Resveratrol attenuates steatosis in obese Zucker rats by and reducing oxidative stress

British Journal of Nutrition 107, 202-210 DOI: 10.1017/s0007114511002753

Citation Report

#	Article	IF	CITATIONS
2	Multidisciplinary Pharmacotherapeutic Options for Nonalcoholic Fatty Liver Disease. International Journal of Hepatology, 2012, 2012, 1-13.	0.4	18
3	Compounds with Antioxidant Capacity as Potential Tools Against Several Oxidative Stress Related Disorders: Fact or Artifact?. , 0, , .		2
4	Effect of dietary resveratrol on the metabolic profile of nutrients in obese OLETF rats. Lipids in Health and Disease, 2013, 12, 8.	1.2	24
5	Oxymatrine attenuates hepatic steatosis in non-alcoholic fatty liver disease rats fed with high fructose diet through inhibition of sterol regulatory element binding transcription factor 1 (Srebf1) and activation of peroxisome proliferator activated receptor alpha (Pparα). European Journal of Pharmacology, 2013, 714, 89-95.	1.7	47
6	Resveratrol in metabolic health: an overview of the current evidence and perspectives. Annals of the New York Academy of Sciences, 2013, 1290, 74-82.	1.8	85
7	High-Dose Resveratrol Supplementation in Obese Men. Diabetes, 2013, 62, 1186-1195.	0.3	402
8	Effects of resveratrol on obesity-related inflammation markers in adipose tissue of genetically obese rats. Nutrition, 2013, 29, 1374-1380.	1.1	66
9	Hepatic lipid metabolic pathways modified by resveratrol in rats fed an obesogenic diet. Nutrition, 2013, 29, 562-567.	1.1	87
10	Alleviative effects of resveratrol on nonalcoholic fatty liver disease are associated with up regulation of hepatic low density lipoprotein receptor and scavenger receptor class B type I gene expressions in rats. Food and Chemical Toxicology, 2013, 52, 12-18.	1.8	55
11	Resveratrol directly affects in vitro lipolysis and glucose transport in human fat cells. Journal of Physiology and Biochemistry, 2013, 69, 585-593.	1.3	68
12	Resveratrol attenuates oxidative stress and prevents steatosis and hypertension in obese rats programmed by early weaning. Journal of Nutritional Biochemistry, 2013, 24, 960-966.	1.9	73
13	The role of antioxidants and other agents in alleviating hyperglycemia mediated oxidative stress and injury in liver. Food and Function, 2013, 4, 1148.	2.1	98
14	Thermogenesis is involved in the body-fat lowering effects of resveratrol in rats. Food Chemistry, 2013, 141, 1530-1535.	4.2	105
15	Resveratrol supplementation improves white adipose tissue function in a depot-specific manner in Zucker diabetic fatty rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R542-R551.	0.9	64
16	Redox Homeostasis and Epigenetics in Non-alcoholic Fatty Liver Disease (NAFLD). Current Pharmaceutical Design, 2013, 19, 2737-2746.	0.9	87
17	Nonalcoholic Fatty Liver Disease: Pathogenesis and Therapeutics from a Mitochondria-Centric Perspective. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-20.	1.9	120
18	Resveratrol: Anti-Obesity Mechanisms of Action. Molecules, 2014, 19, 18632-18655.	1.7	152
19	Novel Strategies for Preventing Diabetes and Obesity Complications with Natural Polyphenols. Current Medicinal Chemistry, 2014, 22, 150-164.	1.2	49

#	Article	IF	CITATIONS
20	Effects of resveratrol and other polyphenols in hepatic steatosis. World Journal of Gastroenterology, 2014, 20, 7366.	1.4	114
21	Chemoprevention of nonalcoholic fatty liver disease by dietary natural compounds. Molecular Nutrition and Food Research, 2014, 58, 147-171.	1.5	77
22	Effects of resveratrol in experimental and clinical non-alcoholic fatty liver disease. World Journal of Hepatology, 2014, 6, 188.	0.8	51
23	4Ps medicine of the fatty liver: the research model of predictive, preventive, personalized and participatory medicine—recommendations for facing obesity, fatty liver and fibrosis epidemics. EPMA Journal, 2014, 5, 21.	3.3	29
