The IMGT/HLA database

Nucleic Acids Research 41, D1222-D1227 DOI: 10.1093/nar/gks949

Citation Report

#	Article	IF	CITATIONS
1	IPD—the Immuno Polymorphism Database. Nucleic Acids Research, 2012, 41, D1234-D1240.	6.5	228
2	A groupâ€specific sequencing approach to investigate the presence of atypical human leucocyte antigen alleles. International Journal of Immunogenetics, 2013, 40, 453-459.	0.8	0
3	Comprehensive analysis of medaka major histocompatibility complex (MHC) class II genes: Implications for evolution in teleosts. Immunogenetics, 2013, 65, 883-895.	1.2	13
4	Nomenclature for factors of the <scp>HLA</scp> system, update September 2013. Tissue Antigens, 2013, 82, 458-461.	1.0	1
5	Identification of a new HLA-C allele,HLA-C*08:75in a Caucasian individual. Tissue Antigens, 2013, 82, 68-69.	1.0	3
6	Nomenclature for factors of the <scp>HLA</scp> system, update September 2013. International Journal of Immunogenetics, 2013, 40, 538-541.	0.8	2
7	Identification of the novelHLA-A*26:79allele by polymerase chain reaction sequence-based typing in a Chinese individual. Tissue Antigens, 2013, 82, n/a-n/a.	1.0	5
8	Full screening and accurate subtyping of HLA-A*02 alleles through group-specific amplification and mono-allelic sequencing. Cellular and Molecular Immunology, 2013, 10, 490-496.	4.8	19
9	Nomenclature for factors of the HLA system, update April 2013. Human Immunology, 2013, 74, 1409-1412.	1.2	0
10	Nomenclature for factors of the HLA system, update June 2013. Human Immunology, 2013, 74, 1417-1420.	1.2	0
11	Nomenclature for factors of the HLA system, update August 2013. Human Immunology, 2013, 74, 1713-1716.	1.2	0
12	Nomenclature for factors of the HLA system, update July 2013. Human Immunology, 2013, 74, 1709-1712.	1.2	0
13	Production and characterization of chimeric anti-HLA monoclonal antibodies targeting public epitopes as tools for standardizations of the anti-HLA antibody detection. Journal of Immunological Methods, 2013, 390, 41-51.	0.6	13
14	Diagnostic Applications of Next Generation Sequencing in Immunogenetics and Molecular Oncology. Transfusion Medicine and Hemotherapy, 2013, 40, 196-206.	0.7	21
15	Nomenclature for factors of the HLA system, update September 2013. Human Immunology, 2013, 74, 1717-1719.	1.2	0
16	Nomenclature for factors of the HLA system, update May 2013. Human Immunology, 2013, 74, 1413-1416.	1.2	0
17	RAET1/ULBP alleles and haplotypes among Kolla South American Indians. Human Immunology, 2013, 74, 775-782.	1.2	12
18	Common and wellâ€documented <scp>HLA</scp> alleles: 2012 update to the <scp>CWD</scp> catalogue. Tissue Antigens, 2013, 81, 194-203.	1.0	198

	CITATION	Report	
#	Article	IF	CITATIONS
19	Distribution of MICB diversity in the Zhejiang Han population: PCR sequence-based typing for exons 2–6 and identification of five novel MICB alleles. Immunogenetics, 2013, 65, 485-492.	1.2	14
20	BlockLogo: Visualization of peptide and sequence motif conservation. Journal of Immunological Methods, 2013, 400-401, 37-44.	0.6	22
21	Evaluation of Label Dependency for the Prediction of HLA Genes. , 2013, , .		1
22	Biomarkers in Immunology. , 2013, , .		0
23	Translating the HLA-DPB1 T-cell epitope-matching algorithm into clinical practice. Bone Marrow Transplantation, 2013, 48, 1510-1512.	1.3	26
24	HLA-DQB1*02 and DQB1*06:03P are associated with peanut allergy. European Journal of Human Genetics, 2013, 21, 1181-1184.	1.4	43
25	The Essential Detail: The Genetics and Genomics of the Primate Immune Response. ILAR Journal, 2013, 54, 181-195.	1.8	18
26	Identification of a new allele polymorphism (<i><scp>HLA</scp>â€B*40:79</i>) and correlation with the <scp>HLAâ€B40</scp> (<scp>B60</scp> and <scp>B61</scp>) antigens. Tissue Antigens, 2013, 82, 293-294	1.0	3
27	Identification of a novel <scp>HLA</scp> â€B allele, <i>B*27:102</i> , in a Brazilian individual. Tissue Antigens, 2013, 82, 350-351.	1.0	5
28	<i><scp>HLA</scp>â€B*35:233</i> , a novel <i>B*35</i> allele found in a volunteer of the <scp>DONORMO</scp> —The Mexican Bone Marrow Registry of Unrelated Donors. Tissue Antigens, 2013, 82, 436-438.	1.0	3
29	Identification of <i>A*29:47</i> , previously typed as <i>A*29:19</i> , in a Mexican bone marrow donor from the state of Hidalgo, Mexico. Tissue Antigens, 2013, 81, 454-455.	1.0	4
30	Nomenclature for factors of the <scp>HLA</scp> system, update <scp>J</scp> une 2013. International Journal of Immunogenetics, 2013, 40, 434-437.	0.8	0
31	Nomenclature for factors of the <scp>HLA</scp> system, update August 2013. Tissue Antigens, 2013, 82, 452-457.	1.0	3
32	A novelHLA-Aallele,A*31:65,was identified by sequence-based typing in a Chinese potential donor. Tissue Antigens, 2013, 81, 173-175.	1.0	3
33	Identification of the novel <i><scp>HLA</scp>â€A*24:233</i> allele in a Chinese individual. Tissue Antigens, 2013, 82, 424-425.	1.0	4
34	Characterization of the novel <i><scp>HLAâ€DRB1</scp>*13:26:02</i> allele. Tissue Antigens, 2013, 82, 152-153.	1.0	3
35	Advancing allele groupâ€specific amplification of the complete <i><scp>HLA</scp>â€C</i> gene—isolation of novel alleles from three allele groups (<i>C*04</i> , <i>C*07</i> and <i>C*08</i>). Tissue Antigens, 2013, 82, 280-285.	1.0	2
36	Identification of a novelHLA-A*33:03:11allele by polymerase chain reaction sequence-based typing in a Chinese cord blood donor. Tissue Antigens, 2013, 82, 59-60.	1.0	8

