DNA methylation dynamics, metabolic fluxes, gene spli honey bees

Proceedings of the National Academy of Sciences of the Unite 109, 4968-4973

DOI: 10.1073/pnas.1202392109

Citation Report

#	Article	IF	CITATIONS
1	Genome-wide and Caste-Specific DNA Methylomes of the Ants Camponotus floridanus and Harpegnathos saltator. Current Biology, 2012, 22, 1755-1764.	1.8	361
2	Epigenetics: The Making of Ant Castes. Current Biology, 2012, 22, R835-R838.	1.8	27
3	Molecular and biochemical characterization of the major royal jelly protein in bumblebees suggest a non-nutritive function. Insect Biochemistry and Molecular Biology, 2012, 42, 647-654.	1.2	22
4	Patterns of DNA Methylation in Development, Division of Labor and Hybridization in an Ant with Genetic Caste Determination. PLoS ONE, 2012, 7, e42433.	1.1	52
5	Evidence of a conserved functional role for <scp>DNA</scp> methylation in termites. Insect Molecular Biology, 2013, 22, 143-154.	1.0	36
6	Life history trade-offs in cancer evolution. Nature Reviews Cancer, 2013, 13, 883-892.	12.8	207
7	Biased gene expression in early honeybee larval development. BMC Genomics, 2013, 14, 903.	1.2	80
8	Identical sets of methylated and nonmethylated genes in Ciona intestinalis sperm and muscle cells. Epigenetics and Chromatin, 2013, 6, 38.	1.8	29
9	Honeybees and cell lines as models of DNA methylation and aging in response to diet. Experimental Gerontology, 2013, 48, 614-619.	1.2	20
10	Genetic underpinnings of division of labor in the honeybee (Apis mellifera). Trends in Genetics, 2013, 29, 641-648.	2.9	42
11	On the threshold of dispersal: hitchhiking on a giant fly favours exaggerated male traits in a male-dimorphic pseudoscorpion. Biological Journal of the Linnean Society, 2013, 108, 509-520.	0.7	10
12	Extensive histone post-translational modification in honey bees. Insect Biochemistry and Molecular Biology, 2013, 43, 125-137.	1.2	63
13	Neuropeptide F regulates male reproductive processes in the desert locust, Schistocerca gregaria. Insect Biochemistry and Molecular Biology, 2013, 43, 252-259.	1.2	36
14	The pea aphid (Acyrthosiphon pisum) genome encodes two divergent early developmental programs. Developmental Biology, 2013, 377, 262-274.	0.9	27
15	Non-canonical functions of the DNA methylome in gene regulation. Biochemical Journal, 2013, 451, 13-23.	1.7	75
16	Functions of DNA Methylation and Hydroxymethylation in Mammalian Development. Current Topics in Developmental Biology, 2013, 104, 47-83.	1.0	133
17	Genomewide analysis indicates that queen larvae have lower methylation levels in the honey bee (Apis) Tj ETQq0	0 0 rgBT /	Overlock 10

19	The Function of Intragenic DNA Methylation: Insights from Insect Epigenomes. Integrative and Comparative Biology, 2013, 53, 319-328.	0.9	9
----	--	-----	---

#	Article	IF	CITATIONS
20	Standard methods for molecular research in <i>Apis mellifera</i> . Journal of Apicultural Research, 2013, 52, 1-54.	0.7	150
21	Mechanisms regulating nutrition-dependent developmental plasticity through organ-specific effects in insects. Frontiers in Physiology, 2013, 4, 263.	1.3	106
22	Extinction Learning and Memory Formation in the Honeybee. Handbook of Behavioral Neuroscience, 2013, , 450-457.	0.7	1
23	TrueSight: a new algorithm for splice junction detection using RNA-seq. Nucleic Acids Research, 2013, 41, e51-e51.	6.5	31
24	Invertebrate Models in Addiction Research. Brain, Behavior and Evolution, 2013, 82, 153-165.	0.9	37
25	RNA interference knockdown of <i>DNA methyl-transferase 3</i> affects gene alternative splicing in the honey bee. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12750-12755.	3.3	237
26	Cross-Species Analysis of Genic GC3 Content and DNA Methylation Patterns. Genome Biology and Evolution, 2013, 5, 1443-1456.	1.1	57
27	Expression of Sir2, Hdac1 and Ash2 in Honey Bee (Apis Mellifera L.) Queens and Workers. Journal of Apicultural Science, 2013, 57, 67-73.	0.1	5
28	Infection with a Virulent Strain of Wolbachia Disrupts Genome Wide-Patterns of Cytosine Methylation in the Mosquito Aedes aegypti. PLoS ONE, 2013, 8, e66482.	1.1	57
29	Changes in Alternative Splicing in Apis Mellifera Bees Fed Apis Cerana Royal Jelly. Journal of Apicultural Science, 2014, 58, 25-31.	0.1	2
30	Conserved and Divergent Patterns of DNA Methylation in Higher Vertebrates. Genome Biology and Evolution, 2014, 6, 2998-3014.	1.1	27
31	The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima. PLoS Biology, 2014, 12, e1002005.	2.6	221
32	Epigenetics as an answer to Darwinââ,¬â"¢s ââ,¬Å"special difficultyââ,¬Â• Frontiers in Genetics, 2014, 5, 321	. 1.1	10
33	Epigenomics and the concept of degeneracy in biological systems. Briefings in Functional Genomics, 2014, 13, 191-202.	1.3	52
34	Identification of reference genes for RT-qPCR in ovine mammary tissue during late pregnancy and lactation and in response to maternal nutritional programming. Physiological Genomics, 2014, 46, 560-570.	1.0	12
35	Whole-Genome DNA Methylation Profile of the Jewel Wasp (Nasonia vitripennis). G3: Genes, Genomes, Genetics, 2014, 4, 383-388.	0.8	59
36	Bimodal signatures of germline methylation are linked with gene expression plasticity in the coral Acropora millepora. BMC Genomics, 2014, 15, 1109.	1.2	89
37	A context dependent role for DNA methylation in bivalves. Briefings in Functional Genomics, 2014, 13, 217-222.	1.3	61

