KNApSAcK Family Databases: Integrated Metabolite‑ Multifaceted Plant Research

Plant and Cell Physiology 53, e1-e1

DOI: 10.1093/pcp/pcr165

Citation Report

#	Article	IF	CITATIONS
1	Metab2MeSH: annotating compounds with medical subject headings. Bioinformatics, 2012, 28, 1408-1410.	4.1	33
2	Plant & Plant & Physiology Research Highlights. Plant and Cell Physiology, 2012, 53, 1985-1988.	3.1	1
3	Systems Biology Approaches and Metabolomics for Understanding Japanese Traditional Kampo Medicine. Current Pharmacogenomics and Personalized Medicine, 2012, 10, 111-124.	0.2	8
4	Quinolizidine alkaloid biosynthesis: recent advances and future prospects. Frontiers in Plant Science, 2012, 3, 239.	3.6	76
5	The use of metabolomics to dissect plant responses to abiotic stresses. Cellular and Molecular Life Sciences, 2012, 69, 3225-3243.	5.4	680
6	Role of Metabolomics in Crop Improvement. Journal of Plant Biochemistry and Biotechnology, 2012, 21, 24-31.	1.7	21
7	KNApSAcK-3D: A Three-Dimensional Structure Database of Plant Metabolites. Plant and Cell Physiology, 2013, 54, e4-e4.	3.1	51
8	StreptomeDB: a resource for natural compounds isolated from Streptomyces species. Nucleic Acids Research, 2013, 41, D1130-D1136.	14.5	107
9	Bioinformatics opportunities for identification and study of medicinal plants. Briefings in Bioinformatics, 2013, 14, 238-250.	6.5	80
10	Coupling Deep Transcriptome Analysis with Untargeted Metabolic Profiling in Ophiorrhiza pumila to Further the Understanding of the Biosynthesis of the Anti-Cancer Alkaloid Camptothecin and Anthraquinones. Plant and Cell Physiology, 2013, 54, 686-696.	3.1	88
11	DATA MINING METHODS FOR OMICS AND KNOWLEDGE OF CRUDE MEDICINAL PLANTS TOWARD BIG DATA BIOLOGY. Computational and Structural Biotechnology Journal, 2013, 4, e201301010.	4.1	46
12	Metabolomics for unknown plant metabolites. Analytical and Bioanalytical Chemistry, 2013, 405, 5005-5011.	3.7	93
13	Phytochemical genomics — a new trend. Current Opinion in Plant Biology, 2013, 16, 373-380.	7.1	112
14	INTEGRATED LC-MS/MS SYSTEM FOR PLANT METABOLOMICS. Computational and Structural Biotechnology Journal, 2013, 4, e201301011.	4.1	32
15	Suppression of camptothecin biosynthetic genes results in metabolic modification of secondary products in hairy roots of Ophiorrhiza pumila. Phytochemistry, 2013, 91, 128-139.	2.9	51
16	COMPUTATIONAL TOOLS FOR THE SECONDARY ANALYSIS OF METABOLOMICS EXPERIMENTS. Computational and Structural Biotechnology Journal, 2013, 4, e201301003.	4.1	62
17	Leveraging biodiversity knowledge for potential phyto-therapeutic applications. Journal of the American Medical Informatics Association: JAMIA, 2013, 20, 668-679.	4.4	19
18	Recent Progress in the Development of Metabolome Databases for Plant Systems Biology. Frontiers in Plant Science, 2013, 4, 73.	3.6	68

#	ARTICLE	IF	CITATIONS
19	Constitutively Elevated Salicylic Acid Levels Alter Photosynthesis and Oxidative State but Not Growth in Transgenic Populus. Plant Cell, 2013, 25, 2714-2730.	6.6	70
20	Phytochemical Genomics on the Way. Plant and Cell Physiology, 2013, 54, 645-646.	3.1	25
21	Systematization of the Protein Sequence Diversity in Enzymes Related to Secondary Metabolic Pathways in Plants, in the Context of Big Data Biology Inspired by the KNApSAcK Motorcycle Database. Plant and Cell Physiology, 2013, 54, 711-727.	3.1	18
22	PosMed: ranking genes and bioresources based on Semantic Web Association Study. Nucleic Acids Research, 2013, 41, W109-W114.	14.5	15
23	Rethinking Mass Spectrometry-Based Small Molecule Identification Strategies in Metabolomics. Mass Spectrometry, 2014, 3, S0038-S0038.	0.6	15
24	Winners of CASMI2013: Automated Tools and Challenge Data. Mass Spectrometry, 2014, 3, S0039-S0039.	0.6	24
25	Clustering of 3Dâ€Structure Similarity Based Network of Secondary Metabolites Reveals Their Relationships with Biological Activities. Molecular Informatics, 2014, 33, 790-801.	2.5	18
26	Metabolome-scale prediction of intermediate compounds in multistep metabolic pathways with a recursive supervised approach. Bioinformatics, 2014, 30, i165-i174.	4.1	15
27	Integrated Text Mining and Chemoinformatics Analysis Associates Diet to Health Benefit at Molecular Level. PLoS Computational Biology, 2014, 10, e1003432.	3.2	31
28	Plant and Cell Physiology 2014 Online Database Issue. Plant and Cell Physiology, 2014, 55, 1-2.	3.1	35
29	Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid. Journal of Experimental Botany, 2014, 65, 5919-5931.	4.8	60
30	Tools and Databases of the KOMICS Web Portal for Preprocessing, Mining, and Dissemination of Metabolomics Data. BioMed Research International, 2014, 2014, 1-11.	1.9	38
31	Exploring the <scp>A</scp> rabidopsis sulfur metabolome. Plant Journal, 2014, 77, 31-45.	5.7	60
32	Plant Genome DataBase Japan (PGDBj): A Portal Website for the Integration of Plant Genome-Related Databases. Plant and Cell Physiology, 2014, 55, e8-e8.	3.1	38
33	RARGE II: An Integrated Phenotype Database of Arabidopsis Mutant Traits Using a Controlled Vocabulary. Plant and Cell Physiology, 2014, 55, e4-e4.	3.1	32
34	TIPdb-3D: the three-dimensional structure database of phytochemicals from Taiwan indigenous plants. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau055-bau055.	3.0	29
35	Ectopic Expression of a Loblolly Pine Class II 4-Coumarate: CoA Ligase Alters Soluble Phenylpropanoid Metabolism but not Lignin Biosynthesis in Populus. Plant and Cell Physiology, 2014, 55, 1669-1678.	3.1	19
36	Systems Biology in the Context of Big Data and Networks. BioMed Research International, 2014, 2014, 1-11.	1.9	75

#	Article	IF	Citations
37	Supervised Clustering Based on DPClusO: Prediction of Plant-Disease Relations Using Jamu Formulas of KNApSAcK Database. BioMed Research International, 2014, 2014, 1-15.	1.9	21
38	Stress-responsive hydroxycinnamate glycosyltransferase modulates phenylpropanoid metabolism in Populus. Journal of Experimental Botany, 2014, 65, 4191-4200.	4.8	24
39	Toward better annotation in plant metabolomics: isolation and structure elucidation of 36 specialized metabolites from Oryza sativa (rice) by using MS/MS and NMR analyses. Metabolomics, 2014, 10, 543-555.	3.0	76
40	Non-targeted metabolomic analysis of orange (Citrus sinensis [L.] Osbeck) wild type and bud mutant fruits by direct analysis in real-time and HPLC-electrospray mass spectrometry. Metabolomics, 2014, 10, 508-523.	3.0	40
41	In silico tools for the analysis of antibiotic biosynthetic pathways. International Journal of Medical Microbiology, 2014, 304, 230-235.	3.6	84
42	KNApSAcK Metabolite Activity Database for Retrieving the Relationships Between Metabolites and Biological Activities. Plant and Cell Physiology, 2014, 55, e7-e7.	3.1	92
43	MeRy-B, a Metabolomic Database and Knowledge Base for Exploring Plant Primary Metabolism. Methods in Molecular Biology, 2014, 1083, 3-16.	0.9	22
44	Discovery and validation of urinary exposure markers for different plant foods by untargeted metabolomics. Analytical and Bioanalytical Chemistry, 2014, 406, 1829-1844.	3.7	77
45	Successful expression of a novel bacterial gene for pinoresinol reductase and its effect on lignan biosynthesis in transgenic Arabidopsis thaliana. Applied Microbiology and Biotechnology, 2014, 98, 8165-8177.	3.6	10
46	Ultrafast PubChem Searching Combined with Improved Filtering Rules for Elemental Composition Analysis. Analytical Chemistry, 2014, 86, 5463-5469.	6.5	11
47	Untargeted Metabolomics as a Screening Tool for Estimating Compliance to a Dietary Pattern. Journal of Proteome Research, 2014, 13, 1405-1418.	3.7	121
48	Multi-scale engineering of plant cell cultures for promotion of specialized metabolism. Current Opinion in Biotechnology, 2014, 29, 163-170.	6.6	18
49	A network perspective on nitrogen metabolism from model to crop plants using integrated â€~omics' approaches. Journal of Experimental Botany, 2014, 65, 5619-5630.	4.8	54
50	Chemo- and bioinformatics resources for inÂsilico drug discovery from medicinal plants beyond their traditional use: a critical review. Natural Product Reports, 2014, 31, 1585-1611.	10.3	104
51	Discrimination of conventional and organic white cabbage from a long-term field trial study using untargeted LC-MS-based metabolomics. Analytical and Bioanalytical Chemistry, 2014, 406, 2885-2897.	3.7	39
52	Metabolomic Characterization of Knockout Mutants in Arabidopsis: Development of a Metabolite Profiling Database for Knockout Mutants in Arabidopsis Â. Plant Physiology, 2014, 165, 948-961.	4.8	49
53	Mode-of-action and evolution of methylenedioxy bridge forming P450s in plant specialized metabolism. Plant Biotechnology, 2014, 31, 493-503.	1.0	12
54	Metabolic chemotypes of CITES protected <i>Dalbergia</i> timbers from Africa, Madagascar, and Asia. Rapid Communications in Mass Spectrometry, 2015, 29, 783-788.	1.5	48