24	Resveratrol Does Not Benefit Patients With Nonalcoholic Fatty Liver Disease. Clinical Gastroenterology and Hepatology, 2014, 12, 2092-2103.e6.	2.4	237
25	Resveratrol modulates autophagy and NF-κB activity in a murine model for treating non-alcoholic fatty liver disease. Food and Chemical Toxicology, 2014, 63, 166-173.	1.8	120
26	Protective Effect of Grape Seed and Skin Extract Against High-Fat Diet-Induced Liver Steatosis and Zinc Depletion in Rat. Digestive Diseases and Sciences, 2014, 59, 1768-1778.	1.1	33
27	Combination of low dose of the anti-adipogenic agents resveratrol and phenelzine in drinking water is not sufficient to prevent obesity in very-high-fat diet-fed mice. European Journal of Nutrition, 2014, 53, 1625-1635.	1.8	20
28	Resveratrol does not increase body fat loss induced by energy restriction. Journal of Physiology and Biochemistry, 2014, 70, 639-646.	1.3	14
29	Novel insights of dietary polyphenols and obesity. Journal of Nutritional Biochemistry, 2014, 25, 1-18.	1.9	705
30	Grape seed proanthocyanidin extract improves the hepatic glutathione metabolism in obese <scp>Z</scp> ucker rats. Molecular Nutrition and Food Research, 2014, 58, 727-737.	1.5	38
31	Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease. Nutrition Research, 2014, 34, 837-843.	1.3	261
32	Pterostilbene, a Dimethyl Ether Derivative of Resveratrol, Reduces Fat Accumulation in Rats Fed an Obesogenic Diet. Journal of Agricultural and Food Chemistry, 2014, 62, 8371-8378.	2.4	54
33	Resveratrol Preserves Mitochondrial Function, Stimulates Mitochondrial Biogenesis, and Attenuates Oxidative Stress in Regulatory T Cells of Mice Fed a Highâ€Fat Diet. Journal of Food Science, 2014, 79, H1823-31.	1.5	30
34	Fatty acid synthase methylation levels in adipose tissue: effects of an obesogenic diet and phenol compounds. Genes and Nutrition, 2014, 9, 411.	1.2	43
35	Herbal adaptogens combined with protein fractions from bovine colostrum and hen egg yolk reduce liver TNF-α expression and protein carbonylation in Western diet feeding in rats. Nutrition and Metabolism, 2014, 11, 19.	1.3	7
36	Moderate chronic administration of Vineatrol-enriched red wines improves metabolic, oxidative, and inflammatory markers in hamsters fed a high-fat diet. Molecular Nutrition and Food Research, 2014, 58, 1212-1225.	1.5	19
37	The effects of resveratrol supplementation on cardiovascular risk factors in patients with non-alcoholic fatty liver disease: a randomised, double-blind, placebo-controlled study. British Journal of Nutrition, 2015, 114, 796-803.	1.2	138

#	Article	IF	CITATIONS
38	Functional foods as potential therapeutic options for metabolic syndrome. Obesity Reviews, 2015, 16, 914-941.	3.1	127
39	An Organ System Approach to Explore the Antioxidative, Anti-Inflammatory, and Cytoprotective Actions of Resveratrol. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-15.	1.9	108
40	The Combination of Resveratrol and Quercetin Attenuates Metabolic Syndrome in Rats by Modifying the Serum Fatty Acid Composition and by Upregulating SIRT 1 and SIRT 2 Expression in White Adipose Tissue. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-9.	0.5	39
41	Resveratrol prevents hepatic steatosis and endoplasmic reticulum stress and regulates the expression of genes involved in lipid metabolism, insulin resistance, and inflammation in rats. Nutrition Research, 2015, 35, 576-584.	1.3	57
42	Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Digestive and Liver Disease, 2015, 47, 226-232.	0.4	251
43	Pterostilbene improves glycaemic control in rats fed an obesogenic diet: involvement of skeletal muscle and liver. Food and Function, 2015, 6, 1968-1976.	2.1	39
