Gut-derived lipopolysaccharide augments adipose mac essential for impaired glucose or insulin tolerance in ma

Gut 61, 1701-1707 DOI: 10.1136/gutjnl-2011-301689

Citation Report

#	Article	IF	CITATIONS
1	Microbes and metabolic health. Gut, 2012, 61, 1655-1656.	6.1	4
2	Comparison with ancestral diets suggests dense acellular carbohydrates promote an inflammatory microbiota, and may be the primary dietary cause of leptin resistance and obesity. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2012, 5, 175.	1.1	83
3	Host Remodeling of the Gut Microbiome and Metabolic Changes during Pregnancy. Cell, 2012, 150, 470-480.	13.5	1,603
4	Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489, 242-249.	13.7	3,582
5	Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease. Nutrients, 2012, 4, 1095-1119.	1.7	533
6	Non-alcoholic steatohepatitis: a microbiota-driven disease. Trends in Endocrinology and Metabolism, 2013, 24, 537-545.	3.1	143
7	Plasma Lipopolysaccharide Is Closely Associated With Clycemic Control and Abdominal Obesity. Diabetes Care, 2013, 36, 3627-3632.	4.3	156
8	The Gut Microbiota Reduces Leptin Sensitivity and the Expression of the Obesity-Suppressing Neuropeptides Proglucagon (Gcg) and Brain-Derived Neurotrophic Factor (Bdnf) in the Central Nervous System. Endocrinology, 2013, 154, 3643-3651.	1.4	164
9	The Microbiome as a Therapeutic Target for Metabolic Diseases. Drug Development Research, 2013, 74, 376-384.	1.4	1
10	Metabolic endotoxemia directly increases the proliferation of adipocyte precursors at the onset of metabolic diseases through a CD14-dependent mechanism. Molecular Metabolism, 2013, 2, 281-291.	3.0	84
12	Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut, 2013, 62, 1787-1794.	6.1	777
13	Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes, Obesity and Metabolism, 2013, 15, 61-70.	2.2	112
14	Assessing the Human Gut Microbiota in Metabolic Diseases. Diabetes, 2013, 62, 3341-3349.	0.3	384
15	Inflammation in Obesity and Diabetes: Islet Dysfunction and Therapeutic Opportunity. Cell Metabolism, 2013, 17, 860-872.	7.2	290
16	The gut microbiota — masters of host development and physiology. Nature Reviews Microbiology, 2013, 11, 227-238.	13.6	2,711
17	Evolutionary Aspects of Obesity, Insulin Resistance, and Cardiovascular Risk. Current Cardiovascular Risk Reports, 2013, 7, 136-146.	0.8	2
18	The intricate association between gut microbiota and development of Type 1, Type 2 and Type 3 diabetes. Expert Review of Clinical Immunology, 2013, 9, 1031-1041.	1.3	66
20	The Gut Microbiota Modulates Glycaemic Control and Serum Metabolite Profiles in Non-Obese Diabetic Mice. PLoS ONE, 2014, 9, e110359.	1.1	43

#	Article	IF	CITATIONS
21	Gut Microbioma Population: An Indicator Really Sensible to Any Change in Age, Diet, Metabolic Syndrome, and Life-Style. Mediators of Inflammation, 2014, 2014, 1-11.	1.4	57
22	Microbiota, Inflammation and Obesity. Advances in Experimental Medicine and Biology, 2014, 817, 291-317.	0.8	104
23	Microbial Translocation and Cardiometabolic Risk Factors in HIV Infection. AIDS Research and Human Retroviruses, 2014, 30, 514-522.	0.5	37
24	Exploring the influence of the gut microbiota and probiotics on health: a symposium report. British Journal of Nutrition, 2014, 112, S1-S18.	1.2	81
25	Intestinal microbiota and faecal transplantation as treatment modality for insulin resistance and type 2 diabetes mellitus. Clinical and Experimental Immunology, 2014, 177, 24-29.	1.1	85
26	Doenjang, a Korean soybean paste, ameliorates TNBS-induced colitis in mice by suppressing gut microbial lipopolysaccharide production and NF-κB activation. Journal of Functional Foods, 2014, 11, 417-427.	1.6	18
27	Microbial Modulation of Insulin Sensitivity. Cell Metabolism, 2014, 20, 753-760.	7.2	215
28	Intestinal and Systemic Inflammatory Responses Are Positively Associated with Sulfidogenic Bacteria Abundance in High-Fat–Fed Male C57BL/6J Mice. Journal of Nutrition, 2014, 144, 1181-1187.	1.3	56
29	Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology, 2014, , .	0.8	59
30	Defective <scp>NOD</scp> 2 peptidoglycan sensing promotes dietâ€induced inflammation, dysbiosis, and insulin resistance. EMBO Molecular Medicine, 2015, 7, 259-274.	3.3	160
31	Childhood Obesity: A Role for Gut Microbiota?. International Journal of Environmental Research and Public Health, 2015, 12, 162-175.	1.2	58
32	Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators of Inflammation, 2015, 2015, 1-16.	1.4	1,183
33	Adaptive Immunity and Antigen-Specific Activation in Obesity-Associated Insulin Resistance. Mediators of Inflammation, 2015, 2015, 1-15.	1.4	33
34	Influence of gut bacteria on development and progression of non-alcoholic fatty liver disease. World Journal of Hepatology, 2015, 7, 1679.	0.8	27
35	Loss of <i>Cyp8b1</i> Improves Glucose Homeostasis by Increasing GLP-1. Diabetes, 2015, 64, 1168-1179.	0.3	89
36	Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nature Communications, 2015, 6, 7489.	5.8	926
37	Gnotobiotics. , 2015, , 1263-1296.		3
38	Role of Intestinal Microbiome in Lipid and Glucose Metabolism in Diabetes Mellitus. Clinical Therapeutics, 2015, 37, 1172-1177.	1.1	46