#	Article	IF	CITATIONS
55	Cutting Edge Data Science towards Understanding of Crude Drug, Food and Ecosystem Based on Metabolomics. Kagaku To Seibutsu, 2015, 53, 600-607.	0.0	0
56	Ectopic expression of snapdragon transcription factors facilitates the identification of genes encoding enzymes of anthocyanin decoration in tomato. Plant Journal, 2015, 83, 686-704.	5.7	62
57	Metabolic fingerprinting of Arabidopsis thaliana accessions. Frontiers in Plant Science, 2015, 6, 365.	3.6	24
58	A Glimpse to Background and Characteristics of Major Molecular Biological Networks. BioMed Research International, 2015, 2015, 1-14.	1.9	12
59	Development and Mining of a Volatile Organic Compound Database. BioMed Research International, 2015, 2015, 1-13.	1.9	30
60	Metabolome-scale <i>de novo</i> pathway reconstruction using regioisomer-sensitive graph alignments. Bioinformatics, 2015, 31, i161-i170.	4.1	14
61	Plant Omics: Isolation, Identification, and Expression Analysis of Cytochrome P450 Gene Sequences from <i>Coleus forskohlii</i> . OMICS A Journal of Integrative Biology, 2015, 19, 782-792.	2.0	33
62	Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta, 2015, 241, 303-317.	3.2	103
63	Integrated metabolomics for abiotic stress responses in plants. Current Opinion in Plant Biology, 2015, 24, 10-16.	7.1	319
64	Metabolite-based genome-wide association studies in plants. Current Opinion in Plant Biology, 2015, 24, 31-38.	7.1	204
65	Editorial: Plant and Cell Physiology - Past, Present and Future. Plant and Cell Physiology, 2015, 56, 1-3.	3.1	20
66	Targeted Integration of RNA-Seq and Metabolite Data to Elucidate Curcuminoid Biosynthesis in Four Curcuma Species. Plant and Cell Physiology, 2015, 56, 843-851.	3.1	9
67	Traditionally used medicinal plants against uncomplicated urinary tract infections: Are unusual, flavan-4-ol- and derhamnosylmaysin derivatives responsible for the antiadhesive activity of extracts obtained from stigmata of Zea mays L. against uropathogenic E. coli and Benzethonium chloride as frequent contaminant faking potential antibacterial activities?. F¬toterap¬¢, 2015, 105, 246-253.	2.2	20
68	Patterns of Metabolite Changes Identified from Large-Scale Gene Perturbations in Arabidopsis Using a Genome-Scale Metabolic Network Â. Plant Physiology, 2015, 167, 1685-1698.	4.8	55
69	A High Throughput Ambient Mass Spectrometric Approach to Species Identification and Classification from Chemical Fingerprint Signatures. Scientific Reports, 2015, 5, 11520.	3.3	57
70	Top-down Targeted Metabolomics Reveals a Sulfur-Containing Metabolite with Inhibitory Activity against Angiotensin-Converting Enzyme in <i>Asparagus officinalis</i> . Journal of Natural Products, 2015, 78, 1179-1183.	3.0	52
71	Open-Access Metabolomics Databases for Natural Product Research: Present Capabilities and Future Potential. Frontiers in Bioengineering and Biotechnology, 2015, 3, 22.	4.1	114
72	Metabolomics for Phytochemical Discovery: Development of Statistical Approaches Using a Cranberry Model System. Journal of Natural Products, 2015, 78, 953-966.	3.0	26

#	Article	IF	CITATIONS
73	NutriChem: a systems chemical biology resource to explore the medicinal value of plant-based foods. Nucleic Acids Research, 2015, 43, D940-D945.	14.5	40
74	Analysis of volatile metabolites emitted by various species to reveal their roles in chemical ecology and healthcare. , 2015, , .		1
75	Dietary seaweeds and obesity. Food Science and Human Wellness, 2015, 4, 87-96.	4.9	70
76	Metabolomeâ€genomeâ€wide association study dissects genetic architecture for generating natural variation in rice secondary metabolism. Plant Journal, 2015, 81, 13-23.	5.7	152
77	Folic acid induces salicylic acidâ€dependent immunity in <scp>A</scp> rabidopsis and enhances susceptibility to <i><scp>A</scp>lternaria brassicicola</i> . Molecular Plant Pathology, 2015, 16, 616-622.	4.2	41
78	Metabolomics and Cheminformatics Analysis of Antifungal Function of Plant Metabolites. Metabolites, 2016, 6, 31.	2.9	18
79	Prediction, Detection, and Validation of Isotope Clusters in Mass Spectrometry Data. Metabolites, 2016, 6, 37.	2.9	18
80	Arginase Flavonoid Anti-Leishmanial in Silico Inhibitors Flagged against Anti-Targets. Molecules, 2016, 21, 589.	3.8	24
81	Automation of chemical assignment for identifying molecular formula of S-containing metabolites by combining metabolomics and chemoinformatics with 34S labeling. Metabolomics, 2016, 12, 1.	3.0	12
82	Investigating Abiotic Stress Response Machinery in Plants: The Metabolomic Approach. , 2016, , 303-319.		2
83	Predicting the Presence of Uncommon Elements in Unknown Biomolecules from Isotope Patterns. Analytical Chemistry, 2016, 88, 7556-7566.	6.5	26
84	Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation and Structure Elucidation Using MS-FINDER Software. Analytical Chemistry, 2016, 88, 7946-7958.	6.5	441
85	Simultaneous prediction of enzyme orthologs from chemical transformation patterns for <i>de novo</i> metabolic pathway reconstruction. Bioinformatics, 2016, 32, i278-i287.	4.1	15
86	Utilization of KNApSAcK Family Databases for Developing Herbal Medicine Systems. Journal of Computer Aided Chemistry, 2016, 17, 1-7.	0.3	8
87	Metabolic pathway reconstruction strategies for central metabolism and natural product biosynthesis. Biophysics and Physicobiology, 2016, 13, 195-205.	1.0	16
88	Finding an appropriate equation to measure similarity between binary vectors: case studies on Indonesian and Japanese herbal medicines. BMC Bioinformatics, 2016, 17, 520.	2.6	15
89	A Word from the New Editor-In-Chief. Plant and Cell Physiology, 2016, 57, 655-656.	3.1	0
90	Evolutionary correlations in flavonoid production across flowers and leaves in the lochrominae (Solanaceae). Phytochemistry, 2016, 130, 119-127.	2.9	39

#	Article	IF	CITATIONS
91	Chemical Assignment of Structural Isomers of Sulfur-Containing Metabolites in Garlic by Liquid Chromatographyâ"Fourier Transform Ion Cyclotron Resonanceâ"Mass Spectrometry. Journal of Nutrition, 2016, 146, 397S-402S.	2.9	28
92	Identification of urinary biomarkers after consumption of sea buckthorn and strawberry, by untargeted LC–MS metabolomics: a meal study in adult men. Metabolomics, 2016, 12, 1.	3.0	38
93	Metabolite extraction for high-throughput FTICR-MS-based metabolomics of grapevine leaves. EuPA Open Proteomics, 2016, 12, 4-9.	2.5	35
94	The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production. Synthetic and Systems Biotechnology, 2016, 1, 69-79.	3.7	153
95	Identification of Enzyme Genes Using Chemical Structure Alignments of Substrate–Product Pairs. Journal of Chemical Information and Modeling, 2016, 56, 510-516.	5.4	17
96	Mutations in jasmonoyl-L-isoleucine-12-hydroxylases suppress multiple JA-dependent wound responses in Arabidopsis thaliana. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1396-1408.	2.4	38
97	ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Research, 2016, 44, D1214-D1219.	14.5	752
98	Expression and functional analyses of a putative phenylcoumaran benzylic ether reductase in Arabidopsis thaliana. Plant Cell Reports, 2016, 35, 513-526.	5.6	16
99	Informatics framework of traditional Sino-Japanese medicine (Kampo) unveiled by factor analysis. Journal of Natural Medicines, 2016, 70, 107-114.	2.3	6
100	Mass spectrometry-based analysis of whole-grain phytochemicals. Critical Reviews in Food Science and Nutrition, 2017, 57, 1688-1709.	10.3	49
101	Integrated omics analysis of specialized metabolism in medicinal plants. Plant Journal, 2017, 90, 764-787.	5.7	185
102	Top-down Metabolomic Approaches for Nitrogen-Containing Metabolites. Analytical Chemistry, 2017, 89, 2698-2703.	6.5	25
103	Genome-Wide Prediction of Metabolic Enzymes, Pathways, and Gene Clusters in Plants. Plant Physiology, 2017, 173, 2041-2059.	4.8	333
104	From chromatogram to analyte to metabolite. How to pick horses for courses from the massive web resources for mass spectral plant metabolomics. GigaScience, 2017, 6, 1-20.	6.4	59
105	Laser Desorption/Ionisation Mass Spectrometry Imaging of European Yew (<scp><i>Taxus) Tj ETQq0 0 0 rgBT /Ov</i></scp>	verlock 10 2.4) Tf 50 182 To
106	Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. Journal of Experimental Botany, 2017, 68, 4013-4028.	4.8	328
107	Botanical Ingredients., 2017,, 305-320.		3
108	Data integration aids understanding of butterfly–host plant networks. Scientific Reports, 2017, 7, 43368.	3.3	23