44	Resveratrol and SRT1720 Elicit Differential Effects in Metabolic Organs and Modulate Systemic Parameters Independently of Skeletal Muscle Peroxisome Proliferator-activated Receptor γ Co-activator 1α (PGC-1α). Journal of Biological Chemistry, 2015, 290, 16059-16076.	1.6	22
45	Liver delipidating effect of a combination of resveratrol and quercetin in rats fed an obesogenic diet. Journal of Physiology and Biochemistry, 2015, 71, 569-576.	1.3	16
46	Effect of resveratrol on experimental non-alcoholic steatohepatitis. Pharmacological Research, 2015, 95-96, 34-41.	3.1	33
47	Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. Journal of Nutritional Biochemistry, 2015, 26, 651-660.	1.9	372
47 48		1.9 1.5	372 18
	high-fat sucrose diet-fed rats. Journal of Nutritional Biochemistry, 2015, 26, 651-660. Resveratrol increases CD68 ⁺ Kupffer cells colocalized with adipose differentiationâ€related protein and ameliorates highâ€fatâ€dietâ€induced fatty liver in mice. Molecular		
48	 high-fat sucrose diet-fed rats. Journal of Nutritional Biochemistry, 2015, 26, 651-660. Resveratrol increases CD68⁺ Kupffer cells colocalized with adipose differentiationâ€related protein and ameliorates highâ€fatâ€dietâ€induced fatty liver in mice. Molecular Nutrition and Food Research, 2015, 59, 1155-1170. Connexin 32 and luteolin play protective roles in non-alcoholic steatohepatitis development and its 	1.5	18
48 49	 high-fat sucrose diet-fed rats. Journal of Nutritional Biochemistry, 2015, 26, 651-660. Resveratrol increases CD68⁺ Kupffer cells colocalized with adipose differentiationâ€related protein and ameliorates highâ€fatâ€dietâ€induced fatty liver in mice. Molecular Nutrition and Food Research, 2015, 59, 1155-1170. Connexin 32 and luteolin play protective roles in non-alcoholic steatohepatitis development and its related hepatocarcinogenesis in rats. Carcinogenesis, 2015, 36, bgv143. Tissue alkaline phosphatase is involved in lipid metabolism and gene expression and secretion of 	1.5 1.3	18 33
48 49 50	 high-fat sucrose diet-fed rats. Journal of Nutritional Biochemistry, 2015, 26, 651-660. Resveratrol increases CD68 < sup > + Kupffer cells colocalized with adipose differentiationâ€related protein and ameliorates highâ€fatâ€dietâ€induced fatty liver in mice. Molecular Nutrition and Food Research, 2015, 59, 1155-1170. Connexin 32 and luteolin play protective roles in non-alcoholic steatohepatitis development and its related hepatocarcinogenesis in rats. Carcinogenesis, 2015, 36, bgv143. Tissue alkaline phosphatase is involved in lipid metabolism and gene expression and secretion of adipokines in adipocytes. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 2485-2496. Resveratrol and obesity: Can resveratrol relieve metabolic disturbances?. Biochimica Et Biophysica 	1.5 1.3 1.1	18 33 30
48 49 50 51	 high-fat sucrose diet-fed rats. Journal of Nutritional Biochemistry, 2015, 26, 651-660. Resveratrol increases CD68 ⁺ Kupffer cells colocalized with adipose differentiationâ€related protein and ameliorates highâ€fatâ€dietâ€induced fatty liver in mice. Molecular Nutrition and Food Research, 2015, 59, 1155-1170. Connexin 32 and luteolin play protective roles in non-alcoholic steatohepatitis development and its related hepatocarcinogenesis in rats. Carcinogenesis, 2015, 36, bgv143. Tissue alkaline phosphatase is involved in lipid metabolism and gene expression and secretion of adipokines in adipocytes. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 2485-2496. Resveratrol and obesity: Can resveratrol relieve metabolic disturbances?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1137-1144. Pepsin Egg White Hydrolysate Ameliorates Obesity-Related Oxidative Stress, Inflammation and 	1.5 1.3 1.1 1.8	18 33 30 107
