Kepler-36: A Pair of Planets with Neighboring Orbits an

Science 337, 556-559 DOI: 10.1126/science.1223269

Citation Report

#	Article	IF	CITATIONS
2	Brown dwarfs and free-floating planets. , 0, , 209-216.		0
3	Formation and evolution. , 0, , 217-254.		3
4	RAPID DYNAMICAL CHAOS IN AN EXOPLANETARY SYSTEM. Astrophysical Journal Letters, 2012, 755, L21.	8.3	88
5	Kepler-47: A Transiting Circumbinary Multiplanet System. Science, 2012, 337, 1511-1514.	12.6	312
6	A dynamical analysis of the Kepler-11 planetary system. Monthly Notices of the Royal Astronomical Society, 2012, 427, 770-789.	4.4	52
7	THE NEPTUNE-SIZED CIRCUMBINARY PLANET KEPLER-38b. Astrophysical Journal, 2012, 758, 87.	4.5	213
8	EXTRACTING PLANET MASS AND ECCENTRICITY FROM TTV DATA. Astrophysical Journal, 2012, 761, 122.	4.5	241
9	PHOTOMETRICALLY DERIVED MASSES AND RADII OF THE PLANET AND STAR IN THE TrES-2 SYSTEM. Astrophysical Journal, 2012, 761, 53.	4.5	89
10	HOW THERMAL EVOLUTION AND MASS-LOSS SCULPT POPULATIONS OF SUPER-EARTHS AND SUB-NEPTUNES: APPLICATION TO THE KEPLER-11 SYSTEM AND BEYOND. Astrophysical Journal, 2012, 761, 59.	4.5	322
11	TRANSIT TIMING OBSERVATIONS FROM <i>KEPLER</i> . VI. POTENTIALLY INTERESTING CANDIDATE SYSTEMS FROM FOURIER-BASED STATISTICAL TESTS. Astrophysical Journal, 2012, 756, 186.	4.5	62
12	TRANSITS AND OCCULTATIONS OF AN EARTH-SIZED PLANET IN AN 8.5 hr ORBIT. Astrophysical Journal, 2013, 774, 54.	4.5	135
13	An Earth-sized planet with an Earth-like density. Nature, 2013, 503, 377-380.	27.8	199
14	CoRoT and Kepler results: Solar-like oscillators. Advances in Space Research, 2013, 52, 1581-1592.	2.6	12
15	Stability of the Keplerâ€36 twoâ€planet system. Astronomische Nachrichten, 2013, 334, 992-995.	1.2	22
16	Effects of Trojan exoplanets on the reflex motions of their parent stars. Icarus, 2013, 226, 1635-1641.	2.5	30
17	Swarm-NG: A CUDA library for Parallel n-body Integrations with focus on simulations of planetary systems. New Astronomy, 2013, 23-24, 6-18.	1.8	13
18	A Detailed Model Grid for Solid Planets from 0.1 through 100 Earth Masses. Publications of the Astronomical Society of the Pacific, 2013, 125, 227-239.	3.1	185
19	Kepler-62: A Five-Planet System with Planets of 1.4 and 1.6 Earth Radii in the Habitable Zone. Science, 2013, 340, 587-590.	12.6	213

ITATION REDO

#	Article	IF	CITATIONS
20	THE HUNT FOR EXOMOONS WITH KEPLER (HEK). II. ANALYSIS OF SEVEN VIABLE SATELLITE-HOSTING PLANET CANDIDATES. Astrophysical Journal, 2013, 770, 101.	4.5	79
21	Asteroseismology of Solar-Type and Red-Giant Stars. Annual Review of Astronomy and Astrophysics, 2013, 51, 353-392.	24.3	383
22	The formation of systems with closely spaced low-mass planets and the application to Kepler-36. Monthly Notices of the Royal Astronomical Society, 2013, 434, 3018-3029.	4.4	50
23	Dynamical masses, absolute radii and 3D orbits of the triply eclipsing star HDÂ181068 from Kepler photometry. Monthly Notices of the Royal Astronomical Society, 2013, 428, 1656-1672.	4.4	49
24	ASTEROSEISMIC DETERMINATION OF OBLIQUITIES OF THE EXOPLANET SYSTEMS KEPLER-50 AND KEPLER-65. Astrophysical Journal, 2013, 766, 101.	4.5	158
25	VOLATILE TRANSPORT INSIDE SUPER-EARTHS BY ENTRAPMENT IN THE WATER-ICE MATRIX. Astrophysical Journal, 2013, 769, 29.	4.5	23
26	STELLAR AGES AND CONVECTIVE CORES IN FIELD MAIN-SEQUENCE STARS: FIRST ASTEROSEISMIC APPLICATION TO TWO <i>KEPLER</i> TARGETS. Astrophysical Journal, 2013, 769, 141.	4.5	115
27	A LACK OF SHORT-PERIOD MULTIPLANET SYSTEMS WITH CLOSE-PROXIMITY PAIRS AND THE CURIOUS CASE OF KEPLER-42. Astrophysical Journal Letters, 2013, 774, L12.	8.3	55
28	EXOPLANET CHARACTERIZATION BY PROXY: A TRANSITING 2.15 <i>R</i> _⊕ PLANET NEAR THE HABITABLE ZONE OF THE LATE K DWARF KEPLER-61. Astrophysical Journal, 2013, 773, 98.	4.5	53
29	DENSITY AND ECCENTRICITY OF <i>KEPLER</i> PLANETS. Astrophysical Journal, 2013, 772, 74.	4.5	188
30	<i>KEPLER</i> PLANETS: A TALE OF EVAPORATION. Astrophysical Journal, 2013, 775, 105.	4.5	580
31	FUNDAMENTAL PROPERTIES OF <i>KEPLER </i> PLANET-CANDIDATE HOST STARS USING ASTEROSEISMOLOGY. Astrophysical Journal, 2013, 767, 127.	4.5	259
32	KOI-142, THE KING OF TRANSIT VARIATIONS, IS A PAIR OF PLANETS NEAR THE 2:1 RESONANCE. Astrophysical Journal, 2013, 777, 3.	4.5	135
33	TRIPLE-STAR CANDIDATES AMONG THE <i>KEPLER</i> BINARIES. Astrophysical Journal, 2013, 768, 33.	4.5	126
34	WATER-PLANETS IN THE HABITABLE ZONE: ATMOSPHERIC CHEMISTRY, OBSERVABLE FEATURES, AND THE CASE OF KEPLER-62 <i>e</i> AND -62 <i>f</i> . Astrophysical Journal Letters, 2013, 775, L47.	8.3	46
35	ARE PLANETARY SYSTEMS FILLED TO CAPACITY? A STUDY BASED ON <i>KEPLER</i> RESULTS. Astrophysical Journal, 2013, 767, 115.	4.5	92
36	EIGHT PLANETS IN FOUR MULTI-PLANET SYSTEMS VIA TRANSIT TIMING VARIATIONS IN 1350 DAYS. Astrophysical Journal, 2013, 778, 110.	4.5	25
37	STABILITY OF SATELLITES IN CLOSELY PACKED PLANETARY SYSTEMS. Astrophysical Journal Letters, 2013, 775, L44.	8.3	44