	CITATION	Report	
#	Article	IF	Citations
39	The role of the gut microbiota in metabolic health. FASEB Journal, 2015, 29, 3111-3123.	0.2	167
40	Gut Microbiota and Metabolic Diseases: From Pathogenesis to Therapeutic Perspective. Molecular and Integrative Toxicology, 2015, , 199-234.	0.5	7
41	Regulation of Obesity-Related Insulin Resistance with Gut Anti-inflammatory Agents. Cell Metabolism, 2015, 21, 527-542.	7.2	283
42	Linking Microbiota to Human Diseases: A Systems Biology Perspective. Trends in Endocrinology and Metabolism, 2015, 26, 758-770.	3.1	134
43	Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metabolism, 2015, 22, 658-668.	7.2	763
44	Immunological contributions to adipose tissue homeostasis. Seminars in Immunology, 2015, 27, 315-321.	2.7	68
45	Understanding the role of gut microbiome in metabolic disease risk. Pediatric Research, 2015, 77, 236-244.	1.1	123
46	Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME Journal, 2015, 9, 1-15.	4.4	703
47	Obesity-Associated Gut Microbiota. , 2015, , 149-171.		3
48	The gut microbiota: a key regulator of metabolic diseases. BMB Reports, 2016, 49, 536-541.	1.1	46
49	Influence of Dietary Factors on Gut Microbiota. , 2016, , 147-154.		0
50	Obesity: An Immunometabolic Perspective. Frontiers in Endocrinology, 2016, 7, 157.	1.5	77
51	Technical note: A procedure to estimate glucose requirements of an activated immune system in steers. Journal of Animal Science, 2016, 94, 4591-4599.	0.2	29
52	LPS-Enhanced Glucose-Stimulated Insulin Secretion Is Normalized by Resveratrol. PLoS ONE, 2016, 11, e0146840.	1.1	22
53	Metagenomic Analysis of Antibiotic-Induced Changes in Gut Microbiota in a Pregnant Rat Model. Frontiers in Pharmacology, 2016, 7, 104.	1.6	63
54	Diet–microbiota interactions as moderators of human metabolism. Nature, 2016, 535, 56-64.	13.7	1,602
55	Gut microbiome and lipid metabolism. Current Opinion in Lipidology, 2016, 27, 216-224.	1.2	72
56	Beneficial Effects of a Dietary Weight Loss Intervention on Human Gut Microbiome Diversity and Metabolism Are Not Sustained during Weight Maintenance. Obesity Facts, 2016, 9, 379-391.	1.6	48

#	Article	IF	CITATIONS
57	Microbiote intestinal et obésité : impact des lipides bioactifs issus du systÃ [™] me endocannabinoÃ⁻de. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, D305.	0.6	0
58	Colonic luminal microbiota and bacterial metabolite composition in pregnant Huanjiang mini-pigs: effects of food composition at different times of pregnancy. Scientific Reports, 2016, 6, 37224.	1.6	74
59	Sea cucumber peptides exert anti-inflammatory activity through suppressing NF-κB and MAPK and inducing HO-1 in RAW264.7 macrophages. Food and Function, 2016, 7, 2773-2779.	2.1	36
60	Gut Microbiota Promote Angiotensin Il–Induced Arterial Hypertension and Vascular Dysfunction. Journal of the American Heart Association, 2016, 5, .	1.6	281
61	Signals from the gut microbiota to distant organs in physiology and disease. Nature Medicine, 2016, 22, 1079-1089.	15.2	952
62	The gut microbiota and metabolic disease: current understanding and future perspectives. Journal of Internal Medicine, 2016, 280, 339-349.	2.7	212
63	Adipose tissue macrophage in immune regulation of metabolism. Science China Life Sciences, 2016, 59, 1232-1240.	2.3	11
64	Akkermansia muciniphila mediates negative effects of IFNÎ ³ on glucose metabolism. Nature Communications, 2016, 7, 13329.	5.8	232
65	Establishing a causal link between gut microbes, body weight gain and glucose metabolism in humans – towards treatment with probiotics. Beneficial Microbes, 2016, 7, 11-22.	1.0	63
66	Controversies in omega-3 efficacy and novel concepts for application. Journal of Nutrition & Intermediary Metabolism, 2016, 5, 11-22.	1.7	26
67	Beneficial metabolic effects of selected probiotics on dietâ€induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota. Environmental Microbiology, 2016, 18, 1484-1497.	1.8	127
68	Bacterial Lipopolysaccharide, Lipopolysaccharide-Binding Protein, and Other Inflammatory Markers in Obesity and After Bariatric Surgery. Metabolic Syndrome and Related Disorders, 2016, 14, 279-288.	0.5	31
69	Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism. Journal of Lipid Research, 2016, 57, 474-481.	2.0	72
70	Obesity and Cancer: The Oil that Feeds the Flame. Cell Metabolism, 2016, 23, 48-62.	7.2	296
71	Investigating a holobiont: Microbiota perturbations and transkingdom networks. Gut Microbes, 2016, 7, 126-135.	4.3	38
72	Indigenous microbiota and Leishmaniasis. Parasite Immunology, 2016, 38, 37-44.	0.7	21
73	Role of the microbiome in the normal and aberrant glycemic response. Clinical Nutrition Experimental, 2016, 6, 59-73.	2.0	29
74	Regulation of metabolism by the innate immune system. Nature Reviews Endocrinology, 2016, 12, 15-28.	4.3	502