48 49 50 51 52	 high-fåt sucrose diet-fed rats. Journal of Nutritional Biochemistry, 2015, 26, 651-660. Resveratrol increases CD68 < sup>+ Kupffer cells colocalized with adipose differentiationâ€related protein and ameliorates highâ€fatâ€dietâ€induced fatty liver in mice. Molecular Nutrition and Food Research, 2015, 59, 1155-1170. Connexin 32 and luteolin play protective roles in non-alcoholic steatohepatitis development and its related hepatocarcinogenesis in rats. Carcinogenesis, 2015, 36, bgv143. Tissue alkaline phosphatase is involved in lipid metabolism and gene expression and secretion of adipokines in adipocytes. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 2485-2496. Resveratrol and obesity: Can resveratrol relieve metabolic disturbances?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1137-1144. Pepsin Egg White Hydrolysate Ameliorates Obesity-Related Oxidative Stress, Inflammation and Steatosis in Zucker Fatty Rats. PLoS ONE, 2016, 11, e0151193. Herbal medicines and nonalcoholic fatty liver disease. World Journal of Gastroenterology, 2016, 22, 	1.5 1.3 1.1 1.8 1.1	 18 33 30 107 62

#	Article	IF	CITATIONS
56	Effects of pterostilbene in brown adipose tissue from obese rats. Journal of Physiology and Biochemistry, 2016, 73, 457-464.	1.3	29
57	Polyphenols and non-alcoholic fatty liver disease: impact and mechanisms. Proceedings of the Nutrition Society, 2016, 75, 47-60.	0.4	128
58	Time for paradigm change in management of hepatocellular carcinoma: is a personalized approach on the horizon?. Personalized Medicine, 2016, 13, 455-467.	0.8	11
59	Piceatannol and resveratrol share inhibitory effects on hydrogen peroxide release, monoamine oxidase and lipogenic activities in adipose tissue, but differ in their antilipolytic properties. Chemico-Biological Interactions, 2016, 258, 115-125.	1.7	32
60	Natural antioxidants for nonâ€alcoholic fatty liver disease: molecular targets and clinical perspectives. Liver International, 2016, 36, 5-20.	1.9	203
61	The combination of resveratrol and quercetin enhances the individual effects of these molecules on triacylglycerol metabolism in white adipose tissue. European Journal of Nutrition, 2016, 55, 341-348.	1.8	49
62	Limited beneficial effects of piceatannol supplementation on obesity complications in the obese Zucker rat: gut microbiota, metabolic, endocrine, and cardiac aspects. Journal of Physiology and Biochemistry, 2016, 72, 567-582.	1.3	28
63	Non-alcoholic steatohepatitis: emerging molecular targets and therapeutic strategies. Nature Reviews Drug Discovery, 2016, 15, 249-274.	21.5	365
64	Involvement of miR-539-5p in the inhibition of de novo lipogenesis induced by resveratrol in white adipose tissue. Food and Function, 2016, 7, 1680-1688.	2.1	39
65	Potential renoprotective effects of piceatannol in ameliorating the early-stage nephropathy associated with obesity in obese Zucker rats. Journal of Physiology and Biochemistry, 2016, 72, 555-566.	1.3	14
66	Pepsin egg white hydrolysate modulates gut microbiota in Zucker obese rats. Food and Function, 2017, 8, 437-443.	2.1	35
67	Glucomannan or Glucomannan <i>Plus</i> Spirulina-Enriched Squid-Surimi Diets Reduce Histological Damage to Liver and Heart in Zucker fa/fa Rats Fed a Cholesterol-Enriched and Non-Cholesterol-Enriched Atherogenic Diet. Journal of Medicinal Food, 2017, 20, 618-625.	0.8	4
68	Pterostilbene ameliorates insulin sensitivity, glycemic control and oxidative stress in fructose-fed diabetic rats. Life Sciences, 2017, 182, 112-121.	2.0	35
69	Pterostilbene, a dimethylated analog of resveratrol, promotes energy metabolism in obese rats. Journal of Nutritional Biochemistry, 2017, 43, 151-155.	1.9	41