#	Article	IF	CITATIONS
38	Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genomics, 2014, 15, 86.	1.2	375
39	Epigenetics, plasticity, and evolution: How do we link epigenetic change to phenotype?. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 208-220.	0.6	217
40	The Dynamic Nature of DNA Methylation: A Role in Response to Social and Seasonal Variation. Integrative and Comparative Biology, 2014, 54, 68-76.	0.9	52
41	Molecular heterochrony and the evolution of sociality in bumblebees (<i>Bombus terrestris</i>). Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132419.	1.2	39
42	Honey bee sociogenomics: a genome-scale perspective on bee social behavior and health. Apidologie, 2014, 45, 375-395.	0.9	28
43	The role of chromatin and epigenetics in the polyphenisms of ant castes. Briefings in Functional Genomics, 2014, 13, 235-245.	1.3	31
44	Eusocial insects as emerging models for behavioural epigenetics. Nature Reviews Genetics, 2014, 15, 677-688.	7.7	186
45	Epigenetic inheritance and genome regulation: is DNA methylation linked to ploidy in haplodiploid insects?. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140411.	1.2	36
46	Connecting Phytochemicals, Epigenetics, and Healthy Aging. , 2014, , 111-123.		1
47	Bis-class: a new classification tool of methylation status using bayes classifier and local methylation information. BMC Genomics, 2014, 15, 608.	1.2	12
48	The social honey bee in biomedical research: realities and expectations. Drug Discovery Today: Disease Models, 2014, 12, 7-13.	1.2	22
49	Splicing factor 3B1 hypomethylation is associated with altered SF3B1 transcript expression in older humans. Mechanisms of Ageing and Development, 2014, 135, 50-56.	2.2	7
50	The dynamic DNA methylation cycle from egg to sperm in the honey bee <i>Apis mellifera</i> . Development (Cambridge), 2014, 141, 2702-2711.	1.2	58
51	Epigenomics and the control of fate, form and function in social insects. Current Opinion in Insect Science, 2014, 1, 31-38.	2.2	23
52	The biological time calendar. Biomedicine and Aging Pathology, 2014, 4, 77-89.	0.8	2
53	Reproduction of honeybee workers is regulated by epidermal growth factor receptor signaling. General and Comparative Endocrinology, 2014, 197, 1-4.	0.8	17
54	Insights into DNA hydroxymethylation in the honeybee from in-depth analyses of TET dioxygenase. Open Biology, 2014, 4, 140110.	1.5	60
55	The transcriptomic and evolutionary signature of social interactions regulating honey bee caste development. Ecology and Evolution, 2015, 5, 4795-4807.	0.8	36

#	Article	IF	CITATIONS
56	EGFR gene methylation is not involved in Royalactin controlled phenotypic polymorphism in honey bees. Scientific Reports, 2015, 5, 14070.	1.6	31
57	Dnmts and Tet target memory-associated genes after appetitive olfactory training in honey bees. Scientific Reports, 2015, 5, 16223.	1.6	44
58	Genome-wide characterization of long intergenic non-coding RNAs (lincRNAs) provides new insight into viral diseases in honey bees Apis cerana and Apis mellifera. BMC Genomics, 2015, 16, 680.	1.2	73
59	Function and evolution of microRNAs in eusocial Hymenoptera. Frontiers in Genetics, 2015, 6, 193.	1.1	15
60	Biased Allele Expression and Aggression in Hybrid Honeybees may be Influenced by Inappropriate Nuclear-Cytoplasmic Signaling. Frontiers in Genetics, 2015, 6, 343.	1.1	21
61	An epigenetic hypothesis for the genomic memory of pain. Frontiers in Cellular Neuroscience, 2015, 9, 88.	1.8	47
62	Epigenetic Diversity of Clonal White Poplar (Populus alba L.) Populations: Could Methylation Support the Success of Vegetative Reproduction Strategy?. PLoS ONE, 2015, 10, e0131480.	1.1	51
63	What Do Studies of Insect Polyphenisms Tell Us about Nutritionally-Triggered Epigenomic Changes and Their Consequences?. Nutrients, 2015, 7, 1787-1797.	1.7	21
64	Regulation of Alternative Splicing Through Coupling with Transcription and Chromatin Structure. Annual Review of Biochemistry, 2015, 84, 165-198.	5.0	377
65	Proximate pathways underlying social behavior. Current Opinion in Behavioral Sciences, 2015, 6, 154-159.	2.0	25
66	A Search for Parent-of-Origin Effects on Honey Bee Gene Expression. G3: Genes, Genomes, Genetics, 2015, 5, 1657-1662.	0.8	41
67	Epigenetic and endocrine determinants of lifespan differences between the castes of social insects. Moscow University Biological Sciences Bulletin, 2015, 70, 158-164.	0.1	1
68	Epigenetics in Social Insects. Advances in Insect Physiology, 2015, 48, 227-269.	1.1	15
69	The Molecular and Evolutionary Genetic Implications of Being Truly Social for the Social Insects. Advances in Insect Physiology, 2015, , 271-292.	1.1	32
70	Old Threads Make New Tapestry—Rewiring of Signalling Pathways Underlies Caste Phenotypic Plasticity in the Honey Bee, Apis mellifera L Advances in Insect Physiology, 2015, 48, 1-36.	1.1	28
71	Differentially expressed microRNAs between queen and worker larvae of the honey bee (Apis) Tj ETQq1 1 0.7843	14 rgBT /	Overlock 10
72	Evolutionary and Developmental Origins of Chronic Disease. , 2015, , 369-381.		2
73	Parallel Epigenomic and Transcriptomic Responses to Viral Infection in Honey Bees (Apis mellifera). PLoS Pathogens, 2015, 11, e1004713.	2.1	145