#	Article	IF	CITATIONS
109	Molecular Farming Approach Towards Bioactive Compounds., 2017,, 49-72.		4
110	Data Resources for the Computer-Guided Discovery of Bioactive Natural Products. Journal of Chemical Information and Modeling, 2017, 57, 2099-2111.	5.4	131
111	Cardiac overexpression of perilipin 2 induces dynamic steatosis: prevention by hormone-sensitive lipase. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E699-E709.	3.5	28
112	Phytochemical Genomics of Ashwagandha. , 2017, , 3-36.		13
113	Metabolomic Studies of Indonesian Jamu Medicines: Prediction of Jamu Efficacy and Identification of Important Metabolites. Molecular Informatics, 2017, 36, 1700050.	2.5	17
114	Jatropha Metabolomics. Compendium of Plant Genomes, 2017, , 83-96.	0.5	1
115	Liquid chromatography and high resolution mass spectrometry-based metabolomics to identify quantitative resistance-related metabolites and genes in wheat QTL-2DL against Fusarium head blight. European Journal of Plant Pathology, 2018, 151, 125.	1.7	3
116	Draft genome assembly and annotation of <i>Glycyrrhiza uralensis</i> , a medicinal legume. Plant Journal, 2017, 89, 181-194.	5.7	148
117	A novel plant classification method based on similarities in chemical structures of metabolite contents obtained from the KNApSAcK database. Acta Horticulturae, 2017, , 139-150.	0.2	0
118	[Dedicated to Prof. T. Okada and Prof. T. Nishioka: data science in chemistry]Classification of Alkaloid Compounds Based on Subring Skeleton (SRS) Profiling: On Finding Relationship of Compounds with Metabolic Pathways. Journal of Computer Aided Chemistry, 2017, 18, 58-75.	0.3	4
119	[Dedicated to Prof. T. Okada and Prof. T. Nishioka: data science in chemistry]Product Ion Spectrum-based Partial Annotation of Metabolites Using Regular Expression of MS/MS Spectrum. Journal of Computer Aided Chemistry, 2017, 18, 24-30.	0.3	0
120	Allelopathy and the Role of Allelochemicals in Plant Defence. Advances in Botanical Research, 2017, , 19-54.	1.1	128
121	Metabolomics for Plant Improvement: Status and Prospects. Frontiers in Plant Science, 2017, 8, 1302.	3.6	210
122	Novel Approach to Classify Plants Based on Metabolite-Content Similarity. BioMed Research International, 2017, 2017, 1-12.	1.9	30
123	biochem4j: Integrated and extensible biochemical knowledge through graph databases. PLoS ONE, 2017, 12, e0179130.	2.5	31
124	Safety, Efficacy, and Physicochemical Characterization of Tinospora crispa Ointment: A Community-Based Formulation against Pediculus humanus capitis. Korean Journal of Parasitology, 2017, 55, 409-416.	1.3	1
125	Perspective: functional genomics towards new biotechnology in medicinal plants. Plant Biotechnology Reports, 2018, 12, 69-75.	1.5	17
126	UC2 search: using unique connectivity of uncharged compounds for metabolite annotation by database searching in mass spectrometry-based metabolomics. Bioinformatics, 2018, 34, 698-700.	4.1	17

#	Article	IF	CITATIONS
128	Advances in computational metabolomics and databases deepen the understanding of metabolisms. Current Opinion in Biotechnology, 2018, 54, 10-17.	6.6	89
129	WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Research, 2018, 46, D661-D667.	14.5	708
130	Unraveling the metabolic response of <scp><i>Brassica oleracea</i></scp> exposed to <i>Xanthomonas campestris</i> pv. <i>campestris</i> Journal of the Science of Food and Agriculture, 2018, 98, 3675-3683.	3.5	28
131	Natural occurrence of genotoxic and carcinogenic alkenylbenzenes in Indonesian jamu and evaluation of consumer risks. Food and Chemical Toxicology, 2018, 118, 53-67.	3.6	16
132	A pathway for every product? Tools to discover and design plant metabolism. Plant Science, 2018, 273, 61-70.	3.6	18
133	IMPPAT: A curated database of Indian Medicinal Plants, Phytochemistry And Therapeutics. Scientific Reports, 2018, 8, 4329.	3.3	306
134	Metabolomics-assisted biotechnological interventions for developing plant-based functional foods and nutraceuticals. Critical Reviews in Food Science and Nutrition, 2018, 58, 1791-1807.	10.3	52
135	On the natural diversity of phenylacylated-flavonoid and their in planta function under conditions of stress. Phytochemistry Reviews, 2018, 17, 279-290.	6.5	48
136	Prediction of Plant-Disease Relations Based on Unani Formulas by Network Analysis., 2018,,.		4
137	Identification of Genes Involved in Flavonoid Biosynthesis of Chinese Narcissus (Narcissus tazetta L.) Tj ETQq1 1	0.784314 1.8	rg $_{13}^{BT}$ /Over
138	Cell suspension culture as a means to produce polyphenols from date palm (Phoenix dactylifera L.). Ciencia E Agrotecnologia, 2018, 42, 464-473.	1.5	13
139	Evolutionary Analysis of a Few Protein Superfamilies in Ocimum tenuiflorum. Compendium of Plant Genomes, 2018, , 37-60.	0.5	O
140	Biotechnological Advancement in an Important Medicinal Plant, Withania coagulans: An Overview and Recent Updates., 2018,, 445-465.		1
141	Biosynthesis of riccionidins and marchantins is regulated by R2R3-MYB transcription factors in Marchantia polymorpha. Journal of Plant Research, 2018, 131, 849-864.	2.4	50
142	Targeted LC-MS Analysis for Plant Secondary Metabolites. Methods in Molecular Biology, 2018, 1778, 171-181.	0.9	33
143	KampoDB, database of predicted targets and functional annotations of natural medicines. Scientific Reports, 2018, 8, 11216.	3.3	11
144	Genes to Metabolites and Metabolites to Genes Approaches to Predict Biosynthetic Pathways in Microbes for Natural Product Discovery. , 2018, , 1-16.		0
145	Insights into Tissue-specific Specialized Metabolism in Tieguanyin Tea Cultivar by Untargeted Metabolomics. Molecules, 2018, 23, 1817.	3.8	24

#	Article	IF	Citations
146	Data-driven analysis of biomedical literature suggests broad-spectrum benefits of culinary herbs and spices. PLoS ONE, 2018, 13, e0198030.	2.5	23
147	SistematX, an Online Web-Based Cheminformatics Tool for Data Management of Secondary Metabolites. Molecules, 2018, 23, 103.	3.8	41
148	Metabolite Profiling of 14 Wuyi Rock Tea Cultivars Using UPLC-QTOF MS and UPLC-QqQ MS Combined with Chemometrics. Molecules, 2018, 23, 104.	3.8	90
149	Statistical Machine Learning for Agriculture and Human Health Care Based on Biomedical Big Data. Mathematics for Industry, 2018, , 111-123.	0.4	0
150	Pathway-specific metabolome analysis with 18O2-labeled Medicago truncatula via a mass spectrometry-based approach. Metabolomics, 2018, 14, 71.	3.0	19
151	Metabolomics 20Âyears on: what have we learned and what hurdles remain?. Plant Journal, 2018, 94, 933-942.	5 . 7	166
152	The study of plant specialized metabolism: Challenges and prospects in the genomics era. American Journal of Botany, 2018, 105, 959-962.	1.7	21
153	Omics Approaches for Engineering Wheat Production under Abiotic Stresses. International Journal of Molecular Sciences, 2018, 19, 2390.	4.1	34
154	Chemical differentiation of Bolivian Cedrela species as a tool to trace illegal timber trade. Forestry, 2018, 91, 603-613.	2.3	17
156	Metabolomics of Seaweeds. , 2018, , 37-52.		17
157	Databases: A Weapon from theÂArsenal of Bioinformatics for Plant Abiotic Stress Research. , 2019, , 135-169.		15
158	Molecular Origins of Functional Diversity in Benzylisoquinoline Alkaloid Methyltransferases. Frontiers in Plant Science, 2019, 10, 1058.	3.6	25
159	ETM-DB: integrated Ethiopian traditional herbal medicine and phytochemicals database. BMC Complementary and Alternative Medicine, 2019, 19, 212.	3.7	26
160	Application of Quantum Chemical Calculation for Prediction of Ultraviolet-vis Spectrum of Plant Self-protective MetabolitesProduced by UV-B Irradiation. Journal of Computer Chemistry Japan, 2019, 18, 108-114.	0.1	0
161	High level production of flavonoid rhamnosides by metagenome-derived Glycosyltransferase C in Escherichia coli utilizing dextrins of starch as a single carbon source. Metabolic Engineering, 2019, 55, 212-219.	7.0	13
162	The Origin and Evolution of Plant Flavonoid Metabolism. Frontiers in Plant Science, 2019, 10, 943.	3.6	269
163	Acceleration of Mechanistic Investigation of Plant Secondary Metabolism Based on Computational Chemistry. Frontiers in Plant Science, 2019, 10, 802.	3.6	16
164	Classification of alkaloids according to the starting substances of their biosynthetic pathways using graph convolutional neural networks. BMC Bioinformatics, 2019, 20, 380.	2.6	45

#	ARTICLE	IF	CITATIONS
165	Combining Evolutionary Inference and Metabolomics to Identify Plants With Medicinal Potential. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	24
166	Lipid remodeling regulator 1 (<scp>LRL</scp> 1) is differently involved in the phosphorusâ€depletion response from <scp>PSR</scp> 1 in <i>Chlamydomonas reinhardtii</i> . Plant Journal, 2019, 100, 610-626.	5.7	30
167	Comparative analysis of metabolome of rice seeds at three developmental stages using a recombinant inbred line population. Plant Journal, 2019, 100, 908-922.	5.7	24
168	Metabolic diversification of nitrogenâ€containing metabolites by the expression of a heterologous lysine decarboxylase gene in Arabidopsis. Plant Journal, 2019, 100, 505-521.	5.7	11
169	The Sweet Side of Plant-Specialized Metabolism. Cold Spring Harbor Perspectives in Biology, 2019, 11, a034744.	5.5	45
170	In-silico Tools in Phytochemical Research. , 2019, , 351-372.		0
171	Salt-stress secondary metabolite signatures involved in the ability of Casuarina glauca to mitigate oxidative stress. Environmental and Experimental Botany, 2019, 166, 103808.	4.2	20
172	Implementation of BiClusO and its comparison with other biclustering algorithms. Applied Network Science, 2019, 4, .	1.5	2
173	Essentials of Bioinformatics, Volume III. , 2019, , .		0
174	Cardiac overexpression of perilipin 2 induces atrial steatosis, connexin 43 remodeling, and atrial fibrillation in aged mice. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E1193-E1204.	3.5	19
175	The renaissance of comparative biochemistry. American Journal of Botany, 2019, 106, 3-13.	1.7	5
176	The Structural Integrity of Lignin Is Crucial for Resistance against <i>Striga hermonthica</i> Parasitism in Rice. Plant Physiology, 2019, 179, 1796-1809.	4.8	60
177	Evolutionary Diversification of Primary Metabolism and Its Contribution to Plant Chemical Diversity. Frontiers in Plant Science, 2019, 10, 881.	3.6	56
178	The Structure and Function of Major Plant Metabolite Modifications. Molecular Plant, 2019, 12, 899-919.	8.3	250
179	Research on the adaptive mechanism of photosynthetic apparatus under salt stress: New directions to increase crop yield in saline soils. Annals of Applied Biology, 2019, 175, 1-17.	2.5	41
180	The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis. Molecular Plant, 2019, 12, 935-950.	8.3	121
181	Spectrophotometric determination of antiplasmodial cochloxanthins from roots of Cochlospermum planchonii Hook.f. (Bixaceae). Scientific African, 2019, 2, e00055.	1.5	2
182	Directions for research and training in plant omics: Big Questions and Big Data. Plant Direct, 2019, 3, e00133.	1.9	47