70	Comparison of dietary polyphenols for protection against molecular mechanisms underlying nonalcoholic fatty liver disease in a cell model of steatosis. Molecular Nutrition and Food Research, 2017, 61, 1600781.	1.5	32
71	Antiobesity effects of resveratrol: which tissues are involved?. Annals of the New York Academy of Sciences, 2017, 1403, 118-131.	1.8	38
72	Combination treatment with quercetin and resveratrol attenuates high fat diet‑induced obesity and associated inflammation in rats via the AMPKα1/SIRT1 signaling pathway. Experimental and Therapeutic Medicine, 2017, 14, 5942-5948.	0.8	25
73	Alternative treatment methods attenuate the development of NAFLD: A review of resveratrol molecular mechanisms and clinical trials. Nutrition, 2017, 34, 108-117.	1.1	70

#	Article	IF	CITATIONS
74	Pterostilbeneâ€induced changes in gut microbiota composition in relation to obesity. Molecular Nutrition and Food Research, 2017, 61, 1500906.	1.5	88
75	Risperidone-Induced Renal Damage and Metabolic Side Effects: The Protective Effect of Resveratrol. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-10.	1.9	11
76	Molecular Mechanism Underlying the Actions of Antioxidant Molecules in Digestive Disorders. , 2017, , 197-216.		5
77	Resveratrol ameliorates diet-induced dysregulation of lipid metabolism in zebrafish (Danio rerio). PLoS ONE, 2017, 12, e0180865.	1.1	54
78	Comparison of Calorie-Restricted Diet and Resveratrol Supplementation on Anthropometric Indices, Metabolic Parameters, and Serum Sirtuin-1 Levels in Patients With Nonalcoholic Fatty Liver Disease: A Randomized Controlled Clinical Trial. Journal of the American College of Nutrition, 2018, 37, 223-233.	1.1	55
79	Inhibitory effect of ethanolic extract of <i>Ramulus mori</i> on adipogenic differentiation of 3T3-L1 cells and their antioxidant activity. Journal of Food Biochemistry, 2018, 42, e12469.	1.2	5
80	Resveratrol improves high-fat diet induced fatty liver and insulin resistance by concomitantly inhibiting proteolytic cleavage of sterol regulatory element-binding proteins, free fatty acid oxidation, and intestinal triglyceride absorption. Canadian Journal of Physiology and Pharmacology, 2018, 96, 145-157.	0.7	30
81	Resveratrol, Metabolic Syndrome, and Gut Microbiota. Nutrients, 2018, 10, 1651.	1.7	181
82	Natural Bioactive Molecules With Antidiabetic Attributes: Insights Into Structure–Activity Relationships. Studies in Natural Products Chemistry, 2018, 57, 353-388.	0.8	7
83	Involvement of autophagy in the beneficial effects of resveratrol in hepatic steatosis treatment. A comparison with energy restriction. Food and Function, 2018, 9, 4207-4215.	2.1	12
84	Resveratrol and Protection in Hepatic Steatosis: Antioxidant Effects. , 2018, , 199-209.		1
85	Magnolol Alleviates Inflammatory Responses and Lipid Accumulation by AMP-Activated Protein Kinase-Dependent Peroxisome Proliferator-Activated Receptor α Activation. Frontiers in Immunology, 2018, 9, 147.	2.2	28
86	Catalase and nonalcoholic fatty liver disease. Pflugers Archiv European Journal of Physiology, 2018, 470, 1721-1737.	1.3	48
87	Effect of resveratrol on non‑alcoholic fatty liver disease. Experimental and Therapeutic Medicine, 2019, 18, 559-565.	0.8	20
88	Resveratrol shifts energy metabolism to increase lipid oxidation in healthy old mice. Biomedicine and Pharmacotherapy, 2019, 118, 109130.	2.5	21
89	A Unique Formulation of Cardioprotective Bio-Actives: An Overview of Their Safety Profile. Medicines (Basel, Switzerland), 2019, 6, 107.	0.7	3
90	Beneficial Effects of Pomegranate on Lipid Metabolism in Metabolic Disorders. Molecular Nutrition and Food Research, 2019, 63, e1800773.	1.5	53
91	Resveratrol Treatment Ameliorates Leptin Resistance and Adiposity Programed by the Combined Effect of Maternal and Postâ€Weaning Highâ€Fat Diet. Molecular Nutrition and Food Research, 2019, 63, e1801385.	1.5	18

