogen deposition is the most important environmental driver of growth of pure, even-aged and managed European forests. Forest Ecology and Management, 2020, 458, 117762.	1.4	102
316	Effects of ozone on agriculture, forests and grasslands. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190327.	1.6	63
317	Contributions of traffic and shipping emissions to city-scale NOx and PM2.5 exposure in Hamburg. Atmospheric Environment, 2020, 237, 117674.	1.9	33
318	Reducing global air pollution: the scope for further policy interventions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190331.	1.6	70
319	Comparison of Methods for the Estimation of Total Inorganic Nitrogen Deposition to Forests in Germany. Frontiers in Forests and Global Change, 2020, 3, .	1.0	7
320	Prediction of plant species occurrence as affected by nitrogen deposition and climate change on a European scale. Environmental Pollution, 2020, 266, 115257.	3.7	11
321	Impact of weather types on UK ambient particulate matter concentrations. Atmospheric Environment: X, 2020, 5, 100061.	0.8	12
322	Testing Removal of Carbon Dioxide, Ozone, and Atmospheric Particles by Urban Parks in Italy. Environmental Science & Technology, 2020, 54, 14910-14922.	4.6	23

#	Article	IF	CITATIONS
323	Potential and limitation of air pollution mitigation by vegetation and uncertainties of deposition-based evaluations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190320.	1.6	41
324	Health Impact of Air Pollution from Shipping in the Baltic Sea: Effects of Different Spatial Resolutions in Sweden. International Journal of Environmental Research and Public Health, 2020, 17, 7963.	1.2	6
325	Application of Positive Matrix Factorization Receptor Model for Source Identification of PM10 in the City of Sofia, Bulgaria. Atmosphere, 2020, 11, 890.	1.0	12
326	Quantification of Atmospheric Ammonia Concentrations: A Review of Its Measurement and Modeling. Atmosphere, 2020, 11, 1092.	1.0	48
328	Comparison of tropospheric NO ₂ columns from MAX-DOAS retrievals and regional air quality model simulations. Atmospheric Chemistry and Physics, 2020, 20, 2795-2823.	1.9	12
330	Deaths Attributable to Air Pollution in Nordic Countries: Disparities in the Estimates. Atmosphere, 2020, 11, 467.	1.0	20
331	Local fractions – a method for the calculation of local source contributions to air pollution, illustrated by examples using the EMEP MSC-W model (rv4_33). Geoscientific Model Development, 2020, 13, 1623-1634.	1.3	4
332	Prediction of source contributions to urban background PM ₁₀ concentrations in European cities: a case study for an episode in December 2016 using EMEP/MSC-W rv4.15 and LOTOS-EUROS v2.0 – Part 1: The country contributions. Geoscientific Model Development, 2020, 13, 1787-1807.	1.3	17
333	Dry deposition of reactive nitrogen to different ecosystems across eastern China: A comparison of three community models. Science of the Total Environment, 2020, 720, 137548.	3.9	9
334	Disentangling functional trait variation and covariation in epiphytic lichens along a continent-wide latitudinal gradient. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192862.	1.2	22
335	Large-scale optimization of multi-pollutant control strategies in the Pearl River Delta region of China using a genetic algorithm in machine learning. Science of the Total Environment, 2020, 722, 137701.	3.9	19
336	Regional-scale modelling for the assessment of atmospheric particulate matter concentrations at rural background locations in Europe. Atmospheric Chemistry and Physics, 2020, 20, 6395-6415.	1.9	12
337	Time-Dependent Downscaling of PM2.5 Predictions from CAMS Air Quality Models to Urban Monitoring Sites in Budapest. Atmosphere, 2020, 11, 669.	1.0	5
338	AÂmodel-based analysis of foliar NO _{<i>x</i>} deposition. Atmospheric Chemistry and Physics, 2020, 20, 2123-2141.	1.9	11
339	Nitrogen and sulfur deposition over a region in SW Europe based on a regional atmospheric chemical transport model. Atmospheric Environment, 2020, 223, 117290.	1.9	5
341	Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling. Biogeosciences, 2020, 17, 1583-1620.	1.3	21
342	A new method for quantification of regional nitrogen emission - Deposition transmission in China. Atmospheric Environment, 2020, 227, 117401.	1.9	10