#	Article	IF	Citations
38	TURBULENT DISKS ARE NEVER STABLE: FRAGMENTATION AND TURBULENCE-PROMOTED PLANET FORMATION. Astrophysical Journal, 2013, 776, 48.	4.5	54
39	Origin scenarios for the Kepler 36 planetary system. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2256-2267.	4.4	42
40	Kepler's missing planets. Monthly Notices of the Royal Astronomical Society, 2013, 433, 3246-3255.	4.4	15
41	The new era of asteroseismology. EAS Publications Series, 2013, 63, 91-104.	0.3	22
42	ALL SIX PLANETS KNOWN TO ORBIT KEPLER-11 HAVE LOW DENSITIES. Astrophysical Journal, 2013, 770, 131.	4.5	145
43	A SYSTEMATIC SEARCH FOR TROJAN PLANETS IN THE <i>KEPLER</i> DATA. Astrophysical Journal, 2013, 774, 156.	4.5	41
44	TRANSIT TIMING OBSERVATIONS FROM <i>KEPLER</i> . VIII. CATALOG OF TRANSIT TIMING MEASUREMENTS OF THE FIRST TWELVE QUARTERS. Astrophysical Journal, Supplement Series, 2013, 208, 16.	7.7	147
45	THE ROLE OF CORE MASS IN CONTROLLING EVAPORATION: THE KEPLER RADIUS DISTRIBUTION AND THE KEPLER-36 DENSITY DICHOTOMY. Astrophysical Journal, 2013, 776, 2.	4.5	391
46	Bayesian asteroseismology of 23 solar-like Kepler targets. Monthly Notices of the Royal Astronomical Society, 2013, 435, 242-254.	4.4	37
47	THE QUASIPERIODIC AUTOMATED TRANSIT SEARCH ALGORITHM. Astrophysical Journal, 2013, 765, 132.	4.5	63
48	An independent planet search in the <i>Kepler</i> dataset. Astronomy and Astrophysics, 2013, 555, A58.	5.1	50
49	AME – Asteroseismology Made Easy. Astronomy and Astrophysics, 2014, 566, A82.	5.1	16
50	An independent planet search in the <i>Kepler</i> dataset. Astronomy and Astrophysics, 2014, 561, A103.	5.1	53
51	Occurrence and core-envelope structure of 1–4× Earth-size planets around Sun-like stars. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12655-12660.	7.1	77
52	LIMITS ON SURFACE GRAVITIES OF <i>KEPLER</i> PLANET-CANDIDATE HOST STARS FROM NON-DETECTION OF SOLAR-LIKE OSCILLATIONS. Astrophysical Journal, 2014, 783, 123.	4.5	47
53	The PLATO 2.0 mission. Experimental Astronomy, 2014, 38, 249-330.	3.7	912
54	ARCHITECTURE OF <i>KEPLER</i> 'S MULTI-TRANSITING SYSTEMS. II. NEW INVESTIGATIONS WITH TWICE AS MANY CANDIDATES. Astrophysical Journal, 2014, 790, 146.	4.5	536
55	Stability boundaries for resonant migrating planet pairs. Monthly Notices of the Royal Astronomical Society, 2014, 440, 1753-1762.	4.4	29

#	ARTICLE Scenarios of giant planet formation and evolution and their impact on the formation of habitable	IF	CITATIONS
56	terrestrial planets. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130072.	3.4	9
57	Automated preparation of Kepler time series of planet hosts for asteroseismic analysis. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2698-2709.	4.4	88
58	MAKE SUPER-EARTHS, NOT JUPITERS: ACCRETING NEBULAR GAS ONTO SOLID CORES AT 0.1 AU AND BEYOND. Astrophysical Journal, 2014, 797, 95.	4.5	208
59	INSIDE-OUT PLANET FORMATION. Astrophysical Journal, 2014, 780, 53.	4.5	175
60	REVISED STELLAR PROPERTIES OF <i>KEPLER</i> TARGETS FOR THE QUARTER 1-16 TRANSIT DETECTION RUN. Astrophysical Journal, Supplement Series, 2014, 211, 2.	7.7	418
61	FREQUENCY OF CLOSE COMPANIONS AMONG <i>KEPLER</i> PLANETS—A TRANSIT TIME VARIATION STUDY. Astrophysical Journal, 2014, 789, 165.	4.5	48
62	ASTEROSEISMIC FUNDAMENTAL PROPERTIES OF SOLAR-TYPE STARS OBSERVED BY THE NASA <i>KEPLER</i> MISSION. Astrophysical Journal, Supplement Series, 2014, 210, 1.	7.7	293
63	THE HUNT FOR EXOMOONS WITH <i>KEPLER</i> (HEK). IV. A SEARCH FOR MOONS AROUND EIGHT M DWARFS. Astrophysical Journal, 2014, 784, 28.	4.5	79
64	WHAT ASTEROSEISMOLOGY CAN DO FOR EXOPLANETS: KEPLER-410A b IS A SMALL NEPTUNE AROUND A BRIGHT STAR, IN AN ECCENTRIC ORBIT CONSISTENT WITH LOW OBLIQUITY. Astrophysical Journal, 2014, 782, 14.	4.5	98
65	CHARACTERIZING THE COOL KOIs. VI. <i>H</i> - AND <i>K</i> -BAND SPECTRA OF <i>KEPLER</i> M DWARF PLANET-CANDIDATE HOSTS. Astrophysical Journal, Supplement Series, 2014, 213, 5.	7.7	70
66	PHOTO-DYNAMICAL ANALYSIS OF THREE KEPLER OBJECTS OF INTEREST WITH SIGNIFICANT TRANSIT TIMING VARIATIONS. Astrophysical Journal, 2014, 790, 31.	4.5	39
67	KEPLER-93b: A TERRESTRIAL WORLD MEASURED TO WITHIN 120 km, AND A TEST CASE FOR A NEW <i>SPITZER</i> OBSERVING MODE. Astrophysical Journal, 2014, 790, 12.	4.5	76
68	THE KEPLER-10 PLANETARY SYSTEM REVISITED BY HARPS-N: A HOT ROCKY WORLD AND A SOLID NEPTUNE-MASS PLANET. Astrophysical Journal, 2014, 789, 154.	4.5	164
69	Exploring exoplanet populations with NASA's Kepler Mission. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12647-12654.	7.1	195
70	Architectures of planetary systems and implications for their formation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12616-12621.	7.1	47
71	Chemistry of Earth's Earliest Atmosphere. , 2014, , 71-90.		6
72	Determination of three-dimensional spin–orbit angle with joint analysis of asteroseismology, transit lightcurve, and the Rossiter–McLaughlin effect: Cases of HAT-P-7 and Kepler-25. Publication of the Astronomical Society of Japan, 2014, 66, .	2.5	91
73	UNDERSTANDING THE MASS-RADIUS RELATION FOR SUB-NEPTUNES: RADIUS AS A PROXY FOR COMPOSITION. Astrophysical Journal, 2014, 792, 1.	4.5	520