#	Article	IF	CITATIONS
92	Peanut Sprout Extracts Attenuate Triglyceride Accumulation by Promoting Mitochondrial Fatty Acid Oxidation in Adipocytes. International Journal of Molecular Sciences, 2019, 20, 1216.	1.8	18
93	Moderate Alcohol Intake in Non-Alcoholic Fatty Liver Disease: To Drink or Not to Drink?. Nutrients, 2019, 11, 3048.	1.7	29
94	The Fluid Aspect of the Mediterranean Diet in the Prevention and Management of Cardiovascular Disease and Diabetes: The Role of Polyphenol Content in Moderate Consumption of Wine and Olive Oil. Nutrients, 2019, 11, 2833.	1.7	129
95	Lipid Pathway in Liver Cells and Its Modulation by Dietary Extracts. , 2019, , 103-116.		2
96	Modulation of fat metabolism and gut microbiota by resveratrol on high-fat diet-induced obese mice. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2019, Volume 12, 97-107.	1.1	58
97	Sinapic acid and resveratrol alleviate oxidative stress with modulation of gut microbiota in high-fat diet-fed rats. Food Research International, 2019, 116, 1202-1211.	2.9	120
98	Resveratrol protects against nonalcoholic fatty liver disease by improving lipid metabolism and redox homeostasis via the PPARα pathway. Applied Physiology, Nutrition and Metabolism, 2020, 45, 227-239.	0.9	47
99	An energy restrictionâ€based weight loss intervention is able to reverse the effects of obesity on the expression of liver tumorâ€promoting genes. FASEB Journal, 2020, 34, 2312-2325.	0.2	13
100	Efficacy of Dietary Supplements to Reduce Liver Fat. Nutrients, 2020, 12, 2302.	1.7	6
101	Natural Product Heme Oxygenase Inducers as Treatment for Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 2020, 21, 9493.	1.8	36
102	Whole Red Raspberry (<i>Rubus idaeus</i>)-Enriched Diet Is Hepatoprotective in the Obese Zucker Rat, a Model of the Metabolic Syndrome. Journal of Medicinal Food, 2021, 24, 817-824.	0.8	4
103	The influence of dietary conditions in the effects of resveratrol on hepatic steatosis. Food and Function, 2020, 11, 9432-9444.	2.1	6
104	Targeting the gut microbiota with resveratrol: a demonstration of novel evidence for the management of hepatic steatosis. Journal of Nutritional Biochemistry, 2020, 81, 108363.	1.9	74
105	Effects of excess sugars and lipids on the growth and development of Caenorhabditis elegans. Genes and Nutrition, 2020, 15, 1.	1.2	32
106	Hypolipidemic properties of <i>Chlorella pyrenoidosa</i> organic acids via AMPK/HMGCR/SREBPâ€1c pathway in vivo. Food Science and Nutrition, 2021, 9, 459-468.	1.5	5
107	Effects of resveratrol supplementation on liver enzymes: A systematic review and metaâ€analysis of randomised controlled trials. International Journal of Clinical Practice, 2021, 75, e13692.	0.8	6
108	Efficacy of Polyphenols in the Management of Dyslipidemia: A Focus on Clinical Studies. Nutrients, 2021, 13, 672.	1.7	40
109	Acute oral treatment with resveratrol and Lactococcus Lactis Subsp. Lactis decrease body weight and improve liver proinflammatory markers in C57BL/6 mice. Molecular Biology Reports, 2021, 48, 1725-1734.	1.0	8

#	Article	IF	CITATIONS
110	Antioxidative Stress Mechanisms behind Resveratrol: A Multidimensional Analysis. Journal of Food Quality, 2021, 2021, 1-12.	1.4	17
111	The Anti-Obesity Effect of Traditional Chinese Medicine on Lipid Metabolism. Frontiers in Pharmacology, 2021, 12, 696603.	1.6	15
112	Resveratrol and endoplasmic reticulum stress: A review of the potential protective mechanisms of the polyphenol. Phytotherapy Research, 2021, 35, 5564-5583.	2.8	16
113	Stilbenes in grape berries and wine and their potential role as anti-obesity agents: A review. Trends in Food Science and Technology, 2021, 112, 362-381.	7.8	34
