Upregulation of proteasome activity in muscle RING fir denervation

FASEB Journal 26, 2986-2999 DOI: 10.1096/fj.12-204495

Citation Report

#	Article	IF	CITATIONS
1	Suppression of atrogin-1 and MuRF1 prevents dexamethasone-induced atrophy of cultured myotubes. Metabolism: Clinical and Experimental, 2013, 62, 1495-1502.	1.5	61
2	Muscle wasting in cancer. International Journal of Biochemistry and Cell Biology, 2013, 45, 2215-2229.	1.2	154
3	Stain-Free total protein staining is a superior loading control to β-actin for Western blots. Analytical Biochemistry, 2013, 440, 186-188.	1.1	258
4	BMP signaling controls muscle mass. Nature Genetics, 2013, 45, 1309-1318.	9.4	379
5	High- versus moderate-intensity aerobic exercise training effects on skeletal muscle of infarcted rats. Journal of Applied Physiology, 2013, 114, 1029-1041.	1.2	78
6	Disuse-induced muscle wasting. International Journal of Biochemistry and Cell Biology, 2013, 45, 2200-2208.	1.2	288
7	Hibernation: The search for treatments to prevent disuse-induced skeletal muscle atrophy. Experimental Neurology, 2013, 248, 129-135.	2.0	35
8	Regulation of Acetylation Restores Proteolytic Function of Diseased Myocardium in Mouse and Human. Molecular and Cellular Proteomics, 2013, 12, 3793-3802.	2.5	42
9	Altered gene expression patterns in muscle ring finger 1 null mice during denervation- and dexamethasone-induced muscle atrophy. Physiological Genomics, 2013, 45, 1168-1185.	1.0	51
10	Investigation of wild-type and mycolactone-negative mutant Mycobacterium ulcerans on skeletal muscle: IGF-1 protects against mycolactone-induced muscle catabolism. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R753-R762.	0.9	5
11	Altered ubiquitin-proteasome signaling in right ventricular hypertrophy and failure. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H551-H562.	1.5	44
12	Genetics of Proteasome Diseases. Scientifica, 2013, 2013, 1-30.	0.6	69
13	Role of autophagy, SQSTM1, SH3GLB1, and TRIM63 in the turnover of nicotinic acetylcholine receptors. Autophagy, 2014, 10, 123-136.	4.3	86
14	Muscle hypertrophy is associated with increases in proteasome activity that is independent of MuRF1 and MAFbx expression. Frontiers in Physiology, 2014, 5, 69.	1.3	70
15	Novel sorafenib-based structural analogues. Anti-Cancer Drugs, 2014, 25, 433-446.	0.7	3
16	Maintenance of muscle mass and loadâ€induced growth in Muscle <scp>RING</scp> Finger 1 null mice with age. Aging Cell, 2014, 13, 92-101.	3.0	92
17	Autophagic Cellular Responses to Physical Exercise in Skeletal Muscle. Sports Medicine, 2014, 44, 625-640.	3.1	42
18	Identification of the Immunoproteasome as a Novel Regulator of Skeletal Muscle Differentiation. Molecular and Cellular Biology, 2014, 34, 96-109.	1.1	52