#	Article	IF	CITATIONS
74	MASSES, RADII, AND ORBITS OF SMALL <i>KEPLER</i> PLANETS: THE TRANSITION FROM GASEOUS TO ROCKY PLANETS. Astrophysical Journal, Supplement Series, 2014, 210, 20.	7.7	418
75	Melting in super-earths. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130076.	3.4	52
76	Earth-like habitats in planetary systems. Planetary and Space Science, 2014, 98, 254-267.	1.7	32
77	Superhabitable Worlds. Astrobiology, 2014, 14, 50-66.	3.0	122
78	PLANET HUNTERS. VII. DISCOVERY OF A NEW LOW-MASS, LOW-DENSITY PLANET (PH3 C) ORBITING KEPLER-289 WITH MASS MEASUREMENTS OF TWO ADDITIONAL PLANETS (PH3 B AND D). Astrophysical Journal, 2014, 795, 167.	4.5	67
79	KEPLER-79'S LOW DENSITY PLANETS. Astrophysical Journal, 2014, 785, 15.	4.5	120
80	THE MASS-RADIUS RELATION FOR 65 EXOPLANETS SMALLER THAN 4 EARTH RADII. Astrophysical Journal Letters, 2014, 783, L6.	8.3	517
81	MASS-RADIUS RELATIONS AND CORE-ENVELOPE DECOMPOSITIONS OF SUPER-EARTHS AND SUB-NEPTUNES. Astrophysical Journal, 2014, 787, 173.	4.5	85
82	THE EFFECT OF CONJUNCTIONS ON THE TRANSIT TIMING VARIATIONS OF EXOPLANETS. Astrophysical Journal, 2014, 790, 58.	4.5	70
83	A STUDY OF THE SHORTEST-PERIOD PLANETS FOUND WITH <i>KEPLER </i> . Astrophysical Journal, 2014, 787, 47.	4.5	189
84	Advances in exoplanet science from Kepler. Nature, 2014, 513, 336-344.	27.8	84
85	The three-body problem. Reports on Progress in Physics, 2014, 77, 065901.	20.1	71
86	<i>Kepler</i> detection of a new extreme planetary system orbiting the subdwarf-B pulsator KIC 10001893. Astronomy and Astrophysics, 2014, 570, A130.	5.1	37
87	Flow climatology for physicochemical properties of dichotomous aerosol over the western North Atlantic Ocean at Bermuda. Atmospheric Chemistry and Physics, 2014, 14, 691-717.	4.9	12
88	Ages and fundamental properties of <i>Kepler</i> exoplanet host stars from asteroseismology. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2127-2148.	4.4	283
89	MIGRATION OF TWO MASSIVE PLANETS INTO (AND OUT OF) FIRST ORDER MEAN MOTION RESONANCES. Astrophysical Journal, 2015, 810, 119.	4.5	82
90	TIDALLY DRIVEN ROCHE-LOBE OVERFLOW OF HOT JUPITERS WITH MESA. Astrophysical Journal, 2015, 813, 101.	4.5	78
91	Can we constrain the interior structure of rocky exoplanets from mass and radius measurements?. Astronomy and Astrophysics, 2015, 577, A83.	5.1	199

#	Article	IF	CITATIONS
92	K2-19, The first K2 muti-planetary system showing TTVs. Proceedings of the International Astronomical Union, 2015, 11, 51-56.	0.0	0
93	The Diversity of Low-mass Exoplanets Characterized via Transit Timing. Proceedings of the International Astronomical Union, 2015, 11, 40-50.	0.0	2
94	DOPPLER MONITORING OF THE WASP-47 MULTIPLANET SYSTEM. Astrophysical Journal Letters, 2015, 813, L9.	8.3	49
95	Absolute masses and radii determination in multiplanetary systems without stellar models. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2645-2653.	4.4	43
96	A metallicity recipe for rocky planets. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1471-1483.	4.4	82
97	HAT-P-56b: AN INFLATED MASSIVE HOT JUPITER TRANSITING A BRIGHT F STAR FOLLOWED UP WITH <i>K2</i> CAMPAIGN 0 OBSERVATIONS. Astronomical Journal, 2015, 150, 85.	4.7	43
98	High-energy irradiation and mass loss rates of hot Jupiters in the solar neighborhood. Astronomy and Astrophysics, 2015, 576, A42.	5.1	43
99	Combining Transit and Radial Velocity Data. Proceedings of the International Astronomical Union, 2015, 11, 214-216.	0.0	0
100	Asteroseismology of exoplanet host stars. Proceedings of the International Astronomical Union, 2015, 11, 620-627.	0.0	0
101	Expansion of the secular part of the perturbing function for orbits with semimajor axes comparable in magnitude. Solar System Research, 2015, 49, 191-204.	0.7	2
102	An approximation polynomial-time algorithm for a sequence bi-clustering problem. Computational Mathematics and Mathematical Physics, 2015, 55, 1068-1076.	0.8	7
103	GIANT IMPACT: AN EFFICIENT MECHANISM FOR THE DEVOLATILIZATION OF SUPER-EARTHS. Astrophysical Journal, 2015, 812, 164.	4.5	59
104	THE MASS OF Kepler-93b AND THE COMPOSITION OF TERRESTRIAL PLANETS. Astrophysical Journal, 2015, 800, 135.	4.5	211
105	AN ANCIENT EXTRASOLAR SYSTEM WITH FIVE SUB-EARTH-SIZE PLANETS. Astrophysical Journal, 2015, 799, 170.	4.5	164
106	RADIAL VELOCITY OBSERVATIONS AND LIGHT CURVE NOISE MODELING CONFIRM THAT KEPLER-91b IS A GIANT PLANET ORBITING A GIANT STAR. Astrophysical Journal, 2015, 800, 46.	4.5	83
107	Habitable Evaporated Cores: Transforming Mini-Neptunes into Super-Earths in the Habitable Zones of M Dwarfs. Astrobiology, 2015, 15, 57-88.	3.0	116
108	A CONTINUUM OF PLANET FORMATION BETWEEN 1 AND 4 EARTH RADII. Astrophysical Journal Letters, 2015, 799, L26.	8.3	64
109	Dynamics and Thermal History of the Terrestrial Planets, the Moon, and Io. , 2015, , 255-305.		30

