Value of Current Chemotherapy and Surgery in Advanc

Urologia Internationalis 88, 249-258

DOI: 10.1159/000335556

Citation Report

#	Article	IF	CITATIONS
2	Synthetic miRNA-Mowers Targeting miR-183-96-182 Cluster or miR-210 Inhibit Growth and Migration and Induce Apoptosis in Bladder Cancer Cells. PLoS ONE, 2012, 7, e52280.	1.1	93
3	Bladder cancer – the neglected tumor: a descriptive analysis of publications referenced in MEDLINE and data from the register clinicaltrials.gov. BMC Urology, 2013, 13, 56.	0.6	11
4	Targeting Folate Receptors to Treat Invasive Urinary Bladder Cancer. Cancer Research, 2013, 73, 875-884.	0.4	52
5	Pterostilbene Protection and Bladder Cancer Cells. , 2014, , 271-281.		1
6	Synthetic Tet-inducible artificial microRNAs targeting \hat{l}^2 -catenin or HIF- $l\hat{l}$ ± inhibit malignant phenotypes of bladder cancer cells T24 and 5637. Scientific Reports, 2015, 5, 16177.	1.6	16
8	Fucoidan induces G1 arrest of the cell cycle in EJ human bladder cancer cells through down-regulation of pRB phosphorylation. Revista Brasileira De Farmacognosia, 2015, 25, 246-251.	0.6	18
9	Synthetic miRNA sponges driven by mutant hTERT promoter selectively inhibit the progression of bladder cancer. Tumor Biology, 2015, 36, 5157-5163.	0.8	15
10	Decreased expression of LncRNA MIR31HG in human bladder cancer. Cancer Biomarkers, 2016, 17, 231-236.	0.8	44
11	Up-regulation of long non-coding RNA PANDAR is associated with poor prognosis and promotes tumorigenesis in bladder cancer. Journal of Experimental and Clinical Cancer Research, 2016, 35, 83.	3 . 5	71
12	A Tumor-specific MicroRNA Recognition System Facilitates the Accurate Targeting to Tumor Cells by Magnetic Nanoparticles. Molecular Therapy - Nucleic Acids, 2016, 5, e318.	2.3	21
13	Over-expression of long noncoding RNA BANCR inhibits malignant phenotypes of human bladder cancer. Journal of Experimental and Clinical Cancer Research, 2016, 35, 125.	3. 5	64
14	Synthetic Bax-Anti Bcl2 combination module actuated by super artificial hTERT promoter selectively inhibits malignant phenotypes of bladder cancer. Journal of Experimental and Clinical Cancer Research, 2016, 35, 3.	3.5	17
15	Synthetic Tet-inducible small hairpin RNAs targeting hTERT or Bcl-2 inhibit malignant phenotypes of bladder cancer T24 and 5637 cells. Tumor Biology, 2016, 37, 3115-3121.	0.8	9
16	LncROR Promotes Bladder Cancer Cell Proliferation, Migration, and Epithelial-Mesenchymal Transition. Cellular Physiology and Biochemistry, 2017, 41, 2399-2410.	1.1	51
17	DCAMKL1 is associated with the malignant status and poor outcome in bladder cancer. Tumor Biology, 2017, 39, 101042831770382.	0.8	6
18	An enhanced hTERT promoter-driven CRISPR/Cas9 system selectively inhibits the progression of bladder cancer cells. Molecular BioSystems, 2017, 13, 1713-1721.	2.9	10
19	Downregulation of long noncoding RNA TUG1 inhibits proliferation and induces apoptosis through the TUG1/miR-142/ZEB2 axis in bladder cancer cells. OncoTargets and Therapy, 2017, Volume 10, 2461-2471.	1.0	87
20	Long non-coding RNA XIST promotes cell growth and metastasis through regulating miR-139-5p mediated Wnt/l²-catenin signaling pathway in bladder cancer. Oncotarget, 2017, 8, 94554-94568.	0.8	77

