Thrombin and hemin as central factors in the mechanis hemorrhage $\hat{a} \in$ "induced secondary brain injury and as p

Neurosurgical Focus 32, E8 DOI: 10.3171/2012.1.focus11366

Citation Report

#	Article	IF	CITATIONS
1	Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury. Journal of Neuroinflammation, 2013, 10, 27.	3.1	165
2	Emerging experimental therapies for intracerebral hemorrhage: targeting mechanisms of secondary brain injury. Neurosurgical Focus, 2013, 34, E9.	1.0	65
3	Effects of thrombin on the secondary cerebral injury of perihematomal tissues of rats after intracerebral hemorrhage. Genetics and Molecular Research, 2014, 13, 4617-4626.	0.3	10
4	Mild Therapeutic Hypothermia Does Not Reduce Thrombin-Induced Brain Injury. Therapeutic Hypothermia and Temperature Management, 2014, 4, 180-187.	0.3	9
5	Extracellular hemoglobin - mediator of inflammation and cell death in the choroid plexus following preterm intraventricular hemorrhage. Journal of Neuroinflammation, 2014, 11, 200.	3.1	89
6	Thrombin Causes Neuronal Atrophy and Acute but not Chronic Cell Death. Canadian Journal of Neurological Sciences, 2014, 41, 714-720.	0.3	3
7	Inappropriate Expression of Hepcidin by Liver Congestion Contributes to Anemia and Relative Iron Deficiency. Journal of Cardiac Failure, 2014, 20, 268-277.	0.7	18
8	Tollâ€like receptor 2/4 heterodimer mediates inflammatory injury in intracerebral hemorrhage. Annals of Neurology, 2014, 75, 876-889.	2.8	130
9	Inflammation in intracerebral hemorrhage: From mechanisms to clinical translation. Progress in Neurobiology, 2014, 115, 25-44.	2.8	492
10	Refined Microdialysis Method for Protein Biomarker Sampling in Acute Brain Injury in the Neurointensive Care Setting. Analytical Chemistry, 2014, 86, 8671-8679.	3.2	30
11	Progressing haemorrhagic stroke: categories, causes, mechanisms and managements. Journal of Neurology, 2014, 261, 2061-2078.	1.8	68
12	Neuroprotective effects of argatroban and C5a receptor antagonist (PMX53) following intracerebral haemorrhage. Clinical and Experimental Immunology, 2014, 175, 285-295.	1.1	41
13	Early Combined Therapy with Pharmacologically Induced Hypothermia and Edaravone Exerts Neuroprotective Effects in a Rat Model of Intracerebral Hemorrhage. Cell Biochemistry and Biophysics, 2015, 73, 581-587.	0.9	8
14	Neuroprotective Effects of 17i;½-Estradiol against Thrombin-Induced Apoptosis in Primary Cultured Cortical Neurons. Pharmacology, 2015, 96, 284-289.	0.9	3
15	The protective role of (â^')-epigallocatechin-3-gallate in thrombin-induced neuronal cell apoptosis and JNK-MAPK activation. NeuroReport, 2015, 26, 416-423.	0.6	23
16	What's New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment. International Journal of Molecular Sciences, 2015, 16, 11903-11965.	1.8	64
17	Systems approach to the study of brain damage in the very preterm newborn. Frontiers in Systems Neuroscience, 2015, 9, 58.	1.2	21
18	CD163/Hemoglobin Oxygenase-1 Pathway Regulates Inflammation in Hematoma Surrounding Tissues after Intracerebral Hemorrhage. Journal of Stroke and Cerebrovascular Diseases, 2015, 24, 2800-2809.	0.7	33

#	Article	IF	CITATIONS
19	Interference with protease-activated receptor 1 does not reduce damage to subventricular zone cells of immature rodent brain following exposure to blood or blood plasma. Journal of Negative Results in BioMedicine, 2015, 14, 3.	1.4	1