#	Article	IF	CITATIONS
110	Torque on an exoplanet from an anisotropic evaporative wind. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1743-1753.	4.4	30
111	The mass of the Mars-sized exoplanet Kepler-138 b from transit timing. Nature, 2015, 522, 321-323.	27.8	103
112	The Occurrence and Architecture of Exoplanetary Systems. Annual Review of Astronomy and Astrophysics, 2015, 53, 409-447.	24.3	636
113	MEASUREMENT OF PLANET MASSES WITH TRANSIT TIMING VARIATIONS DUE TO SYNODIC "CHOPPING― EFFECTS. Astrophysical Journal, 2015, 802, 116.	4.5	91
114	Spin evolution of Earth-sized exoplanets, including atmospheric tides and core–mantle friction. International Journal of Astrobiology, 2015, 14, 233-254.	1.6	42
115	ECCENTRICITY FROM TRANSIT PHOTOMETRY: SMALL PLANETS IN KEPLER MULTI-PLANET SYSTEMS HAVE LOW ECCENTRICITIES. Astrophysical Journal, 2015, 808, 126.	4.5	221
116	A NEARBY M STAR WITH THREE TRANSITING SUPER-EARTHS DISCOVERED BY K2. Astrophysical Journal, 2015, 804, 10.	4.5	149
117	HOW ROCKY ARE THEY? THE COMPOSITION DISTRIBUTION OF <i>KEPLER</i> 'S SUB-NEPTUNE PLANET CANDIDATES WITHIN 0.15 AU. Astrophysical Journal, 2015, 806, 183.	4.5	162
118	MODELING THE ASTEROSEISMIC SURFACE TERM ACROSS THE HR DIAGRAM. Astrophysical Journal, 2015, 808, 123.	4.5	23
119	A rocky planet transiting a nearby low-mass star. Nature, 2015, 527, 204-207.	27.8	204
119 120		27.8 4.5	204 39
	A rocky planet transiting a nearby low-mass star. Nature, 2015, 527, 204-207.		
120	A rocky planet transiting a nearby low-mass star. Nature, 2015, 527, 204-207. MODELING THE ORBITAL SAMPLING EFFECT OF EXTRASOLAR MOONS. Astrophysical Journal, 2016, 820, 88. TRANSIT TIMING OBSERVATIONS FROM KEPLER. IX. CATALOG OF THE FULL LONG-CADENCE DATA SET.	4.5	39
120 121	A rocky planet transiting a nearby low-mass star. Nature, 2015, 527, 204-207. MODELING THE ORBITAL SAMPLING EFFECT OF EXTRASOLAR MOONS. Astrophysical Journal, 2016, 820, 88. TRANSIT TIMING OBSERVATIONS FROM KEPLER. IX. CATALOG OF THE FULL LONG-CADENCE DATA SET. Astrophysical Journal, Supplement Series, 2016, 225, 9. TRANSIT TIMING VARIATIONS FOR PLANETS NEAR ECCENTRICITY-TYPE MEAN MOTION RESONANCES.	4.5 7.7	39 158
120 121 122	A rocky planet transiting a nearby low-mass star. Nature, 2015, 527, 204-207. MODELING THE ORBITAL SAMPLING EFFECT OF EXTRASOLAR MOONS. Astrophysical Journal, 2016, 820, 88. TRANSIT TIMING OBSERVATIONS FROM KEPLER. IX. CATALOG OF THE FULL LONG-CADENCE DATA SET. Astrophysical Journal, Supplement Series, 2016, 225, 9. TRANSIT TIMING VARIATIONS FOR PLANETS NEAR ECCENTRICITY-TYPE MEAN MOTION RESONANCES. Astrophysical Journal, 2016, 821, 96.	4.5 7.7 4.5	39 158 46
120 121 122 123	A rocky planet transiting a nearby low-mass star. Nature, 2015, 527, 204-207. MODELING THE ORBITAL SAMPLING EFFECT OF EXTRASOLAR MOONS. Astrophysical Journal, 2016, 820, 88. TRANSIT TIMING OBSERVATIONS FROM KEPLER. IX. CATALOG OF THE FULL LONG-CADENCE DATA SET. Astrophysical Journal, Supplement Series, 2016, 225, 9. TRANSIT TIMING VARIATIONS FOR PLANETS NEAR ECCENTRICITY-TYPE MEAN MOTION RESONANCES. Astrophysical Journal, 2016, 821, 96. Energy-limited escape revised. Astronomy and Astrophysics, 2016, 585, L2. Simulating the escaping atmospheres of hot gas planets in the solar neighborhood. Astronomy and	4.5 7.7 4.5 5.1	39 158 46 91
120 121 122 123 124	A rocky planet transiting a nearby low-mass star. Nature, 2015, 527, 204-207. MODELING THE ORBITAL SAMPLING EFFECT OF EXTRASOLAR MOONS. Astrophysical Journal, 2016, 820, 88. TRANSIT TIMING OBSERVATIONS FROM KEPLER. IX. CATALOG OF THE FULL LONG-CADENCE DATA SET. Astrophysical Journal, Supplement Series, 2016, 225, 9. TRANSIT TIMING VARIATIONS FOR PLANETS NEAR ECCENTRICITY-TYPE MEAN MOTION RESONANCES. Astrophysical Journal, 2016, 821, 96. Energy-limited escape revised. Astronomy and Astrophysics, 2016, 585, L2. Simulating the escaping atmospheres of hot gas planets in the solar neighborhood. Astronomy and Astrophysics, 2016, 586, A75. CORRELATIONS BETWEEN COMPOSITIONS AND ORBITS ESTABLISHED BY THE GIANT IMPACT ERA OF PLANET	 4.5 7.7 4.5 5.1 5.1 	 39 158 46 91 124

CITAT	DEDO	DT.
CITAT	$\mathbf{K} \in \mathbf{P}(\mathbf{I})$	K I

#	Article	IF	CITATIONS
128	PROBABILISTIC MASS–RADIUS RELATIONSHIP FOR SUB-NEPTUNE-SIZED PLANETS. Astrophysical Journal, 2016, 825, 19.	4.5	216
129	KIC 8462852 FADED THROUGHOUT THE KEPLER MISSION. Astrophysical Journal Letters, 2016, 830, L39.	8.3	58
130	ELEVEN MULTIPLANET SYSTEMS FROM K2 CAMPAIGNS 1 AND 2 AND THE MASSES OF TWO HOT SUPER-EARTHS. Astrophysical Journal, 2016, 827, 78.	4.5	106
131	KEPLER-21b: A ROCKY PLANET AROUND A VÂ=Â8.25 mag STAR*. Astronomical Journal, 2016, 152, 204.	4.7	80
132	Water-rich planets: How habitable is a water layer deeper than on Earth?. Icarus, 2016, 277, 215-236.	2.5	98
133	REVISED MASSES AND DENSITIES OF THE PLANETS AROUND KEPLER-10*. Astrophysical Journal, 2016, 819, 83.	4.5	74
134	SECURE MASS MEASUREMENTS FROM TRANSIT TIMING: 10 KEPLER EXOPLANETS BETWEEN 3 AND 8 M _⊕ WITH DIVERSE DENSITIES AND INCIDENT FLUXES. Astrophysical Journal, 2016, 820, 39.	4.5	147
135	A resonant chain of four transiting, sub-Neptune planets. Nature, 2016, 533, 509-512.	27.8	159
136	ATMOSPHERE-INTERIOR EXCHANGE ON HOT, ROCKY EXOPLANETS. Astrophysical Journal, 2016, 828, 80.	4.5	83
137	Exoplanet orbital eccentricities derived from LAMOST–Kepler analysis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11431-11435.	7.1	185
138	Limits on Planetary Companions from Doppler Surveys of Nearby Stars. Publications of the Astronomical Society of the Pacific, 2016, 128, 114401.	3.1	252
139	FIVE PLANETS TRANSITING A NINTH MAGNITUDE STAR. Astrophysical Journal Letters, 2016, 827, L10.	8.3	73
140	NUMERICAL AND ANALYTICAL MODELING OF TRANSITÂTIMINGÂVARIATIONS. Astrophysical Journal, 2016, 828, 44.	4.5	73
141	The Astrobiology Primer v2.0. Astrobiology, 2016, 16, 561-653.	3.0	133
142	The origin of chaos in the orbit of comet 1P/Halley. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3576-3584.	4.4	36
143	EVOLUTIONARY ANALYSIS OF GASEOUS SUB-NEPTUNE-MASS PLANETS WITH MESA. Astrophysical Journal, 2016, 831, 180.	4.5	134
144	SCALING THE EARTH: A SENSITIVITY ANALYSIS OF TERRESTRIAL EXOPLANETARY INTERIOR MODELS. Astrophysical Journal, 2016, 819, 32.	4.5	99
145	DISCOVERY AND VALIDATION OF A HIGH-DENSITY SUB-NEPTUNE FROM THE K2 MISSION. Astrophysical Journal, 2016, 830, 43.	4.5	49