#	ARTICLE	IF	CITATIONS
21	Synthetic regulatory RNAs selectively suppress the progression of bladder cancer. Journal of Experimental and Clinical Cancer Research, 2017, 36, 151.	3 . 5	10
22	Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Molecular Cancer, 2018, 17, 19.	7.9	395
23	Synthetic artificial "long non-coding RNAs" targeting oncogenic microRNAs and transcriptional factors inhibit malignant phenotypes of bladder cancer cells. Cancer Letters, 2018, 422, 94-106.	3.2	6
24	LncRNA-SNHG16 predicts poor prognosis and promotes tumor proliferation through epigenetically silencing p21 in bladder cancer. Cancer Gene Therapy, 2018, 25, 10-17.	2.2	95
25	Decreased expression of SRY-box containing gene 30 is related to malignant phenotypes of human bladder cancer and correlates with poor prognosis. BMC Cancer, 2018, 18, 642.	1.1	16
26	A tetracyclineâ€ʻinducible CRISPR/Cas9 system, targeting two long nonâ€ʻcoding RNAs, suppresses the malignant behavior of bladder cancer cells. Oncology Letters, 2018, 16, 4309-4316.	0.8	7
27	High expression of TMEM40 is associated with the malignant behavior and tumorigenesis in bladder cancer. Journal of Translational Medicine, 2018, 16, 9.	1.8	17
28	Downregulation of circular RNA hsa_circ_0000144 inhibits bladder cancer progression via stimulating miR-217 and suppressing RUNX2 expression. Gene, 2018, 678, 337-342.	1.0	43
30	Enhancer RNA - P2RY2e induced by estrogen promotes malignant behaviors of bladder cancer. International Journal of Biological Sciences, 2018, 14, 1268-1276.	2.6	23
31	Circular RNA circâ€VANGL1 as a competing endogenous RNA contributes to bladder cancer progression by regulating miRâ€605â€3p/VANGL1 pathway. Journal of Cellular Physiology, 2019, 234, 3887-3896.	2.0	52
32	Downregulated Long Noncoding RNA PART1 Inhibits Proliferation and Promotes Apoptosis in Bladder Cancer. Technology in Cancer Research and Treatment, 2019, 18, 153303381984663.	0.8	25
33	EZH2 inhibition suppresses bladder cancer cell growth and metastasis via the JAK2/STAT3 signaling pathway. Oncology Letters, 2019, 18, 907-915.	0.8	29
34	Inhibition of autophagy enhances the anticancer effect of enzalutamide on bladder cancer. Biomedicine and Pharmacotherapy, 2019, 120, 109490.	2.5	31
35	Characterization of mRNA Expression and Endogenous RNA Profiles in Bladder Cancer Based on The Cancer Genome Atlas (TCGA) Database. Medical Science Monitor, 2019, 25, 3041-3060.	0.5	27
36	Scutellarin inhibits hypoxiaâ€induced epithelialâ€mesenchymal transition in bladder cancer cells. Journal of Cellular Physiology, 2019, 234, 23169-23175.	2.0	30
37	Which treatment is best for patients with AJCC stage IV bladder cancer?. International Urology and Nephrology, 2019, 51, 1145-1156.	0.6	10
38	The landscape of chimeric RNAs in bladder urothelial carcinoma. International Journal of Biochemistry and Cell Biology, 2019, 110, 50-58.	1.2	24
39	Knockdown of IncRNA SNHG7 inhibited cell proliferation and migration in bladder cancer through activating Wnt/ \hat{l}^2 -catenin pathway. Pathology Research and Practice, 2019, 215, 302-307.	1.0	31