#	Article	IF	Citations
183	A new era in plant functional genomics. Current Opinion in Systems Biology, 2019, 15, 58-67.	2.6	26
184	Metabolomics Studies of Stress in Plants. , 2019, , 127-178.		1
185	Ecological Metabolomics: Challenges and Perspectives. , 2019, , 293-378.		0
186	Metabolic In Silico Network Expansions to Predict and Exploit Enzyme Promiscuity. Methods in Molecular Biology, 2019, 1927, 11-21.	0.9	5
187	Classification of Microorganism Species Based on Volatile Metabolite Contents Similarity. Journal of Physics: Conference Series, 2019, 1372, 012061.	0.4	3
188	[Special Issue for Honor Award dedicating to Prof Kimito Funatsu] (Mini-review) Meanings of the Honor Award for Prof Kimito Funatsu. Journal of Computer Aided Chemistry, 2019, 20, 23-28.	0.3	0
189	Towards a new online species-information system for legumes. Australian Systematic Botany, 2019, 32, 495-518.	0.9	6
190	The Hot and the Colorful: Understanding the Metabolism, Genetics and Evolution of Consumer Preferred Metabolic Traits in Pepper and Related Species. Critical Reviews in Plant Sciences, 2019, 38, 339-381.	5.7	19
191	A comparative metabolomics analysis of the components of heartwood and sapwood in Taxus chinensis (Pilger) Rehd Scientific Reports, 2019, 9, 17647.	3.3	15
192	Multiâ€tissue integration of transcriptomic and specialized metabolite profiling provides tools for assessing the common bean (<i>Phaseolus vulgaris</i>) metabolome. Plant Journal, 2019, 97, 1132-1153.	5.7	33
193	Single Cell Metabolism. Methods in Molecular Biology, 2020, , .	0.9	5
194	Plant Metabolite Databases: From Herbal Medicines to Modern Drug Discovery. Journal of Chemical Information and Modeling, 2020, 60, 1101-1110.	5.4	37
195	Comprehensive Exploration of Targetâ€specific Ligands Using a Graph Convolution Neural Network. Molecular Informatics, 2020, 39, e1900095.	2.5	26
196	Drivers of metabolic diversification: how dynamic genomic neighbourhoods generate new biosynthetic pathways in the Brassicaceae. New Phytologist, 2020, 227, 1109-1123.	7.3	49
197	Computational MS/MS Fragmentation and Structure Elucidation Using MS-FINDER Software. , 2020, , 189-210.		1
198	Evaluation of the use of untargeted metabolomics in the safety assessment of genetically modified crops. Metabolomics, 2020, 16, 111.	3.0	18
199	Changes in Circulating Metabolome Precede Alcoholâ€Related Diseases in Middleâ€Aged Men: A Prospective Populationâ€Based Study With a 30â€Year Followâ€Up. Alcoholism: Clinical and Experimental Research, 2020, 44, 2457-2467.	2.4	6
200	An Ancient Residue Metabolomics-Based Method to Distinguish Use of Closely Related Plant Species in Ancient Pipes. Frontiers in Molecular Biosciences, 2020, 7, 133.	3.5	8

#	Article	IF	CITATIONS
201	Highly effective volatile organic compound dissolving strategy based on mist atomization for odorant biosensors. Analytica Chimica Acta, 2020, 1139, 178-188.	5.4	7
202	Lysine, Lysine-Rich, Serine, and Serine-Rich Proteins: Link Between Metabolism, Development, and Abiotic Stress Tolerance and the Role of ncRNAs in Their Regulation. Frontiers in Plant Science, 2020, 11, 546213.	3.6	23
204	The <i>Acer truncatum</i> genome provides insights into nervonic acid biosynthesis. Plant Journal, 2020, 104, 662-678.	5.7	52
205	Editorial: The Origin of Plant Chemodiversity – Conceptual and Empirical Insights. Frontiers in Plant Science, 2020, 11, 890.	3.6	3
206	Genomics-enabled analysis of specialized metabolism in bioenergy crops: Current progress and challenges. Synthetic Biology, 2020, 5, ysaa005.	2.2	6
207	Construction of TUATinsecta database that integrated plant and insect database for screening phytophagous insect metabolic products with medicinal potential. Scientific Reports, 2020, 10, 17509.	3.3	5
208	Food Phenotyping: Recording and Processing of Non-Targeted Liquid Chromatography Mass Spectrometry Data for Verifying Food Authenticity. Molecules, 2020, 25, 3972.	3.8	15
209	Profiling of Widely Targeted Metabolomics for the Identification of Secondary Metabolites in Heartwood and Sapwood of the Red-Heart Chinese Fir (Cunninghamia Lanceolata). Forests, 2020, 11, 897.	2.1	12
210	Diet choice: The two-factor host acceptance system of silkworm larvae. PLoS Biology, 2020, 18, e3000828.	5.6	10
211	Metabolite signatures of diverse Camellia sinensis tea populations. Nature Communications, 2020, 11, 5586.	12.8	78
212	Diversity of anthocyanin and proanthocyanin biosynthesis in land plants. Current Opinion in Plant Biology, 2020, 55, 93-99.	7.1	119
213	Knowledgeâ€based structural models of SARS oVâ€⊋ proteins and their complexes with potential drugs. FEBS Letters, 2020, 594, 1960-1973.	2.8	21
214	Evaluation of plant sources for antiinfective lead compound discovery by correlating phylogenetic, spatial, and bioactivity data. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12444-12451.	7.1	19
215	Bioinformatics Resources for Plant Abiotic Stress Responses: State of the Art and Opportunities in the Fast Evolving -Omics Era. Plants, 2020, 9, 591.	3.5	25
216	PkGPPS.SSU interacts with two PkGGPPS to form heteromeric GPPS in Picrorhiza kurrooa: Molecular insights into the picroside biosynthetic pathway. Plant Physiology and Biochemistry, 2020, 154, 115-128.	5.8	5
217	Assessing the natural durability of xylarium specimens: mini-block testing and chemical fingerprinting for small-sized samples. Wood Science and Technology, 2020, 54, 981-1000.	3.2	7
218	Seed Metabolism and Pathogen Resistance Enhancement in Pisum sativum During Colonization of Arbuscular Mycorrhizal Fungi: An Integrative Metabolomics-Proteomics Approach. Frontiers in Plant Science, 2020, 11, 872.	3.6	9
219	Croton urucurana Baillon stem bark ointment accelerates the closure of cutaneous wounds in knockout IL-10 mice. Journal of Ethnopharmacology, 2020, 261, 113042.	4.1	9

#	Article	IF	CITATIONS
220	Metabolome Analysis Identified Okaramines in the Soybean Rhizosphere as a Legacy of Hairy Vetch. Frontiers in Genetics, 2020, 11, 114.	2.3	13
221	Metabolomics to Exploit the Primed Immune System of Tomato Fruit. Metabolites, 2020, 10, 96.	2.9	28
222	Differential annotation of converted metabolites (DAC-Met): Exploration of Maoto (Ma-huang-tang)-derived metabolites in plasma using high-resolution mass spectrometry. Metabolomics, 2020, 16, 63.	3.0	7
223	Metabolomics for crop improvement: Quality and productivity. , 2020, , 1-42.		1
224	Penicillium diversity in Canadian bat caves, including a new species, P. speluncae. Fungal Systematics and Evolution, 2020, 5, 1-16.	2.2	9
225	Revisiting the ORCA gene cluster that regulates terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Science, 2020, 293, 110408.	3.6	50
226	Defensive Responses of Tea Plants (Camellia sinensis) Against Tea Green Leafhopper Attack: A Multi-Omics Study. Frontiers in Plant Science, 2019, 10, 1705.	3.6	63
227	Chemical Fingerprinting of Wood Sampled along a Pith-to-Bark Gradient for Individual Comparison and Provenance Identification. Forests, 2020, 11, 107.	2.1	11
228	Development of Natural Compound Molecular Fingerprint (NC-MFP) with the Dictionary of Natural Products (DNP) for natural product-based drug development. Journal of Cheminformatics, 2020, 12, 6.	6.1	31
229	Structure-based discovery of novel inhibitors of Mycobacterium tuberculosis CYP121 from Indonesian natural products. Computational Biology and Chemistry, 2020, 85, 107205.	2.3	11
230	Metabolomics in the Context of Plant Natural Products Research: From Sample Preparation to Metabolite Analysis. Metabolites, 2020, 10, 37.	2.9	147
231	Identifying the compounds that can distinguish between Saposhnikovia root and its substitute, Peucedanum ledebourielloides root, using LC-HR/MS metabolomics. Journal of Natural Medicines, 2020, 74, 550-560.	2.3	4
232	Metabolomics and hormonomics to crack the code of filbert growth. Metabolomics, 2020, 16, 62.	3.0	7
233	Integration of mass spectral fingerprinting analysis with precursor ion (MS1) quantification for the characterisation of botanical extracts: application to extracts of <scp><i>Centella asiatica</i></scp> (L.) Urban. Phytochemical Analysis, 2020, 31, 722-738.	2.4	28
234	Exploiting Natural Variation in Tomato to Define Pathway Structure and Metabolic Regulation of Fruit Polyphenolics in the Lycopersicum Complex. Molecular Plant, 2020, 13, 1027-1046.	8.3	56
235	Parallel Metabolomic and Transcriptomic Analysis Reveals Key Factors for Quality Improvement of Tea Plants. Journal of Agricultural and Food Chemistry, 2020, 68, 5483-5495.	5.2	9
236	"Notame― Workflow for Non-Targeted LC–MS Metabolic Profiling. Metabolites, 2020, 10, 135.	2.9	71
237	Metabolomics of medicinal and aromatic plants: Goldmines of secondary metabolites for herbal medicine research., 2021,, 261-287.		3