#	Article	IF	CITATIONS
74	Cytosine modifications in the honey bee (Apis mellifera) worker genome. Frontiers in Genetics, 2015, 6, 8.	1.1	17
75	Non-CG Methylation in the Human Genome. Annual Review of Genomics and Human Genetics, 2015, 16, 55-77.	2.5	210
76	Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing. BMC Genomics, 2015, 16, 1.	1.2	1,445
77	From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition?. Clinical Epigenetics, 2015, 7, 33.	1.8	156
78	Epigenetic variation in the Egfr gene generates quantitative variation in a complex trait in ants. Nature Communications, 2015, 6, 6513.	5.8	99
79	The expanding epigenetic landscape of non-model organisms. Journal of Experimental Biology, 2015, 218, 114-122.	0.8	49
80	Physiological and Molecular Mechanisms of Nutrition in Honey Bees. Advances in Insect Physiology, 2015, 49, 25-58.	1.1	34
81	The ALK Receptor Family. , 2015, , 1-51.		0
82	Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13970-13975.	3.3	192
84	Integrative Genomic Approaches to Studying Epigenetic Mechanisms of Phenotypic Plasticity in the Aphid. True Bugs (Heteroptera) of the Neotropics, 2015, , 95-117.	1.2	2
85	New themes in the biological functions of 5â€methylcytosine and 5â€hydroxymethylcytosine. Immunological Reviews, 2015, 263, 36-49.	2.8	48
86	DNA Methylation in Social Insects: How Epigenetics Can Control Behavior and Longevity. Annual Review of Entomology, 2015, 60, 435-452.	5.7	156
87	The Function of DNA Methylation Marks in Social Insects. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	48
88	The Mechanistic, Genetic, and Evolutionary Basis of Worker Sterility in the Social Hymenoptera. Advances in the Study of Behavior, 2016, , 251-317.	1.0	41
89	Novel Insights into Insect-Microbe Interactions—Role of Epigenomics and Small RNAs. Frontiers in Plant Science, 2016, 7, 1164.	1.7	23
90	A possible role of DNA methylation in functional divergence of a fast evolving duplicate gene encoding odorant binding protein 11 in the honeybee. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160558.	1.2	33
91	Ageâ€dependent transcriptional and epigenomic responses to light exposure in the honey bee brain. FEBS Open Bio, 2016, 6, 622-639.	1.0	17
92	MicroRNA signatures characterizing casteâ€independent ovarian activity in queen and worker honeybees (<scp><i>A</i></scp> <i>pis mellifera</i> L.). Insect Molecular Biology, 2016, 25, 216-226.	1.0	39

#	Article	IF	CITATIONS
93	MicroRNAs in Honey Bee Caste Determination. Scientific Reports, 2016, 6, 18794.	1.6	99
94	Evaluation of Possible Proximate Mechanisms Underlying the Kinship Theory of Intragenomic Conflict in Social Insects. Integrative and Comparative Biology, 2016, 56, 1206-1214.	0.9	7
95	Comparative genomic approaches to investigate molecular traits specific to social insects. Current Opinion in Insect Science, 2016, 16, 87-94.	2.2	3
96	DNA base modifications in honey bee and fruit fly genomes suggest an active demethylation machinery with species- and tissue-specific turnover rates. Biochemistry and Biophysics Reports, 2016, 6, 9-15.	0.7	16
97	Gene expression differences in relation to age and social environment in queen and worker bumble bees. Experimental Gerontology, 2016, 77, 52-61.	1.2	45
98	Neuroendocrine profiles associated with discrete behavioural variation in Symphodus ocellatus , a species with male alternative reproductive tactics. Molecular Ecology, 2016, 25, 5212-5227.	2.0	13
99	Resource allocation and compensation during development in holometabolous insects. Journal of Insect Physiology, 2016, 95, 78-88.	0.9	60
100	TRPA5, an Ankyrin Subfamily Insect TRP Channel, is Expressed in Antennae of <i>Cydia pomonella</i> (Lepidoptera: Tortricidae) in Multiple Splice Variants. Journal of Insect Science, 2016, 16, 83.	0.6	13
101	Ocean acidification influences host <scp>DNA</scp> methylation and phenotypic plasticity in environmentally susceptible corals. Evolutionary Applications, 2016, 9, 1165-1178.	1.5	196
102	Expression and DNA methylation of phospholipase A2 in Thai native honeybees (Hymenoptera: Apidae). Russian Journal of Developmental Biology, 2016, 47, 190-201.	0.1	0
103	Do Vertebrate Gut Metagenomes Confer Rapid Ecological Adaptation?. Trends in Ecology and Evolution, 2016, 31, 689-699.	4.2	235
104	DNA Methylation and Gene Regulation in Honeybees: From Genome-Wide Analyses to Obligatory Epialleles. Advances in Experimental Medicine and Biology, 2016, 945, 193-211.	0.8	19
105	Developmental Plasticity and Phenotypic Evolution. , 2016, , 430-440.		3
106	DISMISS: detection of stranded methylation in MeDIP-Seq data. BMC Bioinformatics, 2016, 17, 295.	1.2	16
107	Resource base influences genomeâ€wide <scp>DNA</scp> methylation levels in wild baboons (<i>Papio) Tj ETQ4</i>	q0.0.0 rgB	T /Qverlock 1
108	Queen pheromones modulate DNA methyltransferase activity in bee and ant workers. Biology Letters, 2016, 12, 20151038.	1.0	21
109	Robust DNA Methylation in the Clonal Raider Ant Brain. Current Biology, 2016, 26, 391-395.	1.8	133
110	Epigenetic code and insect behavioural plasticity. Current Opinion in Insect Science, 2016, 15, 45-52.	2.2	56

