Exploring one-state downhill protein folding in single n

Proceedings of the National Academy of Sciences of the Unite 109, 179-184

DOI: 10.1073/pnas.1111164109

Citation Report

#	Article	IF	CITATIONS
1	From A to B: A ride in the free energy surfaces of protein G domains suggests how new folds arise. Journal of Chemical Physics, 2012, 136, 185101.	1.2	14
2	Configuration-Dependent Diffusion Dynamics of Downhill and Two-State Protein Folding. Journal of Physical Chemistry B, 2012, 116, 5152-5159.	1.2	23
3	Equilibrium Unfolding of the PDZ Domain of β2-Syntrophin. Biophysical Journal, 2012, 102, 2835-2844.	0.2	6
4	Downhill Protein Folding Modules as Scaffolds for Broad-Range Ultrafast Biosensors. Journal of the American Chemical Society, 2012, 134, 8010-8013.	6.6	18
5	Gradual Disordering of the Native State on a Slow Two-State Folding Protein Monitored by Single-Molecule Fluorescence Spectroscopy and NMR. Journal of Physical Chemistry B, 2013, 117, 13120-13131.	1.2	22
6	FRET between a donor and an acceptor covalently bound to human serum albumin in native and non-native states. Physical Chemistry Chemical Physics, 2013, 15, 16286.	1.3	34
7	Don't waste good methods on bad buffers and ambiguous data. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E331-E332.	3.3	6
8	Exploring the top of the protein folding funnel by experiment. Current Opinion in Structural Biology, 2013, 23, 30-35.	2.6	17
9	Differential scanning calorimetry as a tool for protein folding and stability. Archives of Biochemistry and Biophysics, 2013, 531, 100-109.	1.4	289
10	Single-molecule spectroscopy of protein folding dynamics—expanding scope and timescales. Current Opinion in Structural Biology, 2013, 23, 36-47.	2.6	252
11	Reply to Huang et al.: Slow proton exchange can duplicate the number of species observed in single-molecule experiments of protein folding. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1242-3.	3.3	5
12	Reply to Campos and Muñoz: Why phosphate is a bad buffer for guanidinium chloride titrations. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1244-5.	3.3	4
13	Slow Proton Transfer Coupled to Unfolding Explains the Puzzling Results of Single-Molecule Experiments on BBL, a Paradigmatic Downhill Folding Protein. PLoS ONE, 2013, 8, e78044.	1.1	6
14	Precursory signatures of protein folding/unfolding: From time series correlation analysis to atomistic mechanisms. Journal of Chemical Physics, 2014, 140, 204905.	1.2	3
15	Effect of ethanol-water mixture on the structure and dynamics of lysozyme: A fluorescence correlation spectroscopy study. Journal of Chemical Physics, 2014, 140, 115105.	1.2	34
16	Isomerization―and Temperatureâ€Jumpâ€Induced Dynamics of a Photoswitchable βâ€Hairpin. Chemistry - A European Journal, 2014, 20, 694-703.	1.7	23
17	Shedding light on protein folding landscapes by single-molecule fluorescence. Chemical Society Reviews, 2014, 43, 1172-1188.	18.7	72
18	Thermodynamics of Downhill Folding: Multi-Probe Analysis of PDD, a Protein that Folds Over a Marginal Free Energy Barrier, Journal of Physical Chemistry B. 2014, 118, 8982-8994.	1.2	34