343	High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Scientific Data, 2020, 7, 121.	2.4	297

#	Article	IF	CITATIONS
344	Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 2: Untangling climatic, edaphic, management and nitrogen deposition effects on carbon sequestration potentials. Biogeosciences, 2020, 17, 1621-1654.	1.3	18
345	15N tracer enrichment in response to winter soil temperature manipulation differs between canopy trees and juveniles. Trees - Structure and Function, 2021, 35, 325-331.	0.9	3
346	Mapping the susceptibility of UNESCO World Cultural Heritage sites in Europe to ambient (outdoor) air pollution. Science of the Total Environment, 2021, 754, 142345.	3.9	45
347	Investigating the background and local contribution of the oxidants in London and Bangkok. Faraday Discussions, 2021, 226, 515-536.	1.6	3
348	SHERPA-city: A web application to assess the impact of traffic measures on NO2 pollution in cities. Environmental Modelling and Software, 2021, 135, 104904.	1.9	8
349	Responses of Temperate Forests to Nitrogen Deposition: Testing the Explanatory Power of Modeled Deposition Datasets for Vegetation Gradients. Ecosystems, 2021, 24, 1222-1238.	1.6	13
350	Enhancing air quality forecasts by geomatic downscaling: an application to daily PM10 concentrations in France. Theoretical and Applied Climatology, 2021, 143, 327-339.	1.3	1
351	Spatial evaluation and tradeâ€off analysis of soil functions through Bayesian networks. European Journal of Soil Science, 2021, 72, 1575-1589.	1.8	11
352	A revised dry deposition scheme for land–atmosphere exchange of trace gases in ECHAM/MESSy v2.54. Geoscientific Model Development, 2021, 14, 495-519.	1.3	11
353	AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations. Atmospheric Chemistry and Physics, 2021, 21, 87-128.	1.9	96
354	Ecosystem Processes Show Uniform Sensitivity to Winter Soil Temperature Change Across a Gradient from Central to Cold Marginal Stands of a Major Temperate Forest Tree. Ecosystems, 2021, 24, 1545-1560.	1.6	10
355	Spatial-Temporal Modelling of Disease Risk Accounting for PM2.5 Exposure in the Province of Pavia: An Area of the Po Valley. International Journal of Environmental Research and Public Health, 2021, 18, 658.	1.2	3
356	The On-Line Integrated Mesoscale Chemistry Model BOLCHEM. Atmosphere, 2021, 12, 192.	1.0	2
357	Contributions of World Regions to the Global Tropospheric Ozone Burden Change From 1980 to 2010. Geophysical Research Letters, 2021, 48, .	1.5	22
358	Chronic Atmospheric Reactive Nitrogen Deposition Suppresses Biological Nitrogen Fixation in Peatlands. Environmental Science & amp; Technology, 2021, 55, 1310-1318.	4.6	9
359	Copernicus Atmosphere Monitoring Service TEMPOral profiles (CAMS-TEMPO): global and European emission temporal profile maps for atmospheric chemistry modelling. Earth System Science Data, 2021, 13, 367-404.	3.7	41
360	Improvements in air quality in the Netherlands during the corona lockdown based on observations and model simulations. Atmospheric Environment, 2021, 247, 118158.	1.9	20
361	Assessing Douro Vineyards Exposure to Tropospheric Ozone. Atmosphere, 2021, 12, 200.	1.0	8

#	Article	IF	CITATIONS
362	Nitrogen Challenges and Opportunities for Agricultural and Environmental Science in India. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	29
363	Evaluation of atmospheric aerosols in the metropolitan area of São Paulo simulated by the regional EURAD-IM model on high-resolution. Atmospheric Pollution Research, 2021, 12, 451-469.	1.8	11
364	Unraveling the diurnal atmospheric ammonia budget of a prototypical convective boundary layer. Atmospheric Environment, 2021, 249, 118153.	1.9	7
365	Machine learning based bias correction for numerical chemical transport models. Atmospheric Environment, 2021, 248, 118022.	1.9	12
366	Assessing the costs and environmental benefits of IMO regulations of ship-originated SOx and NOx emissions in the Baltic Sea. Ambio, 2021, 50, 1718-1730.	2.8	15
367	Valuating environmental impacts from ship emissions – The marine perspective. Journal of Environmental Management, 2021, 282, 111958.	3.8	49
368	Trend analysis of reduced nitrogen components over the Netherlands with the EMEP4NL and OPS model. Atmospheric Environment, 2021, 248, 118183.	1.9	5