ARTICLE

IF CITATIONS

Parent-of-origin effects on genome-wide DNA methylation in the Cape honey bee (Apis mellifera) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 7

112	Complex patterns of differential expression in candidate master regulatory genes for social behavior in honey bees. Behavioral Ecology and Sociobiology, 2016, 70, 1033-1043.	0.6	23
113	The impact of nutrients on the aging rate: A complex interaction of demographic, environmental and genetic factors. Mechanisms of Ageing and Development, 2016, 154, 49-61.	2.2	26
114	Toward an Upgraded Honey Bee (<i>Apis mellifera</i> L.) Genome Annotation Using Proteogenomics. Journal of Proteome Research, 2016, 15, 411-421.	1.8	22
115	Testing the kinship theory of intragenomic conflict in honey bees (<i>Apis mellifera</i>). Proceedings of the United States of America, 2016, 113, 1020-1025.	3.3	69
116	DNA methylation changes induced by long and short photoperiods in <i>Nasonia</i> . Genome Research, 2016, 26, 203-210.	2.4	96
117	Molecular mechanisms of phenotypic plasticity in social insects. Current Opinion in Insect Science, 2016, 13, 55-60.	2.2	144
118	Differentially methylated obligatory epialleles modulate context-dependent <i>LAM</i> gene expression in the honeybee <i>Apis mellifera</i> . Epigenetics, 2016, 11, 1-10.	1.3	56
119	DNA methylation comparison between 4-day-old queen and worker larvae of honey bee. Journal of Asia-Pacific Entomology, 2017, 20, 299-303.	0.4	4
120	The Role of Brood in Eusocial Hymenoptera. Quarterly Review of Biology, 2017, 92, 39-78.	0.0	58
121	Uncovering the immune responses of Apis mellifera ligustica larval gut to Ascosphaera apis infection utilizing transcriptome sequencing. Gene, 2017, 621, 40-50.	1.0	37
122	Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4775-4780.	3.3	419
123	Epigenetic Regulation of Longevity in Insects. Advances in Insect Physiology, 2017, , 87-114.	1.1	10
124	Alternative splicing as a regulator of development and tissue identity. Nature Reviews Molecular Cell Biology, 2017, 18, 437-451.	16.1	929
126	Contrasting Sex-and Caste-Dependent piRNA Profiles in the Transposon Depleted Haplodiploid Honeybee Apis mellifera. Genome Biology and Evolution, 2017, 9, 1341-1356.	1.1	16
127	Making a queen: an epigenetic analysis of the robustness of the honeybee (<i><scp>A</scp>pis) Tj ETQq1 1 0.78</i>	4314 rgBT 2.0	- /Overlock
128	Genomics, transcriptomics and proteomics: enabling insights into social evolution and disease challenges for managed and wild bees. Molecular Ecology, 2017, 26, 718-739.	2.0	39
129	Detecting rare asymmetrically methylated cytosines and decoding methylation patterns in the honeybee genome. Royal Society Open Science, 2017, 4, 170248.	1.1	11

