Early Predictors of High School Mathematics Achievem

Psychological Science 23, 691-697 DOI: 10.1177/0956797612440101

Citation Report

#	Article	IF	CITATION
1	Fractions: Could they really be the gatekeeper's doorman?. Contemporary Educational Psychology, 2012, 37, 247-253.	1.6	199
2	Competence with fractions predicts gains in mathematics achievement. Journal of Experimental Child Psychology, 2012, 113, 447-455.	0.7	181
3	Representations of Concepts as a Catalyst for Change in Teacher Pedagogical Content Knowledge. Procedia, Social and Behavioral Sciences, 2013, 106, 2248-2258.	0.5	1
4	Are 1/2 and 0.5 represented in the same way?. Acta Psychologica, 2013, 142, 299-307.	0.7	14
6	Developmental predictors of fraction concepts and procedures. Journal of Experimental Child Psychology, 2013, 116, 45-58.	0.7	224
7	Limited knowledge of fraction representations differentiates middle school students with mathematics learning disability (dyscalculia) versus low mathematics achievement. Journal of Experimental Child Psychology, 2013, 115, 371-387.	0.7	74
8	Adolescents' Functional Numeracy Is Predicted by Their School Entry Number System Knowledge. PLoS ONE, 2013, 8, e54651.	1.1	196
9	Fractions: the new frontier for theories of numerical development. Trends in Cognitive Sciences, 2013, 17, 13-19.	4.0	214
10	Representations of and translation between common fractions and decimal fractions. Science Bulletin, 2013, 58, 4630-4640.	1.7	12
11	Improving at-risk learners' understanding of fractions Journal of Educational Psychology, 2013, 105, 683-700.	2.1	192
12	Presidential Address 2013—Race to Catch the Future. Intellectual and Developmental Disabilities, 2013, 51, 512-521.	0.6	23
13	Reaching the Mountaintop: Addressing the Common Core Standards in Mathematics for Students with Mathematics Difficulties. Learning Disabilities Research and Practice, 2013, 28, 38-48.	0.9	75
14	Family Connections. Childhood Education, 2013, 89, 279-280.	0.1	0
15	Developmental and individual differences in understanding of fractions Developmental Psychology, 2013, 49, 1994-2004.	1.2	185
16	Knowing Right From Wrong In Mental Arithmetic Judgments: Calibration Of Confidence Predicts The Development Of Accuracy. PLoS ONE, 2014, 9, e98663.	1.1	46
17	Unbounding the mental number line—new evidence on children's spatial representation of numbers. Frontiers in Psychology, 2013, 4, 1021.	1.1	51
18	An Investigation of the Look-Ask-Pick Mnemonic to Improve Fraction Skills. Education and Treatment of Children, 2014, 37, 371-391.	0.6	3
19	What's Past Is Prologue. Educational Researcher, 2014, 43, 352-360.	3.3	354

#	Article	IF	CITATIONS
20	State and Trait Effects on Individual Differences in Children's Mathematical Development. Psychological Science, 2014, 25, 2017-2026.	1.8	80
21	Trajectories of Achievement Within Race/Ethnicity: "Catching Up―in Achievement Across Time. Journal of Educational Research, 2014, 107, 197-208.	0.8	25
22	Magnitude comparison with different types of rational numbers Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 71-82.	0.7	107
23	Does working memory moderate the effects of fraction intervention? An aptitude–treatment interaction Journal of Educational Psychology, 2014, 106, 499-514.	2.1	127
24	The Link Between Middle School Mathematics Course Placement and Achievement. Child Development, 2014, 85, 1948-1964.	1.7	24
25	Expanding the <i><scp>CBAL</scp></i> â,,¢ Mathematics Assessments toÂElementary Grades: TheÂDevelopment of a Competency Model and a Rational Number Learning Progression. ETS Research Report Series, 2014, 2014, 1-41.	0.5	9
26	Sources of Individual Differences in Children's Understanding of Fractions. Child Development, 2014, 85, 1461-1476.	1.7	85
27	Demographic Marginalization, Social Integration, and Adolescents' Educational Success. Journal of Youth and Adolescence, 2014, 43, 1611-1627.	1.9	38
28	Shifting from Data to Evidence for Decision Making. Phi Delta Kappan, 2014, 95, 45-49.	0.4	5
29	Persistent and Pernicious Errors in Algebraic Problem Solving. Journal of Problem Solving, 2014, 7, .	0.7	49
30	AN URBAN MIDDLE SCHOOL CASE STUDY OF MATHEMATICS ACHIEVEMENT. International Journal of Science and Mathematics Education, 2014, 12, 1241-1260.	1.5	1
31	The impact of incorrect examples on learning fractions: A field experiment with 6th grade students. Instructional Science, 2014, 42, 639-657.	1.1	42
32	Early predictors of middle school fraction knowledge. Developmental Science, 2014, 17, 775-785.	1.3	133
33	The impact of fraction magnitude knowledge on algebra performance and learning. Journal of Experimental Child Psychology, 2014, 118, 110-118.	0.7	109
34	Difference Not Deficit: Reconceptualizing Mathematical Learning Disabilities. Journal for Research in Mathematics Education, 2014, 45, 351-396.	1.0	55
35	Can we expect more of teachers? Comment on Robinson-Cimpian, Lubienski, Ganley, and Copur-Gencturk (2014) Developmental Psychology, 2014, 50, 1285-1287.	1.2	3
36	Modeling discrete and continuous entities with fractions and decimals Journal of Experimental Psychology: Applied, 2015, 21, 47-56.	0.9	23
37	Prompting children to reason proportionally: Processing discrete units as continuous amounts Developmental Psychology, 2015, 51, 615-620.	1.2	58

_

	CHAI	ON REPORT	
#	Article	IF	CITATIONS
38	Conceptual knowledge of fraction arithmetic Journal of Educational Psychology, 2015, 107, 909-918.	2.1	93
40	Thinking about quantity: the intertwined development of spatial and numerical cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 2015, 6, 491-505.	1.4	84
41	The Role of Mediators in the Development of Longitudinal Mathematics Achievement Associations. Child Development, 2015, 86, 1892-1907.	1.7	45
42	Development of early mathematical skills with a tablet intervention: a randomized control trial in Malawi. Frontiers in Psychology, 2015, 6, 485.	1.1	49
43	What to Do About Canada's Declining Math Scores?. SSRN Electronic Journal, 0, , .	0.4	9
44	Parents Support, Teachers Support, and Intelligence as Predictors of Mathematics Learning Achievement in Class XI of Yogyakarta Senior High Schools. Mediterranean Journal of Social Sciences, 2015, , .	0.1	0
45	Why is learning fraction and decimal arithmetic so difficult?. Developmental Review, 2015, 38, 201-221.	2.6	142
47	Longitudinal mathematics development of students with learning disabilities and students without disabilities: A comparison of linear, quadratic, and piecewise linear mixed effects models. Journal of School Psychology, 2015, 53, 105-120.	1.5	32
48	Preschool spontaneous focusing on numerosity predicts rational number conceptual knowledge 6Âyears later. ZDM - International Journal on Mathematics Education, 2015, 47, 813-824.	1.3	28
49	Inclusion Versus Specialized Intervention for Very-Low-Performing Students. Exceptional Children, 2015, 81, 134-157.	1.4	64
50	Predictors of mathematics achievement of migrant children in Chinese urban schools: A comparative study. International Journal of Educational Development, 2015, 42, 35-42.	1.4	18
51	A Five-Year Follow-Up on the Role of Educational Support in Preventing Dropout From Upper Secondary Education in Finland. Journal of Learning Disabilities, 2015, 48, 408-421.	1.5	39
52	General and math-specific predictors of sixth-graders' knowledge of fractions. Cognitive Development, 2015, 35, 34-49.	0.7	119
53	Conceptual structure and the procedural affordances of rational numbers: Relational reasoning with fractions and decimals Journal of Experimental Psychology: General, 2015, 144, 127-150.	1.5	51
54	Cross-lagged relations between math-related interest, performance goals and skills in groups of children with different general abilities. Learning and Individual Differences, 2015, 39, 105-113.	1.5	31
55	From rational numbers to algebra: Separable contributions of decimal magnitude and relational understanding of fractions. Journal of Experimental Child Psychology, 2015, 133, 72-84.	0.7	65
56	Inhibiting natural knowledge in fourth graders: towards a comprehensive test instrument. ZDM - International Journal on Mathematics Education, 2015, 47, 849-857.	1.3	34
57	Unraveling the gap between natural and rational numbers. Learning and Instruction, 2015, 37, 1-4.	1.9	45