#	Article	IF	CITATIONS
19	Kinetics of Fast Changing Intramolecular Distance Distributions Obtained by Combined Analysis of FRET Efficiency Kinetics and Time-Resolved FRET Equilibrium Measurements. Biophysical Journal, 2014, 106, 667-676.	0.2	13
20	An Adequate Account of Excluded Volume Is Necessary To Infer Compactness and Asphericity of Disordered Proteins by Förster Resonance Energy Transfer. Journal of Physical Chemistry B, 2015, 119, 15191-15202.	1.2	44
21	β-Structure within the Denatured State of the Helical Protein Domain BBL. Journal of Molecular Biology, 2015, 427, 3166-3176.	2.0	6
22	Monitoring the heat-induced structural changes of alkaline phosphatase by molecular modeling, fluorescence spectroscopy and inactivation kinetics investigations. Journal of Food Science and Technology, 2015, 52, 6290-6300.	1.4	13
23	A Method for Extracting the Free Energy Surface and Conformational Dynamics of Fast-Folding Proteins from Single Molecule Photon Trajectories. Journal of Physical Chemistry B, 2015, 119, 7944-7956.	1.2	19
24	Globular Protein Folding In Vitro and In Vivo. Annual Review of Biophysics, 2016, 45, 233-251.	4.5	82
25	Meandering Down the Energy Landscape of Protein Folding: Are We There Yet?. Biophysical Journal, 2016, 110, 1924-1932.	0.2	16
26	When fast is better: protein folding fundamentals and mechanisms from ultrafast approaches. Biochemical Journal, 2016, 473, 2545-2559.	1.7	69
27	How cooperative are protein folding and unfolding transitions?. Protein Science, 2016, 25, 1924-1941.	3.1	70
28	Computational scrutiny of the effect of N-terminal proline and residue stereochemistry in the nucleation of \hat{l}_{\pm} -helix fold. RSC Advances, 2016, 6, 74162-74176.	1.7	12
29	Single-Molecule Fluorescence Studies of Fast Protein Folding. Methods in Enzymology, 2016, 581, 417-459.	0.4	9
30	Limited cooperativity in protein folding. Current Opinion in Structural Biology, 2016, 36, 58-66.	2.6	59
31	Single-Molecule Fluorescence Spectroscopy of the Folding of a Repeat Protein. Springer Theses, 2016, ,	0.0	1
32	Highly Heterogeneous Nature of the Native and Unfolded States of the B Domain of Protein A Revealed by Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy. Journal of Physical Chemistry B, 2017, 121, 5463-5473.	1.2	20
33	Interplay between the folding mechanism and binding modes in folding coupled to binding processes. Physical Chemistry Chemical Physics, 2017, 19, 28512-28516.	1.3	10
34	Conformational Heterogeneity and FRET Data Interpretation for Dimensions of Unfolded Proteins. Biophysical Journal, 2017, 113, 1012-1024.	0.2	61
35	pH-Dependent cooperativity and existence of a dry molten globule in the folding of a miniprotein BBL. Physical Chemistry Chemical Physics, 2018, 20, 3523-3530.	1.3	10
36	Protein folding transition path times from single molecule FRET. Current Opinion in Structural Biology, 2018, 48, 30-39.	2.6	97

CITATION REPORT

#	Article	IF	CITATIONS
37	Diffusion-limited association of disordered protein by non-native electrostatic interactions. Nature Communications, 2018, 9, 4707.	5.8	45
38	Modeling of Multicolor Single-Molecule Förster Resonance Energy-Transfer Experiments on Protein Folding. Journal of Physical Chemistry B, 2018, 122, 10678-10685.	1.2	2
39	Dissecting the Conformational Dynamics-Modulated Enzyme Catalysis with Single-Molecule FRET. Journal of Physical Chemistry B, 2018, 122, 6179-6187.	1.2	6
40	Structural dynamics of membrane-protein folding from single-molecule FRET. Current Opinion in Structural Biology, 2019, 58, 124-137.	2.6	23
41	Diverse Folding Pathways of HIV-1 Protease Monomer on a Rugged Energy Landscape. Biophysical Journal, 2019, 117, 1456-1466.	0.2	5
42	How the dyes affect folding of small proteins in single-molecule FRET experiments: A simulation study. Biophysical Chemistry, 2019, 254, 106243.	1.5	1
43	Toward <i>Ab Initio</i> Protein Folding: Inherent Secondary Structure Propensity of Short Peptides from the Bioinformatics and Quantum-Chemical Perspective. Journal of Physical Chemistry B, 2019, 123, 1215-1227.	1.2	12
44	Ultrafast folding kinetics of WW domains reveal how the amino acid sequence determines the speed limit to protein folding. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8137-8142.	3.3	13
45	A Disordered Loop Mediates Heterogeneous Unfolding of an Ordered Protein by Altering the Native Ensemble. Journal of Physical Chemistry Letters, 2020, 11, 6749-6756.	2.1	2
46	Lessons about Protein Folding and Binding from Archetypal Folds. Accounts of Chemical Research, 2020, 53, 2180-2188.	7.6	9
47	Equilibrium folding and unfolding dynamics reveals detailed free energy landscape of src SH3 protein by magnetic tweezers. Chinese Physics B, 0, , .	0.7	2
48	Small-Angle X-ray Scattering Signatures of Conformational Heterogeneity and Homogeneity of Disordered Protein Ensembles. Journal of Physical Chemistry B, 2021, 125, 6451-6478.	1.2	19
49	Protein Folding, Energy Landscapes and Downhill Protein Folding Scenarios. , 2018, , 1-19.		2
52	Molten globule–like transition state of protein barnase measured with calorimetric force spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2112382119.	3.3	18
53	Extraction of kinetics from equilibrium distributions of states using the Metropolis Monte Carlo method. Physical Review E, 2022, 105, 034407.	0.8	0