369	Challenges characterizing N deposition to high elevation protected areas: A case study integrating instrument, simulated, and lichen inventory datasets for the Devils Postpile National Monument and surrounding region, USA. Ecological Indicators, 2021, 122, 107311.	2.6	4
370	Urban Air Pollution Mapping Using Fleet Vehicles as Mobile Monitors and Machine Learning. Environmental Science & Technology, 2021, 55, 5579-5588.	4.6	27
371	The effect of current and future maternal exposure to near-surface ozone on preterm birth in 30 European countries—an EU-wide health impact assessment. Environmental Research Letters, 2021, 16, 055005.	2.2	6
372	Sensitivity of air quality modelling to different emission inventories: A case study over Europe. Atmospheric Environment: X, 2021, 10, 100111.	0.8	12
373	Different climate sensitivity of particulate and mineral-associated soil organic matter. Nature Geoscience, 2021, 14, 295-300.	5.4	164
374	Deep-MAPS: Machine-Learning-Based Mobile Air Pollution Sensing. IEEE Internet of Things Journal, 2021, 8, 7649-7660.	5.5	19
375	Airborne nitrogen deposition to the Baltic Sea: Past trends, source allocation and future projections. Atmospheric Environment, 2021, 253, 118377.	1.9	5
376	Quantifying the impact of ozone on crops in Sub-Saharan Africa demonstrates regional and local hotspots of production loss. Environmental Science and Pollution Research, 2021, 28, 62338-62352.	2.7	3
377	SAMIRA-SAtellite Based Monitoring Initiative for Regional Air Quality. Remote Sensing, 2021, 13, 2219.	1.8	6
378	Non-linear response of PM _{2.5} to changes in NO _{<i>x</i>} and NH ₃ emissions in the Po basin (Italy): consequences for air quality plans. Atmospheric Chemistry and Physics. 2021. 21, 9309-9327	1.9	31
379	Respiratory Health Effects of Wildfire Smoke during Summer of 2018 in the JAmtland HAmedalen Region, Sweden. International Journal of Environmental Research and Public Health, 2021, 18, 6987.	1.2	6

#	Article	IF	Citations
380	Development of a moving point source model for shipping emission dispersion modeling in EPISODE–CityChem v1.3. Geoscientific Model Development, 2021, 14, 4509-4534.	1.3	7
381	Using Task Farming to Optimise a Street-Scale Resolution Air Quality Model of the West Midlands (UK). Atmosphere, 2021, 12, 983.	1.0	9
382	Mapping of Meteorological Observations over the Island of Ireland to Enhance the Understanding and Prediction of Rain Erosion in Wind Turbine Blades. Energies, 2021, 14, 4555.	1.6	4
383	Prediction of source contributions to urban background PM ₁₀ concentrations in European cities: a case study for an episode in December 2016 using EMEP/MSC-W rv4.15 – Part 2: The city contribution. Geoscientific Model Development, 2021, 14, 4143-4158.	1.3	5
384	The UK Integrated Assessment Model for source apportionment and air pollution policy applications to PM2.5. Environment International, 2021, 153, 106515.	4.8	12
385	Canopy Exchange and Modification of Nitrogen Fluxes in Forest Ecosystems. Current Forestry Reports, 2021, 7, 115-137.	3.4	10
386	Projections of shipping emissions and the related impact on air pollution and human health in the Nordic region. Atmospheric Chemistry and Physics, 2021, 21, 12495-12519.	1.9	17
387	Good Agreement Between Modeled and Measured Sulfur and Nitrogen Deposition in Europe, in Spite of Marked Differences in Some Sites. Frontiers in Environmental Science, 2021, 9, .	1.5	6
388	Spatially explicit boundaries for agricultural nitrogen inputs in the European Union to meet air and water quality targets. Science of the Total Environment, 2021, 786, 147283.	3.9	51
390	Declining dry deposition of NO2 and SO2 with diverse spatiotemporal patterns in China from 2013 to 2018. Atmospheric Environment, 2021, 262, 118655.	1.9	6
391	Modelling ultrafine particle number concentrations at address resolution in Denmark from 1979-2018 – Part 1: Regional and urban scale modelling and evaluation. Atmospheric Environment, 2021, 264, 118631.	1.9	29
392	Impact of SOx, NOx and NH3 emission reductions on PM2.5 concentrations across Europe: Hints for future measure development. Environment International, 2021, 156, 106699.	4.8	25
393	Long-term variability in base cation, sulfur and nitrogen deposition and critical load exceedance of terrestrial ecosystems in China. Environmental Pollution, 2021, 289, 117974.	3.7	13