#	ARTICLE	IF	CITATIONS
238	Metabolic networks of the Nicotiana genus in the spotlight: content, progress and outlook. Briefings in Bioinformatics, 2021, 22, .	6.5	1
239	Managing enzyme promiscuity in plant specialized metabolism: A lesson from flavonoid biosynthesis. BioEssays, 2021, 43, e2000164.	2.5	14
240	Review: Metabolomics as a prediction tool for plants performance under environmental stress. Plant Science, 2021, 303, 110789.	3.6	45
241	Discovery of Alternative Chemotherapy Options for Leishmaniasis through Computational Studies of Asteraceae. ChemMedChem, 2021, 16, 1234-1245.	3.2	5
242	Knowledge-based Modeling of SARS-CoV-2 Proteins and Predicting its Potential Drugs. Seibutsu Butsuri, 2021, 61, 102-106.	0.1	0
243	Advancements in High-Throughput Omics-Technologies for Understanding the Biology of Neglected and Underutilized Crops., 2021,, 203-236.		0
244	Potential of Metabolomics in Plant Abiotic Stress Management. , 2021, , 193-214.		7
245	Metabolic source isotopic pair labeling and genome-wide association are complementary tools for the identification of metabolite–gene associations in plants. Plant Cell, 2021, 33, 492-510.	6.6	12
246	Targeting SARS-CoV-2 Novel Corona (COVID-19) Virus Infection Using Medicinal Plants., 2021,, 461-495.		3
247	Not One for All: The Interwoven Relationship Between Morphophysiology and Secondary Metabolite Production in Plant Cell Cultures. , 2021, , 77-94.		0
248	Omics Approaches for Elucidating Abiotic Stress Responses in Plants., 2021,, 169-189.		1
249	The Three Pillars of Natural Product Dereplication. Alkaloids from the Bulbs of Urceolina peruviana (C. Presl) J.F. Macbr. as a Preliminary Test Case. Molecules, 2021, 26, 637.	3.8	16
250	Development of a biomarker database toward performing disease classification and finding disease interrelations. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	3.0	2
251	Tomato roots secrete tomatine to modulate the bacterial assemblage of the rhizosphere. Plant Physiology, 2021, 186, 270-284.	4.8	45
252	Expanding the Coverage of Metabolic Landscape in Cultivated Rice with Integrated Computational Approaches. Genomics, Proteomics and Bioinformatics, 2022, 20, 702-714.	6.9	3
253	Occurrence of plant secondary metabolite fingerprints in river waters from Eastern Jutland, Denmark. Environmental Sciences Europe, 2021, 33, .	5.5	14
254	Compound-Target Prediction and Network-Target Analysis on Jamu Formula. Journal of Physics: Conference Series, 2021, 1752, 012028.	0.4	2
255	MassBase: A large-scaled depository of mass spectrometry datasets for metabolome analysis. Plant Biotechnology, 2021, 38, 167-171.	1.0	5

#	Article	IF	Citations
256	Cross-Species Metabolic Profiling of Floral Specialized Metabolism Facilitates Understanding of Evolutional Aspects of Metabolism Among Brassicaceae Species. Frontiers in Plant Science, 2021, 12, 640141.	3.6	1
257	Maize Resistance to Stem Borers Can Be Modulated by Systemic Maize Responses to Long-Term Stem Tunneling. Frontiers in Plant Science, 2020, 11, 627468.	3.6	3
258	Highly Species-Specific Foliar Metabolomes of Diverse Woody Species and Relationships with the Leaf Economics Spectrum. Cells, 2021, 10, 644.	4.1	8
260	A computational workflow for the expansion of heterologous biosynthetic pathways to natural product derivatives. Nature Communications, 2021, 12, 1760.	12.8	40
261	Allelopathic Interactions between Seeds of Portulaca oleracea L. and Crop Species. Applied Sciences (Switzerland), 2021, 11, 3539.	2.5	5
262	TOMATOMET: A metabolome database consists of 7118 accurate mass values detected in mature fruits of 25 tomato cultivars. Plant Direct, 2021, 5, e00318.	1.9	20
263	Acyclic Terpenes Reduce Secondary Organic Aerosol Formation from Emissions of a Riparian Shrub. ACS Earth and Space Chemistry, 2021, 5, 1242-1253.	2.7	5
264	Diversity of Chemical Structures and Biosynthesis of Polyphenols in Nut-Bearing Species. Frontiers in Plant Science, 2021, 12, 642581.	3.6	16
265	Tissue-specific signatures of metabolites and proteins in asparagus roots and exudates. Horticulture Research, 2021, 8, 86.	6.3	21
266	UPLC-TOF-MS/MS-Based Metabolomics Analysis Reveals Species-Specific Metabolite Compositions in Pitchers of Nepenthes ampullaria, Nepenthes rafflesiana, and Their Hybrid Nepenthes × hookeriana. Frontiers in Plant Science, 2021, 12, 655004.	3.6	11
267	Lipidomics-Based Comparison of Molecular Compositions of Green, Yellow, and Red Bell Peppers. Metabolites, 2021, 11, 241.	2.9	13
268	13C NMR Dereplication Using MixONat Software: A Practical Guide to Decipher Natural Products Mixtures. Planta Medica, 2021, 87, 1061-1068.	1.3	7
269	Retrograde sulfur flow from glucosinolates to cysteine in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	60
270	Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nature Methods, 2021, 18, 733-746.	19.0	143
271	Chemotaxonomic investigation of Apocynaceae for retronecine-type pyrrolizidine alkaloids using HPLC-MS/MS. Phytochemistry, 2021, 185, 112662.	2.9	6
272	Polyploidy underlies co-option and diversification of biosynthetic triterpene pathways in the apple tribe. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	37
273	The chromosome-level reference genome of Coptis chinensis provides insights into genomic evolution and berberine biosynthesis. Horticulture Research, 2021, 8, 121.	6.3	25
274	Machine learning models to select potential inhibitors of acetylcholinesterase activity from SistematX: a natural products database. Molecular Diversity, 2021, 25, 1553-1568.	3.9	10

#	Article	IF	CITATIONS
275	Exploring the mechanism of the anti-hypertension properties of Morinda citrifolia through a bioinformatics approach. Kuwait Journal of Science, 2021, 48, .	0.6	0
277	Flavonoids and saponins in plant rhizospheres: roles, dynamics, and the potential for agriculture. Bioscience, Biotechnology and Biochemistry, 2021, 85, 1919-1931.	1.3	24
278	Next-Generation Mass Spectrometry Metabolomics Revives the Functional Analysis of Plant Metabolic Diversity. Annual Review of Plant Biology, 2021, 72, 867-891.	18.7	60
279	MolDiscovery: learning mass spectrometry fragmentation of small molecules. Nature Communications, 2021, 12, 3718.	12.8	44
280	The emerging role of biosynthetic gene clusters in plant defense and plant interactions. PLoS Pathogens, 2021, 17, e1009698.	4.7	70
281	A system biology approach based on metabolic biomarkers and protein–protein interactions for identifying pathways underlying schizophrenia and bipolar disorder. Scientific Reports, 2021, 11, 14450.	3.3	4
282	Caffeoylquinic acids: chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity. Plant Journal, 2021, 107, 1299-1319.	5.7	87
283	<i>In silico</i> analysis of marine natural product from sponge (<i>Clathria</i> Sp.) for their activity as inhibitor of SARS-CoV-2 Main Protease. Journal of Biomolecular Structure and Dynamics, 2022, 40, 11526-11532.	3.5	8
284	Identification of Targeted Proteins by Jamu Formulas for Different Efficacies Using Machine Learning Approach. Life, 2021, 11, 866.	2.4	3
285	Emission of novel volatile biomarkers for wheat powdery mildew. Science of the Total Environment, 2021, 781, 146767.	8.0	8
288	Omics for the Improvement of Abiotic, Biotic, and Agronomic Traits in Major Cereal Crops: Applications, Challenges, and Prospects. Plants, 2021, 10, 1989.	3.5	39
289	Metabolomic Response of the Creeping Wood Sorrel Oxalis corniculata to Low-Dose Radiation Exposure from Fukushima's Contaminated Soil. Life, 2021, 11, 990.	2.4	6
290	Tree species richness differentially affects the chemical composition of leaves, roots and root exudates in four subtropical tree species. Journal of Ecology, 2022, 110, 97-116.	4.0	20
291	Anthocyanins from Pomegranate (<i>Punica granatum</i> L.) and Their Role in Antioxidant Capacities <i>in Vitro</i> . Chemistry and Biodiversity, 2021, 18, e2100399.	2.1	27
292	Faba bean root exudates alter pea root colonization by the oomycete Aphanomyces euteiches at early stages of infection. Plant Science, 2021, 312, 111032.	3.6	6
293	Medicinal and Aromatic Plants Under Abiotic Stress: A Crosstalk on Phytohormones' Perspective., 2021,, 115-132.		11
294	Metabolomics-based analysis of miniature flask contents identifies tobacco mixture use among the ancient Maya. Scientific Reports, 2021, 11, 1590.	3.3	13
295	Metabolomics and complementary techniques to investigate the plant phytochemical cosmos. Natural Product Reports, 2021, 38, 1729-1759.	10.3	46

