Roughness correction to the Casimir force at short sepa extreme value statistics

Physical Review B 85, DOI: 10.1103/physrevb.85.155410

Citation Report

#	Article	IF	CITATIONS
1	Geometry and charge carrier induced stability in Casimir actuated nanodevices. European Physical Journal B, 2013, 86, 1.	1.5	19
2	Significance of the Casimir force and surface roughness for actuation dynamics of MEMS. Physical Review B, 2013, 87, .	3.2	48
3	Interplay of roughness/modulation and curvature for surface interactions at proximity. Europhysics Letters, 2013, 104, 41001.	2.0	20
4	Locality of surface interactions on colloidal probes. Physical Review B, 2013, 88, .	3.2	7
5	Perturbative roughness corrections to electromagnetic Casimir energies. Physical Review D, 2014, 89, .	4.7	6
6	Surface forces: Surface roughness in theory and experiment. Journal of Chemical Physics, 2014, 140, 164701.	3.0	60
7	Derivation of the Lifshitz-Matsubara sum formula for the Casimir pressure between metallic plane mirrors. Physical Review E, 2014, 90, 042125.	2.1	18
8	Casimir force between liquid metals. Europhysics Letters, 2014, 107, 40004.	2.0	5
9	Casimir forces from conductive silicon carbide surfaces. Physical Review B, 2014, 89, .	3.2	37
10	Nonlinear Actuation Dynamics of Driven Casimir Oscillators with Rough Surfaces. Physical Review Applied, 2015, 4, .	3.8	43
11	Increased porosity turns desorption to adsorption for gas bubbles near water-SiO2interface. Physical Review B, 2015, 91, .	3.2	3
12	Quantum vacuum photon modes and repulsive Lifshitz–van der Waals interactions. Physical Review B, 2015, 92, .	3.2	4
13	Nanolevitation Phenomena in Real Plane-Parallel Systems Due to the Balance between Casimir and Gravity Forces. Journal of Physical Chemistry C, 2015, 119, 5663-5670.	3.1	21
14	Influence of surface roughness on dispersion forces. Advances in Colloid and Interface Science, 2015, 216, 1-19.	14.7	47
15	Classical and fluctuationâ€induced electromagnetic interactions in micronâ€scale systems: designer bonding, antibonding, and Casimir forces. Annalen Der Physik, 2015, 527, 45-80.	2.4	45
16	Casimir force measurements from silicon carbide surfaces. Physical Review B, 2016, 93, .	3.2	47
17	Materials perspective on Casimir and van der Waals interactions. Reviews of Modern Physics, 2016, 88,	45.6	276
18	Giant heat transfer in the crossover regime between conduction and radiation. Nature Communications, 2017, 8, .	12.8	121

CITATION REPORT

#	Article	IF	CITATIONS
19	Effect of surface roughness on van der Waals and Casimir-Polder/Casimir attraction energies. Surface Science, 2017, 663, 88-99.	1.9	2
20	Global consequences of a local Casimir force: Adhered cantilever. Applied Physics Letters, 2017, 111, .	3.3	12
21	Status Report and first Light from Cannex: Casimir Force Measurements between flat parallel Plates. Journal of Physics: Conference Series, 2018, 1138, 012014.	0.4	18
22	Measurement of the Casimir force in a gas and in a liquid. Physical Review B, 2018, 98, .	3.2	14
23	Sensitivity and accuracy of Casimir force measurements in air. Physical Review A, 2019, 100, .	2.5	7
24	Examining the Casimir puzzle with an upgraded AFM-based technique and advanced surface cleaning. Physical Review B, 2019, 100, .	3.2	36
25	Building a Casimir metrology platform with a commercial MEMS sensor. Microsystems and Nanoengineering, 2019, 5, 14.	7.0	25
26	Trapping of Gas Bubbles in Water at a Finite Distance below a Water–Solid Interface. Langmuir, 2019, 35, 4218-4223.	3.5	5
27	Statistics of the separation between sliding rigid rough surfaces: Simulations and extreme value theory approach. Physical Review E, 2019, 99, 023004.	2.1	6
28	A new DLVO-R theory. , 2019, , 129-147.		0
28 29	A new DLVO-R theory. , 2019, , 129-147. Comparison of Casimir forces and electrostatics from conductive SiC-Si/C and Ru surfaces. Physical Review B, 2019, 100, .	3.2	0
	Comparison of Casimir forces and electrostatics from conductive SiC-Si/C and Ru surfaces. Physical	3.2 2.5	
29	Comparison of Casimir forces and electrostatics from conductive SiC-Si/C and Ru surfaces. Physical Review B, 2019, 100, . Precision measurements of the gradient of the Casimir force between ultraclean metallic surfaces at		6
29 30	Comparison of Casimir forces and electrostatics from conductive SiC-Si/C and Ru surfaces. Physical Review B, 2019, 100, . Precision measurements of the gradient of the Casimir force between ultraclean metallic surfaces at larger separations. Physical Review A, 2019, 100, .	2.5	6 35
29 30 31	Comparison of Casimir forces and electrostatics from conductive SiC-Si/C and Ru surfaces. Physical Review B, 2019, 100, . Precision measurements of the gradient of the Casimir force between ultraclean metallic surfaces at larger separations. Physical Review A, 2019, 100, . Applications of Casimir forces: Nanoscale actuation and adhesion. Applied Physics Letters, 2020, 117, . Measuring the Dispersion Forces Near the van der Waals–Casimir Transition. Physical Review Applied,	2.5 3.3	6 35 15
29 30 31 32	Comparison of Casimir forces and electrostatics from conductive SiC-Si/C and Ru surfaces. Physical Review B, 2019, 100, . Precision measurements of the gradient of the Casimir force between ultraclean metallic surfaces at larger separations. Physical Review A, 2019, 100, . Applications of Casimir forces: Nanoscale actuation and adhesion. Applied Physics Letters, 2020, 117, . Measuring the Dispersion Forces Near the van der Waals–Casimir Transition. Physical Review Applied, 2020, 13, . Adhered cantilevers: A new method to measure dispersion forces between rough surfaces at short	2.5 3.3 3.8	6 35 15 14
29 30 31 32 33	Comparison of Casimir forces and electrostatics from conductive SiC-Si/C and Ru surfaces. Physical Review B, 2019, 100, . Precision measurements of the gradient of the Casimir force between ultraclean metallic surfaces at larger separations. Physical Review A, 2019, 100, . Applications of Casimir forces: Nanoscale actuation and adhesion. Applied Physics Letters, 2020, 117, . Measuring the Dispersion Forces Near the van der Waalsâ& Casimir Transition. Physical Review Applied, 2020, 13, . Adhered cantilevers: A new method to measure dispersion forces between rough surfaces at short distances. Modern Physics Letters A, 2020, 35, 2040014.	2.5 3.3 3.8 1.2	6 35 15 14 1