CITATION REPORT

#	Article	IF	CITATIONS
19	Crude and purified proteasome activity assays are affected by type of microplate. Analytical Biochemistry, 2014, 446, 44-52.	1.1	25
20	Post-transcriptional regulation of autophagy in C2C12 myotubes following starvation and nutrient restoration. International Journal of Biochemistry and Cell Biology, 2014, 54, 208-216.	1.2	7
21	Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E469-E484.	1.8	735
22	Dystrophin Involved in the Susceptibility of Slow Muscles to Hindlimb Unloading via Concomitant Activation of TGF-Î21/Smad3 Signaling and Ubiquitin–Proteasome Degradation in Mice. Cell Biochemistry and Biophysics, 2014, 70, 1057-1067.	0.9	16
23	Regulation of ubiquitin-proteasome and autophagy pathways after acute LPS and epoxomicin administration in mice. BMC Musculoskeletal Disorders, 2014, 15, 166.	0.8	27
24	Advances in the understanding of skeletal muscle weakness in murine models of diseases affecting nerve-evoked muscle activity, motor neurons, synapses and myofibers. Neuromuscular Disorders, 2014, 24, 960-972.	0.3	11
25	Protein damage, repair and proteolysis. Molecular Aspects of Medicine, 2014, 35, 1-71.	2.7	189
26	Role of E2-Ub-conjugating enzymes during skeletal muscle atrophy. Frontiers in Physiology, 2015, 6, 59.	1.3	38
27	Heat shock protein 70 overexpression does not attenuate atrophy in botulinum neurotoxin type A-treated skeletal muscle. Journal of Applied Physiology, 2015, 119, 83-92.	1.2	5
28	The Orphan Nuclear Receptor Nur77 Is a Determinant of Myofiber Size and Muscle Mass in Mice. Molecular and Cellular Biology, 2015, 35, 1125-1138.	1.1	40
29	Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting. Physiological Reviews, 2015, 95, 809-852.	13.1	287
30	Trichostatin A, a histone deacetylase inhibitor, modulates unloaded-induced skeletal muscle atrophy. Journal of Applied Physiology, 2015, 119, 342-351.	1.2	31
31	Pharmacology of manipulating lean body mass. Clinical and Experimental Pharmacology and Physiology, 2015, 42, 1-13.	0.9	12
32	Overexpression of Glucocorticoid Receptor Î ² Enhances Myogenesis and Reduces Catabolic Gene Expression. International Journal of Molecular Sciences, 2016, 17, 232.	1.8	22
33	Denervation-Induced Activation of the Ubiquitin-Proteasome System Reduces Skeletal Muscle Quantity Not Quality. PLoS ONE, 2016, 11, e0160839.	1.1	17
34	Denervation-Induced Activation of the Standard Proteasome and Immunoproteasome. PLoS ONE, 2016, 11, e0166831.	1.1	11
35	Properties of skeletal muscle in the teleost <i>Sternopygus macrurus</i> are unaffected by short-term electrical inactivity. Physiological Genomics, 2016, 48, 699-710.	1.0	1
36	Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia. FASEB Journal, 2016, 30, 3053-3068.	0.2	104

