Serial translocation by means of circular intermediates cattle

Nature

482, 81-84

DOI: 10.1038/nature10757

Citation Report

#	Article	IF	CITATIONS
1	Ancestral haplotype-based association mapping with generalized linear mixed models accounting for stratification. Bioinformatics, 2012, 28, 2467-2473.	4.1	46
2	Mechanisms of Gene Duplication and Translocation and Progress towards Understanding Their Relative Contributions to Animal Genome Evolution. International Journal of Evolutionary Biology, 2012, 2012, 1-10.	1.0	29
3	Copy number variation in the cattle genome. Functional and Integrative Genomics, 2012, 12, 609-624.	3.5	60
5	Detection of copy number variants in the horse genome and examination of their association with recurrent laryngeal neuropathy. Animal Genetics, 2013, 44, 206-208.	1.7	34
6	Molecular consequences of animal breeding. Current Opinion in Genetics and Development, 2013, 23, 295-301.	3.3	46
7	Models and Algorithms for Genome Evolution. Computational Biology, 2013, , .	0.2	7
8	Sorting genomes with rearrangements and segmental duplications through trajectory graphs. BMC Bioinformatics, 2013, 14, S9.	2.6	13
9	Genetics of Pigmentation in Dogs and Cats. Annual Review of Animal Biosciences, 2013, 1, 125-156.	7.4	65
10	At the cutting-edge of grape and wine biotechnology. Trends in Genetics, 2013, 29, 263-271.	6.7	40
11	Molecular genetics of coat colour variations in White Galloway and White Park cattle. Animal Genetics, 2013, 44, 450-453.	1.7	45
12	Comparative genomics: a revolutionary tool for wine yeast strain development. Current Opinion in Biotechnology, 2013, 24, 192-199.	6.6	35
13	Use of Ancestral Haplotypes in Genome-Wide Association Studies. Methods in Molecular Biology, 2013, 1019, 347-380.	0.9	2
14	Genome-Wide Association Studies and Genomic Prediction. Methods in Molecular Biology, 2013, , .	0.9	53
15	Ectopic KIT Copy Number Variation Underlies Impaired Migration of Primordial Germ Cells Associated with Gonadal Hypoplasia in Cattle (Bos taurus). PLoS ONE, 2013, 8, e75659.	2.5	29
16	A Genome Scan Conducted in a Multigenerational Pedigree with Convergent Strabismus Supports a Complex Genetic Determinism. PLoS ONE, 2013, 8, e83574.	2.5	2
18	Pseudoautosomal Region 1 Length Polymorphism in the Human Population. PLoS Genetics, 2014, 10, e1004578.	3.5	24
19	Mutation discovery for <scp>M</scp> endelian traits in nonâ€laboratory animals: a review of achievements up to 2012. Animal Genetics, 2014, 45, 157-170.	1.7	33
20	Genes on B chromosomes of vertebrates. Molecular Cytogenetics, 2014, 7, 99.	0.9	40