3

#	Article	IF	CITATIONS
40	Loss of DUSP2 predicts a poor prognosis in patients with bladder cancer. Human Pathology, 2019, 85, 152-161.	1.1	17
41	Zinc finger antisense 1: A long noncoding RNA with complex roles in human cancers. Gene, 2019, 688, 26-33.	1.0	19
43	Long non-coding RNA NEAT1 promotes bladder progression through regulating miR-410 mediated HMGB1. Biomedicine and Pharmacotherapy, 2020, 121, 109248.	2.5	38
44	Functional genetic variant of WW domain containing oxidoreductase gene associated with urothelial cell carcinoma clinicopathologic characteristics and long-term survival. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 41.e1-41.e9.	0.8	5
45	CRISPR-Cas13a Targeting the Enhancer RNA-SMAD7e Inhibits Bladder Cancer Development Both in vitro and in vivo. Frontiers in Molecular Biosciences, 2020, 7, 607740.	1.6	18
46	Synthetic Artificial Long Non-coding RNA Shows Higher Efficiency in Specific Malignant Phenotype Inhibition Compared to the CRISPR/Cas Systems. Frontiers in Molecular Biosciences, 2020, 7, 617600.	1.6	8
47	Gambogenic acid suppresses bladder cancer cells growth and metastasis by regulating NFâ€₽B signaling. Chemical Biology and Drug Design, 2020, 96, 1272-1279.	1.5	9
48	Identification of a potentially functional circRNA–miRNA–mRNA regulatory network for investigating pathogenesis and providing possible biomarkers of bladder cancer. Cancer Cell International, 2020, 20, 31.	1.8	15
49	Efficacy and Safety of Chemotherapy Regimens in Advanced or Metastatic Bladder and Urothelial Carcinomas: An Updated Network Meta-Analysis. Frontiers in Pharmacology, 2019, 10, 1507.	1.6	6
50	<p>Biological and Clinical Significance of GATA3 Detected from TCGA Database and FFPE Sample in Bladder Cancer Patients</p> . OncoTargets and Therapy, 2020, Volume 13, 945-958.	1.0	12
51	Identification of a potentially functional circRNA-miRNA-mRNA ceRNA regulatory network in bladder cancer by analysis of microarray data. Translational Andrology and Urology, 2021, 10, 24-36.	0.6	6
52	C19orf10 promotes malignant behaviors of human bladder carcinoma cells via regulating the PI3K/AKT and Wnt/β-catenin pathways. Journal of Cancer, 2021, 12, 4341-4354.	1.2	6
53	TRIB3 Promotes the Malignant Progression of Bladder Cancer: An Integrated Analysis of Bioinformatics and in vitro Experiments. Frontiers in Genetics, 2021, 12, 649208.	1.1	4
54	Comprehensive analysis of the IncRNA-miRNA-mRNA regulatory network for bladder cancer. Translational Andrology and Urology, 2021, 10, 1286-1301.	0.6	15
55	MicroRNA‑16‑5p/BIMP1/NF‴κB axis regulates autophagy to exert a tumor‑suppressive effect on bladder cancer. Molecular Medicine Reports, 2021, 24, .	1,1	9
56	CircCA12 Promotes Malignant Process via Sponging miR-1184 and Upregulating RAS Family in Bladder Cancer. Frontiers in Genetics, 2021, 12, 663982.	1.1	5
57	Attenuation of chloroquine and hydroxychloroquine on the invasive potential of bladder cancer through targeting matrix metalloproteinase 2 expression. Environmental Toxicology, 2021, 36, 2138-2145.	2.1	7
58	circ_100984â€miRâ€432â€3p axis regulated câ€Jun/YBXâ€1/βâ€catenin feedback loop promotes bladder cancer progression. Cancer Science, 2021, 112, 1429-1442.	1.7	20

#	ARTICLE	IF	CITATIONS
59	Circ-BPTF promotes bladder cancer progression and recurrence through the miR-31-5p/RAB27A axis. Aging, 2018, 10, 1964-1976.	1.4	94
60	A potential prognostic IncRNA signature for predicting survival in patients with bladder urothelial carcinoma. Oncotarget, 2017, 8, 10485-10497.	0.8	39
61	Increased expression of ZEB1-AS1 correlates with higher histopathological grade and promotes tumorigenesis in bladder cancer. Oncotarget, 2017, 8, 24202-24212.	0.8	37
62	Tetracycline-inducible shRNA targeting long non-coding RNA PVT1 inhibits cell growth and induces apoptosis in bladder cancer cells. Oncotarget, 2015, 6, 41194-41203.	0.8	79
63	shRNA targeting long non-coding RNA CCAT2 controlled by tetracycline-inducible system inhibits progression of bladder cancer cells. Oncotarget, 2016, 7, 28989-28997.	0.8	60
64	Novel circRNA_0071196/miRNAâ€ʻ19bâ€ʻ3p/CIT axis is associated with proliferation and migration of bladder cancer. International Journal of Oncology, 2020, 57, 767-779.	1.4	17
65	AB141. Synthetic Bax-Anti Bcl 2 combination module actuated by super artificial hTERT promoter selectively inhibits malignant phenotypes of bladder cancer. Translational Andrology and Urology, 2016, 5, AB141-AB141.	0.6	0
66	Novel IncRNA LINC01614 Facilitates Bladder Cancer Proliferation, Migration and Invasion Through the miR-217/RUNX2/Wnt/β-Catenin Axis. Cancer Management and Research, 2021, Volume 13, 8387-8397.	0.9	7
67	MiR-22 suppresses the growth and metastasis of bladder cancer cells by targeting E2F3. International Journal of Clinical and Experimental Pathology, 2020, 13, 587-596.	0.5	4
74	A comprehensive review on different approaches for tumor targeting using nanocarriers and recent developments with special focus on multifunctional approaches. Journal of Pharmaceutical Investigation, 2022, 52, 539-585.	2.7	12
75	Ligustilide induces apoptosis and reduces proliferation in human bladder cancer cells by <scp>NFκB1</scp> and mitochondria pathway. Chemical Biology and Drug Design, 2023, 101, 1252-1261.	1.5	5