C 1-		ION	DO.	D.T.
		() N	PU	121
	. /		10	IX I

#	Article	IF	CITATIONS
37	Different effects of the nonsteroidal anti-inflammatory drugs meclofenamate sodium and naproxen sodium on proteasome activity in cardiac cells. Journal of Molecular and Cellular Cardiology, 2016, 94, 131-144.	0.9	28
38	Acute resistance exercise activates rapamycinâ€sensitive and â€insensitive mechanisms that control translational activity and capacity in skeletal muscle. Journal of Physiology, 2016, 594, 453-468.	1.3	129
39	Posttranslational modulation of FoxO1 contributes to cardiac remodeling in post-ischemic heart failure. Atherosclerosis, 2016, 249, 148-156.	0.4	20
40	Diclofenac induces proteasome and mitochondrial dysfunction in murine cardiomyocytes and hearts. International Journal of Cardiology, 2016, 223, 923-935.	0.8	43
41	Control of skeletal muscle atrophy in response to disuse: clinical/preclinical contentions and fallacies of evidence. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E594-E604.	1.8	117
42	Cervical spinal cord injury exacerbates ventilator-induced diaphragm dysfunction. Journal of Applied Physiology, 2016, 120, 166-177.	1.2	28
43	Protein breakdown in cancer cachexia. Seminars in Cell and Developmental Biology, 2016, 54, 11-19.	2.3	114
44	Molecular mechanism of sarcopenia and cachexia: recent research advances. Pflugers Archiv European Journal of Physiology, 2017, 469, 573-591.	1.3	114
45	Cullin E3 Ligase Activity Is Required for Myoblast Differentiation. Journal of Molecular Biology, 2017, 429, 1045-1066.	2.0	23
46	Epigallocatechin-3-gallate increases autophagy signaling in resting and unloaded plantaris muscles but selectively suppresses autophagy protein abundance in reloaded muscles of aged rats. Experimental Gerontology, 2017, 92, 56-66.	1.2	25
47	Inhibition of the proteasome partially attenuates atrophy in botulinum neurotoxin treated skeletal muscle. Toxicon, 2018, 144, 48-54.	0.8	2
48	Pyrroloquinoline quinone attenuates cachexia-induced muscle atrophy via suppression of reactive oxygen species. Journal of Thoracic Disease, 2018, 10, 2752-2759.	0.6	23
49	Do neurogenic and cancer-induced muscle atrophy follow common or divergent paths?. European Journal of Translational Myology, 2018, 28, 7931.	0.8	9
50	Mechanistic Role of Reactive Oxygen Species and Therapeutic Potential of Antioxidants in Denervation- or Fasting-Induced Skeletal Muscle Atrophy. Frontiers in Physiology, 2018, 9, 215.	1.3	74
51	HDAC4 preserves skeletal muscle structure following long-term denervation by mediating distinct cellular responses. Skeletal Muscle, 2018, 8, 6.	1.9	32
52	Exercise prevents impaired autophagy and proteostasis in a model of neurogenic myopathy. Scientific Reports, 2018, 8, 11818.	1.6	22
53	Muscleâ€ s pecific changes in protein synthesis with aging and reloading after disuse atrophy. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 1195-1209.	2.9	60
54	αâ^'Calcitonin gene-related peptide inhibits autophagy and calpain systems and maintains the stability of neuromuscular junction in denervated muscles. Molecular Metabolism, 2019, 28, 91-106.	3.0	16

#	Article	IF	CITATIONS
55	Mammalian target of rapamycin signaling and ubiquitin-proteasome–related gene expression in skeletal muscle of dairy cows with high or normal body condition score around calving. Journal of Dairy Science, 2019, 102, 11544-11560.	1.4	9
56	Normal Ribosomal Biogenesis but Shortened Protein Synthetic Response to Acute Eccentric Resistance Exercise in Old Skeletal Muscle. Frontiers in Physiology, 2018, 9, 1915.	1.3	24
57	AAV9-mediated delivery of miR-23a reduces disease severity in Smn2B/â^'SMA model mice. Human Molecular Genetics, 2019, 28, 3199-3210.	1.4	30
58	UBR5 is a novel E3 ubiquitin ligase involved in skeletal muscle hypertrophy and recovery from atrophy. Journal of Physiology, 2019, 597, 3727-3749.	1.3	53
59	Motor Endplate—Anatomical, Functional, and Molecular Concepts in the Historical Perspective. Cells, 2019, 8, 387.	1.8	27
60	Skeletal muscle denervation investigations: selecting an experimental control wisely. American Journal of Physiology - Cell Physiology, 2019, 316, C456-C461.	2.1	8
61	Antioxidants and Polyphenols Mediate Mitochondrial Mediated Muscle Death Signaling in Sarcopenia. , 2019, , 439-494.		1
62	Sarcopenia: Tilting the Balance of Protein Homeostasis. Proteomics, 2020, 20, e1800411.	1.3	25
63	Hyperbaric Oxygen Treatment Following Mid-Cervical Spinal Cord Injury Preserves Diaphragm Muscle Function. International Journal of Molecular Sciences, 2020, 21, 7219.	1.8	15
64	Identification and characterization of Fbxl22, a novel skeletal muscle atrophy-promoting E3 ubiquitin ligase. American Journal of Physiology - Cell Physiology, 2020, 319, C700-C719.	2.1	19
65	Mechanical loading of tissue engineered skeletal muscle prevents dexamethasone induced myotube atrophy. Journal of Muscle Research and Cell Motility, 2021, 42, 149-159.	0.9	11
66	Docosahexaenoic Acid, a Potential Treatment for Sarcopenia, Modulates the Ubiquitin–Proteasome and the Autophagy–Lysosome Systems. Nutrients, 2020, 12, 2597.	1.7	31
67	Edward F. Adolph Distinguished Lecture. Skeletal muscle atrophy: Multiple pathways leading to a common outcome. Journal of Applied Physiology, 2020, 129, 272-282.	1.2	28
68	Signaling Pathways That Control Muscle Mass. International Journal of Molecular Sciences, 2020, 21, 4759.	1.8	104
69	Fam83d modulates MAP kinase and AKT signaling and is induced during neurogenic skeletal muscle atrophy. Cellular Signalling, 2020, 70, 109576.	1.7	7
70	Expression of MuRF1 or MuRF2 is essential for the induction of skeletal muscle atrophy and dysfunction in a murine pulmonary hypertension model. Skeletal Muscle, 2020, 10, 12.	1.9	20
71	Linking mitochondrial dysfunction to sarcopenia. , 2021, , 1-58.		0
72	Identification of the MuRF1 Skeletal Muscle Ubiquitylome Through Quantitative Proteomics. Function, 2021, 2, zqab029.	1.1	28