394	Performance of Operational Chemical Transport Models for Particulate Matter Concentrations in Bulgaria. Studies in Systems, Decision and Control, 2021, , 107-122.	0.8	1
395	Modelling of the Seasonal Sulphur and Nitrogen Depositions over the Balkan Peninsula by CMAQ and EMEP-MSC-W. Studies in Systems, Decision and Control, 2021, , 171-183.	0.8	1
396	Advances in Understanding, Models and Parameterizations of Biosphere-Atmosphere Ammonia Exchange. , 2013, , 11-84.		5
398	Effects-Based Integrated Assessment Modelling for the Support of European Air Pollution Abatement Policies. Environmental Pollution, 2015, , 613-635.	0.4	1
399	Photochemical Ozone Formation. LCA Compendium, 2015, , 115-138.	0.8	5

#	Article	IF	CITATIONS
400	Analysing the impacts of air quality policies on ecosystem services; a case study for Telemark, Norway. Journal of Environmental Management, 2018, 206, 650-663.	3.8	11
401	Global and regional trends of atmospheric sulfur. Scientific Reports, 2019, 9, 953.	1.6	166
402	Maximising climate mitigation potential by carbon and radiative agricultural land management with cover crops. Environmental Research Letters, 2020, 15, 094075.	2.2	26
403	Towards a coupled paradigm of NH ₃ â€CO ₂ biosphere–atmosphere exchange modelling. Global Change Biology, 2020, 26, 4654-4663.	4.2	7
404	Moss species-specific accumulation of atmospheric deposition?. Environmental Sciences Europe, 2019, 31, .	2.6	5
405	Climate and air pollution impacts on habitat suitability of Austrian forest ecosystems. PLoS ONE, 2017, 12, e0184194.	1.1	13
406	Tropospheric Ozone Assessment Report: Present-day tropospheric ozone distribution and trends relevant to vegetation. Elementa, 2018, 6, .	1.1	212
407	SIMULATION OF POTENTIAL DISTRIBUTION AND MIGRATION OF ALNUS SPP. UNDER CLIMATE CHANGE. Applied Ecology and Environmental Research, 2017, 15, 1039-1070.	0.2	8
408	HEALTH AND ECONOMIC IMPACTS OF OZONE SHIP-RELATED AIR POLLUTION IN PORTUGAL. WIT Transactions on Ecology and the Environment, 2019, , .	0.0	2
409	On the Way to a Sustainable European Energy System: Setting Up an Integrated Assessment Toolbox with TIMES PanEU as the Key Component. Energies, 2020, 13, 707.	1.6	16
410	Synthesis of Zeolites from Coal Fly Ash for Removal of Harmful Gaseous Pollutants: A Review. Aerosol and Air Quality Research, 2020, 20, 1127-1144.	0.9	57
411	Effects of global ship emissions on European air pollution levels. Atmospheric Chemistry and Physics, 2020, 20, 11399-11422.	1.9	47
412	Global modeling of cloud water acidity, precipitation acidity, and acid inputs to ecosystems. Atmospheric Chemistry and Physics, 2020, 20, 12223-12245.	1.9	33
413	A complex aerosol transport event over Europe during the 2017 Storm Ophelia in CAMS forecast systems: analysis and evaluation. Atmospheric Chemistry and Physics, 2020, 20, 13557-13578.	1.9	19
414	Role of ammonia in European air quality with changing land and ship emissions between 1990 and 2030. Atmospheric Chemistry and Physics, 2020, 20, 15665-15680.	1.9	15
415	Shipping emissions in the Iberian Peninsula and the impacts on air quality. Atmospheric Chemistry and Physics, 2020, 20, 9473-9489.	1.9	26
440	The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European forests. Earth System Science Data, 2020, 12, 1295-1320.	3.7	33
442	The operational eEMEP model version 10.4 for volcanic SO ₂ and ash forecasting. Geoscientific Model Development, 2017, 10, 1927-1943.	1.3	3

ARTICLE IF CITATIONS # The urban dispersion model EPISODE v10.0 – Part 1: An Eulerian and sub-grid-scale air quality model 443 1.3 15 and its application in Nordic winter conditions. Geoscientific Model Development, 2020, 13, 4323-4353. GenChem v1.0 – a chemical pre-processing and testing system for atmospheric modelling. Geoscientific 444 1.3 Model Development, 2020, 13, 6447-6465. A Review Study on Ozone Phytotoxicity Metrics for Setting Critical Levels in Asia. Asian Journal of 448 0.4 37 Atmospheric Environment, 2018, 12, 1-16. A Development of Air Quality Forecasting System with Data Assimilation using Surface Measurements 449 0.2 in East Asia. Journal of Korean Society for Atmospheric Environment, 2019, 35, 60-85. Aerosol absorption in global models from AeroCom phase III. Atmospheric Chemistry and Physics, 2021, 450 1.9 27 21, 15929-15947. Variability of black carbon aerosol concentrations and sources at a Mediterranean coastal region. Atmospheric Pollution Research, 2021, 12, 101221. 