		CITATION REPORT		
#	Article		IF	CITATIONS
130	Genetics and Evolution of Social Behavior in Insects. Annual Review of Genetics, 2017,	51, 219-239.	3.2	43
131	Genome-wide DNA methylation and transcriptome analyses reveal genes involved in in of pig peripheral blood mononuclear cells to poly I:C. Scientific Reports, 2017, 7, 9709	nmune responses	1.6	44
132	Do social insects support Haig's kin theory for the evolution of genomic imprinting?. E 12, 725-742.	pigenetics, 2017,	1.3	25
133	Genome-wide DNA methylation changes associated with olfactory learning and memor mellifera. Scientific Reports, 2017, 7, 17017.	ry in Apis	1.6	20
134	Effects of a parental exposure to diuron on Pacific oyster spat methylome. Environmer 2017, 3, dvx004.	ıtal Epigenetics,	0.9	56
135	DNA methylation of Kr-h1 is involved in regulating ovary activation in worker honeybee	2s (Apis) Tj ETQq1 1 0.7843	14.cgBT /0	Oyerlock 10
136	When does cheating pay? Worker reproductive parasitism in honeybees. Insectes Soci	aux, 2017, 64, 5-17.	0.7	3
137	No evidence that DNA methylation is associated with the regulation of fertility in the a Apis mellifera (Hymenoptera: Apidae) worker ovary. Austral Entomology, 2017, 56, 11	dult honey bee 5-121.	0.8	1
138	The challenge hypothesis: Where it began and relevance to humans. Hormones and Be 9-12.	havior, 2017, 92,	1.0	45
139	Epigenetics in Insects: Mechanisms, Phenotypes and Ecological and Evolutionary Implie Advances in Insect Physiology, 2017, 53, 1-30.	cations.	1.1	42
140	Nutrition and Epigenetic Change in Insects: Evidence and Implications. Advances in Ins 2017, 53, 31-54.	ect Physiology,	1.1	4
141	Endocrine Influences on Insect Societies. , 2017, , 421-451.			14
142	Ecophysiological Studies of Hormone–Behavior Relations in Birds: Future Challenges World. , 2017, , 321-345.	in a Changing		2
143	Epigenetic modifications and their relation to caste and sex determination and adult d in the stingless bee Melipona scutellaris. Genetics and Molecular Biology, 2017, 40, 61	ivision of labor 68.	0.6	38
144	Longevity extension of worker honey bees (<i>Apis mellifera</i>) by royal jelly: optimal ingredient. PeerJ, 2017, 5, e3118.	l dose and active	0.9	34
145	Alternative splicing associated with phenotypic plasticity in the bumble bee <i>Bombu Molecular Ecology, 2018, 27, 1036-1043.</i>	s terrestris.	2.0	25
146	Brain mitochondrial bioenergetics change with rapid and prolonged shifts in aggressio bee, <i>Apis mellifera</i> . Journal of Experimental Biology, 2018, 221, .	n in the honey	0.8	18
147	Recent advances in reproductive biology of stingless bees. Insectes Sociaux, 2018, 65,	. 201-212.	0.7	37

	Сітат	tion Report	
#	Article	IF	CITATIONS
148	Advancing behavioural genomics by considering timescale. Nature Communications, 2018, 9, 489.	5.8	25
149	Beyond Royalactin and a master inducer explanation of phenotypic plasticity in honey bees. Communications Biology, 2018, 1, 8.	2.0	44
150	Identification and caste-dependent expression patterns of DNA methylation associated genes in Bombus terrestris. Scientific Reports, 2018, 8, 2332.	1.6	24
151	Building a new research framework for social evolution: intralocus caste antagonism. Biological Reviews, 2018, 93, 1251-1268.	4.7	18
152	Epigenetics of Longevity in Social Insects. , 2018, , 271-289.		2
154	Signatures of DNA Methylation across Insects Suggest Reduced DNA Methylation Levels in Holometabola. Genome Biology and Evolution, 2018, 10, 1185-1197.	1.1	100
155	A review on Royal Jelly proteins and peptides. Journal of Functional Foods, 2018, 44, 255-264.	1.6	96
156	Epigenetics, nutrition and mental health. Is there a relationship?. Nutritional Neuroscience, 2018, 21, 602-613.	1.5	25
157	Epigenetics in aquaculture – the last frontier. Reviews in Aquaculture, 2018, 10, 994-1013.	4.6	42
158	DNA methylation affects the lifespan of honey bee (Apis mellifera L.) workers – Evidence for a regulatory module that involves vitellogenin expression but is independent of juvenile hormone function. Insect Biochemistry and Molecular Biology, 2018, 92, 21-29.	1.2	41
159	A molecular concept of caste in insect societies. Current Opinion in Insect Science, 2018, 25, 42-50.	2.2	19
160	Behavioral and genetic mechanisms of social evolution: insights from incipiently and facultatively social bees. Apidologie, 2018, 49, 13-30.	0.9	46
161	Honey bee as a model organism to study gut microbiota and diseases. Drug Discovery Today: Disease Models, 2018, 28, 35-42.	1.2	11
162	Changes of gene expression but not cytosine methylation are associated with male parental care reflecting behavioural state, social context, and individual flexibility. Journal of Experimental Biology, 2019, 222, .	0.8	12
163	Genetic accommodation and the role of ancestral plasticity in the evolution of insect eusociality. Journal of Experimental Biology, 2018, 221, .	0.8	20
164	Sex-specific dmrt1 and cyp19a1 methylation and alternative splicing in gonads of the protandrous hermaphrodite barramundi. PLoS ONE, 2018, 13, e0204182.	1.1	48
165	Recent Advances in Behavioral (Epi)Genetics in Eusocial Insects. Annual Review of Genetics, 2018, 52, 489-510.	3.2	55
166	Omics approaches to study juvenile hormone synthesis. Current Opinion in Insect Science, 2018, 29, 49-55.	2.2	7