ARTICLE IF CITATIONS # Regulation of body fat mass by the gut microbiota: Possible mediation by the brain. Peptides, 2016, 77, 1.2 20 75 54-59. Microbiota-induced obesity requires farnesoid X receptor. Gut, 2017, 66, 429-437. 6.1 Personalized microbiomeâ€based approaches to metabolic syndrome management and prevention. 77 0.8 39 Journal of Diabetes, 2017, 9, 226-236. Effects of Hibiscus sabdariffa Linn. fruit extracts on α-glucosidase enzyme, glucose diffusion and 0.5 wound healing activities. Asian Pacific Journal of Tropical Biomedicine, 2017, 7, 466-472. Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose 79 6.1 125 and lipid metabolism. Gut, 2017, 66, 620-632. Grape seed proanthocyanidin extract ameliorates inflammation and adiposity by modulating gut microbiota in high-fat diet mice. Molecular Nutrition and Food Research, 2017, 61, 1601082. 1.5 Microbiome and NAFLD: potential influence of aerobic fitness and lifestyle modification. Physiological 81 1.0 31 Genomics, 2017, 49, 385-399. Glucose requirements of an activated immune system in lactating Holstein cows. Journal of Dairy 1.4 234 Science, 2017, 100, 2360-2374. Low dose doxycycline decreases systemic inflammation and improves glycemic control, lipid profiles, 83 27 1.6 and islet morphology and function in db/db mice. Scientific Reports, 2017, 7, 14707. Effects of microencapsulated<i>Lactobacillus plantarum</i>LIP-1 on the gut microbiota of 84 1.2 79 hyperlipidaemic rats. British Journal of Nutrition, 2017, 118, 481-492. Host–microbiota interaction induces bi-phasic inflammation and glucose intolerance in mice. 85 3.0 30 Molecular Metabolism, 2017, 6, 1371-1380. Sex Effects at the Ramparts: Nutrient- and Microbe-Mediated Regulation of the Immune-Metabolic 86 0.8 Interface. Advances in Experimental Medicine and Biology, 2017, 1043, 113-140. Total Lipopolysaccharide from the Human Gut Microbiome Silences Toll-Like Receptor Signaling. 87 1.7 202 MSystems, 2017, 2, . Obesity and microbiota: an example of an intricate relationship. Genes and Nutrition, 2017, 12, 18. 1.2 Parasites, microbiota and metabolic disease. Parasite Immunology, 2017, 39, e12390. 89 13 0.7 Potential mediators linking gut bacteria to metabolic health: a critical view. Journal of Physiology, 2017, 595, 477-487. Inflammation-related oxidative stress in white adipose tissues of an inbred obese pig. Annals of Animal 91 0.6 1 Science, 2017, 17, 433-446. Intestinal Microbiota Contributes to Energy Balance, Metabolic Inflammation, and Insulin Resistance in Obesity. Journal of Obesity and Metabolic Syndrome, 2017, 26, 161-171. 1.5