1.8 Seasonal and diurnal variations in biogenic volatile organic compounds in highland and lowland 452 1.9 3 ecosystems in southern Kenya. Atmospheric Chemistry and Physics, 2021, 21, 14761-14787. Experimental evidence shows minor contribution of nitrogen deposition to global forest carbon 4.2 40 sequestration. Global Change Biology, 2022, 28, 899-917 457 Application of a protectability index to assess habitat eutrophication in designated areas., 0, , . 0 Assessment of Environmental Impacts of Energy Scenarios Using the πESA Platform. Lecture Notes in 1.0 Computer Science, 2014, , 504-517. In-Canopy Turbulenceâ€"State of the Art and Potential Improvements. , 2015, , 215-223. 468 0 Calculation of Source-Receptor Matrices for Use in an Integrated Assessment Model and Assessment of Impacts on Natural Ecosystems. Springer Proceedings in Complexity, 2016, , 107-112. European Air Quality Simulations in the Context of IMPACT2C, Focus on Aerosol Concentrations. 475 0.2 0 Springer Proceedings in Complexity, 2016, , 213-217. Flux-Based O3 Risk Assessment for Japanese Temperate Forests., 2017, , 125-133. Modelling Air Quality and Deposition at High Resolution in the Netherlands with Plume and Grid 478 0.2 0 Models. Springer Proceedings in Complexity, 2018, , 245-248. Intercomparison of Chemical Mechanisms for European Air Quality Policy Formulation and 479 Assessment. Springer Proceedings in Complexity, 2018, , 63-67. Correlating elements content in mosses collected in 2015 across Germany with spatially associated 481 2.6 1 characteristics of sampling sites and their surroundings. Environmental Sciences Europe, 2019, 31, . Effects of Using Two Different Biogenic Emission Models on Ozone and Particles in Europe. Springer Proceedings in Complexity, 2020, , 29-34.

#	Article	IF	CITATIONS
483	Trend Analysis of Air Pollution and Nitrogen Deposition Over the Netherlands Using the EMEP4NL and OPS Model. Springer Proceedings in Complexity, 2020, , 47-51.	0.2	0
485	Satellite-derived leaf area index and roughness length information for surface–atmosphere exchange modelling: a case study for reactive nitrogen deposition in north-western Europe using LOTOS-EUROS v2.0. Geoscientific Model Development, 2020, 13, 2451-2474.	1.3	5
486	Description of the uEMEP_v5 downscaling approach for the EMEP MSC-W chemistry transport model. Geoscientific Model Development, 2020, 13, 6303-6323.	1.3	17
487	Estimating historic N- and S-deposition with publicly available data – An example from Central Germany. Environmental Pollution, 2022, 292, 118378.	3.7	0
488	Modelling Exchanges: From the Process Scale to the Regional Scale. , 2020, , 159-207.		1
489	Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM _{2.5} air pollution. Science, 2021, 374, 758-762.	6.0	191
490	Application of Satellite Observations and Air Quality Modelling to Validation of NOx Anthropogenic EMEP Emissions Inventory over Central Europe. Atmosphere, 2021, 12, 1465.	1.0	5
491	Integral sentences and numerical comparative calculations for the validity of the dispersion model for air pollutants AUSTAL2000. Environmental Systems Research, 2020, 9, .	1.5	0
492	Estimating Health Impacts Due to the Reduction of Particulate Air Pollution from the Household Sector Expected under Various Scenarios. Applied Sciences (Switzerland), 2021, 11, 272.	1.3	3
493	Prioritising the sources of pollution in European cities: do air quality modelling applications provide consistent responses?. Geoscientific Model Development, 2020, 13, 5725-5736.	1.3	4
494	Estimating nitrogen risk to Himalayan forests using thresholds for lichen bioindicators. Biological Conservation, 2022, 265, 109401.	1.9	4
495	Simulating nitrate formation mechanisms during PM2.5 events in Taiwan and their implications for the controlling direction. Atmospheric Environment, 2022, 269, 118856.	1.9	7
496	Electrification of Road Transport and the Impacts on Air Quality and Health in the UK. Atmosphere, 2021, 12, 1491.	1.0	21
497	Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting. Sensors, 2021, 21, 8009.	2.1	5