#	Article	IF	CITATIONS
167	Epigenetics with special reference to the human X chromosome inactivation and the enigma of Drosophila DNA methylation. Journal of Genetics, 2018, 97, 371-378.	0.4	5
168	Cocaine Directly Impairs Memory Extinction and Alters Brain DNA Methylation Dynamics in Honey Bees. Frontiers in Physiology, 2018, 9, 79.	1.3	9
169	Social context influences the expression of DNA methyltransferase genes in the honeybee. Scientific Reports, 2018, 8, 11076.	1.6	12
170	Epigenetic Mechanisms Impacting Aging: A Focus on Histone Levels and Telomeres. Genes, 2018, 9, 201.	1.0	61
171	Defense against territorial intrusion is associated with DNA methylation changes in the honey bee brain. BMC Genomics, 2018, 19, 216.	1.2	33
172	The effect of maternal care on gene expression and DNA methylation in a subsocial bee. Nature Communications, 2018, 9, 3468.	5.8	47
173	DNA methylation regulates transcriptional homeostasis of algal endosymbiosis in the coral model Aiptasia. Science Advances, 2018, 4, eaat2142.	4.7	77
174	Phenotypically distinct female castes in honey bees are defined by alternative chromatin states during larval development. Genome Research, 2018, 28, 1532-1542.	2.4	72
175	The effects of the neonicotinoid imidacloprid on gene expression and DNA methylation in the buff-tailed bumblebee <i>Bombus terrestris</i> . Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190718.	1.2	32
176	Implication for DNA methylation involved in the host transfer of diamondback moth, Plutella xylostella (L.). Archives of Insect Biochemistry and Physiology, 2019, 102, e21600.	0.6	3
177	Epigenetics and insect polyphenism: mechanisms and climate change impacts. Current Opinion in Insect Science, 2019, 35, 138-145.	2.2	35
178	Analysis of epigenetic landscape in a recombinant inbred line population developed by hybridizing natural and re-synthesized Brassica juncea (L.) with stable C-genome introgressions. Euphytica, 2019, 215, 1.	0.6	6
179	Dnmt1 is essential for egg production and embryo viability in the large milkweed bug, Oncopeltus fasciatus. Epigenetics and Chromatin, 2019, 12, 6.	1.8	62
180	Dynamics of DNA Methylation and DNMT Expression During Gametogenesis and Early Development of Scallop Patinopecten yessoensis. Marine Biotechnology, 2019, 21, 196-205.	1.1	26
181	Identification of genes underlying phenotypic plasticity of wing size via insulin signaling pathway by network-based analysis in Sogatella furcifera. BMC Genomics, 2019, 20, 396.	1.2	10
182	Effects of larval Age at Grafting and Juvenile Hormone on Morphometry and Reproductive Quality Parameters of in Vitro Reared Honey Bees (Hymenoptera: Apidae). Journal of Economic Entomology, 2019, 112, 2030-2039.	0.8	4
183	Three-dimensional reconstruction of corpora allata nucleus reveals insights into epigenetic mechanisms of caste differentiation in Melipona scutellaris stingless bees. Apidologie, 2019, 50, 330-339.	0.9	1
184	Transcriptomic investigation of immune responses of the Apis cerana cerana larval gut infected by Ascosphaera apis. Journal of Invertebrate Pathology, 2019, 166, 107210.	1.5	24

#	Article	IF	CITATIONS
185	Rate variation in the evolution of non-coding DNA associated with social evolution in bees. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180247.	1.8	22
186	Comparative transcriptomics of social insect queen pheromones. Nature Communications, 2019, 10, 1593.	5.8	32
187	A genetic switch for worker nutrition-mediated traits in honeybees. PLoS Biology, 2019, 17, e3000171.	2.6	57
188	The use of MSAP reveals epigenetic diversity of the invasive clonal populations of Arundo donax L PLoS ONE, 2019, 14, e0215096.	1.1	42
189	Patterns of reproductive differentiation and reproductive plasticity in the major evolutionary transition to superorganismality. Current Opinion in Insect Science, 2019, 34, 40-47.	2.2	7
190	Changes in gene DNA methylation and expression networks accompany caste specialization and ageâ€related physiological changes in a social insect. Molecular Ecology, 2019, 28, 1975-1993.	2.0	30
191	Mechanisms regulating phenotypic plasticity in wing polyphenic insects. Advances in Insect Physiology, 2019, 56, 43-72.	1.1	15
192	The genetics and epigenetics of animal migration and orientation: birds, butterflies and beyond. Journal of Experimental Biology, 2019, 222, .	0.8	93
193	Epigenetics, Dietary Restriction, and Insects: Implications for Humankind. , 2019, , 549-563.		0
194	Bee Products: Royal Jelly and Propolis. , 2019, , 475-484.		7
195	Epigenetics in Insects: Genome Regulation and the Generation of Phenotypic Diversity. Annual Review of Entomology, 2019, 64, 185-203.	5.7	137
196	Detecting differential DNA methylation from sequencing of bisulfite converted DNA of diverse species. Briefings in Bioinformatics, 2019, 20, 33-46.	3.2	17
197	Whither the challenge hypothesis?. Hormones and Behavior, 2020, 123, 104588.	1.0	15
198	Molecular characterization of <i>DNA methyltransferase 1</i> and its role in temperature change of armyworm <i>Mythimna separata</i> Walker. Archives of Insect Biochemistry and Physiology, 2020, 103, e21651.	0.6	7
199	Environmental change and the evolution of genomes: Transposable elements as translators of phenotypic plasticity into genotypic variability. Functional Ecology, 2020, 34, 428-441.	1.7	30
200	Transgenerational accumulation of methylome changes discovered in commercially reared honey bee (Apis mellifera) queens. Insect Biochemistry and Molecular Biology, 2020, 127, 103476.	1.2	4
201	Special Significance of Non-Drosophila Insects in Aging. Frontiers in Cell and Developmental Biology, 2020, 8, 576571.	1.8	8
203	Chromatin Structure and Function in Mosquitoes. Frontiers in Genetics, 2020, 11, 602949.	1.1	9