	CITATION RI	EPORT	
#	Article	IF	CITATIONS
146	MASS–RADIUS RELATION FOR ROCKY PLANETS BASED ON PREM. Astrophysical Journal, 2016, 819, 127.	4.5	293
147	DYNAMICAL CONSIDERATIONS FOR LIFE IN MULTI-HABITABLE PLANETARY SYSTEMS. Astrophysical Journal, 2016, 816, 97.	4.5	25
148	An upper boundary in the mass-metallicity plane of exo-Neptunes. Monthly Notices of the Royal Astronomical Society, 2016, 461, 1841-1849.	4.4	48
149	A fully polynomial-time approximation scheme for a sequence 2-cluster partitioning problem. Journal of Applied and Industrial Mathematics, 2016, 10, 209-219.	0.4	6
150	STEALING THE GAS: GIANT IMPACTS AND THE LARGE DIVERSITY IN EXOPLANET DENSITIES. Astrophysical Journal Letters, 2016, 817, L13.	8.3	104
151	ATMOSPHERES OF LOW-MASS PLANETS: THE "BOIL-OFF― Astrophysical Journal, 2016, 817, 107.	4.5	160
152	There might be giants: unseen Jupiter-mass planets as sculptors of tightly packed planetary systems. Monthly Notices of the Royal Astronomical Society, 2016, 456, 4121-4127.	4.4	33
153	TRANSIT TIMING TO FIRST ORDER IN ECCENTRICITY. Astrophysical Journal, 2016, 818, 177.	4.5	74
154	THE Äœ SEARCH FOR EXTRATERRESTRIAL CIVILIZATIONS WITH LARGE ENERGY SUPPLIES. Ⅳ. THE SIGNATURES AND INFORMATION CONTENT OF TRANSITING MEGASTRUCTURES. Astrophysical Journal, 2016, 816, 17.	4.5	94
155	<i>KEPLER</i> Mission: development and overview. Reports on Progress in Physics, 2016, 79, 036901.	20.1	160
156	THE INITIAL PHYSICAL CONDITIONS OF KEPLER-36 b AND c. Astrophysical Journal Letters, 2016, 819, L10.	8.3	51
157	SPIN–ORBIT ALIGNMENT OF EXOPLANET SYSTEMS: ENSEMBLE ANALYSIS USING ASTEROSEISMOLOGY. Astrophysical Journal, 2016, 819, 85.	4.5	91
158	On the formation of compact planetary systems via concurrent core accretion and migration. Monthly Notices of the Royal Astronomical Society, 2016, 457, 2480-2500.	4.4	80
159	Oscillation frequencies for 35 <i>Kepler</i> solar-type planet-hosting stars using Bayesian techniques and machine learning. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2183-2195.	4.4	101
160	KEPLER-108: A MUTUALLY INCLINED GIANT PLANET SYSTEM. Astronomical Journal, 2017, 153, 45.	4.7	67
161	Challenges to Constraining Exoplanet Masses via Transmission Spectroscopy. Astrophysical Journal Letters, 2017, 836, L5.	8.3	47
162	Laboratory spectra of hot molecules: Data needs for hot super-Earth exoplanets. Molecular Astrophysics, 2017, 8, 1-18.	1.6	65
163	<i>Kepler</i> Planet Masses and Eccentricities from TTV Analysis. Astronomical Journal, 2017, 154, 5.	4.7	169

~			_	
Сіт		ON	REPO	דתר
	AL		NEPU	ואכ

#	ARTICLE	IF	CITATIONS
164	A generalized Bayesian inference method for constraining the interiors of super Earths and sub-Neptunes. Astronomy and Astrophysics, 2017, 597, A37.	5.1	121
165	Mass, Density, and Formation Constraints in the Compact, Sub-Earth Kepler-444 System including Two Mars-mass Planets. Astrophysical Journal Letters, 2017, 838, L11.	8.3	51
166	Astronomical Applications. SpringerBriefs in Astronomy, 2017, , 71-84.	1.6	0
167	Three Body Dynamics and Its Applications to Exoplanets. SpringerBriefs in Astronomy, 2017, , .	1.6	8
168	Planet–Planet Occultations in TRAPPIST-1 and Other Exoplanet Systems. Astrophysical Journal, 2017, 851, 94.	4.5	33
169	Giant star seismology. Astronomy and Astrophysics Review, 2017, 25, 1.	25.5	124
170	Exact pseudopolynomial algorithm for one sequence partitioning problem. Automation and Remote Control, 2017, 78, 67-74.	0.8	5
171	An overabundance of low-density Neptune-like planets. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1868-1879.	4.4	61
172	K2-66b and K2-106b: Two Extremely Hot Sub-Neptune-size Planets with High Densities. Astronomical Journal, 2017, 153, 271.	4.7	60
173	The Evaporation Valley in the Kepler Planets. Astrophysical Journal, 2017, 847, 29.	4.5	530
174	Transit-Timing and Duration Variations for the Discovery and Characterization of Exoplanets. , 2017, , 1-20.		2
175	K2-106, a system containing a metal-rich planet and a planet of lower density. Astronomy and Astrophysics, 2017, 608, A93.	5.1	51
176	Perturbation of Compact Planetary Systems by Distant Giant Planets. Monthly Notices of the Royal Astronomical Society, 0, , stx182.	4.4	33
177	Precise masses for the transiting planetary system HD 106315 with HARPS. Astronomy and Astrophysics, 2017, 608, A25.	5.1	23
178	Three Super-Earths Transiting the Nearby Star GJ 9827. Astronomical Journal, 2017, 154, 266.	4.7	63
179	A hardcore model for constraining an exoplanet's core size. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2613-2620.	4.4	13
180	Formation of Super-Earths. , 2018, , 1-20.		2
181	Absolute densities in exoplanetary systems: photodynamical modelling of Kepler-138. Monthly Notices of the Royal Astronomical Society, 2018, 478, 460-486.	4.4	26