#	Article	IF	CITATIONS
58	The effect of inhibitory control on general mathematics achievement and fraction comparison in middle school children. ZDM - International Journal on Mathematics Education, 2015, 47, 801-811.	1.3	37
59	Individual differences in algebraic cognition: Relation to the approximate number and semantic memory systems. Journal of Experimental Child Psychology, 2015, 140, 211-227.	0.7	27
60	How do contrasting cases and self-explanation promote learning? Evidence from fraction division. Learning and Instruction, 2015, 40, 29-38.	1.9	31
61	Decreasing the SES math achievement gap: Initial math proficiency and home learning environments. Contemporary Educational Psychology, 2015, 43, 25-38.	1.6	77
62	Inappropriately applying natural number properties in rational number tasks: characterizing the development of the natural number bias through primary and secondary education. Educational Studies in Mathematics, 2015, 90, 39-56.	1.8	39
63	Measuring Middle School Students' Algebra Readiness. Assessment for Effective Intervention, 2015, 41, 28-40.	0.6	8
64	Bridging the gap: Fraction understanding is central to mathematics achievement in students from three different continents. Learning and Instruction, 2015, 37, 5-13.	1.9	123
65	Development of fraction concepts and procedures in U.S. and Chinese children. Journal of Experimental Child Psychology, 2015, 129, 68-83.	0.7	60
66	Neurocognitive Architectures and the Nonsymbolic Foundations of Fractions Understanding. , 2016, , 141-164.		20
67	Improving Children's Knowledge of Fraction Magnitudes. PLoS ONE, 2016, 11, e0165243.	1.1	45
68	Family Socioeconomic Status, Immigration, and Children's Transitions into School. Family Relations, 2016, 65, 73-84.	1.1	14
69	Who can escape the natural number bias in rational number tasks? A study involving students and experts. British Journal of Psychology, 2016, 107, 537-555.	1.2	24
71	The role of language in fraction performance: A synthesis of literature. Learning and Individual Differences, 2016, 47, 252-257.	1.5	22
72	Revolutionizing Education with Digital Ink. Human-computer Interaction Series, 2016, , .	0.4	О
73	The Relative Value of Growth in Math Fact Skills Across Late Elementary and Middle School. Assessment for Effective Intervention, 2016, 41, 184-192.	0.6	15
74	Measuring fraction comparison strategies with eye-tracking. ZDM - International Journal on Mathematics Education, 2016, 48, 255-266.	1.3	48
75	Strategy use and strategy choice in fraction magnitude comparison Journal of Experimental Psychology: Learning Memory and Cognition, 2016, 42, 1-16.	0.7	83
76	Cognitive predictors of calculations and number line estimation with whole numbers and fractions among at-risk students Journal of Educational Psychology, 2016, 108, 214-228.	2.1	43

#	Article	IF	CITATIONS
77	A set for relational reasoning: Facilitation of algebraic modeling by a fraction task. Journal of Experimental Child Psychology, 2016, 152, 351-366.	0.7	19
78	Initial Understandings of Fraction Concepts Evidenced by Students With Mathematics Learning Disabilities and Difficulties. Learning Disability Quarterly, 2016, 39, 213-225.	0.9	13
79	Magnitude knowledge: the common core of numerical development. Developmental Science, 2016, 19, 341-361.	1.3	136
80	Epistemic Trust and Education: Effects of Informant Reliability on Student Learning of Decimal Concepts. Child Development, 2016, 87, 154-164.	1.7	9
81	Pathways to fraction learning: Numerical abilities mediate the relation between early cognitive competencies and later fraction knowledge. Journal of Experimental Child Psychology, 2016, 152, 242-263.	0.7	30
82	Understanding mathematical learning disabilities as developmental difference: a fine-grained analysis of one student's partitioning strategies for fractions / <i>Las discapacidades para el aprendizaje de las matemáticas como diferencia en el desarrollo: un análisis detallado de las estrategias de una estudiante al partir enteros para obtener fracciones</i> . Infancia Y Aprendizaie. 2016. 39. 812-857.	0.5	2
83	Evaluating Longitudinal Mathematics Achievement Growth. Educational Researcher, 2016, 45, 347-357.	3.3	25
84	Effects of Intervention to Improve At-Risk Fourth Graders' Understanding, Calculations, and Word Problems with Fractions. Elementary School Journal, 2016, 116, 625-651.	0.9	45
85	Young children's core symbolic and nonsymbolic quantitative knowledge in the prediction of later mathematics achievement Developmental Psychology, 2016, 52, 2130-2144.	1.2	67
86	Developing and evaluating a kindergarten to third grade CBM mathematics assessment. ZDM - International Journal on Mathematics Education, 2016, 48, 1019-1030.	1.3	11
87	Challenges Faced by Entry-level University Students in Word Problems Involving Fractions Terminology. International Journal of Educational Sciences, 2016, 15, 461-473.	0.0	1
88	Difference Not Deficit: Reconceptualizing Mathematical Learning Disabilities (Reprint). Journal of Education, 2016, 196, 39-57.	0.7	1
89	Supporting teachers' technological pedagogical content knowledge of fractions through co-designing a virtual manipulative. Journal of Mathematics Teacher Education, 2016, 19, 205-226.	1.0	22
90	Developmental foundations of children's fraction magnitude knowledge. Cognitive Development, 2016, 39, 141-153.	0.7	16
91	Construct Confounding Among Predictors of Mathematics Achievement. AERA Open, 2016, 2, 233285841664893.	1.3	10
92	Strategic Development for Middle School Students Struggling With Fractions. Journal of Learning Disabilities, 2016, 49, 515-531.	1.5	13
93	Common magnitude representation of fractions and decimals is task dependent. Quarterly Journal of Experimental Psychology, 2016, 69, 764-780.	0.6	5
94	Spatial Proportional Reasoning Is Associated With Formal Knowledge About Fractions. Journal of Cognition and Development, 2016, 17, 67-84.	0.6	55

#	Article	IF	CITATIONS
95	Which preschool mathematics competencies are most predictive of fifth grade achievement?. Early Childhood Research Quarterly, 2016, 36, 550-560.	1.6	231
96	Cognitive and numerosity predictors of mathematical skills in middle school. Journal of Experimental Child Psychology, 2016, 145, 95-119.	0.7	55
97	Individual Differences in Nonsymbolic Ratio Processing Predict Symbolic Math Performance. Psychological Science, 2016, 27, 191-202.	1.8	113
98	Conceptual and procedural distinctions between fractions and decimals: A cross-national comparison. Cognition, 2016, 147, 57-69.	1.1	18
99	Secondary School Students Learning From Reflections on the Rationale Behind Self-Made Errors: A Field Experiment. Journal of Experimental Education, 2016, 84, 98-118.	1.6	27
100	Identifying learning difficulties with fractions: A longitudinal study of student growth from third through sixth grade. Contemporary Educational Psychology, 2017, 50, 45-59.	1.6	36
101	Error Patterns in Ordering Fractions Among At-Risk Fourth-Grade Students. Journal of Learning Disabilities, 2017, 50, 337-352.	1.5	21
102	Development in reading and math in children from different <scp>SES</scp> backgrounds: the moderating role of child temperament. Developmental Science, 2017, 20, e12380.	1.3	31
103	Adaptive number knowledge and its relation to arithmetic and pre-algebra knowledge. Learning and Instruction, 2017, 49, 178-187.	1.9	33
104	The 15-Minute Audition: Translating a Proof of Concept Into a Domain-Specific Screening Device for Mathematical Talent. Gifted Child Quarterly, 2017, 61, 164-171.	1.2	5
105	Blogging mathematics: Using technology to support mathematical explanations for learning fractions. Computers and Education, 2017, 111, 114-127.	5.1	9
106	Development of fraction comparison strategies: A latent transition analysis Developmental Psychology, 2017, 53, 713-730.	1.2	87
107	Improving mastery of fractions by blending video games into the Math classroom. Journal of Computer Assisted Learning, 2017, 33, 486-499.	3.3	13
109	Fraction Intervention for Students With Mathematics Difficulties: Lessons Learned From Five Randomized Controlled Trials. Journal of Learning Disabilities, 2017, 50, 631-639.	1.5	49
110	The role of domain-general cognitive abilities and decimal labels in at-risk fourth-grade students' decimal magnitude understanding. Learning and Individual Differences, 2017, 58, 90-96.	1.5	5
111	Model Drawing Strategy for Fraction Word Problem Solving of Fourth-Grade Students With Learning Disabilities. Remedial and Special Education, 2017, 38, 181-192.	1.7	20
112	Early Developmental Trajectories Toward Concepts of Rational Numbers. Cognition and Instruction, 2017, 35, 4-19.	1.9	19
113	Spontaneous focusing on quantitative relations as a predictor of rational number and algebra knowledge. Contemporary Educational Psychology, 2017, 51, 356-365.	1.6	18