#	Article	IF	CITATIONS
93	Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanisms and Therapy. Nutrients, 2017, 9, 1124.	1.7	143
94	Estimating glucose requirements of an activated immune system in growing pigs. Journal of Animal Science, 2017, 95, 5020-5029.	0.2	34
95	Antibiotic-Induced Alterations in Gut Microbiota Are Associated with Changes in Glucose Metabolism in Healthy Mice. Frontiers in Microbiology, 2017, 8, 2306.	1.5	103
96	Role of innate and adaptive immunity in obesity-associated metabolic disease. Journal of Clinical Investigation, 2017, 127, 5-13.	3.9	330
97	Intestinal microbiota and the immune system in metabolic diseases. Journal of Microbiology, 2018, 56, 154-162.	1.3	80
98	Loss of angiopoietin-like 4 (ANGPTL4) in mice with diet-induced obesity uncouples visceral obesity from glucose intolerance partly via the gut microbiota. Diabetologia, 2018, 61, 1447-1458.	2.9	70
99	Tartary buckwheat protein prevented dyslipidemia in high-fat diet-fed mice associated with gut microbiota changes. Food and Chemical Toxicology, 2018, 119, 296-301.	1.8	58
100	Helminth infection in mice improves insulin sensitivity via modulation of gut microbiota and fatty acid metabolism. Pharmacological Research, 2018, 132, 33-46.	3.1	38
101	Microbiota regulate the development and function of the immune cells. International Reviews of Immunology, 2018, 37, 79-89.	1.5	19
102	Diet and microbiota linked in health and disease. Food and Function, 2018, 9, 688-704.	2.1	148
103	Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration. Cell Host and Microbe, 2018, 23, 27-40.e7.	5.1	477
104	Food additives, contaminants and other minor components: effects on human gut microbiota—a review. Journal of Physiology and Biochemistry, 2018, 74, 69-83.	1.3	127
105	The gut microbiota: An emerging risk factor for cardiovascular and cerebrovascular disease. European Journal of Immunology, 2018, 48, 564-575.	1.6	114
106	Active migration is associated with specific and consistent changes to gut microbiota in <i>Calidris</i> shorebirds. Journal of Animal Ecology, 2018, 87, 428-437.	1.3	73
107	Adapted Immune Responses of Myeloid-Derived Cells in Fatty Liver Disease. Frontiers in Immunology, 2018, 9, 2418.	2.2	31
108	Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Science Translational Medicine, 2018, 10, .	5.8	121
109	Mouse Microbiota Models: Comparing Germ-Free Mice and Antibiotics Treatment as Tools for Modifying Gut Bacteria. Frontiers in Physiology, 2018, 9, 1534.	1.3	375
110	The Microbiotic Highway to Health—New Perspective on Food Structure, Gut Microbiota, and Host Inflammation. Nutrients, 2018, 10, 1590.	1.7	45

#	Article	IF	CITATIONS
111	Metabolic Abnormalities in Diabetes and Kidney Disease: Role of Uremic Toxins. Current Diabetes Reports, 2018, 18, 97.	1.7	43
112	Sterilized bifidobacteria suppressed fat accumulation and blood glucose level. Biochemical and Biophysical Research Communications, 2018, 501, 1041-1047.	1.0	59
113	Osteoarthritis induced by destabilization of the medial meniscus is reduced in germ-free mice. Osteoarthritis and Cartilage, 2018, 26, 1098-1109.	0.6	64
114	Microbiome-Mediated Effects of the Mediterranean Diet on Inflammation. Advances in Nutrition, 2018, 9, 193-206.	2.9	126
115	Intestinal Immunomodulatory Cells (T Lymphocytes): A Bridge between Gut Microbiota and Diabetes. Mediators of Inflammation, 2018, 2018, 1-8.	1.4	18
116	A soy-based probiotic drink modulates the microbiota and reduces body weight gain in diet-induced obese mice. Journal of Functional Foods, 2018, 48, 302-313.	1.6	27
117	Adipose tissue-derived free fatty acids initiate myeloid cell accumulation in mouse liver in states of lipid oversupply. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E758-E770.	1.8	12
118	Contribution of the commensal microbiota to atherosclerosis and arterial thrombosis. British Journal of Pharmacology, 2018, 175, 4439-4449.	2.7	26
119	Intestinal Dysbiosis in Obesity, Metabolic Syndrome and Related Metabolic Diseases: Therapeutic Strategies Utilizing Dietary Modification, Pro- and Prebiotics, and Fecal Microbial Transplant (FMT) Therapy. , 2018, , 463-515.		0
120	Antibiotic-induced alterations of the gut microbiota and microbial fermentation in protein parallel the changes in host nitrogen metabolism of growing pigs. Animal, 2019, 13, 262-272.	1.3	33
121	Effect of Rifaximin Treatment on Endotoxemia and Insulin Sensitivity in Humans. Journal of the Endocrine Society, 2019, 3, 1641-1651.	0.1	6
122	Obesity-Induced Adipose Tissue Inflammation as a Strong Promotional Factor for Pancreatic Ductal Adenocarcinoma. Cells, 2019, 8, 673.	1.8	23
123	Enrichment of intestinal Lactobacillus by enhanced secretory IgA coating alters glucose homeostasis in P2rx7â^'/â^' mice. Scientific Reports, 2019, 9, 9315.	1.6	18
124	Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review. Advances in Nutrition, 2020, 11, 77-91.	2.9	382
125	Diet–microbiota interactions and personalized nutrition. Nature Reviews Microbiology, 2019, 17, 742-753.	13.6	514
126	Gut microbiota: A new protagonist in the risk of cardiovascular disease?. ClÃnica E Investigación En Arteriosclerosis (English Edition), 2019, 31, 178-185.	0.1	1
127	The Role of the Microbiota in the Diabetic Peripheral Artery Disease. Mediators of Inflammation, 2019, 2019, 1-16.	1.4	15
128	Healthy adiposity and extended lifespan in obese mice fed a diet supplemented with a polyphenol-rich plant extract. Scientific Reports, 2019, 9, 9134.	1.6	25