# 182	ARTICLE Outcomes of Grazing Impacts between Sub-Neptunes in Kepler Multis. Astrophysical Journal, 2018, 852, 41.	IF 4.5	CITATIONS 32
183	Noise Sources in Photometry and Radial Velocities. Thirty Years of Astronomical Discovery With UKIRT, 2018, , 239-249.	0.3	8
184	Synergies Between Asteroseismology and Exoplanetary Science. Thirty Years of Astronomical Discovery With UKIRT, 2018, , 119-135.	0.3	10
185	The Resilience of Kepler Systems to Stellar Obliquity. Astronomical Journal, 2018, 155, 167.	4.7	12
186	New Formation Models for the Kepler-36 System. Astrophysical Journal, 2018, 868, 138.	4.5	43
187	A Randomized Algorithm for a Sequence 2-Clustering Problem. Computational Mathematics and Mathematics 2018, 58, 2078-2085.	0.8	1
188	The CJ 504 system revisited. Astronomy and Astrophysics, 2018, 618, A63.	5.1	45
189	Discovery and characterization of Kepler-36b. New Astronomy Reviews, 2018, 83, 18-27.	12.8	2
190	The discovery and legacy of Kepler's multi-transiting planetary systems. New Astronomy Reviews, 2018, 83, 49-60.	12.8	2
191	Tightly Packed Planetary Systems. , 2018, , 2713-2730.		0
192	Formation of Super-Earths. , 2018, , 2345-2364.		5
193	Assessing the Interior Structure of Terrestrial Exoplanets with Implications for Habitability. , 2018, , 3111-3135.		4
194	Revised Exoplanet Radii and Habitability Using <i>Gaia</i> Data Release 2. Astrophysical Journal, Supplement Series, 2018, 239, 14.	7.7	22
195	Dynamics and Formation of the Near-resonant K2-24 System: Insights from Transit-timing Variations and Radial Velocities. Astronomical Journal, 2018, 156, 89.	4.7	28
196	Three small transiting planets around the M-dwarf host star LP 358-499. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 473, L131-L135.	3.3	27
197	A Compact Multi-planet System with a Significantly Misaligned Ultra Short Period Planet. Astronomical Journal, 2018, 156, 245.	4.7	35
198	Transit-Timing and Duration Variations for the Discovery and Characterization of Exoplanets. , 2018, , 797-816.		18
200	Radial velocities. , 0, , 17-80.		0

#	Article	IF	CITATIONS
201	Astrometry. , 0, , 81-102.		0
202	Timing. , 0, , 103-118.		0
203	Microlensing. , 0, , 119-152.		0
205	Host stars. , 0, , 373-428.		0
206	Brown dwarfs and free-floating planets. , 0, , 429-448.		0
207	Formation and evolution. , 0, , 449-558.		0
208	Interiors and atmospheres. , 0, , 559-648.		0
209	The solar system. , 0, , 649-700.		0
215	Evaporation of Low-mass Planet Atmospheres: Multidimensional Hydrodynamics with Consistent Thermochemistry. Astrophysical Journal, 2018, 860, 175.	4.5	28
218	The architecture and formation of the Kepler-30 planetary system. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2480-2494.	4.4	32
219	<i>Kepler</i> Object of Interest Network. Astronomy and Astrophysics, 2018, 615, A79.	5.1	15
220	Migration-driven diversity of super-Earth compositions. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 479, L81-L85.	3.3	61
221	A new ab initio equation of state of hcp-Fe and its implication on the interior structure and mass-radius relations of rocky super-Earths. Icarus, 2018, 313, 61-78.	2.5	66
222	A Criterion for the Onset of Chaos in Systems of Two Eccentric Planets. Astronomical Journal, 2018, 156, 95.	4.7	51
223	Transits. , 0, , 153-328.		0
224	Recurrence network analysis of exoplanetary observables. Chaos, 2019, 29, 071105.	2.5	4
225	A Catalog of Smaller Planets. Earth, Moon and Planets, 2019, 122, 83-93.	0.6	0
226	Asteroseismic investigation of 20 planet and planet-candidate host stars. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1509-1517.	4.4	9

#	Article	IF	Citations
227	OGLE-2017-BLG-1186: first application of asteroseismology and Gaussian processes to microlensing. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3308-3323.	4.4	11
228	The Compositional Diversity of Low-Mass Exoplanets. Annual Review of Earth and Planetary Sciences, 2019, 47, 141-171.	11.0	37
229	Two Super-Earths in the 3:2 MMR around KOI-1599. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4601-4616.	4.4	14
230	Atmospheric mass-loss from high-velocity giant impacts. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2780-2789.	4.4	11
231	Visual Analysis and Demographics of Kepler Transit Timing Variations. Astronomical Journal, 2019, 157, 171.	4.7	15
232	Discovery of a Third Transiting Planet in the Kepler-47 Circumbinary System. Astronomical Journal, 2019, 157, 174.	4.7	65
233	Liquid Iron Equation of State to the Terapascal Regime From Ab Initio Simulations. Journal of Geophysical Research: Solid Earth, 2019, 124, 3350-3364.	3.4	23
234	Dynamical instability and its implications for planetary system architecture. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1538-1548.	4.4	28
235	The efficiency of geometric samplers for exoplanet transit timing variation models. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3772-3784.	4.4	4
236	Prospects for Refining Kepler TTV Masses Using TESS Observations. Astronomical Journal, 2019, 157, 142.	4.7	9
237	Stellar ages, masses, and radii from asteroseismic modeling are robust to systematic errors in spectroscopy. Astronomy and Astrophysics, 2019, 622, A130.	5.1	32
238	The ability of significant tidal stress to initiate plate tectonics. Icarus, 2019, 325, 55-66.	2.5	14
239	Indications for transit-timing variations in the exo-Neptune HAT-P-26b. Astronomy and Astrophysics, 2019, 628, A116.	5.1	9
240	Hot, rocky and warm, puffy super-Earths orbiting TOI-402 (HD 15337). Astronomy and Astrophysics, 2019, 627, A43.	5.1	30
241	So close, so different: characterization of the K2-36 planetary system with HARPS-N. Astronomy and Astrophysics, 2019, 624, A38.	5.1	13
242	Polynomial-Time Solvability of the One-Dimensional Case of an NP-Hard Clustering Problem. Computational Mathematics and Mathematical Physics, 2019, 59, 1553-1561.	0.8	1
243	On Polynomial Solvability of One Quadratic Euclidean Clustering Problem on a Line. Doklady Mathematics, 2019, 100, 339-342.	0.6	0
244	Analysis of Images, Social Networks and Texts. Lecture Notes in Computer Science, 2019, , .	1.3	4