#	Article	IF	CITATIONS
204	Genome-Wide Differential DNA Methylation in Reproductive, Morphological, and Visual System Differences Between Queen Bee and Worker Bee (Apis mellifera). Frontiers in Genetics, 2020, 11, 770.	1.1	14
205	DNA methylation in molluscs growth and development: An overview. Aquaculture Research, 2022, 53, 4893-4900.	0.9	2
207	Epigenetic Analysis through MSAP-NGS Coupled Technology: The Case Study of White Poplar Monoclonal Populations/Stands. International Journal of Molecular Sciences, 2020, 21, 7393.	1.8	3
208	Epigenetic Molecular Mechanisms in Insects. Neotropical Entomology, 2020, 49, 615-642.	0.5	27
209	Distinct epigenomic and transcriptomic modifications associated with Wolbachia-mediated asexuality. PLoS Pathogens, 2020, 16, e1008397.	2.1	18
210	Exploring DNA Methylation Diversity in the Honey Bee Brain by Ultra-Deep Amplicon Sequencing. Epigenomes, 2020, 4, 10.	0.8	12
211	Chromatin accessibility and transcriptome landscapes of Monomorium pharaonis brain. Scientific Data, 2020, 7, 217.	2.4	10
212	Epigenetic Modifications May Regulate the Activation of the Hypopharyngeal Gland of Honeybees (Apis) Tj ETQq1	1.0.7843 1.1	1ჭ rgBT /Ov
213	DNA methyltransferase 3 participates in behavioral phase change in the migratory locust. Insect Biochemistry and Molecular Biology, 2020, 121, 103374.	1.2	5
214	Epigenetic regulation of post-embryonic development. Current Opinion in Insect Science, 2021, 43, 63-69.	2.2	21
215	Caste Differentiation: Honey Bees. , 2021, , 177-184.		1
216	The effect of DNA methylation on bumblebee colony development. BMC Genomics, 2021, 22, 73.	1.2	8
217	Caste Differentiation: Melipona. , 2021, , 185-188.		0
218	Multifunctionality and intrinsic disorder of royal jelly proteome. Proteomics, 2021, 21, e2000237.	1.3	5
221	Honeybee (Apis mellifera) Maternal Effect Causes Alternation of DNA Methylation Regulating Queen Development. Sociobiology, 2021, 68, e5935.	0.2	7
222	The role of epigenetics, particularly DNA methylation, in the evolution of caste in insect societies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200115.	1.8	40
223	10-hydroxy-2E-decenoic acid (10HDA) does not promote caste differentiation in Melipona scutellaris stingless bees. Scientific Reports, 2021, 11, 9882.	1.6	1
224	Amsp3 may act upstream of Amdnmt3 in female caste differentiation in the honeybee (Apis mellifera). Insect Molecular Biology, 2021, 30, 532-540.	1.0	0

#	Article	IF	CITATIONS
225	Assessment and Comparison of Two Different Methods to Extract Nucleic Acids From Individual Honey Bees. Annals of the Entomological Society of America, 2021, 114, 614-619.	1.3	0
226	Contribution of Epigenetic Mechanisms in the Regulation of Environmentally-Induced Polyphenism in Insects. Insects, 2021, 12, 649.	1.0	12
227	Independent variations in genome-wide expression, alternative splicing, and DNA methylation in brain tissues among castes of the buff-tailed bumblebee, Bombus terrestris. Journal of Genetics and Genomics, 2021, 48, 681-694.	1.7	3
230	Immune Response of Eastern Honeybee Worker to Nosema ceranae Infection Revealed by Transcriptomic Investigation. Insects, 2021, 12, 728.	1.0	10
231	DNA methylation is not a driver of gene expression reprogramming in young honey bee workers. Molecular Ecology, 2021, 30, 4804-4818.	2.0	21
232	A review on the DNA methyltransferase family of insects: Aspect and prospects. International Journal of Biological Macromolecules, 2021, 186, 289-302.	3.6	24
233	Caste Differentiation: Genetic and Epigenetic Factors. , 2021, , 165-176.		4
234	The challenge hypothesis: Where it began and relevance to humans. Hormones and Behavior, 2017, 92, 9-12.	1.0	27
238	A Comparison of Digital Gene Expression Profiling and Methyl DNA Immunoprecipitation as Methods for Gene Discovery in Honeybee (Apis mellifera) Behavioural Genomic Analyses. PLoS ONE, 2013, 8, e73628.	1.1	16
239	Differential expression of antioxidant system genes in honey bee (Apis mellifera L.) caste development mitigates ROS-mediated oxidative damage in queen larvae. Genetics and Molecular Biology, 2020, 43, e20200173.	0.6	6
240	Cytosine methylation in insects: new routes for the comprehension of insect complexity. AIMS Biophysics, 2015, 2, 412-422.	0.3	6
241	Predominant intragenic methylation is associated with gene expression characteristics in a bivalve mollusc. PeerJ, 2013, 1, e215.	0.9	132
242	Developmental and loco-like effects of a swainsonine-induced inhibition ofα-mannosidase in the honey bee,Apis mellifera. PeerJ, 2017, 5, e3109.	0.9	4
245	Epigenetics, Dietary Restriction, and Insects: Implications for Humankind. , 2017, , 1-15.		0
246	Beekeeping Technology and Honey Processing: Emerging Entrepreneurship for Rural Areas. , 2017, , 3-26.		0
247	The draft genome sequence of the Japanese honey bee, Apis cerana japonica (Hymenoptera: Apidae). European Journal of Entomology, 0, 115, 650-657.	1.2	6
248	Caste Differentiation: Honey Bees. , 2019, , 1-9.		0
250	Caste Differentiation: Genetic and Epigenetic Factors. , 2020, , 1-12.		0