	Сітатіо	n Report	
#	Article	IF	CITATIONS
129	Gut microbiota and obesity-associated osteoarthritis. Osteoarthritis and Cartilage, 2019, 27, 1257-1265.	0.6	59
130	The gut microbiota – a modulator of endothelial cell function and a contributing environmental factor to arterial thrombosis. Expert Review of Hematology, 2019, 12, 541-549.	1.0	7
131	Nutritional Modulation of Immune and Central Nervous System Homeostasis: The Role of Diet in Development of Neuroinflammation and Neurological Disease. Nutrients, 2019, 11, 1076.	1.7	35
132	Simplified Intestinal Microbiota to Study Microbe-Diet-Host Interactions in a Mouse Model. Cell Reports, 2019, 26, 3772-3783.e6.	2.9	61
133	Pharmacologic and Nonpharmacologic Therapies for the Gut Microbiota in Type 2 Diabetes. Canadian Journal of Diabetes, 2019, 43, 224-231.	0.4	43
134	Aryl hydrocarbon receptor agonist indigo protects against obesity-related insulin resistance through modulation of intestinal and metabolic tissue immunity. International Journal of Obesity, 2019, 43, 2407-2421.	1.6	54
135	Fight them or feed them: how the intestinal mucus layer manages the gut microbiota. Gastroenterology Report, 2019, 7, 3-12.	0.6	318
136	Microbiota intestinal: ¿un nuevo protagonista en el riesgo de enfermedad cardiovascular?. ClÃnica E Investigación En Arteriosclerosis, 2019, 31, 178-185.	0.4	2
137	Missing Links: the Role of Primates in Understanding the Human Microbiome. MSystems, 2019, 4, .	1.7	4
138	The Gut Microbiota as an Influencing Factor of Arterial Thrombosis. Hamostaseologie, 2019, 39, 173-179.	0.9	11
139	The Gut Microbiota in Cardiovascular Disease and Arterial Thrombosis. Microorganisms, 2019, 7, 691.	1.6	16
140	Gut Microbiota Dysbiosis and Increased Plasma LPS and TMAO Levels in Patients With Preeclampsia. Frontiers in Cellular and Infection Microbiology, 2019, 9, 409.	1.8	93
141	High fat diet exacerbates intestinal barrier dysfunction and changes gut microbiota in intestinal-specific ACF7 knockout mice. Biomedicine and Pharmacotherapy, 2019, 110, 537-545.	2.5	25
142	Phosphatidylglycerols are induced by gut dysbiosis and inflammation, and favorably modulate adipose tissue remodeling in obesity. FASEB Journal, 2019, 33, 4741-4754.	0.2	27
143	Gut microbiome and type 2 diabetes: where we are and where to go?. Journal of Nutritional Biochemistry, 2019, 63, 101-108.	1.9	261
144	Diabesity and mood disorders: Multiple links through the microbiota-gut-brain axis. Molecular Aspects of Medicine, 2019, 66, 80-93.	2.7	51
145	Transformation of berberine to its demethylated metabolites by the CYP51 enzyme in the gut microbiota. Journal of Pharmaceutical Analysis, 2021, 11, 628-637.	2.4	25
146	Mutual Interplay of Host Immune System and Gut Microbiota in the Immunopathology of Atherosclerosis. International Journal of Molecular Sciences, 2020, 21, 8729.	1.8	16