#	Article	IF	CITATIONS
37	Measuring the Casimir Forces with an Adhered Cantilever: Analysis of Roughness and Background Effects. Universe, 2021, 7, 64.	2.5	3
38	Casimir Puzzle and Casimir Conundrum: Discovery and Search for Resolution. Universe, 2021, 7, 84.	2.5	38
39	Casimir and electrostatic forces from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:m thin films of varying thickness. Physical Review B, 2021, 103, .</mml:m </mml:msub></mml:mrow></mml:math 	n>22/mm	:m 8 n>
40	Next Generation Design and Prospects for Cannex. Universe, 2021, 7, 234.	2.5	11
41	Excessive number of high asperities for sputtered rough films. Physical Review B, 2021, 104, .	3.2	5
42	Weak adhesion between deposited rough films: Relation to dispersion forces. Physical Review B, 2021, 104, .	3.2	4
43	Qualitative chirality effects on the Casimir-Lifshitz torque with liquid crystals. Physical Review Research, 2021, 3, .	3.6	6
44	Toward an Improved Method for Determining the Hamaker Constant of Solid Materials Using Atomic Force Microscopy. II. Dynamic Analysis and Preliminary Validation. Journal of Physical Chemistry C, 2021, 125, 20003-20013.	3.1	5
45	13.5 Dependence on surface roughness. , 2015, , 739-742.		0
46	The role of small separation interactions in ferrofluid structure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128082.	4.7	3
47	Theory-experiment comparison for the Casimir force between metallic test bodies: A spatially nonlocal dielectric response. Physical Review A, 2022, 105, .	2.5	13
48	Dispersion forces and equilibrium distance between deposited rough films in contact. Physical Review B, 2022, 105, .	3.2	4
49	Current status of the problem of thermal Casimir force. International Journal of Modern Physics A, 0, , .	1.5	5
50	Problems in measuring the Casimir forces at short separations. International Journal of Modern Physics A, 2022, 37, .	1.5	2
51	The Casimir effect in graphene systems: Experiment and theory. International Journal of Modern Physics A, 2022, 37, .	1.5	3
52	Sign reversal of Casimir-Lifshitz torque with separation distance: A theoretical guide to experimentation. Physical Review B, 2022, 105, .	3.2	1
53	Weak Adhesion between Contacting Rough Surfaces as Applied to Micro/Nanotechnologies. Colloid Journal, 2022, 84, 321-331.	1.3	0
54	Casimir Forces between a Dielectric and Metal: Compensation of the Electrostatic Interaction. Physics, 2023, 5, 814-822.	1.4	1

CITATION REPORT

#	Article	IF	CITATIONS
55	Casimir Effect Invalidates the Drude Model for Transverse Electric Evanescent Waves. Physics, 2023, 5, 952-967.	1.4	3
56	Casimir force between semiconductor and metal and compensation of surface charges. Physics Letters, Section A: General, Atomic and Solid State Physics, 2023, 486, 129102.	2.1	0
57	Casimirâ€Lifshitz Optical Resonators: A New Platform for Exploring Physics at the Nanoscale. , 2024, 3, .		0

CITATION REPORT