20	Modulating the Immune Response Towards a Neuroregenerative Peri-injury Milieu After Cerebral Hemorrhage. Journal of NeuroImmune Pharmacology, 2015, 10, 576-586.	2.1	49
21	Haemorrhage and hemicraniectomy. Current Opinion in Neurology, 2015, 28, 16-22.	1.8	19
22	Serum protein gamma-glutamyl hydrolase, Ig gamma-3 chain C region, and haptoglobin are associated with the syndromes of pulmonary tuberculosis in traditional Chinese medicine. BMC Complementary and Alternative Medicine, 2015, 15, 243.	3.7	15
23	Pleiotropic Role of <scp>PPAR</scp> <i>γ</i> in Intracerebral Hemorrhage: An Intricate System Involving Nrf2, <scp>RXR</scp> , and <scp>NF</scp> â€ <i>ΰ</i> B. CNS Neuroscience and Therapeutics, 2015, 21, 357-366.	1.9	99
24	Green Tea Treatment Attenuates Oxidative Damage and Neuromotor Deficit Induced by an Experimental Model of Intracerebral Hemorrhage in Rats. American Journal of Neuroscience, 2016, 7, 11-18.	0.4	0
25	Targeting Secondary Hematoma Expansion in Spontaneous Intracerebral Hemorrhage – State of the Art. Frontiers in Neurology, 2016, 7, 187.	1.1	20
26	The Effect of Minimally Invasive Hematoma Aspiration on the JNK Signal Transduction Pathway after Experimental Intracerebral Hemorrhage in Rats. International Journal of Molecular Sciences, 2016, 17, 710.	1.8	18
27	Augmented expression of TSPO after intracerebral hemorrhage: a role in inflammation?. Journal of Neuroinflammation, 2016, 13, 151.	3.1	71
28	Post-Injury Administration of Tert-butylhydroquinone Attenuates Acute Neurological Injury After Intracerebral Hemorrhage in Mice. Journal of Molecular Neuroscience, 2016, 58, 525-531.	1.1	35
29	Stages of the Inflammatory Response in Pathology and Tissue Repair after Intracerebral Hemorrhage. Seminars in Neurology, 2016, 36, 288-297.	0.5	78
30	Mechanism and Therapy of Brain Edema after Intracerebral Hemorrhage. Cerebrovascular Diseases, 2016, 42, 155-169.	0.8	186
31	Effect of thrombin preconditioning on migration of subventricular zone-derived cells after intracerebral hemorrhage in rats. Neurological Research, 2016, 38, 809-816.	0.6	2
32	Neurovascular Repair After Stroke. Springer Series in Translational Stroke Research, 2016, , 347-375.	0.1	0
33	Enhanced Neuroprotection of Minimally Invasive Surgery Joint Local Cooling Lavage against ICH-induced Inflammation Injury and Apoptosis in Rats. Cellular and Molecular Neurobiology, 2016, 36, 647-655.	1.7	15
34	Inflammation in central nervous system diseases. Clinical and Experimental Neuroimmunology, 2016, 7, 18-27.	0.5	1
35	Treatment of Edema Associated With Intracerebral Hemorrhage. Current Treatment Options in Neurology, 2016, 18, 9.	0.7	22
36	The Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway as a Discovery Target in Stroke. Journal of Molecular Neuroscience, 2016, 59, 90-98.	1.1	158

#	Article	IF	CITATIONS
37	The Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid (SAHA) Confers Acute Neuroprotection After Intracerebral Hemorrhage in Mice. Translational Stroke Research, 2016, 7, 141-148.	2.3	47
38	USP11, Deubiquitinating Enzyme, Associated with Neuronal Apoptosis Following Intracerebral Hemorrhage. Journal of Molecular Neuroscience, 2016, 58, 16-27.	1.1	17
39	Effect Comparison of Both Iron Chelators on Outcomes, Iron Deposit, and Iron Transporters After Intracerebral Hemorrhage in Rats. Molecular Neurobiology, 2016, 53, 3576-3585.	1.9	48
40	Autophagy Promotes Microglia Activation Through Beclin-1-Atg5 Pathway in Intracerebral Hemorrhage. Molecular Neurobiology, 2017, 54, 115-124.	1.9	40