#	Article	IF	CITATIONS
114	Making sense of third-grade students' misunderstandings of the number line. Investigations in Mathematics Learning, 2017, 9, 19-37.	0.7	1
115	Cognitive Profiles Associated With Responsiveness to Fraction Intervention. Learning Disabilities Research and Practice, 2017, 32, 216-230.	0.9	7
116	Co-development of fraction magnitude knowledge and mathematics achievement from fourth through sixth grade. Learning and Individual Differences, 2017, 60, 18-32.	1.5	10
117	Error Patterns with Fraction Calculations at Fourth Grade as a Function of Students' Mathematics Achievement Status. Elementary School Journal, 2017, 118, 105-127.	0.9	18
118	Hard Lessons: Why Rational Number Arithmetic Is So Difficult for So Many People. Current Directions in Psychological Science, 2017, 26, 346-351.	2.8	38
119	Revisiting decimal misconceptions from a new perspective: The significance of whole number bias in the Chinese culture. Journal of Mathematical Behavior, 2017, 47, 96-108.	0.5	10
120	A Proposed Algebra Assessment for Use in a Problem-Analysis Framework. Assessment for Effective Intervention, 2017, 42, 150-159.	0.6	0
121	Making Space for Spatial Proportions. Journal of Learning Disabilities, 2017, 50, 644-647.	1.5	11
122	Fraction Sense: Foundational Understandings. Journal of Learning Disabilities, 2017, 50, 648-650.	1.5	10
123	Fractions Learning in Children With Mathematics Difficulties. Journal of Learning Disabilities, 2017, 50, 614-620.	1.5	42
124	Delaware Longitudinal Study of Fraction Learning: Implications for Helping Children With Mathematics Difficulties. Journal of Learning Disabilities, 2017, 50, 621-630.	1.5	70
125	Building Links Between Early Socioeconomic Status, Cognitive Ability, and Math and Science Achievement. Journal of Cognition and Development, 2017, 18, 16-40.	0.6	59
126	Spelling Ability in College Students Predicted by Decoding, Print Exposure, and Vocabulary. Journal of College Reading and Learning, 2017, 47, 58-74.	0.4	18
127	Are Books Like Number Lines? Children Spontaneously Encode Spatial-Numeric Relationships in a Novel Spatial Estimation Task. Frontiers in Psychology, 2017, 8, 2242.	1.1	4
128	An Evaluation of an Educational Video Game on Mathematics Achievement in First Grade Students. Technologies, 2017, 5, 30.	3.0	13
129	When Being Good at Math Is Not Enough. , 2017, , 221-241.		6
130	Neurodevelopmental Disorders as Model Systems for Understanding Typical and Atypical Mathematical Development. , 2017, , 67-97.		3
131	Numbers as Mathematical Models: Modeling Relations andÂMagnitudes with Fractions and Decimals. , 2017, , 141-163.		3

#	Article	IF	CITATIONS
132	Developing Deaf Students Fraction Skills Requires Understanding Magnitude and Whole Number Division. Journal of Education and Learning, 2017, 7, 12.	0.2	3
133	Fraction Development in Children: Importance of Building Numerical Magnitude Understanding. , 2017, , 125-140.		5
134	The Transition from Natural to Rational Number Knowledge. , 2017, , 101-123.		19
135	Evaluating the effectiveness of a game-based rational number training - In-game metrics as learning indicators. Computers and Education, 2018, 120, 13-28.	5.1	78
136	Early developmental trajectories of number knowledge and math achievement from 4 to 10†years: Low-persistent profile and early-life predictors. Journal of School Psychology, 2018, 68, 84-98.	1.5	35
137	Profiles of rational number knowledge in Finnish and Flemish students – A multigroup latent class analysis. Learning and Individual Differences, 2018, 66, 70-77.	1.5	12
138	Full- Versus Part-Day Kindergarten for Children With Disabilities: Effects on Executive Function Skills. Early Education and Development, 2018, 29, 288-305.	1.6	3
139	Computation Error Analysis: Students With Mathematics Difficulty Compared To Typically Achieving Students. Assessment for Effective Intervention, 2018, 43, 144-156.	0.6	15
140	Design matters: explorations of content and design in fraction games. Educational Technology Research and Development, 2018, 66, 579-596.	2.0	18
141	Children's understanding of fraction and decimal symbols and the notation-specific relation to pre-algebra ability. Journal of Experimental Child Psychology, 2018, 168, 32-48.	0.7	25
142	Using block play to enhance preschool children's mathematics and executive functioning: A randomized controlled trial. Early Childhood Research Quarterly, 2018, 44, 181-191.	1.6	79
143	Developmental changes in the whole number bias. Developmental Science, 2018, 21, e12541.	1.3	45
144	A systematic investigation of the link between rational number processing and algebra ability. British Journal of Psychology, 2018, 109, 99-117.	1.2	17
145	The fractions SNARC revisited: Processing fractions on a consistent mental number line. Quarterly Journal of Experimental Psychology, 2018, 71, 1761-1770.	0.6	12
146	Which Type of Rational Numbers Should Students Learn First?. Educational Psychology Review, 2018, 30, 351-372.	5.1	29
147	Using assessment to individualize early mathematics instruction. Journal of School Psychology, 2018, 66, 97-113.	1.5	33
148	Immediate and delayed effects of integrating physical activity into preschool children's learning of numeracy skills. Journal of Experimental Child Psychology, 2018, 166, 502-519.	0.7	61
149	Fraction magnitude understanding and its unique role in predicting general mathematics achievement at two early stages of fraction instruction. British Journal of Educational Psychology, 2018, 88, 345-362.	1.6	6

#	Article	IF	Citations
150	Does initial learning about the meaning of fractions present similar challenges for students with and without adequate whole-number skill?. Learning and Individual Differences, 2018, 61, 151-157.	1.5	22
151	Do children understand fraction addition?. Developmental Science, 2018, 21, e12601.	1.3	14
152	Comparisons of Mathematics Intervention Effects in Resource and Inclusive Classrooms. Exceptional Children, 2018, 84, 197-212.	1.4	20
153	Fraction Magnitude Knowledge: Students Strategy in Estimating Fractions. Journal of Physics: Conference Series, 2018, 1108, 012058.	0.3	1
154	Using the Number Line to Promote Understanding of Fractions for Struggling Fifth Graders: A Formative Pilot Study. Learning Disabilities Research and Practice, 2018, 33, 192-206.	0.9	20
155	Reaching back to advance forward: towards a 21st century approach to learning and teaching fractions. Perspectiva, 2018, 36, 399-420.	0.1	2
156	Sharing as a model for understanding division. NeuroReport, 2018, 29, 889-893.	0.6	2
157	Early Prediction of Students' Mathematics Performance. , 2018, , .		4
158	How Does the "Learning Gap―Open? A Cognitive Theory of Nation Effects on Mathematics Proficiency. , 2018, , 99-130.		1
159	Arithmetic in the Bilingual Brain. , 2018, , 145-172.		3
160	Contributions of Research Based on the PSID Child Development Supplement. Annals of the American Academy of Political and Social Science, 2018, 680, 97-131.	0.8	2
161	Spatial Reasoning: A Critical Problem-Solving Tool in Children's Mathematics Strategy Tool-Kit. Research in Mathematics Education, 2018, , 47-75.	0.1	3
162	Visualizing Mathematics. Research in Mathematics Education, 2018, , .	0.1	9
164	Improving Children's Chances: Using Evidence from Four Low- and Middle-Income Countries to Set Priorities for the Sustainable Development Goals. Social Indicators Research Series, 2018, , 257-275.	0.3	1
165	Using Regression Discontinuity to Estimate the Effects of a Tier-1 Research-Based Mathematics Program in Seventh Grade. Exceptional Children, 2018, 85, 46-65.	1.4	8
166	What Expertise Can Tell About Mathematical Learning and Cognition. Mind, Brain, and Education, 2018, 12, 186-192.	0.9	10
167	When in Doubt, Go to the Library: The Effect of a Library-Intensive Freshman Research and Writing Seminar on Academic Success. Journal of Criminal Justice Education, 2018, 29, 116-136.	0.6	2
168	How Big Is Many? Development of Spatial and Numerical Magnitude Understanding. , 2018, , 157-176.		9

#	ARTICLE	IF	CITATIONS
169	Prior Year's Predictors of Eighth-Grade Algebra Achievement. Journal of Advanced Academics, 2018, 29, 249-269.	0.5	6
170	Effects of Mathematics Language on Children's Mathematics Achievement and Central Conceptual Knowledge. , 2018, , 73-98.		2
171	Innate or Acquired? – Disentangling Number Sense and Early Number Competencies. Frontiers in Psychology, 2018, 9, 571.	1.1	3
172	Proportional Reasoning in 5- to 6-Year-Olds. Journal of Cognition and Development, 2018, 19, 389-412.	0.6	5
173	Effects of family socioeconomic status on home math activities in urban China: The role of parental beliefs. Children and Youth Services Review, 2018, 93, 60-68.	1.0	11
174	The relationship between previous mathematics performance, and level of financial literacy and financial well-being of university students. AIP Conference Proceedings, 2018, , .	0.3	7
175	CRA fraction intervention for fifth-grade students receiving tier two interventions. Preventing School Failure, 2018, 62, 198-213.	0.4	11
176	Control-Value Appraisals, Enjoyment, and Boredom in Mathematics: A Longitudinal Latent Interaction Analysis. American Educational Research Journal, 2018, 55, 1339-1368.	1.6	94
177	How the Abstract Becomes Concrete: Irrational Numbers Are Understood Relative to Natural Numbers and Perfect Squares. Cognitive Science, 2018, 42, 1642-1676.	0.8	8
178	Stimulating pre-service teachers' content and pedagogical content knowledge on rational numbers. Educational Studies in Mathematics, 2018, 99, 197-216.	1.8	10
179	Middle Schoolers' Biases and Strategies in a Fraction Comparison Task. International Journal of Science and Mathematics Education, 2019, 17, 1233-1250.	1.5	19
180	Contribution of teacher knowledge to student knowledge of mathematics / Contribución del conocimiento del profesor al conocimiento del alumno en matemáticas. Cultura Y Educación, 2019, 31, 509-541.	0.2	2
181	Explanations and Implications of Diminishing Intervention Impacts Across Time. , 2019, , 321-346.		6
182	Variables influencing algebra performance: Understanding rational numbers is essential. Learning and Individual Differences, 2019, 74, 101758.	1.5	11
183	Bilingual children access multiplication facts from semantic memory equivalently across languages: Evidence from the N400. Brain and Language, 2019, 198, 104679.	0.8	13
184	Identifying Fraction Measures as Screeners of Mathematics Risk Status. Journal of Learning Disabilities, 2019, 52, 480-497.	1.5	13
185	Verbal counting skill predicts later math performance and difficulties in middle school. Contemporary Educational Psychology, 2019, 59, 101803.	1.6	20
186	Validating Classifications From Learning Progressions: Framework and Implementation. ETS Research Report Series, 2019, 2019, 1-20.	0.5	3