#	Article	IF	CITATIONS
148	Gut microbiota and atherosclerosis: role of B cell for atherosclerosis focusing on the gut-immune-B2 cell axis. Journal of Molecular Medicine, 2020, 98, 1235-1244.	1.7	12
149	Microbiota and Fatty Liver Disease—the Known, the Unknown, and the Future. Cell Host and Microbe, 2020, 28, 233-244.	5.1	115
150	The M2 Macrophage. Agents and Actions Supplements, 2020, , .	0.2	3
151	Obesity-associated microbiota contributes to mucus layer defects in genetically obese mice. Journal of Biological Chemistry, 2020, 295, 15712-15726.	1.6	28
152	The Relationship Between Gut Microbiota and Inflammatory Diseases: The Role of Macrophages. Frontiers in Microbiology, 2020, 11, 1065.	1.5	146
153	An Insight into the Changing Scenario of Gut Microbiome during Type 2 Diabetes. , 0, , .		0
154	Gut Microbiota Restricts NETosis in Acute Mesenteric Ischemia-Reperfusion Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2279-2292.	1.1	42
155	Host microbiota dictates the proinflammatory impact of LPS in the murine liver. Toxicology in Vitro, 2020, 67, 104920.	1.1	12
156	Gut microbiota: a promising target against cardiometabolic diseases. Expert Review of Endocrinology and Metabolism, 2020, 15, 13-27.	1.2	35
157	Hepatic expression of lipopolysaccharide-binding protein (Lbp) is induced by the gut microbiota through Myd88 and impairs glucose tolerance in mice independent of obesity. Molecular Metabolism, 2020, 37, 100997.	3.0	13
158	Eicosapentaenoic and Docosahexaenoic Acids Differentially Alter Gut Microbiome and Reverse Highâ€Fat Diet–Induced Insulin Resistance. Molecular Nutrition and Food Research, 2020, 64, e1900946.	1.5	56
159	Germ-Free Swiss Webster Mice on a High-Fat Diet Develop Obesity, Hyperglycemia, and Dyslipidemia. Microorganisms, 2020, 8, 520.	1.6	17
160	Supplementation of endogenous Ahr ligands reverses insulin resistance and associated inflammation in an insulin-dependent diabetic mouse model. Journal of Nutritional Biochemistry, 2020, 83, 108384.	1.9	6
161	Metabolism and Metabolic Disorders and the Microbiome: The Intestinal Microbiota Associated With Obesity, Lipid Metabolism, and Metabolic Health—Pathophysiology and Therapeutic Strategies. Gastroenterology, 2021, 160, 573-599.	0.6	169
162	Intercellular Mitochondria Transfer to Macrophages Regulates White Adipose Tissue Homeostasis and Is Impaired in Obesity. Cell Metabolism, 2021, 33, 270-282.e8.	7.2	160
163	The Beneficial Effects of Red Sunâ€Dried <i>Capsicum annuum</i> L. Cv Senise Extract with Antioxidant Properties in Experimental Obesity are Associated with Modulation of the Intestinal Microbiota. Molecular Nutrition and Food Research, 2021, 65, e2000812.	1.5	10
164	Gut microbiota, kynurenine pathway and mental disorders – Review. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 106, 110145.	2.5	39
165	Diabetogenically beneficial gut microbiota alterations in third trimester of pregnancy. Reproduction and Fertility, 2021, 2, R1-R12.	0.6	3

#	Article	IF	CITATIONS
166	Association of Gut Hormones and Microbiota with Vascular Dysfunction in Obesity. Nutrients, 2021, 13, 613.	1.7	16
167	Marine Natural Products: Promising Candidates in the Modulation of Gut-Brain Axis towards Neuroprotection. Marine Drugs, 2021, 19, 165.	2.2	19
168	Microbiome-immune interactions in tuberculosis. PLoS Pathogens, 2021, 17, e1009377.	2.1	28
169	Modulation of the gut microbiota-adipose tissue-muscle interactions by prebiotics. Journal of Endocrinology, 2021, 249, R1-R23.	1.2	17
170	The influence of PM2.5 exposure on non-alcoholic fatty liver disease. Life Sciences, 2021, 270, 119135.	2.0	30
171	Treating the Metabolic Syndrome by Fecal Transplantation—Current Status. Biology, 2021, 10, 447.	1.3	9
172	Putting ATM to BED: How Adipose Tissue Macrophages Are Affected by Bariatric Surgery, Exercise, and Dietary Fatty Acids. Advances in Nutrition, 2021, 12, 1893-1910.	2.9	12
173	Bacteroides uniformis CECT 7771 alleviates inflammation within the gut-adipose tissue axis involving TLR5 signaling in obese mice. Scientific Reports, 2021, 11, 11788.	1.6	33
174	Multi-omics: Opportunities for research on mechanism of type 2 diabetes mellitus. World Journal of Diabetes, 2021, 12, 1070-1080.	1.3	13
175	Role of modified diet and gut microbiota in metabolic endotoxemia in mice. Archives of Microbiology, 2021, 203, 5085-5093.	1.0	3
176	The immunological and metabolic landscape in primary and metastatic liver cancer. Nature Reviews Cancer, 2021, 21, 541-557.	12.8	212
177	The Types and Proportions of Commensal Microbiota Have a Predictive Value in Coronary Heart Disease. Journal of Clinical Medicine, 2021, 10, 3120.	1.0	8
178	Impact of Gut Microbiota and Microbiota-Related Metabolites on Hyperlipidemia. Frontiers in Cellular and Infection Microbiology, 2021, 11, 634780.	1.8	77
179	Comment on: Toll-like receptor 4 and MyD88 are required for gastric bypass-induced metabolic effects. Surgery for Obesity and Related Diseases, 2021, 17, 2006-2008.	1.0	0
180	Brain-gut-liver interactions across the spectrum of insulin resistance in metabolic fatty liver disease. World Journal of Gastroenterology, 2021, 27, 4999-5018.	1.4	8
181	Fecal microbiota transplantation does not alter bacterial translocation and visceral adipose tissue inflammation in individuals with obesity. Obesity Science and Practice, 2022, 8, 56-65.	1.0	4
182	Mitochondria Can Cross Cell Boundaries: An Overview of the Biological Relevance, Pathophysiological Implications and Therapeutic Perspectives of Intercellular Mitochondrial Transfer. International Journal of Molecular Sciences, 2021, 22, 8312.	1.8	61
183	Eicosapentaenoic and docosahexaenoic acids attenuate hyperglycemia through the microbiome-gut-organs axis in db/db mice. Microbiome, 2021, 9, 185.	4.9	72