41	ROS/TXNIP pathway contributes to thrombin induced NLRP3 inflammasome activation and cell apoptosis in microglia. Biochemical and Biophysical Research Communications, 2017, 485, 499-505.	1.0	85
42	Contralateral Hemispheric Brain Atrophy After Primary Intracerebral Hemorrhage. World Neurosurgery, 2017, 102, 56-64.	0.7	4
43	Dabigatran ameliorates post-haemorrhagic hydrocephalus development after germinal matrix haemorrhage in neonatal rat pups. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3135-3149.	2.4	19
44	Cortical hemorrhageâ€associated neurological deficits and tissue damage in mice are ameliorated by therapeutic treatment with nicotine. Journal of Neuroscience Research, 2017, 95, 1838-1849.	1.3	18
45	Isoliquiritigenin alleviates early brain injury after experimental intracerebral hemorrhage via suppressing ROS- and/or NF-κB-mediated NLRP3 inflammasome activation by promoting Nrf2 antioxidant pathway. Journal of Neuroinflammation, 2017, 14, 119.	3.1	237
46	Modulators of microglial activation and polarization after intracerebral haemorrhage. Nature Reviews Neurology, 2017, 13, 420-433.	4.9	552
47	Hemoglobin pretreatment endows rat cortical astrocytes resistance to hemin-induced toxicity via Nrf2/HO-1 pathway. Experimental Cell Research, 2017, 361, 217-224.	1.2	18
48	Early to Long-Term Alterations of CNS Barriers After Traumatic Brain Injury: Considerations for Drug Development. AAPS Journal, 2017, 19, 1615-1625.	2.2	17
49	Naringin Reverses Neurobehavioral and Biochemical Alterations in Intracerebroventricular Collagenase-Induced Intracerebral Hemorrhage in Rats. Pharmacology, 2017, 100, 172-187.	0.9	33
50	Silymarin prevents NLRP3 inflammasome activation and protects against intracerebral hemorrhage. Biomedicine and Pharmacotherapy, 2017, 93, 308-315.	2.5	36
51	Thrombin-induced, TNFR-dependent miR-181c downregulation promotes MLL1 and NF-κB target gene expression in human microglia. Journal of Neuroinflammation, 2017, 14, 132.	3.1	37
52	Heme molecule functions as an endogenous agonist of astrocyte TLR2 to contribute to secondary brain damage after intracerebral hemorrhage. Molecular Brain, 2017, 10, 27.	1.3	31
53	Thrombin-induced apoptosis in neurons through activation of c-Jun-N-terminal kinase. Toxicology Mechanisms and Methods, 2017, 27, 18-23.	1.3	6
54	Hepcidin Protects Neuron from Hemin-Mediated Injury by Reducing Iron. Frontiers in Physiology, 2017, 8, 332.	1.3	31

#	Article	IF	CITATIONS
55	SSTR2 associated with neuronal apoptosis after intracerebral hemorrhage in adult rats. Neurological Research, 2018, 40, 221-230.	0.6	1
56	Neutrophil-to-Lymphocyte Ratio Is an Independent Predictor of 30-Day Mortality of Intracerebral Hemorrhage Patients: a Validation Cohort Study. Neurotoxicity Research, 2018, 34, 347-352.	1.3	37
57	Cofilin Mediates LPS-Induced Microglial Cell Activation and Associated Neurotoxicity Through Activation of NF-κB and JAK–STAT Pathway. Molecular Neurobiology, 2018, 55, 1676-1691.	1.9	63
58	Mechanisms and Therapeutic Targets of Depression After Intracerebral Hemorrhage. Frontiers in Psychiatry, 2018, 9, 682.	1.3	37
59	Royal Jelly Attenuates LPS-Induced Inflammation in BV-2 Microglial Cells through Modulating NF- <i>ΰ</i> B and p38/JNK Signaling Pathways. Mediators of Inflammation, 2018, 2018, 1-11.	1.4	54