#	Article	IF	CITATIONS
245	Atmospheric Escape and the Evolution of Close-In Exoplanets. Annual Review of Earth and Planetary Sciences, 2019, 47, 67-90.	11.0	160
246	Hidden planetary friends: on the stability of two-planet systems in the presence of a distant, inclined companion. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4146-4154.	4.4	27
247	Fundamental limits from chaos on instability time predictions in compact planetary systems. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5258-5267.	4.4	16
248	Testing exoplanet evaporation with multitransiting systems. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5287-5297.	4.4	50
249	Chemical diversity of super-Earths as a consequence of formation. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4910-4924.	4.4	32
250	A super-Earth and a sub-Neptune orbiting the bright, quiet M3 dwarf TOI-1266. Astronomy and Astrophysics, 2020, 642, A49.	5.1	49
251	Hydrogen Dominated Atmospheres on Terrestrial Mass Planets: Evidence, Origin and Evolution. Space Science Reviews, 2020, 216, 1.	8.1	37
252	Traffic Safety Benefits of Using Highway Lighting Technology: (Case Study: 4-Lanes Expressways in the) Tj ETQq1	1 0.78431 0.6	.4 _o rgBT /Ov∈
253	A Review of Possible Planetary Atmospheres in the TRAPPIST-1 System. Space Science Reviews, 2020, 216, 100.	8.1	46
254	Minimization Problem for Sum of Weighted Convolution Differences: The Case of a Given Number of Elements in the Sum. Numerical Analysis and Applications, 2020, 13, 103-116.	0.4	1
255	Formation of planetary populations – III. Core composition and atmospheric evaporation. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4814-4833.	4.4	8
256	Dynamical Chaos in Planetary Systems. Astrophysics and Space Science Library, 2020, , .	2.7	16
257	The TOI-763 system: sub-Neptunes orbiting a Sun-like star. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4503-4517.	4.4	14
258	Fundamental effective temperature measurements for eclipsing binary stars – I. Development of the method and application to AI Phoenicis. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2899-2909.	4.4	14
259	Diffuser-assisted Infrared Transit Photometry for Four Dynamically Interacting Kepler Systems. Astronomical Journal, 2020, 159, 108.	4.7	40
260	Forecasting Rates of Volcanic Activity on Terrestrial Exoplanets and Implications for Cryovolcanic Activity on Extrasolar Ocean Worlds. Publications of the Astronomical Society of the Pacific, 2020, 132, 084402.	3.1	19
261	Analytic Planetary Transit Light Curves and Derivatives for Stars with Polynomial Limb Darkening. Astronomical Journal, 2020, 159, 123.	4.7	106
262	It Takes Two Planets in Resonance to Tango around K2-146. Astronomical Journal, 2020, 159, 120.	4.7	14

#	Article	IF	CITATIONS
263	Revisited mass-radius relations for exoplanets below 120 <i>M</i> _⊕ . Astronomy and Astrophysics, 2020, 634, A43.	5.1	126
265	Mass determinations of the three mini-Neptunes transiting TOI-125. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5399-5412.	4.4	28
266	Utilizing Small Telescopes Operated by Citizen Scientists for Transiting Exoplanet Follow-up. Publications of the Astronomical Society of the Pacific, 2020, 132, 054401.	3.1	31
267	Signatures of the core-powered mass-loss mechanism in the exoplanet population: dependence on stellar properties and observational predictions. Monthly Notices of the Royal Astronomical Society, 2020, 493, 792-806.	4.4	116
268	A Simplified Photodynamical Model for Planetary Mass Determination in Low-eccentricity Multitransiting Systems. Astrophysical Journal, 2021, 908, 114.	4.5	10
269	A sub-Neptune and a non-transiting Neptune-mass companion unveiled by ESPRESSO around the bright late-F dwarf HD 5278 (TOI-130). Astronomy and Astrophysics, 2021, 648, A75.	5.1	22
270	The Influence of Age on the Relative Frequency of Super-Earths and Sub-Neptunes. Astrophysical Journal, 2021, 911, 117.	4.5	16
271	Evolution of the Exoplanet Size Distribution: Forming Large Super-Earths Over Billions of Years. Astronomical Journal, 2021, 161, 265.	4.7	29
272	An upper limit for the growth of inner planets?. Monthly Notices of the Royal Astronomical Society, 2021, 505, 869-888.	4.4	3
273	A PSF-based Approach to TESS High quality data Of Stellar clusters (PATHOS) – IV. Candidate exoplanets around stars in open clusters: frequency and age–planetary radius distribution. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3767-3784.	4.4	18
274	Formation of planetary systems by pebble accretion and migration. Astronomy and Astrophysics, 2021, 650, A152.	5.1	85
275	TOI-2076 and TOI-1807: Two Young, Comoving Planetary Systems within 50 pc Identified by TESS that are Ideal Candidates for Further Follow Up. Astronomical Journal, 2021, 162, 54.	4.7	25
276	TOI-1749: an M dwarf with a Trio of Planets including a Near-resonant Pair. Astronomical Journal, 2021, 162, 167.	4.7	6
277	Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides. Planetary Science Journal, 2021, 2, 1.	3.6	161
278	Tightly Packed Planetary Systems. , 2017, , 1-18.		1
279	Assessing the Interior Structure of Terrestrial Exoplanets with Implications for Habitability. , 2018, , 1-25.		2
280	A Randomized Algorithm for 2-Partition ofÂaÂSequence. Lecture Notes in Computer Science, 2018, , 313-322.	1.3	2
282	A study of the performance of the transit detection tool DST inÂspace-based surveys. Astronomy and Astrophysics, 2012, 548, A44.	5.1	38

\sim			-		
CI	TAT	ION	I RI	FPC)RT

#	Article	IF	CITATIONS
283	Atmospheric parameters and chemical properties of red giants in the CoRoT asteroseismology fields. Astronomy and Astrophysics, 2014, 564, A119.	5.1	33
284	Impact on asteroseismic analyses of regular gaps in <i>Kepler</i> data. Astronomy and Astrophysics, 2014, 568, A10.	5.1	108
285	Tidal response of rocky and ice-rich exoplanets. Astronomy and Astrophysics, 2019, 630, A70.	5.1	21
286	Planetary evolution with atmospheric photoevaporation. Astronomy and Astrophysics, 2020, 638, A52.	5.1	66
287	TTVFast: AN EFFICIENT AND ACCURATE CODE FOR TRANSIT TIMING INVERSION PROBLEMS. Astrophysical Journal, 2014, 787, 132.	4.5	124
288	SPITZER OBSERVATIONS OF EXOPLANETS DISCOVERED WITH THE KEPLER K2 MISSION. Astrophysical Journal, 2016, 822, 39.	4.5	48
289	K2-146: Discovery of Planet c, Precise Masses from Transit Timing, and Observed Precession. Astronomical Journal, 2019, 158, 133.	4.7	23
290	The First Habitable-zone Earth-sized Planet from TESS. I. Validation of the TOI-700 System. Astronomical Journal, 2020, 160, 116.	4.7	67
291	Hidden Worlds: Dynamical Architecture Predictions of Undetected Planets in Multi-planet Systems and Applications to TESS Systems. Astronomical Journal, 2020, 160, 107.	4.7	16
292	On the Orbital Spacing Pattern of Kepler Multiple-planet Systems. Astronomical Journal, 2020, 160, 180.	4.7	8
293	Four Newborn Planets Transiting the Young Solar Analog V1298 Tau. Astrophysical Journal Letters, 2019, 885, L12.	8.3	97
294	Alleviating the transit timing variation bias in transit surveys. Astronomy and Astrophysics, 2021, 655, A66.	5.1	10
295	Constraining stellar rotation and planetary atmospheric evolution of a dozen systems hosting sub-Neptunes and super-Earths. Astronomy and Astrophysics, 2021, 656, A157.	5.1	13
296	The Occurrence-weighted Median Planets Discovered by Transit Surveys Orbiting Solar-type Stars and Their Implications for Planet Formation and Evolution. Astrophysical Journal, 2021, 921, 24.	4.5	1
297	Introduction: The Hunt for Extra-Solar Planets. Springer Theses, 2016, , 1-11.	0.1	0
298	Transit Timing Variation and Transmission Spectroscopy Analyses of the Hot Neptune GJ3470b. Springer Theses, 2018, , 23-55.	0.1	0
299	Diversity of the Extrasolar Worlds. Springer Theses, 2018, , 1-19.	0.1	0
300	Measurements of Stellar Obliquities. Springer Theses, 2018, , 21-34.	0.1	1