#	Article	IF	CITATIONS
184	Microbiota-Gut-Brain Axis. , 2021, , 423-423.		0
185	M2 Macrophages in the Metabolic Organs and in the Neuroendocrine System. Agents and Actions Supplements, 2020, , 171-187.	0.2	3
186	The Microbiota-Gut-Brain Axis in Neuropsychiatric Disorders: Pathophysiological Mechanisms and Novel Treatments. Current Neuropharmacology, 2018, 16, 559-573.	1.4	147
187	Role of Gut Microbiota in Obesity, Type 2 Diabetes and Alzheimer's Disease. CNS and Neurological Disorders - Drug Targets, 2014, 13, 305-311.	0.8	94
188	Reaction of antibodies toCampylobacter jejuniand cytolethal distending toxin B with tissues and food antigens. World Journal of Gastroenterology, 2019, 25, 1050-1066.	1.4	7
189	Molecular Immune-Inflammatory Connections between Dietary Fats and Atherosclerotic Cardiovascular Disease: Which Translation into Clinics?. Nutrients, 2021, 13, 3768.	1.7	5
190	Modification of intestinal microbiota and faecal transplantation as a perspective method of treatment of obesity, insulin resistance and diabetes mellitus type 2. Clinical Endocrinology and Endocrine Surgery, 2016, .	0.1	2
191	The role of Tolerance, in maintaining immune Cells and Cytokines and as Immuno-modulatory Target in Cancer and Autoimmune diseases Treatment and Prevention. International Journal of Scientific and Engineering Research, 2017, 8, 216-235.	0.1	0
192	Do My Microbes Make Me Fat? Potential for the Gut Microbiota to Influence Energy Balance, Obesity and Metabolic Health in Humans. Fascinating Life Sciences, 2020, , 97-108.	0.5	0
193	Effects of voluntary exercise on plasma and urinary metabolites and gut microbiota in mice fed with high-fat-diet. The Journal of Physical Fitness and Sports Medicine, 2020, 9, 205-215.	0.2	0
194	Impact of Exercise on Gut Microbiota in Obesity. Nutrients, 2021, 13, 3999.	1.7	31
195	High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells, 2021, 10, 3164.	1.8	199
196	<i>Lactobacillus rhamnosus</i> Strain LRH05 Intervention Ameliorated Body Weight Gain and Adipose Inflammation via Modulating the Gut Microbiota in Highâ€Fat Dietâ€Induced Obese Mice. Molecular Nutrition and Food Research, 2022, 66, e2100348.	1.5	18
197	The Influence of the Western Diet on Microbiota and Gastrointestinal Immunity. Annual Review of Food Science and Technology, 2022, 13, 489-512.	5.1	11
198	Inter-Organ Crosstalk in the Development of Obesity-Associated Insulin Resistance. Handbook of Experimental Pharmacology, 2021, , 1.	0.9	0
199	The Metabolic Role and Therapeutic Potential of the Microbiome. Endocrine Reviews, 2022, 43, 907-926.	8.9	26
200	The Association between Gut Microbiota and Osteoarthritis: Does the Disease Begin in the Gut?. International Journal of Molecular Sciences, 2022, 23, 1494.	1.8	16
201	The Functional Interplay between Gut Microbiota, Protein Hydrolysates/Bioactive Peptides, and Obesity: A Critical Review on the Study Advances. Antioxidants, 2022, 11, 333.	2.2	12