60	The neuroprotective effects and probable mechanisms of Ligustilide and its degradative products on intracerebral hemorrhage in mice. International Immunopharmacology, 2018, 63, 43-57.	1.7	46
61	[125 I]IodoDPA-713 Binding to 18 kDa Translocator Protein (TSPO) in a Mouse Model of Intracerebral Hemorrhage: Implications for Neuroimaging. Frontiers in Neuroscience, 2018, 12, 66.	1.4	4
62	Opportunities in posthemorrhagic hydrocephalus research: outcomes of the Hydrocephalus Association Posthemorrhagic Hydrocephalus Workshop. Fluids and Barriers of the CNS, 2018, 15, 11.	2.4	35
63	Acetazolamide alleviates sequelae of hyperglycaemic intracerebral haemorrhage by suppressing astrocytic reactive oxygen species. Free Radical Research, 2018, 52, 1010-1019.	1.5	3
64	Inhibition of Toll-Like Receptor-4 (TLR-4) Improves Neurobehavioral Outcomes After Acute Ischemic Stroke in Diabetic Rats: Possible Role of Vascular Endothelial TLR-4. Molecular Neurobiology, 2019, 56, 1607-1617.	1.9	39
65	Early increase of neutrophilâ€toâ€lymphocyte ratio predicts 30â€day mortality in patients with spontaneous intracerebral hemorrhage. CNS Neuroscience and Therapeutics, 2019, 25, 30-35.	1.9	34
66	Intracerebral Hemorrhage: Blood Components and Neurotoxicity. Brain Sciences, 2019, 9, 316.	1.1	39
68	Serial Metabolic Evaluation of Perihematomal Tissues in the Intracerebral Hemorrhage Pig Model. Frontiers in Neuroscience, 2019, 13, 888.	1.4	12
69	Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles. Journal of Neuroinflammation, 2019, 16, 178.	3.1	200
70	Contralateral Brain Atrophy in Conservatively Treated Primary Intracerebral Hemorrhage. World Neurosurgery, 2019, 128, e391-e396.	0.7	0
71	Differential Cellular Expression of Galectin-1 and Galectin-3 After Intracerebral Hemorrhage. Frontiers in Cellular Neuroscience, 2019, 13, 157.	1.8	19
72	Deferoxamine therapy reduces brain hemin accumulation after intracerebral hemorrhage in piglets. Experimental Neurology, 2019, 318, 244-250.	2.0	28
73	Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Progress in Neurobiology, 2019, 178, 101610.	2.8	185

#	Article	IF	CITATIONS
74	Protocatechuic acid exerts protective effects via suppression of the P38/JNK- NF-κB signalling pathway in an experimental mouse model of intracerebral haemorrhage. European Journal of Pharmacology, 2019, 854, 128-138.	1.7	24
75	The protection of New Interacting Motif E shot (NIMoEsh) in mice with collagenase-induced acute stage of intracerebral hemorrhage. Brain Research Bulletin, 2019, 148, 70-78.	1.4	2
76	Novel Insights into MSK1 Phosphorylation by MRKβ in Intracerebral Hemorrhage-Induced Neuronal Apoptosis. Cell Transplantation, 2019, 28, 783-795.	1.2	1
77	Cerebral microbleeds: Beyond the macroscope. International Journal of Stroke, 2019, 14, 468-475.	2.9	26
78	NLRP3 inflammasome contributes to neurovascular unit damage in stroke. Journal of Drug Targeting, 2019, 27, 866-875.	2.1	20
79	Posthemorrhagic hydrocephalus development after germinal matrix hemorrhage: Established mechanisms and proposed pathways. Journal of Neuroscience Research, 2020, 98, 105-120.	1.3	58
80	Recent Progress in Autocatalytic Ceria Nanoparticles-Based Translational Research on Brain Diseases. ACS Applied Nano Materials, 2020, 3, 1043-1062.	2.4	27
81	The Cerebral Thrombin System Is Activated after Intracerebral Hemorrhage and Contributes to Secondary Lesion Growth and Poor Neurological Outcome in C57Bl/6 Mice. Journal of Neurotrauma, 2020, 37, 1481-1490.	1.7	7