114	AçaÃ-(Euterpe oleracea Martius) supplementation improves oxidative stress biomarkers in liver tissue of dams fed a high-fat diet and increases antioxidant enzymes' gene expression in offspring. Biomedicine and Pharmacotherapy, 2021, 139, 111627.	2.5	9
115	Therapeutic Effects of Resveratrol on Nonalcoholic Fatty Liver Disease Through Inflammatory, Oxidative Stress, Metabolic, and Epigenetic Modifications. Methods in Molecular Biology, 2022, 2343, 19-35.	0.4	4
116	No beneficial effects of resveratrol supplementation on atherogenic risk factors in patients with nonalcoholic fatty liver disease. International Journal for Vitamin and Nutrition Research, 2020, 90, 279-289.	0.6	24
117	Effects of Pharmacologic Dose of Resveratrol Supplementation on Oxidative/Antioxidative Status Biomarkers in Nonalcoholic Fatty Liver Disease Patients: A Randomized, Double-Blind, Placebo-Controlled Trial. Advanced Pharmaceutical Bulletin, 2018, 8, 307-317.	0.6	34
118	Resveratrol and Clinical Trials: The Crossroad from In Vitro Studies to Human Evidence. Current Pharmaceutical Design, 2013, 19, 6064-6093.	0.9	377
119	Resveratrol and fenofibrate ameliorate fructose-induced nonalcoholic steatohepatitis by modulation of genes expression. World Journal of Gastroenterology, 2016, 22, 2931.	1.4	53
120	Resveratrol attenuates metabolic, sperm, and testicular changes in adult Wistar rats fed a diet rich in lipids and simple carbohydrates. Asian Journal of Andrology, 2019, 21, 201.	0.8	13
121	Administration of Low-dose Resveratrol Attenuated Hepatic Inflammation and Lipid Accumulation in High Cholesterol-fructose Diet-induced Rat Model of Nonalcoholic Fatty Liver Disease. Chinese Journal of Physiology, 2020, 63, 149-155.	0.4	6
122	The Effect of Resveratrol on Bone Status in Rats with Bile Duct Obstruction. Open Journal of Endocrine and Metabolic Diseases, 2013, 03, 46-51.	0.2	0
123	Hepatic Lipid Metabolism and Herbal Impacts on Non-Alcoholic Fatty Liver Disease. Journal of Food & Nutritional Disorders, 2013, 02, .	0.1	0
125	Effects of Aerobic Exercise and Resveratrol Supplementation on Plasma Level and Liver Expression of Activin A and Follistatin in a Rats with Nonalcoholic Fatty liver Disease. Medical Laboratory Journal, 2020, 14, 36-41.	0.1	0
126	<i>Schizochytrium</i> Oil and Its Mixture with Fish Oil and Sacha inchi Oil Ameliorate Gut Microbiota Composition and Lipid Metabolism via the Fatty Acid Synthetase/3â€hydroxyâ€3â€methyl Glutaryl Coenzyme A Reductase/Sterol Regulatory Element Binding Protein Signaling Pathway. European Journal of Lipid Science and Technology, 2022, 124, 2100108.	1.0	3
127	Resveratrol attenuates HFD-induced hepatic lipotoxicity by up-regulating Bmi-1 expression . Journal of Pharmacology and Experimental Therapeutics, 2022, , JPET-AR-2021-001018.	1.3	11
128	Effect of resveratrol supplementation on hepatic steatosis and cardiovascular indices in overweight subjects with type 2 diabetes: a double-blind, randomized controlled trial. BMC Cardiovascular Disorders, 2022, 22, 212.	0.7	12

#	Article	IF	CITATIONS
129	Epigenetic Aspects and Prospects in Autoimmune Hepatitis. Frontiers in Immunology, 0, 13, .	2.2	6
130	Therapeutic Potential of Herbal medicine against Non-alcoholic Fatty Liver Disease. Current Drug Targets, 2023, 24, .	1.0	Ο
131	Independent, but not co-supplementation, with nitrate and resveratrol improves glucose tolerance and reduces markers of cellular stress in high-fat-fed male mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2023, 324, R317-R328.	0.9	1
132	The effect of resveratrol supplementation on biomarkers of liver health: A systematic review and <scp>metaâ€analysis</scp> of randomized controlled trials. Phytotherapy Research, 2023, 37, 1153-1166.	2.8	6