#	ARTICLE	IF	Citations
296	Defense mechanisms involving secondary metabolism in the grass family. Journal of Pesticide Sciences, 2021, 46, 382-392.	1.4	7
297	A practical guide to implementing metabolomics in plant ecology and biodiversity research. Advances in Botanical Research, 2021, , 163-203.	1.1	17
298	Metabolic analysis of unripe papaya (<i>Carica papaya</i> L.) to promote its utilization as a functional food. Bioscience, Biotechnology and Biochemistry, 2021, 85, 1194-1204.	1.3	8
299	Untargeted Metabolomics of Arabidopsis Stomatal Immunity. Methods in Molecular Biology, 2021, 2200, 413-424.	0.9	5
300	Open-Source Software Tools, Databases, and Resources for Single-Cell and Single-Cell-Type Metabolomics. Methods in Molecular Biology, 2020, 2064, 191-217.	0.9	11
301	Resources for Chemical, Biological, and Structural Data on Natural Products. Progress in the Chemistry of Organic Natural Products, 2019, 110, 37-71.	1.1	6
302	Tapping the Potential of Metabolomics in New Natural Products Discovery from Bacillus Species. Bacilli in Climate Resilient Agriculture and Bioprospecting, 2019, , 201-215.	1,2	2
303	Metabolomic Approaches in Plant Research. , 2019, , 109-140.		2
304	Bioinformatics and Medicinal Plant Research: Current Scenario., 2019,, 141-157.		1
305	Stress Management: Sustainable Approach Towards Resilient Agriculture. , 2019, , 231-270.		2
306	Modern Plant Metabolomics for the Discovery and Characterization of Natural Products and Their Biosynthetic Genes. , 2020, , 156-188.		1
307	A noncanonical vacuolar sugar transferase required for biosynthesis of antimicrobial defense compounds in oat. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 27105-27114.	7.1	27
308	Identification of afzelin potential targets in inhibiting triple-negative breast cancer cell migration using reverse docking. Porto Biomedical Journal, 2020, 5, e095.	1.0	9
312	Target screening of plant secondary metabolites in river waters by liquid chromatography coupled to high-resolution mass spectrometry (LC–HRMS). Environmental Sciences Europe, 2020, 32, .	5.5	12
313	Non-target screening for detecting the occurrence of plant metabolites in river waters. Environmental Sciences Europe, 2020, 32, .	5 . 5	9
314	The future of metabolomics in ELIXIR. F1000Research, 2017, 6, 1649.	1.6	19
315	The future of metabolomics in ELIXIR. F1000Research, 2017, 6, 1649.	1.6	11
316	An Updated Snapshot of Recent Advances in Transcriptomics and Genomics of Phytomedicinals. Postdoc Journal, 2014, 2, .	0.4	4

#	Article	IF	CITATIONS
317	Computer-Assisted Drug Virtual Screening Based on the Natural Product Databases. Current Pharmaceutical Biotechnology, 2019, 20, 293-301.	1.6	13
318	Phytochemical characterization of Tabernanthe iboga root bark and its effects on dysfunctional metabolism and cognitive performance in high-fat-fed C57BL/6J mice. Journal of Food Bioactives: an Official Scientific Publication of the International Society of Nutraceuticals and Functional Foods (ISNFF), 2018, 3, 111-123.	2.4	9
319	Activity Prediction of Bioactive Compounds Contained in Etlingera elatior Against the SARS-CoV-2 Main Protease: An In Silico Approach. Borneo Journal of Pharmacy, 2020, 3, 235-242.	0.2	4
320	Exploration of phytochemicals found in <i>Terminalia </i> Pharmacognosy Reviews, 2016, 10, 73.	1.2	27
321	Virtual Screening of Indonesian Herbal Database as HIV-1 Protease Inhibitor. Bioinformation, 2014, 10, 52-55.	0.5	12
322	Virtual screening of Indonesian herbal database as HIV-1 reverse transcriptase inhibitor. Bioinformation, 2012, 8, 1206-1210.	0.5	16
323	Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway. ELife, $2017, 6, .$	6.0	84
324	NP-MRD: the Natural Products Magnetic Resonance Database. Nucleic Acids Research, 2022, 50, D665-D677.	14.5	39
325	Current status of structure-based drug repurposing against COVID-19 by targeting SARS-CoV-2 proteins. Biophysics and Physicobiology, 2021, 18, 226-240.	1.0	6
326	Defense-related phenylpropanoid biosynthetic gene clusters in rice. Science Bulletin, 2022, 67, 13-16.	9.0	4
327	Cheminformatics modeling of the correlation between Bupleurum Root-formula medicines and Excess and Deficiency pattern in the diagnostic criteria of Sho in Kampo (traditional Japanese medicine) by non-targeted direct infusion mass spectrometry with machine learning. Journal of Natural Medicines, 2022, 76, 306-313.	2.3	0
328	Triterpenoid and Steroidal Saponins Differentially Influence Soil Bacterial Genera. Plants, 2021, 10, 2189.	3.5	12
329	Analisis Gerombol Simultan dan Jejaring Farmakologi antara Senyawa dengan Protein Target pada Penentuan Senyawa Aktif Jamu Anti Diabetes Tipe 2. Jurnal Jamu Indonesia, 2016, 1, 30-40.	0.1	0
331	Data Intensive Study of Accessibility of Edible Species and Healthcare Across the Globe. Japanese Journal of Complementary and Alternative Medicine, 2018, 15, 37-60.	1.0	2
332	Development of NTG–Activity Dictionary Tool forBio-Organic Compounds. Journal of Computer Chemistry Japan, 2018, 17, 163-171.	0.1	0
335	Metabolite-Content-Guided Prediction of Medicinal/Edible Properties in Plants for Bioprospecting. Current Research in Complementary & Alternative Medicine, 2018, 3, .	0.0	0
336	Metabolic profiling of Solanum villosum Mill subsp. miniatum (bernh. ex willd.): Hepatoprotective and antifibrotic activity in a rat model of liver fibrosis. Pharmacognosy Magazine, 2019, 15, 659.	0.6	3
337	Plant Metabolomics: Sustainable Approach Towards Crop Productivity. , 2019, , 51-70.		0

#	Article	IF	CITATIONS
338	Food Metabolome Repository: a New Database for Identification of Unknown Compounds in Food Metabolome Analyses. Oleoscience, 2019, 19, 59-65.	0.0	0
339	Computational Drug Design against Ebola Virus Targeting Viral Matrix Protein VP30. Borneo Journal of Pharmacy, 2019, 2, 71-81.	0.2	0
340	Top-Down Metabolomics Approaches: Nitrogen- and Sulfur-Omics by Ultrahigh-Resolution Fourier Transform Ion Cyclotron Resonance-Mass Spectrometry. , 2020, , 138-155.		0
341	Cyclea barbata Miers Ethanol Extract and Coclaurine Induce Estrogen Receptor α in the Development of Follicle Pre-ovulation. Open Access Macedonian Journal of Medical Sciences, 2020, 8, 434-440.	0.2	2
343	Applications of Network Clustering in Natural Product Research. , 2020, , 239-270.		0
344	Structure Design and Establishment of Database Application System for Miao Medicinal Plants in Guizhou Province, China., 2020, , 125-134.		0
345	Databases for Natural Product Research. , 2020, , 222-238.		2
346	Metabolome analysis using multiple data mining approaches suggests luteolin biosynthesis in <i>Physcomitrella patens</i> . Plant Biotechnology, 2020, 37, 377-381.	1.0	4
348	Glycosylation of plant secondary metabolites: Regulating from chaos to harmony. Environmental and Experimental Botany, 2022, 194, 104703.	4.2	20
349	Defective cytokinin signaling reprograms lipid and flavonoid gene-to-metabolite networks to mitigate high salinity in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
350	Evaluating cepharanthine analogues as natural drugs against SARSâ€CoVâ€2. FEBS Open Bio, 2022, 12, 285-294.	2.3	20
351	Using interdisciplinary, phylogeny-guided approaches to understand the evolution of plant metabolism. Plant Molecular Biology, 2021, , 1.	3.9	7
352	Opportunities in phytochemistry, ecophysiology and wood research via laser ablation direct analysis in real time imagingâ€mass spectrometry. New Phytologist, 2022, 234, 319-331.	7.3	4
354	Energy-Based Pharmacophore Hypothesis Combined with Molecular Simulation Protocol for the Screening of Bioactive Compounds from the Class of Actinobacteria. Springer Protocols, 2022, , 293-306.	0.3	0
355	Prediction of Therapeutic Usage of Jamu Based on the Composition of Metabolites using Convolutional Neural Network. , 2020, , .		0
356	Metabolomic Profiles of the Creeping Wood Sorrel Oxalis corniculata in Radioactively Contaminated Fields in Fukushima: Dose-Dependent Changes in Key Metabolites. Life, 2022, 12, 115.	2.4	5
357	Illuminating the lineage-specific diversification of resin glycoside acylsugars in the morning glory (Convolvulaceae) family using computational metabolomics. Horticulture Research, 2022, 9, .	6.3	7
358	A Novel Plant-Derived Choline Transporter-like Protein 1 Inhibitor, Amb544925, Induces Apoptotic Cell Death via the Ceramide/Survivin Pathway in Tongue Squamous Cell Carcinoma. Cancers, 2022, 14, 329.	3.7	7

#	Article	IF	CITATIONS
359	Multi-Omics-Based Discovery of Plant Signaling Molecules. Metabolites, 2022, 12, 76.	2.9	11
360	Pharmacophore-Based Hypothesis Combined with Molecular Docking Protocol for the Screening of Anticancer Compounds from Streptomyces sp Springer Protocols, 2022, , 319-333.	0.3	O
361	Computational gastronomy: A data science approach to food. Journal of Biosciences, 2022, 47, 1.	1.1	3
362	Recent applications of metabolomics in plant breeding. Breeding Science, 2022, 72, .	1.9	11
363	Expansion of the composition library for chemodiversity of hardwood extractives at molecular level by ultrahigh-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 2022, 414, 2687.	3.7	0
364	The Contribution of Metabolomics to Systems Biology: Current Applications Bridging Genotype and Phenotype in Plant Science. Advances in Experimental Medicine and Biology, 2021, 1346, 91-105.	1.6	0
365	Chemical Constituents from the Butanol Fraction of Clinacanthus nutans Leaves. Chemistry of Natural Compounds, 2022, 58, 167-171.	0.8	0
366	Fruity, sticky, stinky, spicy, bitter, addictive, and deadly: evolutionary signatures of metabolic complexity in the Solanaceae. Natural Product Reports, 2022, 39, 1438-1464.	10.3	12
367	Diversification of Chemical Structures of Methoxylated Flavonoids and Genes Encoding Flavonoid-O-Methyltransferases. Plants, 2022, 11, 564.	3.5	11
368	The impact of chitosan on the early metabolomic response of wheat to infection by Fusarium graminearum. BMC Plant Biology, 2022, 22, 73.	3.6	12
369	Tracking metabolites at single-cell resolution reveals metabolic dynamics during plant mitosis. Plant Physiology, 2022, , .	4.8	3
370	Mass spectrometryâ€based metabolomic analysis as a tool for quality control of natural complex products. Mass Spectrometry Reviews, 2023, 42, 1358-1396.	5.4	9
371	Biochemistry and Molecular Basis of Intracellular Flavonoid Transport in Plants. Plants, 2022, 11, 963.	3.5	23
372	Screening of Potential Indonesia Herbal Compounds Based on Multi-Label Classification for 2019 Coronavirus Disease. Big Data and Cognitive Computing, 2021, 5, 75.	4.7	2
373	Integrated view of plant metabolic defense with particular focus on chewing herbivores. Journal of Integrative Plant Biology, 2022, 64, 449-475.	8.5	18
374	Development of RIKEN Plant Metabolome MetaDatabase. Plant and Cell Physiology, 2022, 63, 433-440.	3.1	6
375	Phytochemical Investigation and Reproductive Capacity of the Bulgarian Endemic Plant Species Marrubium friwaldskyanum Boiss. (Lamiaceae). Plants, 2022, 11, 114.	3.5	8
376	Selection for seed size has uneven effects on specialized metabolite abundance in oat (<i>Avena) Tj ETQq1 1 0.7</i>	'84314 rgl	BT JOverlock