82	The protective effects of prolactin on brain injury. Life Sciences, 2020, 263, 118547.	2.0	10
83	Potential therapeutic targets for intracerebral hemorrhage-associated inflammation: An update. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1752-1768.	2.4	91
84	Long-term outcomes of monascin – a novel dual peroxisome proliferator-activated receptor γ/nuclear factor-erythroid 2 related factor-2 agonist in experimental intracerebral hemorrhage. Therapeutic Advances in Neurological Disorders, 2020, 13, 175628642092108.	1.5	15
85	Intracerebral hemorrhage in translational research. Brain Hemorrhages, 2020, 1, 13-18.	0.4	6
86	Effect of MicroRNA-126a-3p on Bone Marrow Mesenchymal Stem Cells Repairing Blood-brain Barrier and Nerve Injury after Intracerebral Hemorrhage. Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 104748.	0.7	19
87	Mechanisms and potential therapeutic targets for spontaneous intracerebral hemorrhage. Brain Hemorrhages, 2020, 1, 99-104.	0.4	14
88	The Role of Urocortins in Intracerebral Hemorrhage. Biomolecules, 2020, 10, 96.	1.8	7
89	Ghrelin attenuates secondary brain injury following intracerebral hemorrhage by inhibiting NLRP3 inflammasome activation and promoting Nrf2/ARE signaling pathway in mice. International Immunopharmacology, 2020, 79, 106180.	1.7	31
90	HDAC inhibition reduces white matter injury after intracerebral hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 958-974.	2.4	37
91	Brain injury and repair after intracerebral hemorrhage: The role of microglia and brain-infiltrating macrophages. Neurochemistry International, 2021, 142, 104923.	1.9	21

#	Article	IF	CITATIONS
92	Hemostasis functions are associated with hemorrhagic transformation in non-atrial fibrillation patients: a case-control study. BMC Neurology, 2021, 21, 36.	0.8	2
93	Clemastine promotes recovery of neural function and suppresses neuronal apoptosis by restoring balance of pro-inflammatory mediators in an experimental model of intracerebral hemorrhage. International Journal of Medical Sciences, 2021, 18, 639-645.	1.1	8
94	Linking Labile Heme with Thrombosis. Journal of Clinical Medicine, 2021, 10, 427.	1.0	23
95	Usage of Angiotensin-Converting Enzyme Inhibitor or Angiotensin II Receptor Blocker in Hypertension Intracerebral Hemorrhage. Neuropsychiatric Disease and Treatment, 2021, Volume 17, 355-363.	1.0	3
96	Intracerebral Hemorrhage and Diabetes Mellitus: Blood-Brain Barrier Disruption, Pathophysiology and Cognitive Impairments. CNS and Neurological Disorders - Drug Targets, 2021, 20, 312-326.	0.8	11
97	TGF-β1-Mediated Activation of SERPINE1 is Involved in Hemin-Induced Apoptotic and Inflammatory Injury in HT22 Cells. Neuropsychiatric Disease and Treatment, 2021, Volume 17, 423-433.	1.0	13
98	Mesenchymal Stem Cells Transplantation in Intracerebral Hemorrhage: Application and Challenges. Frontiers in Cellular Neuroscience, 2021, 15, 653367.	1.8	10
99	Mechanism of White Matter Injury and Promising Therapeutic Strategies of MSCs After Intracerebral Hemorrhage. Frontiers in Aging Neuroscience, 2021, 13, 632054.	1.7	11
100	Metabolic Insight Into the Neuroprotective Effect of Tao-He-Cheng-Qi (THCQ) Decoction on ICH Rats Using Untargeted Metabolomics. Frontiers in Pharmacology, 2021, 12, 636457.	1.6	5
101	Effects of Hemodialysis on Prognosis in Individuals with Comorbid ERSD and ICH: A Retrospective Single-Center Study. Journal of Stroke and Cerebrovascular Diseases, 2021, 30, 105686.	0.7	2