#	Article	IF	CITATIONS
21	Efficiency of haplotype-based methods to fine-map QTLs and embryonic lethal variants affecting fertility: Illustration with a deletion segregating in Nordic Red cattle. Livestock Science, 2014, 166, 167-175.	1.6	1
22	Identification of a major locus interacting with MC1R and modifying black coat color in an F2 Nellore-Angus population. Genetics Selection Evolution, 2014, 46, 4.	3.0	29
23	The genetics of brown coat color and white spotting in domestic yaks (<i>Bos grunniens</i>). Animal Genetics, 2014, 45, 652-659.	1.7	34
24	The challenges and importance of structural variation detection in livestock. Frontiers in Genetics, 2014, 5, 37.	2.3	104
25	Cytogenetics and chromosome maps , 0, , 103-129.		2
26	Genome Wide Distributions and Functional Characterization of Copy Number Variations between Chinese and Western Pigs. PLoS ONE, 2015, 10, e0131522.	2.5	47
27	Genome-Wide Study of Structural Variants in Bovine Holstein, Montbéliarde and Normande Dairy Breeds. PLoS ONE, 2015, 10, e0135931.	2.5	52
28	Adaptive potential of genomic structural variation in human and mammalian evolution. Briefings in Functional Genomics, 2015, 14, 358-368.	2.7	20
29	RAPTR-SV: a hybrid method for the detection of structural variants. Bioinformatics, 2015, 31, 2084-2090.	4.1	18
30	The Effect of a Coat Colour-Associated Genes Polymorphism on Animal Health – A Review. Annals of Animal Science, 2015, 15, 3-17.	1.6	11
31	Genomic Insights into the <i>Saccharomyces sensu stricto</i> Complex. Genetics, 2015, 199, 281-291.	2.9	115
32	Genomic data as the ââ,¬Å"hitchhiker's guideââ,¬Â•to cattle adaptation: tracking the milestones of past selection in the bovine genome. Frontiers in Genetics, 2015, 6, 36.	2.3	23
33	A Genomic Duplication is Associated with Ectopic Eomesodermin Expression in the Embryonic Chicken Comb and Two Duplex-comb Phenotypes. PLoS Genetics, 2015, 11, e1004947.	3.5	51
34	A decade of structural variants: description, history and methods to detect structural variation. Briefings in Functional Genomics, 2015, 14, 305-314.	2.7	101
35	Diversity and population-genetic properties of copy number variations and multicopy genes in cattle. DNA Research, 2016, 23, 253-262.	3.4	59
36	Contrasting origin of B chromosomes in two cervids (Siberian roe deer and grey brocket deer) unravelled by chromosome-specific DNA sequencing. BMC Genomics, 2016, 17, 618.	2.8	47
37	SNP- and haplotype-based genome-wide association studies for growth, carcass, and meat quality traits in a Duroc multigenerational population. BMC Genetics, 2016, 17, 60.	2.7	44
38	Genomic amplification of the caprine EDNRA locus might lead to a dose dependent loss of pigmentation. Scientific Reports, 2016, 6, 28438.	3.3	41

#	ARTICLE	IF	CITATIONS
39	Epistatic Interaction of the Melanocortin 1 Receptor and Agouti Signaling Protein Genes Modulates Wool Color in the Brazilian Creole Sheep. Journal of Heredity, 2016, 107, 544-552.	2.4	12
40	Genome-wide identification of copy number variation using high-density single-nucleotide polymorphism array in Japanese Black cattle. BMC Genetics, 2016, 17, 26.	2.7	39
41	The origin of the Hox/ParaHox genes, the Ghost Locus hypothesis and the complexity of the first animal. Briefings in Functional Genomics, 2016, 15, 333-341.	2.7	22
42	Reverse genetic screen for lossâ€ofâ€function mutations uncovers a frameshifting deletion in the <i>melanophilin</i> gene accountable for a distinctive coat color in Belgian Blue cattle. Animal Genetics, 2016, 47, 110-113.	1.7	21
43	Chromosome Aberrations and Fertility Disorders in Domestic Animals. Annual Review of Animal Biosciences, 2016, 4, 15-43.	7.4	65
44	Whole-genome analysis of introgressive hybridization and characterization of the bovine legacy of Mongolian yaks. Nature Genetics, 2017, 49, 470-475.	21.4	90
45	Climate Adaptation of Tropical Cattle. Annual Review of Animal Biosciences, 2017, 5, 133-150.	7.4	22
46	Ectopic position of duplicatedKITgene in African Nguni cattle, associated with color sidedness, confirms its shared ancestry with theBos tauruslineage. Animal Genetics, 2017, 48, 122-123.	1.7	3
47	Genomic Rearrangements in <i>Arabidopsis</i> Considered as Quantitative Traits. Genetics, 2017, 205, 1425-1441.	2.9	21
48	Transcriptome analysis of comb and testis from Rose-comb Silky chicken (R1/R1) and Beijing Fatty wild type chicken (r/r). Poultry Science, 2017, 96, 1866-1873.	3.4	13
49	Transcript variations, phylogenetic tree and chromosomal localization of porcine aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT) genes. Journal of Genetics, 2017, 96, 75-85.	0.7	1
50	BREEDING AND GENETICS SYMPOSIUM:Breeding heat tolerant dairy cattle: the case for introgression of the "slick―prolactin receptor variant into Bos taurus dairy breeds1. Journal of Animal Science, 2017, 95, 1788-1800.	0.5	21
51	AÂFrameshiftÂMutationÂinÂKITÂisÂAssociatedÂwith WhiteÂSpottingÂinÂtheÂArabianÂCamel. Genes, 2017, 8,	1024	33
52	Distribution and Functionality of Copy Number Variation across European Cattle Populations. Frontiers in Genetics, 2017, 8, 108.	2.3	65
53	Circular DNA elements of chromosomal origin are common in healthy human somatic tissue. Nature Communications, 2018, 9, 1069.	12.8	232
54	Applications of genomic copy number variations on livestock: A review. African Journal of Biotechnology, 2018, 17, 1313-1323.	0.6	4
55	CRISPR-C: circularization of genes and chromosome by CRISPR in human cells. Nucleic Acids Research, 2018, 46, e131.	14.5	39
56	Genomic predictions combining SNP markers and copy number variations in Nellore cattle. BMC Genomics, 2018, 19, 441.	2.8	18