#	Article	IF	CITATIONS
187	SRSD Fractions: Helping Students at Risk for Disabilities Add/Subtract Fractions With Unlike Denominators. Journal of Learning Disabilities, 2019, 52, 399-412.	1.5	14
188	Implicit Analogies in Learning: Supporting Transfer by Warming Up. Current Directions in Psychological Science, 2019, 28, 619-625.	2.8	17
189	Relations between mathematics achievement growth and the development of mathematics self-concept in elementary and middle grades. Contemporary Educational Psychology, 2019, 59, 101804.	1.6	4
190	Exploring Factors of Home Resources and Attitudes Towards Mathematics in Mathematics Achievement in South Korea, Turkey, and the United States. Eurasia Journal of Mathematics, Science and Technology Education, 2019, 15, .	0.7	10
191	Number line unidimensionality is a critical feature for promoting fraction magnitude concepts. Journal of Experimental Child Psychology, 2019, 187, 104657.	0.7	15
192	Promoting mathematics achievement in one-way immersion: Performance development over four years of elementary school. Contemporary Educational Psychology, 2019, 56, 228-235.	1.6	13
193	The Relation Between Spatial Reasoning and Mathematical Achievement in Children with Mathematical Learning Difficulties. , 2019, , 423-435.		6
194	Individual differences in fraction arithmetic learning. Cognitive Psychology, 2019, 112, 81-98.	0.9	14
195	An Efficacy Study of a Digital Core Curriculum for Grade 5 Mathematics. AERA Open, 2019, 5, 233285841985048.	1.3	7
196	Embedding Self-Regulation Instruction Within Fractions Intervention for Third Graders With Mathematics Difficulties. Journal of Learning Disabilities, 2019, 52, 337-348.	1.5	22
197	Evaluation of a Math Intervention Program Implemented With Community Support. Journal of Research on Educational Effectiveness, 2019, 12, 391-412.	0.9	8
198	The Role of Cognitive Processes in Treating Mathematics Learning Difficulties. , 2019, , 295-320.		6
199	New insights from children with early focal brain injury: Lessons to be learned from examining STEMâ€related skills. Developmental Psychobiology, 2019, 61, 477-490.	0.9	1
200	Mathematical Learning and Its Difficulties in the United States: Current Issues in Screening and Intervention. , 2019, , 183-199.		0
201	A metacognitive intervention for teaching fractions to students with or at-risk for learning disabilities in mathematics. ZDM - International Journal on Mathematics Education, 2019, 51, 601-612.	1.3	22
202	Fraction interventions for struggling elementary math learners: A review of the literature. Psychology in the Schools, 2019, 56, 413-432.	1.1	11
203	How to make failure productive: Fostering learning from errors through elaboration prompts. Learning and Instruction, 2019, 62, 1-10.	1.9	43
204	Linear-linear piecewise growth mixture models with unknown random knots: A primer for school psychology. Journal of School Psychology, 2019, 73, 89-100.	1.5	3

#	Article	IF	CITATIONS
205	Number lines, but not area models, support children's accuracy and conceptual models of fraction division. Contemporary Educational Psychology, 2019, 58, 288-298.	1.6	25
206	Implementation Fidelity and the Design of a Fractions Intervention. Learning Disability Quarterly, 2019, 42, 217-230.	0.9	1
207	Understanding Rational Numbers – Obstacles for Learners With and Without Mathematical Learning Difficulties. , 2019, , 581-594.		5
208	Interventions to Improve Fraction Skills for Students With Disabilities: A Meta-Analysis. Exceptional Children, 2019, 85, 367-386.	1.4	36
209	Introduction: Cognitive Foundations for Improving Mathematical Learning. , 2019, , 1-36.		3
210	Development of Fraction Understanding. , 2019, , 148-182.		2
211	Implicit and explicit spatial-numerical representations diverge in number-form synesthetes. Consciousness and Cognition, 2019, 75, 102806.	0.8	5
212	Who uses more strategies? Linking mathematics anxiety to adults' strategy variability and performance on fraction magnitude tasks. Thinking and Reasoning, 2019, 25, 94-131.	2.1	25
213	Evaluating Quantitative Reasoning Strategies for Comparing Fractions: A Tool for Teachers. Intervention in School and Clinic, 2019, 54, 225-234.	0.8	2
214	Understanding Fractions: Integrating Results from Mathematics Education, Cognitive Psychology, and Neuroscience. Research in Mathematics Education, 2019, , 135-162.	0.1	10
216	Psychometric Properties of the WRAT Math Computation Subtest in Mexican Adolescents. Journal of Psychoeducational Assessment, 2019, 37, 957-972.	0.9	6
217	The roles of placeâ€value understanding and nonâ€symbolic ratio processing system in symbolic rational number processing. British Journal of Educational Psychology, 2019, 89, 635-652.	1.6	2
218	Longitudinal algebra prediction for early versus later takers. Journal of Educational Research, 2019, 112, 179-191.	0.8	7
219	A Systematic Analysis of Experimental Studies Targeting Fractions for Students with Mathematics Difficulties. Learning Disabilities Research and Practice, 2019, 34, 47-61.	0.9	23
220	Retrieval practice opportunities in middle school mathematics teachers' oral questions. British Journal of Educational Psychology, 2019, 89, 653-669.	1.6	7
221	Inhibition of the whole number bias in decimal number comparison: A developmental negative priming study. Journal of Experimental Child Psychology, 2019, 177, 240-247.	0.7	25
222	Consequences of Individual Differences in Children's Formal Understanding of Mathematical Equivalence. Child Development, 2019, 90, 940-956.	1.7	24
223	Stability and instability in the co-development of mathematics, executive function skills, and visual-motor integration from prekindergarten to first grade. Early Childhood Research Quarterly, 2019, 46, 262-274.	1.6	23

#	Article	IF	CITATIONS
224	A Fraction Sense Intervention for Sixth Graders With or At Risk for Mathematics Difficulties. Remedial and Special Education, 2020, 41, 244-254.	1.7	26
225	Observable mathematical teaching expertise among upper elementary teachers: connections to student experiences and professional learning. Journal of Mathematics Teacher Education, 2020, 23, 433-461.	1.0	4
226	Comparing German and Taiwanese secondary school students' knowledge in solving mathematical modelling tasks requiring their assumptions. ZDM - International Journal on Mathematics Education, 2020, 52, 59-72.	1.3	11
227	Inhibition and cognitive load in fractions and decimals. British Journal of Educational Psychology, 2020, 90, 240-256.	1.6	14
228	Effect of Ubiquitous Fraction App on Mathematics Learning Achievements and Learning Behaviors of Taiwanese Students in Authentic Contexts. IEEE Transactions on Learning Technologies, 2020, 13, 530-539.	2.2	11
229	What role do comprehensionâ€oriented learning strategies have in solving math calculation and word problems at the end of middle school?. British Journal of Educational Psychology, 2020, 90, 105-123.	1.6	15
230	The role of rational number density knowledge in mathematical development. Learning and Instruction, 2020, 65, 101228.	1.9	17
231	Demonstrating Conceptual Understanding of Fraction Arithmetic: An Analysis of Pre-Service Special and General Educators' Visual Representations. Teacher Education and Special Education, 2020, 43, 314-331.	1.6	1
232	Do children use language structure to discover the recursive rules of counting?. Cognitive Psychology, 2020, 117, 101263.	0.9	12
233	The Effects of Motion Math: Bounce on Students' Fraction Knowledge. Learning Disabilities Research and Practice, 2020, 35, 25-35.	0.9	6
234	Achievement in student peer networks: A study of the selection process, peer effects and student centrality. International Journal of Educational Research, 2020, 99, 101499.	1.2	21
235	Sharing scenarios facilitate division performance in preschoolers. Cognitive Development, 2020, 56, 100954.	0.7	8
236	Executive functioning as a predictor of children's mathematics, reading and writing. Journal of Applied Developmental Psychology, 2020, 70, 101196.	0.8	16
237	Neurofunctional plasticity in fraction learning: An fMRI training study. Trends in Neuroscience and Education, 2020, 21, 100141.	1.5	8
238	Understanding development requires assessing the relevant environment: Examples from mathematics learning. New Directions for Child and Adolescent Development, 2020, 2020, 83-100.	1.3	2
239	The use and effectiveness of colorful, contextualized, student-made material for elementary mathematics instruction. International Journal of STEM Education, 2020, 7, .	2.7	9
240	Investigating the Promise of a Tier 2 Sixth-Grade Fractions Intervention. Learning Disability Quarterly, 2022, 45, 252-266.	0.9	2
242	How do people choose among rational number notations?. Cognitive Psychology, 2020, 123, 101333.	0.9	5