102	Dysregulation of microRNA and Intracerebral Hemorrhage: Roles in Neuroinflammation. International Journal of Molecular Sciences, 2021, 22, 8115.	1.8	8
103	Secondary White Matter Injury and Therapeutic Targets After Subarachnoid Hemorrhage. Frontiers in Neurology, 2021, 12, 659740.	1.1	9
104	On the Origin of Paroxysmal Depolarization Shifts: The Contribution of Cav1.x Channels as the Common Denominator of a Polymorphous Neuronal Discharge Pattern. Neuroscience, 2021, 468, 265-281.	1.1	0
105	Type-I diabetes aggravates post-hemorrhagic stroke cognitive impairment by augmenting oxidative stress and neuroinflammation in mice. Neurochemistry International, 2021, 149, 105151.	1.9	12
106	Safety and efficacy of normobaric oxygenation on rescuing acute intracerebral hemorrhage-mediated brain damage—a protocol of randomized controlled trial. Trials, 2021, 22, 93.	0.7	3
107	White Matter Injury After Experimental Intracerebral Hemorrhage. , 2014, , 219-256.		1
108	Effect of Decompressive Craniectomy on Perihematomal Edema in Patients with Intracerebral Hemorrhage. PLoS ONE, 2016, 11, e0149169.	1.1	20
109	Hydrochloride fasudil attenuates brain injury in ICH rats. Translational Neuroscience, 2020, 11, 75-86.	0.7	11

#	Article	IF	Citations
110	Comparing the Effect of Memantine and Placebo on Clinical Outcome of Intracranial Hemorrhage: A Randomized Double Blind Clinical Trial. Caspian Journal of Neurological Sciences, 2015, 1, 11-18.	0.1	7
111	Hematoma Expansion Following Intracerebral Hemorrhage: Mechanisms Targeting the Coagulation Cascade and Platelet Activation. Current Drug Targets, 2017, 18, 1329-1344.	1.0	28
112	Programmed Cell Death after Intracerebral Hemorrhage. Current Neuropharmacology, 2018, 16, 1267-1281.	1.4	77
113	Neuroprotective Methodologies of Co-Enzyme Q10 Mediated Brain Hemorrhagic Treatment: Clinical and Pre-Clinical Findings. CNS and Neurological Disorders - Drug Targets, 2019, 18, 446-465.	0.8	10
114	CD163 promotes hematoma absorption and improves neurological functions in patients with intracerebral hemorrhage. Neural Regeneration Research, 2016, 11, 1122.	1.6	23
115	Neuroinflammation after Intracerebral Hemorrhage and Potential Therapeutic Targets. Journal of Stroke, 2020, 22, 29-46.	1.4	233
116	The switch-like expression of heme-regulated kinase 1 mediates neuronal proteostasis following proteasome inhibition. ELife, 2020, 9, .	2.8	36
117	Pharmacokinetics and Acute Toxicity of a Histone Deacetylase Inhibitor, Scriptaid, and its Neuroprotective Effects in Mice After Intracranial Hemorrhage. CNS and Neurological Disorders - Drug Targets, 2020, 19, 55-65.	0.8	2
118	Diagnostics of cerebral amyloid angiopathy: the way to Boston criteria 2.0. Russian Neurological Journal, 2020, 25, 4-13.	0.1	2
119	Community-Based Rehabilitation Promotes the Functional Recovery of Patients After Intracerebral Hemorrhage. Neurologist, 2022, 27, 89-94.	0.4	1
120	The pivotal role of the NLRC4 inflammasome in neuroinflammation after intracerebral hemorrhage in rats. Experimental and Molecular Medicine, 2021, 53, 1807-1818.	3.2	14
121	Sepsis-Exacerbated Brain Dysfunction After Intracerebral Hemorrhage. Frontiers in Cellular Neuroscience, 2021, 15, 819182.	1.8	3
122	Atorvastatin suppresses NLRP3 inflammasome activation in intracerebral hemorrhage via TLR4- and MyD88-dependent pathways. Aging, 2022, 14, 462-476.	1.4	12