498	Evaluation of global EMEP MSC-W (rv4.34) WRF (v3.9.1.1) model surface concentrations and wet deposition of reactive N and S with measurements. Geoscientific Model Development, 2021, 14, 7021-7046.	1.3	20
499	Modelling the influence of biotic plant stress on atmospheric aerosol particle processes throughout a growing season. Atmospheric Chemistry and Physics, 2021, 21, 17389-17431.	1.9	6
500	A novel multi-pollutant space-time learning network for air pollution inference. Science of the Total Environment, 2022, 811, 152254.	3.9	9
501	Health and Economic Burden of the 2017 Portuguese Extreme Wildland Fires on Children. International Journal of Environmental Research and Public Health, 2022, 19, 593.	1.2	4

#	Article	IF	CITATIONS
502	Modelling changes in secondary inorganic aerosol formation and nitrogen deposition in Europe from 2005 to 2030. Atmospheric Chemistry and Physics, 2022, 22, 1311-1331.	1.9	6
503	Potential for future reductions of global GHG and air pollutants from circular waste management systems. Nature Communications, 2022, 13, 106.	5.8	86
504	Designing local air pollution policies focusing on mobility and heating to avoid a targeted number of pollution-related deaths: Forward and backward approaches combining air pollution modeling, health impact assessment and cost-benefit analysis. Environment International, 2022, 159, 107030.	4.8	13
505	High-resolution biogenic global emission inventory for the time period 2000–2019 for air quality modelling. Earth System Science Data, 2022, 14, 251-270.	3.7	32
506	Improvement of stomatal resistance and photosynthesis mechanism of Noah-MP-WDDM (v1.42) in simulation of NO ₂ dry deposition velocity in forests. Geoscientific Model Development, 2022, 15, 787-801.	1.3	3
507	Downscaling of air pollutants in Europe using uEMEP_v6. Geoscientific Model Development, 2022, 15, 449-465.	1.3	11
508	Hitting the hotspots – Targeted deployment of air source heat pump technology to deliver clean air communities and climate progress: A case study of Ireland. Atmospheric Environment: X, 2022, , 100155.	0.8	2
509	An exceedance score for the assessment of the impact of nitrogen deposition on habitats in the UK. Environmental Modelling and Software, 2022, 150, 105355.	1.9	4
510	Why is the city's responsibility for its air pollution often underestimated? A focus on PM _{2.5} . Atmospheric Chemistry and Physics, 2021, 21, 18195-18212.	1.9	17
511	Quantification of temperature dependence of NO emissions from road traffic in Norway using air quality modelling and monitoring data. Atmospheric Environment: X, 2022, 13, 100160.	0.8	2
512	Modelling the Impact of National vs. Local Emission Reduction on PM2.5 in the West Midlands, UK Using WRF-CMAQ. Atmosphere, 2022, 13, 377.	1.0	9
513	Sulfur and Nitrogen Depositions in BULGARIA—Model Results and Observations. Atmosphere, 2022, 13, 343.	1.0	1
514	Water Limitation in Forest Soils Regulates the Increase in Weathering Rates under Climate Change. Forests, 2022, 13, 310.	0.9	4
515	Coupling the TEB and Surfatm Models for Heat Flux Modelling in Urban Area: Comparison With Flux Measurements in Strasbourg (France). Frontiers in Environmental Science, 2022, 10, .	1.5	1
516	Estimates of the economic damage due to the soiling of residential buildings induced by air pollution in Italy. Environmental Science and Pollution Research, 2022, 29, 52336-52354.	2.7	2
517	New Evidence for the Importance of Nonâ€Stomatal Pathways in Ozone Deposition During Extreme Heat and Dry Anomalies. Geophysical Research Letters, 2022, 49, .	1.5	4
518	Response of atmospheric deposition and surface water chemistry to the COVID-19 lockdown in an alpine area. Environmental Science and Pollution Research, 2022, , 1.	2.7	5
519	The Effect of Land Use Classification on the Gasâ€Phase and Particle Composition of the Troposphere: Tree Species Versus Forest Type Information. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3

#	Article	IF	CITATIONS
520	Impact of lidar data assimilation on planetary boundary layer wind and PM2.5 prediction in Taiwan. Atmospheric Environment, 2022, 277, 119064.	1.9	2
521	Ozone modelling and mapping for risk assessment: An overview of different approaches for human and ecosystems health. Environmental Research, 2022, 211, 113048.	3.7	31