C		 REPO	~ ~ ~
		14 F D(ר אר
\sim	17 \ []	IVEI V	

#	Article	IF	CITATIONS
37	Identification of a new <scp>HLA</scp> allele, <i><scp>HLA</scp> *08:76</i> in a Caucasian individual. Tissue Antigens, 2013, 82, 69-70.	1.0	3
38	Identification of a novelHLA-B*40allele,HLA-B*40:211, in a Chinese individual. Tissue Antigens, 2013, 82, 207-207.	1.0	3
39	<i><scp>HLA</scp>â€A*26:92</i> —a further allele possessing a segment of <i>A*02:01:01:01</i> . Tissue Antigens, 2013, 82, 429-430.	1.0	3
40	Nomenclature for factors of the <scp>HLA</scp> system, update August 2013. International Journal of Immunogenetics, 2013, 40, 533-537.	0.8	0
41	A novel <scp>HLA</scp> allele, <i><scp>HLA</scp>â€A*80:03</i> , identified in a Brazilian individual. Tissue Antigens, 2013, 82, 349-350.	1.0	4
42	Nomenclature for factors of the <scp>HLA</scp> system, update April 2013. Tissue Antigens, 2013, 82, 219-223.	1.0	7
43	Nomenclature for factors of the <scp>HLA</scp> system, update July 2013. Tissue Antigens, 2013, 82, 447-451.	1.0	1
44	A novel HLA allele,HLA-B*40:227, was identified by polymerase chain reaction sequence-based typing in a Chinese individual. Tissue Antigens, 2013, 82, 208-209.	1.0	4
45	Identification of a novel <scp>HLA</scp> â€B allele <i><scp>HLA</scp>â€B*07:185</i> in a Japanese individual. Tissue Antigens, 2013, 82, 434-436.	1.0	3
46	Identification of a new <scp>HLA</scp> â€A null allele, <i>A*30:<scp>59N</scp></i> , with a stop codon in exon 3, by sequenceâ€based typing. Tissue Antigens, 2013, 82, 430-432.	1.0	3
47	Identification of two novelHLA-B*54alleles,B*54:01:03andB*54:01:04by polymerase chain reaction sequence-based typing. Tissue Antigens, 2013, 82, 63-65.	1.0	7
48	Characterization of a novel allele, HLA-DQB1*06:47. Tissue Antigens, 2013, 82, 74-75.	1.0	8
49	Characterization of 27 novel <scp>HLA</scp> class <scp>II</scp> alleles from China Marrow Donor Program. Tissue Antigens, 2013, 82, 201-202.	1.0	5
50	Identification of three novel human leukocyte antigen alleles,HLA-B*58:43,HLA-C*03:190, andHLA-DPA1*01:12, in an East African cohort. Tissue Antigens, 2013, 82, 131-133.	1.0	4
51	Nomenclature for factors of the <scp>HLA</scp> system, update May 2013. Tissue Antigens, 2013, 82, 224-228.	1.0	0
52	Nomenclature for factors of the <scp>HLA</scp> system, update July 2013. International Journal of Immunogenetics, 2013, 40, 528-532.	0.8	0
53	A novel <scp>HLA</scp> allele, <i><scp>HLA</scp> *06:45</i> , identified by sequenceâ€based typing in a Chinese individual. Tissue Antigens, 2013, 82, 67-68.	1.0	4
54	The novel <i><scp>HLA</scp>â€C*12:92</i> allele is characterized by one amino acid exchange located in the Tâ€cell receptor binding region of the alpha 2 domain. Tissue Antigens, 2013, 82, 355-356.	1.0	3