щ		IF	CITATION
# 243	ARTICLE Meaning to multiply: Electrophysiological evidence that children and adults treat multiplication facts differently. Developmental Cognitive Neuroscience, 2020, 46, 100873.	ır 1.9	CITATIONS 6
244	The Sleep of Reason Produces Monsters: How and When Biased Input Shapes Mathematics Learning. Annual Review of Developmental Psychology, 2020, 2, 413-435.	1.4	9
245	Chinese Students' Hierarchical Understanding of Part-whole and Measure Subconstructs. International Journal of Science and Mathematics Education, 2021, 19, 1441-1461.	1.5	7
246	Socioeconomic status and beyond: a multilevel analysis of TIMSS mathematics achievement given student and school context in Turkey. Large-Scale Assessments in Education, 2020, 8, .	0.8	16
247	Development of a framework to assess preschool children's numeracy. Journal of Physics: Conference Series, 2020, 1460, 012002.	0.3	0
248	How Prioritizing Number Skills Can Act as a Mediator for Socioeconomic Inequality within a National Math Compulsory Curriculum. Elementary School Journal, 2020, 120, 580-610.	0.9	0
249	Confident or familiar? The role of familiarity ratings in adults' confidence judgments when estimating fraction magnitudes. Metacognition and Learning, 2020, 15, 215-231.	1.3	16
250	Intuitive errors in learners' fraction understanding: A dual-process perspective on the natural number bias. Memory and Cognition, 2020, 48, 1171-1180.	0.9	7
251	Are the acuities of magnitude representations of different types and ranges of numbers related? Testing the core assumption of the integrated theory of numerical development. Cognitive Development, 2020, 54, 100888.	0.7	2
252	The ratio processing system and its role in fraction understanding: Evidence from a match-to-sample task in children and adults with and without dyscalculia. Quarterly Journal of Experimental Psychology, 2020, 73, 2158-2176.	0.6	9
253	Trapped in low performance? Tracking the learning trajectory of disadvantaged girls and boys in the Complementary Basic Education programme in Ghana. International Journal of Educational Research, 2020, 100, 101541.	1.2	10
254	A Study on Congruency Effects and Numerical Distance in Fraction Comparison by Expert Undergraduate Students. Frontiers in Psychology, 2020, 11, 1190.	1.1	7
255	Supporting primary students' learning of fraction conceptual knowledge through digital games. Journal of Computer Assisted Learning, 2020, 36, 540-548.	3.3	18
256	Distinguishing adaptive from routine expertise with rational number arithmetic. Learning and Instruction, 2020, 68, 101347.	1.9	15
257	No calculation necessary: Accessing magnitude through decimals and fractions. Cognition, 2020, 199, 104219.	1.1	14
258	Training nonsymbolic proportional reasoning in children and its effects on their symbolic math abilities. Cognition, 2020, 197, 104154.	1.1	11
259	Complex fraction comparisons and the natural number bias: The role of benchmarks. Learning and Instruction, 2020, 67, 101307.	1.9	23
260	Identity and Symbolic Interaction. , 2020, , .		4

#	Article	IF	CITATIONS
261	Teacher job satisfaction: the importance of school working conditions and teacher characteristics. Educational Review, 2021, 73, 71-97.	2.2	229
262	Addressing Challenging Mathematics Standards With At-Risk Learners: A Randomized Controlled Trial on the Effects of Fractions Intervention at Third Grade. Exceptional Children, 2021, 87, 163-182.	1.4	12
263	Transfer effects of mathematical literacy: an integrative longitudinal study. European Journal of Psychology of Education, 2021, 36, 799-825.	1.3	8
264	Gender differences in confidence during number-line estimation. Metacognition and Learning, 2021, 16, 157-178.	1.3	17
265	IQ, grit, and academic achievement: Evidence from rural China. International Journal of Educational Development, 2021, 80, 102306.	1.4	12
266	Components of Mathematical Competence in Middle Childhood. Child Development Perspectives, 2021, 15, 18-23.	2.1	5
267	Learning at home: What preschool children's parents do and what they want to learn from their children's teachers. Journal of Early Childhood Research, 2021, 19, 309-322.	0.9	19
268	Validating the Research-Based Early Math Assessment (REMA) among rural children in Southwest United States. Studies in Educational Evaluation, 2021, 68, 100944.	1.2	6
269	An evaluation of the incremental impact of math intervention on early literacy performance. Psychology in the Schools, 2021, 58, 431-442.	1.1	1
270	Children's and Adults' Math Attitudes Are Differentiated by Number Type. Journal of Experimental Education, 2021, 89, 1-32.	1.6	20
271	Cognitive and maths-specific predictors of fraction conceptual knowledge. Educational Psychology, 2021, 41, 172-190.	1.2	13
272	Mental and Neural Foundations of Numerical Magnitude. , 2021, , 69-93.		Ο
273	Neurocognitive Aspects of Mathematical Achievement in Children. , 2021, , 203-225.		0
274	Psychophysiological features of solving mathematical examples with fractions as adaptability markers to the cognitive load. E3S Web of Conferences, 2021, 273, 12051.	0.2	Ο
275	Probing the neural basis of rational numbers: The role of inhibitory control and magnitude representations. , 2021, , 143-180.		2
276	A meta-analysis of the relation between math anxiety and math achievement Psychological Bulletin, 2021, 147, 134-168.	5.5	179
277	First and Second Graders Successfully Reason About Ratios With Both Dot Arrays and Arabic Numerals. Child Development, 2021, 92, 1011-1027.	1.7	9
278	The development of learning tool based on realistic mathematics education and its influence on spatial abilities of elementary school students. Journal of Physics: Conference Series, 2021, 1839, 012013.	0.3	3

#	Article	IF	CITATIONS
279	Missing Input: How Imbalanced Distributions of Textbook Problems Affect Mathematics Learning. Child Development Perspectives, 2021, 15, 76-82.	2.1	5
280	Teachers' conceptual understanding of fraction operations: results from a national sample of elementary school teachers. Educational Studies in Mathematics, 2021, 107, 525-545.	1.8	21
281	Learning Improper Fractions with the Number Line and the Area Model. Journal of Cognition and Development, 2021, 22, 305-327.	0.6	4
282	The Role of the Inhibition of Natural Number Based Reasoning and Strategy Switch Cost in a Fraction Comparison Task. Studia Psychologica, 2021, 63, 64-76.	0.3	1
284	Two conceptions of fraction equivalence. Educational Studies in Mathematics, 2021, 107, 135-157.	1.8	5
285	A Cross-Sectional Study of Students' Learning Progression in Algebra. Universal Journal of Educational Research, 2021, 9, 449-460.	0.1	2
286	Just do it! Study time increases mathematical achievement scores for grade 4-10 students in a large longitudinal cross-country study. European Journal of Psychology of Education, 2022, 37, 39-53.	1.3	13
287	Which skills predict computational estimation? A longitudinal study in 5- to 7-year-olds. European Journal of Psychology of Education, 2022, 37, 19-38.	1.3	0
288	Examining the relevance of basic numerical skills for mathematical achievement in secondary school using a within-task assessment approach. Acta Psychologica, 2021, 215, 103289.	0.7	2
289	Teachers' Knowledge of Fraction Magnitude. International Journal of Science and Mathematics Education, 2022, 20, 1021-1036.	1.5	7
290	Predicting Middle School Profiles of Algebra Performance Using Fraction Knowledge. Child Development, 2021, 92, 1984-2005.	1.7	9
291	Mathematics identity and discrepancies between self-and reflected appraisals: their relationships with grade 12 mathematics achievement using new evidence from a U.S. national study. Social Psychology of Education, 2021, 24, 763.	1.2	1
292	Improving Struggling Fifth-Grade Students' Understanding of Fractions: A Randomized Controlled Trial of an Intervention That Stresses Both Concepts and Procedures. Exceptional Children, 2021, 88, 81-100.	1.4	8
293	Effects of a Mathematics App on Urban High School Students' Algebra Performance. Contemporary School Psychology, 0, , 1.	0.9	0
294	Preservice teachers' mathematical understanding exhibited in problem posing and problem solving. ZDM - International Journal on Mathematics Education, 2021, 53, 937-949.	1.3	20
295	A Longitudinal Case Study of Mathematics and Mathematical Literacy Achievement of Boys at a High Quintile School in South Africa. African Journal of Research in Mathematics, Science and Technology Education, 2021, 25, 137-147.	0.2	1
296	Mathematics Clusters Reveal Strengths and Weaknesses in Adolescents' Mathematical Competencies, Spatial Abilities, and Mathematics Attitudes. Journal of Cognition and Development, 2021, 22, 695-720.	0.6	5
297	Can Teaching Fractions Improve Teachers' Fraction Understanding?. Elementary School Journal, 2021, 121, 656-673.	0.9	1