#	Article	IF	CITATIONS
202	Microbiota and body weight control: Weight watchers within?. Molecular Metabolism, 2022, 57, 101427.	3.0	25
203	The Gut Microbiota and Host Metabolism. , 2022, , 141-175.		2
204	The Role of T Cells in Obesity-Associated Inflammation and Metabolic Disease. Immune Network, 2022, 22, e13.	1.6	16
205	Evidence for Constitutive Microbiota-Dependent Short-Term Control of Food Intake in Mice: Is There a Link with Inflammation, Oxidative Stress, Endotoxemia, and GLP-1?. Antioxidants and Redox Signaling, 2022, 37, 349-369.	2.5	3
206	Organokines and Exosomes: Integrators of Adipose Tissue Macrophage Polarization and Recruitment in Obesity. Frontiers in Endocrinology, 2022, 13, 839849.	1.5	7
208	Shedding light on biological sex differences and microbiota–gut–brain axis: a comprehensive review of its roles in neuropsychiatric disorders. Biology of Sex Differences, 2022, 13, 12.	1.8	34
209	Mulberry (<i>Morus alba</i> L.) leaf polysaccharide ameliorates insulin resistance―and adipose depositionâ€associated gut microbiota and lipid metabolites in highâ€fat dietâ€induced obese mice. Food Science and Nutrition, 2022, 10, 617-630.	1.5	14
210	The Link between Gut Dysbiosis Caused by a High-Fat Diet and Hearing Loss. International Journal of Molecular Sciences, 2021, 22, 13177.	1.8	16
211	Chronic Inflammation in Obesity and Cancer Cachexia. Journal of Clinical Medicine, 2022, 11, 2191.	1.0	10
216	The Role of Depletion of Gut Microbiota in Osteoporosis and Osteoarthritis: A Narrative Review. Frontiers in Endocrinology, 2022, 13, 847401.	1.5	13
217	Manno-oligosaccharides from cassia seed gum ameliorate inflammation and improve glucose metabolism in diabetic rats. Food and Function, 2022, 13, 6674-6687.	2.1	7
218	Communication between the gut microbiota and peripheral nervous system in health and chronic disease. Gut Microbes, 2022, 14, 2068365.	4.3	17
219	Influence of Gut Microbiota and Trimethylamine <i>N</i> -Oxide in Patients with Coronary Heart Disease. International Heart Journal, 2022, 63, 683-691.	0.5	3
220	The Gut Microbiome and Ferroptosis in MAFLD. Journal of Clinical and Translational Hepatology, 2022, 000, 000-000.	0.7	5
221	Probiotics with anti-type 2 diabetes mellitus properties: targets of polysaccharides from traditional Chinese medicine. Chinese Journal of Natural Medicines, 2022, 20, 641-655.	0.7	3
222	Gut microbiota and obesity: New insights. Frontiers in Nutrition, 0, 9, .	1.6	10
223	Effects of Enzamin, a Microbial Product, on Alterations of Intestinal Microbiota Induced by a High-Fat Diet. Nutrients, 2022, 14, 4743.	1.7	0
224	Fat and not sugar as the determining factor for gut microbiota changes, obesity, and related metabolic disorders in mice. American Journal of Physiology - Endocrinology and Metabolism, 2023, 324, E85-E96.	1.8	9

#	Article	IF	Citations
225	Nutritional implications in the mechanistic link between the intestinal microbiome, renin-angiotensin system, and the development of obesity and metabolic syndrome. Journal of Nutritional Biochemistry, 2022, , 109252.	1.9	1
226	Vitamin D, Gut Microbiota, and Cardiometabolic Diseases—A Possible Three-Way Axis. International Journal of Molecular Sciences, 2023, 24, 940.	1.8	10
227	Bacteroides vulgatus Ameliorates Lipid Metabolic Disorders and Modulates Gut Microbial Composition in Hyperlipidemic Rats. Microbiology Spectrum, 2023, 11, .	1.2	14
228	Intestinal dysbiosis, obesity and metabolic syndrome: how to quit this tricky triangle?. Modern Gastroenterology, 2019, , 45-56.	0.1	0
229	Types of cell culture inserts affect cell crosstalk between co-cultured macrophages and adipocytes. Biochemical and Biophysical Research Communications, 2023, 658, 10-17.	1.0	0
230	The Gut Commensal Escherichia coli Aggravates High-Fat-Diet-Induced Obesity and Insulin Resistance in Mice. Applied and Environmental Microbiology, 2023, 89, .	1.4	6
231	The Trichinella spiralis-derived antigens alleviate HFD-induced obesity and inflammation in mice. International Immunopharmacology, 2023, 117, 109924.	1.7	3
232	Implication of Obesity and Gut Microbiome Dysbiosis in the Etiology of Colorectal Cancer. Cancers, 2023, 15, 1913.	1.7	9
233	<i>Escherichia coli</i> inhibits endometriosis by inducing M1 polarity of peritoneal macrophages and the IL-1 signaling pathway. Molecular Human Reproduction, 2023, 29, .	1.3	2
241	Gut Microbiome and Liver Diseases from the Perspective of 3PM: The Predictive, Preventive, and Personalized Medicine. Advances in Predictive, Preventive and Personalised Medicine, 2023, , 141-175.	0.6	0
242	Gut microbiota in overweight and obesity: crosstalk with adipose tissue. Nature Reviews Gastroenterology and Hepatology, 2024, 21, 164-183.	8.2	1
246	Gut Microbiota and Type 2 Diabetes Mellitus. Endocrinology, 2023, , 1-31.	0.1	0
248	Gut microbiota and metabolic syndrome: What's new?. , 2024, , 527-541.		0
249	Gut Microbiota and Type 2 Diabetes Mellitus. Endocrinology, 2024, , 199-229.	0.1	0