#	Article	IF	CITATIONS
57	Landscape of copy number variations in Bos taurus: individual – and inter-breed variability. BMC Genomics, 2018, 19, 410.	2.8	25
58	A complex structural variant at the <i><scp>KIT</scp></i> locus in cattle with the Pinzgauer spotting pattern. Animal Genetics, 2019, 50, 423-429.	1.7	12
59	A combined genome-wide approach identifies a new potential candidate marker associated with the coat color sidedness in cattle. Livestock Science, 2019, 225, 91-95.	1.6	7
60	Comparative transcriptome analysis reveals the genetic basis of coat color variation in Pashmina goat. Scientific Reports, 2019, 9, 6361.	3.3	22
61	Copy Number Variation in Domestication. Trends in Plant Science, 2019, 24, 352-365.	8.8	131
62	Selection signatures in goats reveal copy number variants underlying breed-defining coat color phenotypes. PLoS Genetics, 2019, 15, e1008536.	3.5	50
63	Genome-wide association analysis reveals QTL and candidate mutations involved in white spotting in cattle. Genetics Selection Evolution, 2019, 51, 62.	3.0	23
64	Harnessing genomic information for livestock improvement. Nature Reviews Genetics, 2019, 20, 135-156.	16.3	262
65	A nonâ€coding regulatory variant in the 5′â€region of the <i>MITF</i> gene is associated with whiteâ€spotted coat in Brown Swiss cattle. Animal Genetics, 2019, 50, 27-32.	1.7	17
66	Whole-genome analysis of structural variations between Xiang pigs with larger litter sizes and those with smaller litter sizes. Genomics, 2019, 111, 310-319.	2.9	11
67	MC1R and KIT Haplotypes Associate With Pigmentation Phenotypes of North American Yak (Bos) Tj ETQq0 0 0 rgE	3 <u>7</u> /Overloo	ck 10 Tf 50
68	Assessing genomic diversity and signatures of selection in Original Braunvieh cattle using whole-genome sequencing data. BMC Genomics, 2020, 21, 27.	2.8	47
69	Near-Random Distribution of Chromosome-Derived Circular DNA in the Condensed Genome of Pigeons and the Larger, More Repeat-Rich Human Genome. Genome Biology and Evolution, 2020, 12, 3762-3777.	2.5	52
70	Circular DNA intermediates in the generation of large human segmental duplications. BMC Genomics, 2020, 21, 593.	2.8	3
71	The Future of Livestock Management: A Review of Real-Time Portable Sequencing Applied to Livestock. Genes, 2020, 11, 1478.	2.4	9
72	High confidence copy number variants identified in Holstein dairy cattle from whole genome sequence and genotype array data. Scientific Reports, 2020, 10, 8044.	3.3	16
73	Mutations in Domestic Animals Disrupting or Creating Pigmentation Patterns. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	3
74	Genomic Structural Diversity in Local Goats: Analysis of Copy-Number Variations. Animals, 2020, 10, 1040.	2.3	7