522	ChAP 1.0: a stationary tropospheric sulfur cycle for Earth system models of intermediate complexity. Geoscientific Model Development, 2021, 14, 7725-7747.	1.3	3
523	Advances in air quality research – current and emerging challenges. Atmospheric Chemistry and Physics, 2022, 22, 4615-4703.	1.9	63
525	Modelling the Impact of the Introduction of the EURO 6d-TEMP/6d Regulation for Light-Duty Vehicles on EU Air Quality. Applied Sciences (Switzerland), 2022, 12, 4257.	1.3	6
526	Model evaluation of short-lived climate forcers for the Arctic Monitoring and Assessment Programme: a multi-species, multi-model study. Atmospheric Chemistry and Physics, 2022, 22, 5775-5828.	1.9	15
527	Chemistry Across Multiple Phases (CAMP) version 1.0: an integrated multiphase chemistry model. Geoscientific Model Development, 2022, 15, 3663-3689.	1.3	3
528	Inequality in exposure to air pollutants: A new perspective. Environmental Research, 2022, 212, 113358.	3.7	4
529	CO2 emissions from energy systems and industrial processes: Inventories from data- and proxy-driven approaches. , 2022, , 31-57.		1
530	Effects of vertical ship exhaust plume distributions on urban pollutant concentration – a sensitivity study with MITRAS v2.0 and EPISODE-CityChem v1.4. Geoscientific Model Development, 2022, 15, 4077-4103.	1.3	3
531	Assessing the Impact of Local Policies on PM2.5 Concentration Levels: Application to 10 European Cities. Sustainability, 2022, 14, 6384.	1.6	3
532	Exposure of Individuals in Europe to Air Pollution and Related Health Effects. Frontiers in Public Health, 2022, 10, .	1.3	1
533	Disentangling effects of natural and anthropogenic drivers on forest net ecosystem production. Science of the Total Environment, 2022, 839, 156326.	3.9	9
534	â€~Real-time' air quality channels: A technology review of emerging environmental alert systems. Big Data and Society, 2022, 9, 205395172211013.	2.6	4
535	Eurodelta multi-model simulated and observed particulate matterÂtrends in Europe in the period ofÂ1990–2010. Atmospheric Chemistry and Physics, 2022, 22, 7207-7257.	1.9	7
536	Assessing the representativity of NH ₃ measurements influenced by boundary-layer dynamics and the turbulent dispersion of a nearby emission source. Atmospheric Chemistry and Physics, 2022, 22, 8241-8257.	1.9	2
537	High-Resolution Urban Air Quality Mapping for Multiple Pollutants Based on Dense Monitoring Data and Machine Learning. International Journal of Environmental Research and Public Health, 2022, 19, 8005.	1.2	4
538	A new assessment of global and regional budgets, fluxes, and lifetimes of atmospheric reactive N and S gases and aerosols. Atmospheric Chemistry and Physics, 2022, 22, 8343-8368.	1.9	5

#	ARTICLE	IF	CITATIONS
539	Exposure to global change pressures and potential impacts on ecosystem services of mountain lakes in the European Alps. Journal of Environmental Management, 2022, 318, 115606.	3.8	14
540	Soil Ph Change and Their Non-Linear Response to Environmental Factors Under Different Ecosystems at the Continental Scale. SSRN Electronic Journal, 0, , .	0.4	0
541	Italian reference rivers under the Water Framework Directive umbrella: do natural factors actually depict the observed nutrient conditions?. Environmental Sciences Europe, 2022, 34, .	2.6	4
542	QUADICA: water QUAlity, DIscharge and Catchment Attributes for large-sample studies in Germany. Earth System Science Data, 2022, 14, 3715-3741.	3.7	6
543	Economics of planning electricity transmission considering environmental and health externalities. IScience, 2022, 25, 104815.	1.9	2
544	Assessment and intercomparison of ozone dry deposition schemes over two ecosystems based on Noah-MP in China. Atmospheric Environment, 2022, 290, 119353.	1.9	4
545	Evaluation of multidecadal high-resolution atmospheric chemistry-transport modelling for exposure assessments in the continental Nordic countries. Atmospheric Environment, 2022, 290, 119334.	1.9	19
546	Interannual variability of ozone fluxes in a broadleaf deciduous forest in Italy. Elementa, 2022, 10, .	1.1	3
547	Evaluation of local measurement-driven adjustments of modelled cloud-free atmospheric photolysis rate coefficients. Environmental Science Atmospheres, 0, , .	0.9	3
548	A New Method for the Evaluation and Visualization of Air Pollutant Level Predictions. Atmosphere, 2022, 13, 1456.	1.0	0