#	ARTICLE	IF	CITATIONS
377	Identification of Novel Natural Product Inhibitors against Matrix Metalloproteinase 9 Using Quantum Mechanical Fragment Molecular Orbital-Based Virtual Screening Methods. International Journal of Molecular Sciences, 2022, 23, 4438.	4.1	7
378	There and back again; historical perspective and future directions for <i>Vaccinium</i> breeding and research studies. Horticulture Research, 2022, 9, .	6.3	27
379	foodMASST a mass spectrometry search tool for foods and beverages. Npj Science of Food, 2022, 6, 22.	5.5	9
380	In Silico Screening of Natural Compounds for Candidates 5HT6 Receptor Antagonists against Alzheimer's Disease. Molecules, 2022, 27, 2626.	3.8	4
411	Generalizable approaches for genomic prediction of metabolites in plants. Plant Genome, 2022, 15, e20205.	2.8	8
412	Explore the RNA-sequencing and the next-generation sequencing in crops responding to abiotic stress. , 2022, , 161-175.		O
413	Integrated Transcriptomic and Metabolomic Analyses Reveal the Mechanisms Underlying Anthocyanin Coloration and Aroma Formation in Purple Fennel. Frontiers in Nutrition, 2022, 9, 875360.	3.7	2
414	A Comparative Study of Flavonoids and Carotenoids Revealed Metabolite Responses for Various Flower Colorations Between Nicotiana tabacum L. and Nicotiana rustica L Frontiers in Plant Science, 2022, 13, 828042.	3.6	6
415	Differential Accumulation of Metabolites and Transcripts Related to Flavonoid, Styrylpyrone, and Galactolipid Biosynthesis in Equisetum Species and Tissue Types. Metabolites, 2022, 12, 403.	2.9	3
416	The LOTUS initiative for open knowledge management in natural products research. ELife, 0, 11 , .	6.0	90
417	ãfēfªãf•ã,§ãfŽãf¼ãf«ãf‡ãf¼ã,¿ãf™ãf¼ã,¹ã,'作ã,‹. Kagaku To Seibutsu, 2021, 59, 298-305.	0.0	0
419	IMPDB: Indian Medicinal Phytochemical Database Curated for Drug Designing. Journal of Computational Biophysics and Chemistry, 0, , .	1.7	1
420	Untargeted metabolomics study and identification of potential biomarkers in the six sections of the genus <i>Stachys</i> L. (Lamiaceae) using HPLCâ€MQâ€APIâ€MS/MS. Phytochemical Analysis, 2022, 33, 915-94.	2. ^{2.4}	3
422	Plant Flavonoids as Potential Natural Antioxidants in Phytocosmetics. , 2022, , 86-93.		2
424	Orthologyâ€based analysis helps map evolutionary diversification and predict substrate class use of <scp>BAHD</scp> acyltransferases. Plant Journal, 2022, 111, 1453-1468.	5.7	10
425	Chromosome-level assembly and analysis of the Thymus genome provide insights into glandular secretory trichome formation and monoterpenoid biosynthesis in thyme. Plant Communications, 2022, 3, 100413.	7.7	20
426	Relationship Between Phylogenetic of Apium and Foeniculum Plants from Central Java, Indonesia, and Their Secondary Metabolites Potency against COVID-19 Protease. Open Access Macedonian Journal of Medical Sciences, 2022, 10, 1234-1241.	0.2	0
427	Functional characterization of nutraceuticals using spectral clustering: Centrality of caveolae-mediated endocytosis for management of nitric oxide and vitamin D deficiencies and atherosclerosis. Frontiers in Nutrition, $0, 9, .$	3.7	1

#	ARTICLE	IF	CITATIONS
428	Metabolomic Analysis Revealed Distinct Physiological Responses of Leaves and Roots to Huanglongbing in a Citrus Rootstock. International Journal of Molecular Sciences, 2022, 23, 9242.	4.1	6
429	Metabolomics in antimicrobial drug discovery. Expert Opinion on Drug Discovery, 2022, 17, 1047-1059.	5.0	7
430	Glycoside-specific metabolomics combined with precursor isotopic labeling for characterizing plant glycosyltransferases. Molecular Plant, 2022, 15, 1517-1532.	8.3	21
431	Bipartite graph search optimization for type II diabetes mellitus Jamu formulation using branch and bound algorithm. Frontiers in Pharmacology, 0, 13, .	3.5	0
432	A liquid chromatography-mass spectrometry-based metabolomics strategy to explore plant metabolic diversity. Methods in Enzymology, 2022, , .	1.0	1
433	Metabolite fingerprinting: A powerful metabolomics approach for marker identification and functional gene annotation. Methods in Enzymology, 2022, , .	1.0	2
434	Application of "omics―in banana improvement. , 2022, , 165-191.		0
435	Fecal Metabolites as Biomarkers for Predicting Food Intake by Healthy Adults. Journal of Nutrition, 2022, 152, 2956-2965.	2.9	8
436	Innovative Application of Metabolomics on Bioactive Ingredients of Foods. Foods, 2022, 11, 2974.	4.3	3
437	Targeted and Untargeted Metabolomic Analyses Reveal Organ Specificity of Specialized Metabolites in the Model Grass Brachypodium distachyon. Molecules, 2022, 27, 5956.	3.8	1
438	Prediction of Potential Natural Antibiotics Plants Based on Jamu Formula Using Random Forest Classifier. Antibiotics, 2022, 11, 1199.	3.7	5
439	Recent Green Technologies in Natural Stilbenoids Production and Extraction: The Next Chapter in the Cosmetic Industry. Cosmetics, 2022, 9, 91.	3.3	4
440	A Potential Anticancer Mechanism of Finger Root (Boesenbergia rotunda) Extracts against a Breast Cancer Cell Line. Scientifica, 2022, 2022, 1-17.	1.7	5
441	Metabolomics: Going Deeper, Going Broader, Going Further. Methods in Molecular Biology, 2023, , 155-178.	0.9	8
442	Databases and Tools to Investigate Protein-Metabolite Interactions. Methods in Molecular Biology, 2023, , 231-249.	0.9	0
443	Metabolomic studies of anthocyanins in fruits by means of a liquid chromatography coupled to mass spectrometry workflow. Current Plant Biology, 2022, 32, 100260.	4.7	5
444	Metabolomic Aspects of Conservative and Resistance-Related Elements of Response to Fusarium culmorum in the Grass Family. Cells, 2022, 11, 3213.	4.1	2
445	Hopomics: Humulus lupulus Brewing Cultivars Classification Based on LC-MS Profiling and Nested Feature Selection. Metabolites, 2022, 12, 945.	2.9	1

#	Article	IF	CITATIONS
446	Understanding the Complex Functional Interplay between Glucosinolates and Cyanogenic Glycosides in Carica papaya. Agronomy, 2022, 12, 2508.	3.0	2
447	Diversity and divergence: evolution of secondary metabolism in the tropical tree genus <i>Inga</i> New Phytologist, 2023, 237, 631-642.	7.3	10
448	Network pharmacology to uncover potential anti-inflammatory and immunomodulatory constituents in Curcuma longa rhizome as complementary treatment in COVID-19. Pharmacia, 2022, 69, 995-1003.	1.2	1
449	Identification of a Fatty Acid for Diagnosing Non-Alcoholic Steatohepatitis in Patients with Severe Obesity Undergoing Metabolic Surgery. Biomedicines, 2022, 10, 2920.	3.2	2
450	Chemoinformatics-driven classification of Angiosperms using sulfur-containing compounds and machine learning algorithm. Plant Methods, 2022, 18, .	4.3	3
451	Flavor Profiling Using Comprehensive Mass Spectrometry Analysis of Metabolites in Tomato Soups. Metabolites, 2022, 12, 1194.	2.9	2
452	The Thing Metabolome RepositoryÂfamily (XMRs): comparable untargeted metabolome databases for analyzing sample-specific unknown metabolites. Nucleic Acids Research, 2023, 51, D660-D677.	14.5	1
453	Prediction of Potential Natural Antibiotics based on Jamu Formula Using Machine Learning Approach. , 2022, , .		0
455	Plant Metabolomics: The Great Potential of Plant Metabolomics in Big Data Biology. , 2022, , 50-66.		0
456	Application of Transcriptomics in Exploring Important Genes in Medicinal Plants., 2022,, 263-284.		1
457	Molecular Modelling and Docking Simulation for Unravelling Medicinal Properties of Soor and Pakhoi, the Lesser-Known Traditional Drinks of Himalayas. Lecture Notes in Networks and Systems, 2022, , 253-262.	0.7	0
458	Metabolomics of Important Medicinal Plants. , 2022, , 285-317.		0
459	Multifaceted Pharmacological Potentials of Curcumin, Genistein, and Tanshinone IIA through Proteomic Approaches: An In-Depth Review. Cancers, 2023, 15, 249.	3.7	7
460	THE POTENTIAL OF LANGIR (ALBIZIA SAPONARIA LOUR.) STEM BARK AS ANTI-DANDRUFF: IN SILICO AND IN VITRO STUDIES. International Journal of Applied Pharmaceutics, 0, , 154-161.	0.3	0
461	Apoplast-Localized Î ² -Glucosidase Elevates Isoflavone Accumulation in the Soybean Rhizosphere. Plant and Cell Physiology, 2023, 64, 486-500.	3.1	3
462	Omics Profiles of Non-GM Tubers from Transgrafted Potato with a GM Scion. Food Safety (Tokyo,) Tj $ETQq1\ 1\ 0.3$	784314 rg 1.8	BT ₂ /Overlock
463	A machine learning-integrated stepwise method to discover novel anti-obesity phytochemicals that antagonize the glucocorticoid receptor. Food and Function, 2023, 14, 1869-1883.	4.6	3
464	Phytochemical Databases and their Relevance to Phytotherapy. , 2023, , 128-156.		0