123	Research Progress on the Role of Microglia Membrane Proteins or Receptors in Neuroinflammation and Degeneration. Frontiers in Cellular Neuroscience, 2022, 16, 831977.	1.8	7
124	Synthesis and Development of a Novel First-in-Class Cofilin Inhibitor for Neuroinflammation in Hemorrhagic Brain Injury. ACS Chemical Neuroscience, 2022, 13, 1014-1029.	1.7	8
125	Oxidative Stress Following Intracerebral Hemorrhage: From Molecular Mechanisms to Therapeutic Targets. Frontiers in Immunology, 2022, 13, 847246.	2.2	35
126	A Role of Complement in the Pathogenic Sequelae of Mouse Neonatal Germinal Matrix Hemorrhage. International Journal of Molecular Sciences, 2022, 23, 2943.	1.8	6
127	Revisiting Minocycline in Intracerebral Hemorrhage: Mechanisms and Clinical Translation. Frontiers in Immunology, 2022, 13, 844163.	2.2	10

#	Article	IF	Citations
128	Traditional Chinese medicine use in the pathophysiological processes of intracerebral hemorrhage and comparison with conventional therapy. Pharmacological Research, 2022, 179, 106200.	3.1	16
129	Maltol as a Novel Agent Protecting SH-SY5Y Cells Against Hemin-induced Ferroptosis. Chemical Research in Chinese Universities, 0, , 1.	1.3	0
130	Chapter 19. Advancements and Challenges in Hyperacute Stroke Translational Research. RSC Drug Discovery Series, 0, , 327-340.	0.2	0
133	Mesenchymal Stem Cell Application and Its Therapeutic Mechanisms in Intracerebral Hemorrhage. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	11
134	Secondary Brain Injury by Oxidative Stress After Cerebral Hemorrhage: Recent Advances. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	12
135	Microglia Phenotypes in Aging and Neurodegenerative Diseases. Cells, 2022, 11, 2091.	1.8	76
136	Secondary brain injury after polystyrene microplastic-induced intracerebral hemorrhage is associated with inflammation and pyroptosis. Chemico-Biological Interactions, 2022, 367, 110180.	1.7	19
137	Neurovascular Unit-Derived Extracellular Vesicles: From Their Physiopathological Roles to Their Clinical Applications in Acute Brain Injuries. Biomedicines, 2022, 10, 2147.	1.4	2
138	Exploring the Ferroptosis Mechanism of Zhilong Huoxue Tongyu Capsule for the Treatment of Intracerebral Hemorrhage Based on Network Pharmacology and In Vivo Validation. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-13.	0.5	0
139	Cytotoxic Edema and Adverse Clinical Outcomes in Patients with Intracerebral Hemorrhage. Neurocritical Care, 0, , .	1.2	1
140	Regulation of nuclear factor erythroid-2-related factor 2 as a potential therapeutic target in intracerebral hemorrhage. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	5
141	A pH-sensitive liposomal co-delivery of fingolimod and ammonia borane for treatment of intracerebral hemorrhage. Nanophotonics, 2022, .	2.9	2
142	Association of Soluble ST2 With Functional Outcome, Perihematomal Edema, and Immune Response After Intraparenchymal Hemorrhage. Neurology, 2023, 100, .	1.5	1
143	The comprehensive comparison of imaging sign from CT angiography and noncontrast CT for predicting intracranial hemorrhage expansion: A comparative study. Medicine (United States), 2022, 101, e31914.	0.4	1
144	TGF-β1 ameliorates BBB injury and improves long-term outcomes in mice after ICH. Biochemical and Biophysical Research Communications, 2023, 654, 136-144.	1.0	3
145	Bilateral basal ganglia hemorrhage: a systematic review of etiologies, management strategies, and clinical outcomes. Neurosurgical Review, 2023, 46, .	1.2	1