#	Article	IF	CITATIONS
298	Designing a Mixed Reality Extension for an Educational Board Game on Fractions. The International Journal of Virtual Reality, 2021, 21, .	2.2	0
299	Softwareâ€based intervention with digital manipulatives to support student conceptual understandings of fractions. British Journal of Educational Technology, 2021, 52, 2299-2318.	3.9	6
300	Math predictors of numeric health and non-health decision-making problems. Journal of Numerical Cognition, 2021, 7, 221-239.	0.6	2
301	Multimodal Technologies in Precision Education: Providing New Opportunities or Adding More Challenges?. Education Sciences, 2021, 11, 338.	1.4	23
302	Teachers' Attention to and Flexibility with Referent Units. International Journal of Science and Mathematics Education, 2022, 20, 1123-1139.	1.5	4
303	Teaching Students to Solve Subtraction Problems Online via the Virtual-Representational-Abstract Instructional Sequence. Investigations in Mathematics Learning, 2021, 13, 197-213.	0.7	2
304	Predicting secondary school students' academic achievement from their elementary school performance and learning behaviours: A longitudinal study based on South Korea's national assessment of educational achievement. Asia Pacific Journal of Education, 0, , 1-18.	1.2	1
305	A Systematic Review of Mathematics Interventions for Middleâ€School Students Experiencing Mathematics Difficulty. Learning Disabilities Research and Practice, 2021, 36, 295-329.	0.9	7
306	The Effects of Concrete-Representational-Abstract Sequence Instruction on Fractions for Chinese Elementary Students with Mathematics Learning Disabilities. International Journal of Science and Mathematics Education, 2022, 20, 1481-1498.	1.5	1
307	Linking inhibitory control to math achievement via comparison of conflicting decimal numbers. Cognition, 2021, 214, 104767.	1.1	13
308	Incongruity in fraction verification elicits N270 and P300 ERP effects. Neuropsychologia, 2021, 161, 108015.	0.7	5
309	Relations among spatial skills, number line estimation, and exact and approximate calculation in young children. Journal of Experimental Child Psychology, 2021, 212, 105251.	0.7	5
310	Cross-notation knowledge of fractions and decimals. Journal of Experimental Child Psychology, 2022, 213, 105210.	0.7	7
311	Neurocognitive Foundations of Fraction Processing. , 2021, , 1-27.		ο
312	Neurocognitive Foundations of Fraction Processing. , 2021, , 1-27.		0
313	Multilevel Response-to-Intervention Prevention Systems: Mathematics Intervention at Tier 2. , 2016, , 309-328.		4
314	Spontaneous Mathematical Focusing Tendencies in Mathematical Development and Education. Research in Mathematics Education, 2019, , 69-86.	0.1	11
315	Mathematics Identity, Self-efficacy, and Interest and Their Relationships to Mathematics Achievement: A Longitudinal Analysis. , 2020, , 169-210.		11

#	Article	IF	CITATIONS
316	Educational Pathways. Handbooks of Sociology and Social Research, 2016, , 179-200.	0.1	16
318	The Role of the Home Environment in Children's Early Numeracy Development: A Canadian Perspective. Early Mathematics Learning and Development, 2015, , 103-117.	0.3	9
319	Children's learning from implicit analogies during instruction: Evidence from fraction division. Cognitive Development, 2020, 56, 100956.	0.7	9
320	Risky business: Correlation and causation in longitudinal studies of skill development American Psychologist, 2018, 73, 81-94.	3.8	72
321	Developmental growth trajectories in understanding of fraction magnitude from fourth through sixth grade Developmental Psychology, 2016, 52, 746-757.	1.2	66
322	Learning and solving algebra word problems: The roles of relational skills, arithmetic, and executive functioning Developmental Psychology, 2018, 54, 1758-1772.	1.2	18
323	Supported self-explaining during fraction intervention Journal of Educational Psychology, 2016, 108, 493-508.	2.1	57
324	Spontaneous focusing on quantitative relations as a predictor of the development of rational number conceptual knowledge Journal of Educational Psychology, 2016, 108, 857-868.	2.1	29
325	Conceptual knowledge of decimal arithmetic Journal of Educational Psychology, 2017, 109, 374-386.	2.1	14
326	The codevelopment of children's fraction arithmetic skill and fraction magnitude understanding Journal of Educational Psychology, 2017, 109, 509-519.	2.1	20
327	Developmental change in the influence of domain-general abilities and domain-specific knowledge on mathematics achievement: An eight-year longitudinal study Journal of Educational Psychology, 2017, 109, 680-693.	2.1	111
328	Working memory strategies during rational number magnitude processing Journal of Educational Psychology, 2017, 109, 694-708.	2.1	2
329	Teacher knowledge experiment: Testing mechanisms underlying the formation of preservice elementary school teachers' pedagogical content knowledge concerning fractions and fractional arithmetic Journal of Educational Psychology, 2018, 110, 1049-1065.	2.1	28
330	Children's reasoning about decimals and its relation to fraction learning and mathematics achievement Journal of Educational Psychology, 2019, 111, 604-618.	2.1	13
331	Improving student learning of ratio, proportion, and percent: A replication study of schema-based instruction Journal of Educational Psychology, 2019, 111, 1045-1062.	2.1	13
332	Constructing written arguments to develop fraction knowledge Journal of Educational Psychology, 2020, 112, 584-607.	2.1	17
333	A computational model of fraction arithmetic Psychological Review, 2017, 124, 603-625.	2.7	43
334	Disassociating the relation between parents' math anxiety and children's math achievement: Long-term effects of a math app intervention Journal of Experimental Psychology: General, 2018, 147, 1782-1790.	1.5	27

#	Article	IF	CITATIONS
335	Using Ordering Tasks to Determine Fraction Magnitudes. Universal Journal of Educational Research, 2020, 8, 147-155.	0.1	1
336	Parent-Child Talk about Early Numeracy. Iris Journal of Scholarship, 0, 1, 48-68.	0.0	3
337	Using video games to combine learning and assessment in mathematics education. International Journal of Serious Games, 2015, 2, .	0.8	33
338	Developing the Big Ideas of Number. International Journal of Educational Studies in Mathematics, 2014, 1, 1-18.	0.1	12
339	Understanding Middle School Students' Motivation in Math Class: The Expectancy-Value Model Perspective. International Journal of Education in Mathematics, Science and Technology, 2015, 3, 288.	0.4	12
340	THE RELATION BETWEEN LEARNERS' SPONTANEOUS FOCUSING ON QUANTITATIVE RELATIONS AND THEIR RATIONAL NUMBER KNOWLEDGE. Studia Psychologica, 2016, 58, 156-170.	0.3	18
343	COMPUTER MATHEMATICS GAMES AND CONDITIONS FOR ENHANCING YOUNG CHILDREN'S LEARNING OF NUMBER SENSE. Malaysian Journal of Learning and Instruction, 2018, 14, 23-57.	0.3	8
345	Structured cooperative learning as a means for improving average achievers' mathematical learning in fractions. Inovacije U Nastavi, 2015, 28, 15-35.	0.1	3
346	Do we have a sense for irrational numbers?. Journal of Numerical Cognition, 2017, 2, 170-189.	0.6	6
347	Creating a context for learning: Activating children's whole number knowledge prepares them to understand fraction division. Journal of Numerical Cognition, 2017, 3, 31-57.	0.6	22
348	Natural alternatives to natural number: The case of ratio. Journal of Numerical Cognition, 2018, 4, 19-58.	0.6	14
349	How the eyes add fractions: Adult eye movement patterns during fraction addition problems. Journal of Numerical Cognition, 2018, 4, 317-336.	0.6	8
350	Fraction errors in a digital mathematics environment: Latent class and transition analysis. Journal of Numerical Cognition, 2019, 5, 158-188.	0.6	2
351	Adolescents and adults need inhibitory control to compare fractions. Journal of Numerical Cognition, 2019, 5, 314-336.	0.6	8
352	Differential Effects of Virtual and Concrete Manipulatives in a Fraction Intervention on Fourth and Fifth Grade Students' Fraction Skills. Investigations in Mathematics Learning, 2021, 13, 323-337.	0.7	0
353	Conceptual Knowledge, Procedural Knowledge, and Metacognition in Routine and Nonroutine Problem Solving. Cognitive Science, 2021, 45, e13048.	0.8	9
354	An Examination of Algebra for All through Historic Context and Statewide Assessment Data. Journal of Transformative Leadership & Policy Studies, 2013, 3, 3-20.	0.1	0
355	Designing an Interactive Tutoring Tool for Improving Mathematical Skills. Communications in Computer and Information Science, 2014, , 106-111.	0.4	1