#	ARTICLE	IF	Citations
75	AÂspontaneous complex structural variant in rcan-1 increases exploratory behavior and laboratory fitness of Caenorhabditis elegans. PLoS Genetics, 2020, 16, e1008606.	3.5	9
76	A de novo germline mutation of KIT in a whiteâ€spotted Brown Swiss cow. Animal Genetics, 2020, 51, 449-452.	1.7	2
77	Duplication with structural modification through extrachromosomal circular and lariat DNA in the human genome. Scientific Reports, 2020, 10, 7150.	3.3	3
78	Colourâ€sidedness in Gloucester cattle is associated with a complex structural variant impacting regulatory elements downstream of <i>KIT</i> . Animal Genetics, 2020, 51, 461-465.	1.7	4
79	The adaptive potential of circular DNA accumulation in ageing cells. Current Genetics, 2020, 66, 889-894.	1.7	26
80	Extrachromosomal Circular DNAs: Origin, formation and emerging function in Cancer. International Journal of Biological Sciences, 2021, 17, 1010-1025.	6.4	27
81	Chromosomal Mapping of Tandem Repeats Revealed Massive Chromosomal Rearrangements and Insights Into Senna tora Dysploidy. Frontiers in Plant Science, 2021, 12, 629898.	3.6	26
82	Analysis of Polycerate Mutants Reveals the Evolutionary Co-option of <i>HOXD1</i> for Horn Patterning in Bovidae. Molecular Biology and Evolution, 2021, 38, 2260-2272.	8.9	15
83	Genome-wide association study reveals genes crucial for coat color production in Vrindavani cattle. Livestock Science, 2021, 247, 104476.	1.6	12
84	A 12 kb multi-allelic copy number variation encompassing a GC gene enhancer is associated with mastitis resistance in dairy cattle. PLoS Genetics, 2021, 17, e1009331.	3.5	25
85	Conservation of rare wildâ€living cattle Bos taurus (L.): coat colour gene illuminates breed history, and associated reproductive anomalies have not reduced herd fertility. Journal of Zoology, 0, , .	1.7	2
86	Extrachromosomal Circular DNA: Category, Biogenesis, Recognition, and Functions. Frontiers in Veterinary Science, 2021, 8, 693641.	2.2	14
87	Introgression contributes to distribution of structural variations in cattle. Genomics, 2021, 113, 3092-3102.	2.9	7
88	Genome-wide CNV analysis reveals variants associated with high-altitude adaptation and meat traits in Qaidam cattle. Electronic Journal of Biotechnology, 2021, 54, 8-16.	2.2	6
89	Rearrangements in Phylogenetic Inference: Compare, Model, or Encode?. Computational Biology, 2013, , 147-171.	0.2	10
90	Functional and population genetic features of copy number variations in two dairy cattle populations. BMC Genomics, 2020, 21, 89.	2.8	19
91	The KIT Gene Is Associated with the English Spotting Coat Color Locus and Congenital Megacolon in Checkered Giant Rabbits (Oryctolagus cuniculus). PLoS ONE, 2014, 9, e93750.	2.5	41
92	Recovery of Native Genetic Background in Admixed Populations Using Haplotypes, Phenotypes, and Pedigree Information – Using Cika Cattle as a Case Breed. PLoS ONE, 2015, 10, e0123253.	2.5	19