#	Article	IF	CITATIONS
252	Invertebrate methylomes provide insight into mechanisms of environmental tolerance and reveal methodological biases. Molecular Ecology Resources, 2022, 22, 1247-1261.	2.2	12
254	High-quality chromosome-level genome assembly and full-length transcriptome analysis of the pharaoh ant <i>Monomorium pharaonis</i> . GigaScience, 2020, 9, .	3.3	9
255	Phenotypic Plasticity: What Has DNA Methylation Got to Do with It?. Insects, 2022, 13, 110.	1.0	27
256	DNA methylation across the tree of life, from micro to macro-organism. Bioengineered, 2022, 13, 1666-1685.	1.4	15
257	Tools and applications for integrative analysis of DNA methylation in social insects. Molecular Ecology Resources, 2022, 22, 1656-1674.	2.2	4
258	Epigenetics with special reference to the human X chromosome inactivation and the enigma of DNA methylation. Journal of Genetics, 2018, 97, 371-378.	0.4	4
259	Machine learning models identify gene predictors of waggle dance behaviour in honeybees. Molecular Ecology Resources, 2022, 22, 2248-2261.	2.2	7
260	Interactive Regulations of Dynamic Methylation and Transcriptional Responses to Recurring Environmental Stresses During Biological Invasions. Frontiers in Marine Science, 2021, 8, .	1.2	4
280	Extent and complexity of RNA processing in honey bee queen and worker caste development. IScience, 2022, 25, 104301.	1.9	9
281	Genome-wide identification of associations between enhancer and alternative splicing in human and mouse. BMC Genomics, 2021, 22, 919.	1.2	4
283	Single-cell transcriptomic analysis of honeybee brains identifies vitellogenin as caste differentiation-related factor. IScience, 2022, 25, 104643.	1.9	15
284	A Transcriptomic Atlas Underlying Developmental Plasticity of Seasonal Forms of <i>Bicyclus anynana</i> Butterflies. Molecular Biology and Evolution, 2022, 39, .	3.5	9
285	Alternative splicing as a source of phenotypic diversity. Nature Reviews Genetics, 2022, 23, 697-710.	7.7	120
286	Evolution, Functions and Dynamics of Epigenetic Mechanisms in Animals. , 2023, , 521-549.		4
287	Epigenetic Processes as Anticipatory Mechanisms: Insect Polyphenism as an Exemplar. Cognitive Systems Monographs, 2022, , 117-145.	0.1	0
288	Genetics, genomics, and epigenetics. , 2023, , 655-680.		0
289	Epigenetics and Phenotypic Plasticity in Animals. , 2022, , 35-108.		1
290	An omics evolutionary perspective on phytophagous insect–host plant interactions in <i>Anastrepha obliqua</i> : a review. Entomologia Experimentalis Et Applicata, 2023, 171, 2-16.	0.7	1

#	Article	IF	CITATIONS
292	DNA Methylation in Honey Bees and the Unresolved Questions in Insect Methylomics. Advances in Experimental Medicine and Biology, 2022, , 159-176.	0.8	1
293	Chromatin accessibility-based characterisation of brain gene regulatory networks in three distinct honey bee polyphenisms. Nucleic Acids Research, 2022, 50, 11550-11562.	6.5	4
294	DNA methylation and expression of the egfr gene are associated with worker size in monomorphic ants. Scientific Reports, 2022, 12, .	1.6	1
295	Epigenetic regulations as drivers of insecticide resistance and resilience to climate change in arthropod pests. Frontiers in Genetics, 0, 13, .	1.1	3
296	Royal Jelly as Larval Food for Honey Bees. , 2023, , 67-82.		0
297	Comprehensive Pan-Cancer Analysis of MTF2 Effects on Human Tumors. Current Problems in Cancer, 2023, 47, 100957.	1.0	0
298	ChIP-seq profiling of H3K4me3 and H3K27me3 in an invasive insect, Bactroceradorsalis. Frontiers in Genetics, 0, 14, .	1.1	1
300	Phenotypic dimorphism between honeybee queen and worker is regulated by complicated epigenetic modifications. IScience, 2023, 26, 106308.	1.9	0
301	Phenotypic plasticity evolves at multiple biological levels in response to environmental predictability in a long-term experiment with a halotolerant microalga. PLoS Biology, 2023, 21, e3001895.	2.6	2
302	H3K4me1 Modification Functions in Caste Differentiation in Honey Bees. International Journal of Molecular Sciences, 2023, 24, 6217.	1.8	2

Genes, environments, and epigenetics. , 2023, , 181-200.