#	ARTICLE	IF	CITATIONS
73	Maintenance of muscle mass in adult male mice is independent of testosterone. PLoS ONE, 2021, 16, e0240278.	1.1	12
74	Recent advances in measuring and understanding the regulation of exercise-mediated protein degradation in skeletal muscle. American Journal of Physiology - Cell Physiology, 2021, 321, C276-C287.	2.1	14
75	MERG1A Protein Abundance Increases in the Atrophied Skeletal Muscle of Denervated Mice, But Does Not Affect NFήB Activity. Journal of Neuropathology and Experimental Neurology, 2021, 80, 776-788.	0.9	6
76	Determining the contributions of protein synthesis and breakdown to muscle atrophy requires nonâ€steadyâ€state equations. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1764-1775.	2.9	15
77	Preliminary Observations on Skeletal Muscle Adaptation and Plasticity in Homer 2-/- Mice. Metabolites, 2021, 11, 642.	1.3	2
78	miR-125b-5p targeting TRAF6 relieves skeletal muscle atrophy induced by fasting or denervation. Annals of Translational Medicine, 2019, 7, 456-456.	0.7	35
79	The Calcineurin-FoxO-MuRF1 signaling pathway regulates myofibril integrity in cardiomyocytes. ELife, 2017, 6, .	2.8	33
80	Molecular basis of muscle hypertrophy and atrophy: Potential therapy for muscular dystrophy. The Journal of Physical Fitness and Sports Medicine, 2013, 2, 179-184.	0.2	1
85	Myostatin gene inactivation increases post-mortem calpain-dependent muscle proteolysis in mice. Meat Science, 2022, 185, 108726.	2.7	3
89	Removal of MuRF1 Increases Muscle Mass in Nemaline Myopathy Models, but Does Not Provide Functional Benefits. International Journal of Molecular Sciences, 2022, 23, 8113.	1.8	2
90	Dominant-negative p53-overexpression in skeletal muscle induces cell death and fiber atrophy in rats. Cell Death and Disease, 2022, 13, .	2.7	5
91	The role of mTORC1 in the regulation of skeletal muscle mass. Faculty Reviews, 0, 11, .	1.7	6
92	Tenotomy-induced muscle atrophy is sex-specific and independent of NFÎ $^{\circ}$ B. ELife, 0, 11, .	2.8	4
93	Age-Related Dysfunction in Proteostasis and Cellular Quality Control in the Development of Sarcopenia. Cells, 2023, 12, 249.	1.8	12

CITATION REPORT