ARTICLE IF CITATIONS Do 3rd Grade Math Scores Determine Studentss Futures? A Statewide Analysis of College Readiness 356 0.4 0 and the Income Achievement Gap. SSRN Electronic Journal, 0, , . Why is It so Hard to Solve Long Divisions for 10-Year-Old Children?. International Journal of School 0.2 and Cognitive Psychology, 2015, 2, . An investigation of the effects of the mathematics sources of self-efficacy on talented students' 358 0.6 4 mathematics anxiety. Pegem Egitim Ve Ogretim Dergisi, 2015, 5, 347-360. Pre-College Deaf Students' Understanding of Fractional Concepts: What We Know and What We Do 0.5 Not Know. Journal of Science Education for Students With Disabilities, 2015, 18, 44-65. Tablet-Based Technology to Support Students' Understanding of Division. Human-computer 360 0.4 2 Interaction Series, 2016, , 71-89. Relaciones entre el conocimiento conceptual y el procedimental en el aprendizaje de las fracciones. Cuadernos De InvestigaciÃ³n Educativa, 2016, 7, 13. 0.1 Accelerating the Mathematical Development of Young Navajo Children., 2017, , 145-165. 363 0 Arithmetical and Numerical Learning Difficulties in Stroke Cases: A Case Study of Arabic Speakers. International Journal of Educational Sciences, 2017, 21, 13-27. 366 Mathematical Cognition: In Secondary Years [13â€"18] Part 1., 2018, , 1-16. 0 Commentary on Fractions. Research in Mathematics Education, 2019, , 237-248. 0.1 Movable, Resizable and Dynamic Number Lines for Fraction Learning in a Mixed Reality Environment. 368 3 0.5 Advances in Intelligent Systems and Computing, 2019, , 118-129. An Analysis of Solution Methods by Sixth Grade Students About â€~Reverse Fraction Problems'. Journal 0.2 of Educational Research in Mathematics, 2019, 29, 71-91. Design, Implementation and Students' Emotional Assessment of a Software for the Learning of Rational Numbers through Music Metaphors in Chilean Primary Education: An Exploratory Study on 370 0.1 0 Audio Fractions. International Journal of Innovation in Science and Mathematics Education, 2019, 27, . FOUNDATION PHASE STUDENTS' METACOGNITIVE ABILITIES IN MATHEMATICS CLASSES: REFLECTIVE CLASSROOM DISCOURSE USING AN OPEN APPROACH. Problems of Education in the 21st Century, 2019, 77, 371 0.3 528-544. Frações nos livros brasileiros do Programa Nacional do Livro Didático (PNLD). Revemop, 2019, 1, 372 0.0 2 476-503. The Effectiveness of a Comprehensive Intervention on Word Problem Solving for Elementary School Students with ADHD: PAVM+ Schema Based Word Problem Solving. Journal for the Education of Gifted 0.1 Young Scientists, 0, , 1055-1073. Misconception Analysis of Junior High School Student in Interpreting Fraction. Journal for the 374 0.1 4 Education of Gifted Young Scientists, 2019, 7, 1159-1173. Mathematical Cognition: In Secondary Years [13â€"18] Part 1., 2020, , 505-520.

#	Article	IF	CITATIONS
376	Influencia del conocimiento profundo del profesor sobre fracciones en el aprendizaje de alumnos de 40. grado. Revista Electronica De Investigacion Educativa, 2020, 22, 1.	0.4	1
377	Learning Obstacle the Addition and Subtraction of Fraction in Grade 5 Elementary Schools. Mudarrisa: Jurnal Kajian Pendidikan Islam, 2020, 12, 50-67.	0.1	2
378	An Analysis of Fifth and Sixth Graders' Algebraic Thinking about Reverse Fraction Problems. Journal of Educational Research in Mathematics, 2020, 30, 213-227.	0.2	0
379	The Roles of Initial Mathematics, Reading, and Cognitive Skills in Subsequent Mathematics Performance: A Meta-Analytic Structural Equation Modeling Approach. Review of Educational Research, 2022, 92, 288-325.	4.3	13
380	Knowledge of mathematical symbols goes beyond numbers. Journal of Numerical Cognition, 2020, 6, 322-354.	0.6	4
381	Design and Evaluation of an Adventure Videogame Based in the History of Mathematics. Lecture Notes in Computer Science, 2020, , 232-241.	1.0	0
382	Effect of Audio-Visual Aided Instruction on Junior Secondary School Students' Interest and Achievement in Fraction in Nasarawa State, Nigeria. International Journal of Scientific Advances, 2020, 1, .	0.0	0
383	The How, What, Why, and When of Teaching Mathematics in the K-12 Inclusive Classroom. Advances in Early Childhood and K-12 Education, 2019, , 1-20.	0.2	1
384	Predicting adaptive expertise with rational number arithmetic. British Journal of Educational Psychology, 2022, 92, 688-706.	1.6	4
385	Domain general and specific contributions to algebra: A sequenced longitudinal path model. Contemporary Educational Psychology, 2022, 68, 102026.	1.6	2
386	5.Sınıf Öğrencilerinin Kesirlerle Toplama ve Çıkarma İşlemine Yönelik Kurdukları Problemlerin Ana EÄŸitim Dergisi, 0, , 19-37.	llizi. Ege 0.9	1
387	Multiplicative Thinking: â€~Pseudo-procedures' are Enemies of Conceptual Understanding. International Electronic Journal of Mathematics Education, 2020, 15, em0611.	0.3	2
388	Fraction magnitude: Mapping between symbolic and spatial representations of proportion. Journal of Numerical Cognition, 2020, 6, 204-230.	0.6	5
389	Math anxiety differentially impairs symbolic, but not nonsymbolic, fraction skills across development. Annals of the New York Academy of Sciences, 2022, 1509, 113-129.	1.8	6
390	Revisiting and refining relations between nonsymbolic ratio processing and symbolic math achievement. Journal of Numerical Cognition, 2021, 7, 328-350.	0.6	3
391	It matters how you start: Early numeracy mastery predicts high school math <scp>courseâ€ŧaking</scp> and college attendance. Infant and Child Development, 2022, 31, e2281.	0.9	16
392	Perceptions of ease and difficulty, but not growth mindset, relate to specific math attitudes. British Journal of Educational Psychology, 2021, , e12472.	1.6	4
393	Improving rational number knowledge using the NanoRoboMath digital game. Educational Studies in Mathematics, 2022, 110, 101-123.	1.8	9

#	Article	IF	CITATIONS
394	Science and Engineering Students' Difficulties With Fractions At Entry-Level To University. International Electronic Journal of Mathematics Education, 2017, 12, 281-310.	0.3	4
395	Development of a New Learning Progression Verification Method based on the Hierarchical Diagnostic Classification Model: Taking Grade 5 Students' Fractional Operations as an Example. Educational Measurement: Issues and Practice, 2022, 41, 69-82.	0.8	2
396	People's preferences for different types of rational numbers in linguistic contexts. Quarterly Journal of Experimental Psychology, 2022, , 174702182210763.	0.6	0
397	The Effect of a Tier 2 Multicomponent Fraction Intervention for Fifth Graders Struggling With Fractions. Remedial and Special Education, 2023, 44, 28-42.	1.7	2
398	Divide and conquer: Relations among arithmetic operations and emerging knowledge of fraction notation for Chinese students in Grade 4. Journal of Experimental Child Psychology, 2022, 217, 105371.	0.7	2
399	No transfer effect of a fraction number line game on fraction understanding or fraction arithmetic: A randomized controlled trial. Journal of Experimental Child Psychology, 2022, 217, 105353.	0.7	1
400	The changing landscape of mobile learning pedagogy: A systematic literature review. Interactive Learning Environments, 2023, 31, 6462-6479.	4.4	9
401	Deconstructing Mathematics Computation Fluency: Does Handwriting Matter?. Contemporary School Psychology, 0, , 1.	0.9	0
402	Development of Numerical Knowledge. , 2022, , 361-382.		0
403	Biased problem distributions in assignments parallel those in textbooks: Evidence from fraction and decimal arithmetic. Journal of Numerical Cognition, 2022, 8, 73-88.	0.6	3
404	Guiding students' attention towards multiplicative relations around them: A classroom intervention. Journal of Numerical Cognition, 2022, 8, 36-52.	0.6	0
405	Children Receiving a Nutrition and High-Quality Early Childhood Education Intervention Are Associated with Greater Math and Fluid Intelligence Scores: The Guatemala City Municipal Nurseries. Nutrients, 2022, 14, 1366.	1.7	2
406	Diagrams support spontaneous transfer across whole number and fraction concepts. Contemporary Educational Psychology, 2022, 69, 102066.	1.6	6
407	Combining exploratory learning with structured practice educational technologies to foster both conceptual and procedural fractions knowledge. Educational Technology Research and Development, 2022, 70, 691-712.	2.0	5
408	Mathematical skills of 11-year-old children born very preterm and full-term. Journal of Experimental Child Psychology, 2022, 219, 105390.	0.7	0
409	An Investigation of the Use of Self-Regulated Strategy Development to Teach Long Division to Students with or At-Risk for Emotional Disturbance. Education and Treatment of Children, 2021, 44, 169-183.	0.6	2
410	Investigating Preservice Teachers' Science and Mathematics Teaching Efficacy, Challenges, and Support. Teacher Educator, 0, , 1-21.	0.8	1
411	Application of Rasch Measurement Model in Developing Calibrated Item Pool for the Topic of Rational Numbers. Eurasia Journal of Mathematics, Science and Technology Education, 2021, 17, em2056.	0.7	0