549	Non-linearity of secondary pollutant formation estimated from emissions data and measured precursor-secondary pollutant relationships. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	3
550	Improving pedotransfer functions for predicting soil mineral associated organic carbon by ensemble machine learning. Geoderma, 2022, 428, 116208.	2.3	18
551	Development and Application of the SmartAQ High-Resolution Air Quality and Source Apportionment Forecasting System for European Urban Areas. Atmosphere, 2022, 13, 1693.	1.0	5
552	Optical properties of marine aerosol: modelling the transition from dry, irregularly shaped crystals to brine-coated, dissolving salt particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2023, 295, 108408.	1.1	4
553	Recent regional changes in nutrient fluxes of European surface waters. Science of the Total Environment, 2023, 858, 160063.	3.9	8
554	Evaluation of isoprene light response curves for bryophyte-dominated ecosystems and implications for atmospheric composition. , 2023, 2, 011002.		1
555	Reduced-form and complex ACTM modelling for air quality policy development: A model inter-comparison. Environment International, 2023, 171, 107676.	4.8	4
556	Atmospheric Dispersal of Pollutants and the Modelling of Air Pollution. , 2013, , 225-243.		0

#	Article	IF	CITATIONS
557	Biogenic isoprene emissions, dry deposition velocity, and surface ozone concentration during summer droughts, heatwaves, and normal conditions in southwestern Europe. Atmospheric Chemistry and Physics, 2023, 23, 1043-1071.	1.9	3
558	Comparing Sentinel-5P TROPOMI NO ₂ column observations with the CAMS regional air quality ensemble. Geoscientific Model Development, 2023, 16, 509-534.	1.3	5
559	Reproducible and relocatable regional ocean modelling: fundamentals and practices. Geoscientific Model Development, 2023, 16, 1481-1510.	1.3	1
560	Comparing Urban Anthropogenic NMVOC Measurements With Representation in Emission Inventories—A Global Perspective. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	2
561	A simple and fast method to downscale chemistry transport model output fields from the regional to the urban/district scale. Environmental Modelling and Software, 2023, 164, 105692.	1.9	1
562	Evaluations on numerical simulations of ozone dry deposition over the Yangtze River Delta1. Atmospheric Environment, 2023, 304, 119760.	1.9	0
563	Modelling Street-Scale Resolution Air Quality for the West Midlands (UK) Using the ADMS-Urban RML System. Springer Proceedings in Complexity, 2022, , 77-82.	0.2	0
564	Modelling the air quality benefits of EU climate mitigation policies using two different PM2.5-related health impact methodologies. Environment International, 2023, 172, 107760.	4.8	7
565	A Data Integration Approach to Estimating Personal Exposures to Air Pollution. , 2022, , .		1
566	Potential impact of shipping on air pollution in the Mediterranean region – a multimodel evaluation: comparison of photooxidants NO ₂ and O ₃ . Atmospheric Chemistry and Physics, 2023, 23, 1825-1862.	1.9	6
567	Low ozone dry deposition rates to sea ice during the MOSAiC field campaign: Implications for the Arctic boundary layer ozone budget. Elementa, 2023, 11, .	1.1	2
568	Modelling benzo(a)pyrene concentrations for different meteorological conditions – Analysis of lung cancer cases and associated economic costs. Environment International, 2023, 173, 107863.	4.8	2
569	Integrated Assessment Modelling of Future Air Quality in the UK to 2050 and Synergies with Net-Zero Strategies. Atmosphere, 2023, 14, 525.	1.0	2
570	Impacts of emissions policies on future UK mortality burdens associated with air pollution. Environment International, 2023, 174, 107862.	4.8	2
571	Trend and Interannual Variations of Reactive Nitrogen Deposition in China During 2008–2017 and the Roles of Anthropogenic Emissions and Meteorological Conditions. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	4
579	Emissions on Global Scale. , 2023, , 1-42.		0
586	Natural Emissions on Global Scale. , 2023, , 1-42.		0
596	Natural Emissions on Global Scale. , 2023, , 53-93.		0

#	Article	IF	CITATIONS
602	Modeling nitrogen deposition in global forests. , 2024, , 39-55.		0
604	Monitoring nitrogen deposition in global forests. , 2024, , 17-38.		Ο