#	Article	IF	Citations
465	Chemo-structural diversity of anti-obesity compound database. Journal of Molecular Graphics and Modelling, 2023, 120, 108414.	2.4	1
466	Molecular Docking and Dynamics Simulation Studies Predict Potential Anti-ADAR2 Inhibitors: Implications for the Treatment of Cancer, Neurological, Immunological and Infectious Diseases. International Journal of Molecular Sciences, 2023, 24, 6795.	4.1	6
467	First study on the root endophytic fungus Trichoderma hamatum as an entomopathogen: Development of a fungal bioinsecticide against cotton leafworm (Spodoptera littoralis). Microbiological Research, 2023, 270, 127334.	5.3	3
468	Soil salinity determines the assembly of endophytic bacterial communities in the roots but not leaves of halophytes in a river delta ecosystem. Geoderma, 2023, 433, 116447.	5.1	7
469	The chromosome-level genome of double-petal phenotype jasmine provides insights into the biosynthesis of floral scent. Horticultural Plant Journal, 2024, 10, 259-272.	5.0	1
470	Emergence of Phytochemical Genomics: Integration of Multi-Omics Approaches for Understanding Genomic Basis of Phytochemicals. , 2022, , 219-261.		0
471	Genetic and epigenetic control of the plant metabolome. Proteomics, 0, , 2200104.	2.2	3
473	Engineering the plant metabolic system by exploiting metabolic regulation. Plant Journal, 2023, 114, 1149-1163.	5.7	3
474	Identification of circular RNAs of Cannabis sativa L. potentially involved in the biosynthesis of cannabinoids. Planta, 2023, 257, .	3.2	0
475	Predicting the Potency of Bioactive Compounds in Murraya paniculata as an Antiaging Agent: Collagenase Inhibition by Molecular Docking and Antioxidant Activity Assessment., 2023,, 266-277.		0
476	Information theory and machine learning illuminate largeâ€scale metabolomic responses of <i>Brachypodium distachyon</i> to environmental change. Plant Journal, 0, , .	5.7	1
477	Comparative metabolomics analysis reveals alkaloid repertoires in young and mature Mitragyna speciosa (Korth.) Havil. Leaves. PLoS ONE, 2023, 18, e0283147.	2.5	2
478	Welcome to the machine: how machine learning identified metabolomic changes in <i>Brachypodium distachyon</i> under stress. Plant Journal, 2023, 114, 461-462.	5.7	0
480	Letter to the Editor: Gromwell, a Purple Link between Traditional Japanese Culture and Plant Science. Plant and Cell Physiology, 2023, 64, 567-570.	3.1	2
481	Machine learning enhances prediction of plants as potential sources of antimalarials. Frontiers in Plant Science, $0,14,.$	3.6	3
482	A comprehensive metabolomics and lipidomics atlas for the legumes common bean, chickpea, lentil and lupin. Plant Journal, 2023, 116, 1152-1171.	5.7	6
483	Network pharmacology-based screening of active constituents of <i>Avicennia marina</i> and their clinical biochemistry related mechanism against breast cancer. Journal of Biomolecular Structure and Dynamics, 0 , 1 -16.	3.5	0
484	Ecology of Plant Anti-herbivore Defenses. , 2024, , 52-62.		0

#	Article	IF	CITATIONS
485	Phytochemistry, Pharmacology and Mode of Action of the Anti-Bacterial Artemisia Plants. Bioengineering, 2023, 10, 633.	3.5	2
486	The Growth Characteristics and the Active Compounds of Cudrania tricuspidata Fruits in Different Cultivation Environments in South Korea. Plants, 2023, 12, 2107.	3.5	2
487	Exploring the Evolvability ofÂPlant Specialized Metabolism: Uniqueness Out OfÂUniformity andÂUniqueness Behind Uniformity. Plant and Cell Physiology, 0, , .	3.1	1
488	Computer Science Technology in Natural Products Research: A Review of Its Applications and Implications. Chemical and Pharmaceutical Bulletin, 2023, 71, 486-494.	1.3	1
490	In silico ADMET, toxicological analysis, molecular docking studies and Molecular dynamics simulation of Afzelin with potential antibacterial effects against Staphylococcus aureus. Turkish Computational and Theoretical Chemistry, 2023, 7, 10-16.	0.5	0
491	Network pharmacology, molecular docking, and molecular dynamics simulation to elucidate the mechanism of anti-aging action of Tinospora cordifolia. Molecular Diversity, 0, , .	3.9	4
492	Influences of chemotype and parental genotype on metabolic fingerprints of tansy plants uncovered by predictive metabolomics. Scientific Reports, 2023, 13, .	3.3	5
493	Modern drug discovery using ethnobotany: A large-scale cross-cultural analysis of traditional medicine reveals common therapeutic uses. IScience, 2023, 26, 107729.	4.1	3
494	Innovative extraction technologies of bioactive compounds from plant by-products for textile colorants and antimicrobial agents. Biomass Conversion and Biorefinery, 0, , .	4.6	5
495	Multi-omics Analyses of Non-GM Tomato Scion Engrafted on GM Rootstocks. Food Safety (Tokyo,) Tj ETQq1 1 0.	784314 rş	gBŢ/Overloc
496	Comparison of Growth Characteristics and Active Compounds of Cultivated Hovenia dulcis under Different Environments in South Korea. Diversity, 2023, 15, 905.	1.7	0
497	Towards the development of analytical monograph specifications for the quality assessment of the medicinal plant Phyllanthus urinaria. Phytochemistry, 2023, 215, 113854.	2.9	0
498	PMhub 1.0: a comprehensive plant metabolome database. Nucleic Acids Research, 0, , .	14.5	1
499	Afzelin induces immunogenic cell death against lung cancer by targeting NQO2. BMC Complementary Medicine and Therapies, 2023, 23, .	2.7	0
500	Systemic biochemical changes in pepper (Capsicum annuum L.) against Rhizoctonia solani by kale (Brassica oleracea var. acephala L.) green manure application. BMC Plant Biology, 2023, 23, .	3.6	0
501	Exploring the known chemical space of the plant kingdom: insights into taxonomic patterns, knowledge gaps, and bioactive regions. Journal of Cheminformatics, 2023, 15, .	6.1	2
502	Stressing the importance of plant specialized metabolites: omics-based approaches for discovering specialized metabolism in plant stress responses. Frontiers in Plant Science, 0, 14, .	3.6	0
503	RefMetaPlant: a reference metabolome database for plants across five major phyla. Nucleic Acids Research, 0, , .	14.5	1

#	Article	IF	CITATIONS
504	Network Science and Machine Learning for Precision Nutrition., 2024,, 367-402.		0
505	Chemical-tag-based semi-annotated metabolomics facilitates gene identification and specialized metabolic pathway elucidation in wheat. Plant Cell, 2024, 36, 540-558.	6.6	0
506	Phytochemical and biological investigations on Centranthus kellereri (Stoj., Stef. & S	2.5	1
508	A Metabolites Merging Strategy (MMS): Harmonization to Enable Studies' Intercomparison. Metabolites, 2023, 13, 1167.	2.9	1
509	Untargeted metabolite profiling: A comprehensive study using data analysis workflow in Salvia L. species (Lamiaceae). South African Journal of Botany, 2024, 165, 101-125.	2.5	0
511	Chemical Composition of Commercial Cannabis. Journal of Agricultural and Food Chemistry, 0, , .	5.2	0
512	Comparative Analysis of Shikonin and Alkannin Acyltransferases Reveals Their Functional Conservation in Boraginaceae. Plant and Cell Physiology, 2024, 65, 362-371.	3.1	0
513	Targeting EGFR allosteric site with marine-natural products of Clathria Sp.: A computational approach. Current Research in Structural Biology, 2024, 7, 100125.	2.2	0
514	Big Data Application in Herbal Medicine: The Need for a Consolidated Database. Reference Series in Phytochemistry, 2023, , 1-26.	0.4	0
515	Essentials in the acquisition, interpretation, and reporting of plant metabolite profiles. Phytochemistry, 2024, 220, 114004.	2.9	0
516	Male dingo urinary scents code for age class and wild dingoes respond to this information. Chemical Senses, 2024, 49, .	2.0	0
517	Molecular Graph Indexes for Assessing Heterogeneity of Chemical Compounds. Journal of Computer Aided Chemistry, 2023, 23, 50-59.	0.3	0
518	Classification of metabolites by metabolic pathways concerning terpenoids, phenylpropanoids, and polyketide compounds based on machine learning. Journal of Computer Aided Chemistry, 2023, 23, 25-34.	0.3	0
519	A widely targeted metabolite modificomics strategy for modified metabolites identification in tomato. Journal of Integrative Plant Biology, 2024, 66, 810-823.	8.5	0
520	Elucidating the Role of Flavonoids in Countering the Effect of Biotic Stress in Plants., 2024, , 121-148.		0
521	Secondary Metabolites Identification Techniques of the Current Era. Reference Series in Phytochemistry, 2024, , 1-41.	0.4	0
523	Application of computation in the study of biosynthesis of phytochemicals., 2024,, 321-355.		0
524	Exploring the therapeutic mechanism of potential phytocompounds from Kalanchoe pinnata in the treatment of diabetes mellitus by integrating network pharmacology, molecular docking and simulation approach. Saudi Pharmaceutical Journal, 2024, 32, 102026.	2.7	0

#	Article	IF	CITATIONS
526	Plant Engineering to Enable Platforms for Sustainable Bioproduction of Terpenoids. Methods in Molecular Biology, 2024, , 3-20.	0.9	0
527	EXPLORATION OF THE ACTIVE COMPOUNDS OF MORINGA OLEIFERA LAM AS HIV-1 REVERSE TRANSCRIPTASE INHIBITOR: A NETWORK PHARMACOLOGY AND MOLECULAR DOCKING APPROACH. International Journal of Applied Pharmaceutics, 0, , 237-246.	0.3	0
528	CRISPR applications in medicinal and aromatic plants. , 2024, , 365-380.		0
529	Evaluation of Phytochemical Constituents and Elemental Profiling of Selected Medicinal Plants in South-West, Nigeria. Asian Journal of Biological Sciences, 2024, 17, 145-155.	0.2	0