#	Article	IF	CITATIONS
415	Supporting Young Children's Numeracy Development With Guided Play. Advances in Early Childhood and K-12 Education, 2022, , 374-415.	0.2	0
417	SRSD Fractions: Using Self-Regulated Strategy Development to Support Students' Conceptual and Procedural Fraction Knowledge. Education and Treatment of Children, 2020, 43, 85-94.	0.6	3
418	The Role of Prior Knowledge and Intelligence in Gaining from a Training on Proportional Reasoning. Journal of Intelligence, 2022, 10, 31.	1.3	1
419	Primary teachers' preferred fraction models and manipulatives for solving fraction tasks and for teaching. Journal of Mathematics Teacher Education, 0, , .	1.0	2
420	Examining Virtual Manipulatives for Teaching Computations With Fractions to Children With Mathematics Difficulty. Journal of Learning Disabilities, 2023, 56, 295-309.	1.5	1
421	Rational number conceptualization predicts mathematics achievement: Quantity matters. Cognitive Development, 2022, 63, 101195.	0.7	6
423	Why do we have three rational number notations? The importance of percentages. Advances in Child Development and Behavior, 2022, , 1-33.	0.7	2
424	Elements of instruction that motivate students with learning disabilities to learn fractions. Mathematical Thinking and Learning, 0, , 1-20.	0.7	0
425	Sex differences in developmental pathways to mathematical competence Journal of Educational Psychology, 2023, 115, 212-228.	2.1	8
427	Student teachers' common content knowledge for solving routine fraction tasks. Lumat, 2022, 10, .	0.2	0
428	Parental homework-help profiles throughout grades 6 – 9: Relations to motivation and mathematics skills. Frontiers in Education, 0, 7, .	1.2	3
429	The link between transitive reasoning and mathematics achievement in preadolescence: the role of relational processing and deductive reasoning. Thinking and Reasoning, 2023, 29, 531-558.	2.1	1
431	Exploration of Student Learning Obstacles in Solving Fraction Problems in Elementary School. International Journal of Educational Methodology, 2022, 8, 505-515.	0.4	3
432	Examining US elementary students' strategies for comparing fractions after the adoption of the common core state standards for mathematics. Journal of Mathematical Behavior, 2022, 67, 100985.	0.5	1
433	The relation of school achievement with self-esteem and bullying in Chilean children. Current Psychology, 0, , .	1.7	2
434	Relations between the Home Learning Environment and the Literacy and Mathematics Skills of Eight-Year-Old Canadian Children. Education Sciences, 2022, 12, 513.	1.4	2
435	Mathematical tools for making sense of a global pandemic. International Journal of Science Education, Part B: Communication and Public Engagement, 0, , 1-10.	0.9	1
436	Using the Data-Based Individualization Framework in Math Intervention. Teaching Exceptional Children, 0, , 004005992211111.	0.8	3

#	Article	IF	CITATIONS
437	Differences in High- and Low-Performing Students' Fraction Learning in the Fourth Grade. Journal of Experimental Education, 2023, 91, 636-654.	1.6	1
438	Leveraging Math Cognition to Combat Health Innumeracy. Perspectives on Psychological Science, 2023, 18, 152-177.	5.2	5
439	A Multilevel Meta-Analysis of Whole Number Computation Interventions for Students With Learning Disabilities. Remedial and Special Education, 2023, 44, 332-347.	1.7	3
440	Does the emotional design of scaffolds enhance learning and motivational outcomes in gameâ€based learning?. Journal of Computer Assisted Learning, 2023, 39, 77-93.	3.3	4
441	Impact of a gameâ€based intervention on fraction learning for fifthâ€grade students: A preâ€registered randomized controlled study. Journal of Computer Assisted Learning, 2023, 39, 49-62.	3.3	2
442	Taking a Closer Look: The Relationship between Pre-School Domain General Cognition and School Mathematics Achievement When Controlling for Intelligence. Journal of Intelligence, 2022, 10, 70.	1.3	1
443	Comparison of the learning outcomes in online and in-class environments in the divisibility lessons. International Electronic Journal of Mathematics Education, 2022, 17, em0714.	0.3	1
444	Predicting fraction and algebra achievements online: A largeâ€scale longitudinal study using data from an online learning environment. Journal of Computer Assisted Learning, 2022, 38, 1797-1806.	3.3	4
445	Learners' mathematics identity and achievement: Where does the teacher come in?. International Journal of Mathematical Education in Science and Technology, 0, , 1-26.	0.8	1
446	Neurocognitive Foundations of Fraction Processing. , 2022, , 289-315.		0
447	Let's be rational: worked examples supplemented textbooks improve conceptual and fraction knowledge. Educational Psychology, 2023, 43, 1-21.	1.2	3
448	Relational Peer Victimization as a Predictor of Academic Engagement. Journal of Child and Family Studies, 2023, 32, 1882-1894.	0.7	2
449	Comparing fraction magnitudes: Adults' verbal reports reveal strategy flexibility and adaptivity, but also bias. Journal of Numerical Cognition, 2022, 8, 398-413.	0.6	3
450	Supporting the Fraction Magnitude Understanding of Students With Significant Behavior Problems. Journal of Emotional and Behavioral Disorders, 2024, 32, 56-67.	1.1	0
451	Rational numbers and proportional reasoning in Chinese primary schools: Patterns, latent classes, and reasoning processes. , 2022, 1, 408-436.		0
452	The relationship between primary school children's inhibition and the processing of rational numbers. European Journal of Psychology of Education, 0, , .	1.3	0
453	اÙ"ØªØØ ⁻ يات ÙÙŠ تØ ⁻ ريس الرياضيات Ù^طرÙ, التغلØ'' عليها: Ù^Ø	⊣Ù¢¢ø §Øª	ùtø,ø±ù(

454	The relevance of basic numerical skills for fraction processing: Evidence from cross-sectional data. PLoS ONE, 2023, 18, e0281241.	1.1	0	
-----	---	-----	---	--

ARTICLE IF CITATIONS Different aspects of fraction understanding are associated selectively with performance on a 455 0.9 2 fraction learning game. Progress in Brain Research, 2023, , 63-91. Teaching Fraction-to-Decimal Translation Using the Number Line. Intervention in School and Clinic, 0, , 105345122311568. 0.8 Verbal labels influence children's processing of decimal magnitudes. Journal of Applied 457 0.8 0 Developmental Psychology, 2023, 86, 101537. Enhancing students' fraction magnitude knowledge:ÂA study with students in early elementary 0.5 education. Journal of Mathematical Behavior, 2023, 70, 101042. Pizzas or no pizzas: An advantage of word problems in fraction arithmetic?. Learning and Instruction, 459 1.9 1 2023, 86, 101775. Maternal cognitions and cognitive, behavior and emotional development in middle childhood. Current Research in Behavioral Sciences, 2023, 4, 100098. 460 2.4 Association between motor and math skills in preschool children with typical development: 461 1.1 4 Systematic review. Frontiers in Psychology, 0, 14, . Development is in the details: Eventâ€related theta oscillations reveal children and adults verify 1.2 multiplication facts differently. Psychophysiology, 2023, 60, . Mothers' and fathers' engagement in math activities with their toddler sons and daughters: The 463 1.1 1 moderating role of parental math beliefs. Frontiers in Psychology, 0, 14, . The association between working memory and mathematical problem solving: A three-level 464 1.1 meta-analysis. Frontiers in Psychology, 0, 14, . Leading for Justice, Leading for Learning: Conceptualizing Urban School Leadership for Antiracist 465 0 1.2 Mathematics Teaching and Learning. Urban Education, 0, , 004208592311629. Reasoning about fraction and decimal magnitudes, reasoning proportionally, and mathematics 466 0.6 achievement in Australia and the United States. Journal of Numerical Cognition, 2023, 9, 222-239. What is the unknown? The ability to identify the semantic role of the unknown from word problems longitudinally predicts mathematical problem solving performance. Contemporary Educational 467 1.6 0 Psychology, 2023, 73, 102183. Why is monitoring accuracy so poor in number line estimation? The importance of valid cues and systematic variabilityÂfor U.S. college students. Metacognition and Learning, 2024, 19, 21-52. 1.3 Developing Fraction Sense in Students with Mathematics Learning Difficulties: From Research to 472 0 Practice. , 2023, , 259-280. Obstacles in the Development of the Understanding of Fractions., 2023, , 209-225. Can Argumentative Writing Improve Math Knowledge for Elementary Students with a Mathematics 495 Learning Disability?: A Single-Case Classroom Intervention Investigation. Literacy Studies, 2023, , 0.2 1 191-209. Reflections on the Power of Genetic Epistemology by the Modern Cognitive Psychologist. Research in 0.1 Mathematics Education, 2024, , 511-540.

#	Article	IF	CITATIONS
520	Student Effort and Progress Learning Analytics Data Inform Teachers' SEL Discussions in Math Class. , 2024, , .		0