#	Article	IF	CITATIONS
301	The Problem K-Means and Given J-Centers: Polynomial Solvability in One Dimension. Communications in Computer and Information Science, 2019, , 207-216.	0.5	0
302	Fast and Exact Algorithms for Some NP-Hard 2-Clustering Problems in the One-Dimensional Case. Lecture Notes in Computer Science, 2019, , 377-387.	1.3	0
303	Exploring the origin and evolution of the Kepler 36 system. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4255-4265.	4.4	1
304	Problem of Minimizing a Sum of Differences of Weighted Convolutions. Computational Mathematics and Mathematical Physics, 2020, 60, 1951-1963.	0.8	1
305	Exact Algorithm for One Cardinality-Weighted 2-Partitioning Problem of a Sequence. Lecture Notes in Computer Science, 2020, , 135-145.	1.3	1
306	Multiplanet Systems of Single Stars. Astrophysics and Space Science Library, 2020, , 291-303.	2.7	0
307	On Polynomial Solvability of One Quadratic Euclidean Clustering Problem on a Line. Lecture Notes in Computer Science, 2020, , 46-52.	1.3	0
308	2-Approximation Polynomial-Time Algorithm for a Cardinality-Weighted 2-Partitioning Problem of a Sequence. Lecture Notes in Computer Science, 2020, , 386-393.	1.3	1
309	Polynomial-Time Solvability of One Optimization Problem Induced by Processing and Analyzing Quasiperiodic ECG and PPG Signals. Communications in Computer and Information Science, 2020, , 88-101.	0.5	4
310	Revisiting the Architecture of the KOI-89 System. Astronomical Journal, 2020, 160, 224.	4.7	5
311	On the Importance of Wave–Planet Interactions for the Migration of Two Super-Earths Embedded in a Protoplanetary Disk. Astrophysical Journal, 2021, 921, 142.	4.5	4
312	Validation of 13 Hot and Potentially Terrestrial TESS Planets. Astronomical Journal, 2022, 163, 99.	4.7	8
313	An Integrative Analysis of the HD 219134 Planetary System and the Inner solar system: Extending DYNAMITE with Enhanced Orbital Dynamical Stability Criteria. Astronomical Journal, 2022, 163, 88.	4.7	3
314	TESS-Keck Survey. IX. Masses of Three Sub-Neptunes Orbiting HD 191939 and the Discovery of a Warm Jovian plus a Distant Substellar Companion. Astronomical Journal, 2022, 163, 101.	4.7	17
315	The similarity of multi-planet systems. Astronomy and Astrophysics, 2022, 658, A107.	5.1	7
316	Water content trends in K2-138 and other low-mass multi-planetary systems. Astronomy and Astrophysics, 2022, 660, A102.	5.1	7
317	Alleviating the transit timing variation bias in transit surveys. II. RIVERS: Twin resonant Earth-sized planets around Kepler-1972 recovered from a Kepler false positive. Astronomy and Astrophysics, 0, , .	5.1	2
318	Uncovering the true periods of the young sub-Neptunes orbiting TOI-2076. Astronomy and Astrophysics, 2022, 664, A156.	5.1	19

#	Article	IF	CITATIONS
319	Thermal Properties of Liquid Iron at Conditions of Planetary Cores. Journal of Geophysical Research E: Planets, 0, , .	3.6	3
320	Substructures in Protoplanetary Disks Imprinted by Compact Planetary Systems. Astrophysical Journal, 2022, 932, 41.	4.5	3
321	Analytic Light Curve for Mutual Transits of Two Bodies Across a Limb-darkened Star. Astronomical Journal, 2022, 164, 111.	4.7	5
322	Signatures of Impact-driven Atmospheric Loss in Large Ensembles of Exoplanets. Astrophysical Journal, 2022, 937, 39.	4.5	1
323	Application of the Hori–Deprit Method to the Analysis of the Cosmogonic Evolution of Weakly Perturbed Planetary Systems. Astronomy Letters, 2022, 48, 194-208.	1.0	1
324	Removing biases on the density of sub-Neptunes characterised via transit timing variations. Astronomy and Astrophysics, 2023, 669, A117.	5.1	6
325	The Exoplanet Radius Valley from Gas-driven Planet Migration and Breaking of Resonant Chains. Astrophysical Journal Letters, 2022, 939, L19.	8.3	14
326	Refining the Masses and Radii of the Star Kepler-33 and its Five Transiting Planets. Astronomical Journal, 2022, 164, 242.	4.7	0
327	TOI-1136 is a Young, Coplanar, Aligned Planetary System in a Pristine Resonant Chain. Astronomical Journal, 2023, 165, 33.	4.7	16
328	Exoplanet atmosphere evolution: emulation with neural networks. Monthly Notices of the Royal Astronomical Society, 2023, 519, 6028-6043.	4.4	7
329	TTV constraints on additional planets in the WD 1856+534 system. Monthly Notices of the Royal Astronomical Society, 2023, 521, 4679-4694.	4.4	0
330	<i>Kepler</i> 's last planet discoveries: two new planets and one single-transit candidate from K2 campaign 19. Monthly Notices of the Royal Astronomical Society, 2023, 523, 474-487.	4.4	2
331	Early Formation of a Water Ocean as a Function of Initial CO ₂ and H ₂ O Contents in a Solidifying Rocky Planet. Journal of Geophysical Research E: Planets, 2023, 128, .	3.6	0
332	A compact multi-planet system transiting HIP 29442 (TOI-469) discovered by TESS and ESPRESSO. Radial velocities lead to the detection of transits with low signal-to-noise ratio. Astronomy and Astrophysics, 0, , .	5.1	0
333	The Kepler Giant Planet Search. I. A Decade of Kepler Planet-host Radial Velocities from W. M. Keck Observatory. Astrophysical Journal, Supplement Series, 2024, 270, 8.	7.7	1
334	Investigating the Atmospheric Mass Loss of the Kepler-105 Planets Straddling the Radius Gap. Astronomical Journal, 2024, 167, 84.	4.7	0
335	Orbital Eccentricity of Celestial Motion—from Stars to Planets. Chinese Astronomy and Astrophysics, 2024, 48, 1-40.	0.3	0