#	Article	IF	CITATIONS
93	A structural variant in the $5\hat{a} \in \mathbb{T}$ -flanking region of the TWIST2 gene affects melanocyte development in belted cattle. PLoS ONE, 2017, 12, e0180170.	2.5	12
95	009 Identification of regions of the bovine genome associated with gray coat color in a Nellore_Angus cross population. Journal of Animal Science, 2016, 94, 5-5.	0.5	0
100	Detection of Autosomal Hemizygous Regions in the Fleckvieh Population Based on SNP-chip Data and Parent Offspring Pairs. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2019, 67, 1447-1452.	0.4	0
103	Circular DNA in the human germline and its association with recombination. Molecular Cell, 2022, 82, 209-217.e7.	9.7	37
104	Removal of undesirable MC1R gene alleles from †Berrenda en Negro', an endangered Spanish cattle breed, to enhance breed conservation programs. Livestock Science, 2022, 257, 104844.	1.6	1
105	Melanocortin-1 receptor mutations and pigmentation: Insights from large animals. Progress in Molecular Biology and Translational Science, 2022, , .	1.7	7
106	Population Genomic Sequencing Delineates Global Landscape of Copy Number Variations that Drive Domestication and Breed Formation of in Chicken. Frontiers in Genetics, 2022, 13, 830393.	2.3	8
107	A unifying model for extrachromosomal circular DNA load in eukaryotic cells. Seminars in Cell and Developmental Biology, 2022, 128, 40-50.	5.0	15
108	Quantitative assessment reveals the dominance of duplicated sequences in germline-derived extrachromosomal circular DNA. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
109	SVA Retrotransposons and a Low Copy Repeat in Humans and Great Apes: A Mobile Connection. Molecular Biology and Evolution, 2022, 39, .	8.9	2
112	Genetics of Base Coat Colour Variations and Coat Colour-Patterns of the South African Nguni Cattle Investigated Using High-Density SNP Genotypes. Frontiers in Genetics, 0, 13, .	2.3	2
113	Extrachromosomal circular DNA: A neglected nucleic acid molecule in plants. Current Opinion in Plant Biology, 2022, 69, 102263.	7.1	19
114	Assembly of a pangenome for global cattle reveals missing sequences and novel structural variations, providing new insights into their diversity and evolutionary history. Genome Research, 2022, 32, 1585-1601.	5.5	16
115	Physiology and genetics of heat stress in cattle. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	1.0	4
116	Structural variants and tandem repeats in the founder individuals of four F2 pig crosses and implications to F2 GWAS results. BMC Genomics, 2022, 23, .	2.8	2
117	Copy Number Variants in Two Northernmost Cattle Breeds Are Related to Their Adaptive Phenotypes. Genes, 2022, 13, 1595.	2.4	2
118	Long read genome assemblies complemented by single cell RNA-sequencing reveal genetic and cellular mechanisms underlying the adaptive evolution of yak. Nature Communications, 2022, 13, .	12.8	11
119	Extrachromosomal circular DNA: biogenesis, structure, functions and diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	15

#	ARTICLE	IF	CITATIONS
120	Did circular DNA shape the evolution of mammalian genomes?. Trends in Biochemical Sciences, 2023, 48, 317-320.	7. 5	1
121	The extrachromosomal circular DNAs of the rice blast pathogen Magnaporthe oryzae contain a wide variety of LTR retrotransposons, genes, and effectors. BMC Biology, 2022, 20, .	3.8	9
122	Analysis of the genetic loci of pigment pattern evolution in vertebrates. Biological Reviews, 2023, 98, 1250-1277.	10.4	6
123	Pangenome obtained by long-read sequencing of 11 genomes reveal hidden functional structural variants in pigs. IScience, 2023, 26, 106119.	4.1	8
124	Genomic analysis reveals a <i>KIT</i> â€related chromosomal translocation associated with the white coat phenotype inÂyak. Journal of Animal Breeding and Genetics, 2023, 140, 330-342.	2.0	1
125	Evolutionary honing in and mutational replacement: how long-term directed mutational responses to specific environmental pressures are possible. Theory in Biosciences, 2023, 142, 87-105.	1.4	1
126	White coat color of a Black Angus calf attributed to an occurrence of the <code><scp>delR217</scp></code> variant of <code><i>MITF</i></code> . Animal Genetics, 0 , , .	1.7	0
127	The influence of transposable elements on animal colouration. Trends in Genetics, 2023, 39, 624-638.	6.7	2
128	Review: Genetic mutations affecting bull fertility. Animal, 2023, 17, 100742.	3.3	3
129	Extrachromosomal circular DNA and structural variants highlight genome instability in Arabidopsis epigenetic mutants. Nature Communications, 2023, 14, .	12.8	10
130	Evolutionary origin of genomicÂstructural variations in domestic yaks. Nature Communications, 2023, 14, .	12.8	3
131	The big challenge for livestock genomics is to make sequence data pay. , 0, 3, .		2
132	Genome-Wide Copy Number Variation and Structural Variation: A Novel Tool for Improved Livestock Genomic Selection. Livestock Diseases and Management, 2023, , 75-88.	0.5	0
134	Advancements in copy number variation screening in herbivorous livestock genomes and their association with phenotypic traits. Frontiers in Veterinary Science, $0,10,10$	2.2	0
135	Genetic diversity and recent ancestry based on whole-genome sequencing of endangered Swedish cattle breeds. BMC Genomics, 2024, 25, .	2.8	0
137	Uncovering the architecture of selection in two $\langle i \rangle$ Bos taurus $\langle i \rangle$ cattle breeds. Evolutionary Applications, 2024, 17, .	3.1	0