#	Article	IF	CITATIONS
55	Identification of the novelHLA-C*07:315allele. Tissue Antigens, 2013, 82, 354-355.	1.0	3
56	A novel <i><scp>HLA</scp>â€B*13</i> allele, <i>B*13:68</i> , was identified by sequencingâ€based typing. Tissue Antigens, 2013, 82, 204-205.	1.0	4
57	Identification of a novel <scp>HLAâ€DQB1</scp> allele, <i><scp>DQB1</scp>*05:19</i> , in an African American family by sequenceâ€based typing. Tissue Antigens, 2013, 82, 150-151.	1.0	4
58	Identification of the new HLA-DPB1 allele,DPB1*162:01, in a Venezuelan family. Tissue Antigens, 2013, 82, 442-443.	1.0	3
59	Nomenclature for factors of the HLA system, update June 2013. Tissue Antigens, 2013, 82, 229-233.	1.0	5
60	Novel <i><scp>HLA</scp> *07:314</i> allele identified by sequenceâ€based typing in a French lymphoblastic leukemia patient. Tissue Antigens, 2013, 82, 439-440.	1.0	3
61	The novel <i><scp>HLA</scp>â€A*26:89</i> allele identified by sequenceâ€based typing. Tissue Antigens, 2013, 82, 427-428.	1.0	4
62	A novel HLA allele,HLA-C*01:02:18, was identified by polymerase chain reaction sequence-based typing in a Chinese leukemia patient. Tissue Antigens, 2013, 82, 65-66.	1.0	7
63	HLA-DRB1*03:49, a novel allele identified by group-specific sequence-based typing in a north European individual. Tissue Antigens, 2013, 82, 357-358.	1.0	0
64	Class II HLA Epitope Matching—A Strategy to Minimize De Novo Donor-Specific Antibody Development and Improve Outcomes. American Journal of Transplantation, 2013, 13, 3114-3122.	2.6	298
65	Two novel <scp>HLA</scp> class <scp>II</scp> alleles, <i><scp>DRB1</scp>*11:131</i> and <i><scp>DQB1</scp>*05:01:05</i> , identified by sequenceâ€based typing. Tissue Antigens, 2013, 82, 299-300.	1.0	7
66	Genotype List String: a grammar for describing <scp>HLA</scp> and <scp>KIR</scp> genotyping results in a text string. Tissue Antigens, 2013, 82, 106-112.	1.0	56
67	A novel <scp>HLA</scp> â€A allele, <i>A*24:191</i> , was identified by sequenceâ€based typing in a Chinese donor. Tissue Antigens, 2013, 82, 423-424.	1.0	4
68	Nomenclature for factors of the <scp>HLA</scp> system, update <scp>M</scp> ay 2013. International Journal of Immunogenetics, 2013, 40, 429-433.	0.8	2
69	Identification of the novelHLA-B*15:257allele by polymerase chain reaction sequence-based typing in a Chinese individual. Tissue Antigens, 2013, 82, 62-63.	1.0	7
70	The novelHLA-Aallele,A*26:74, identified by sequence-based typing in a Chinese individual. Tissue Antigens, 2013, 82, 426-427.	1.0	3
71	Nomenclature for factors of the <scp>HLA</scp> system, update <scp>A</scp> pril 2013. International Journal of Immunogenetics, 2013, 40, 424-428.	0.8	0
72	Human CD1a Deficiency Is Common and Genetically Regulated. Journal of Immunology, 2013, 191, 1586-1593.	0.4	37

#	Article	IF	Citations
73	Selection of Conserved Epitopes from Hepatitis C Virus for Pan-Populational Stimulation of T-Cell Responses. Clinical and Developmental Immunology, 2013, 2013, 1-10.	3.3	48
74	Diversity of Extended HLA-DRB1 Haplotypes in the Finnish Population. PLoS ONE, 2013, 8, e79690.	1.1	17
75	Peptide-Based Vaccinology: Experimental and Computational Approaches to Target Hypervariable Viruses through the Fine Characterization of Protective Epitopes Recognized by Monoclonal Antibodies and the Identification of T-Cell-Activating Peptides. Clinical and Developmental Immunology, 2013, 2013, 1-12.	3.3	26
76	Toward an Optimal Global Stem Cell Donor Recruitment Strategy. PLoS ONE, 2014, 9, e86605.	1.1	38
77	Characterising a Microsatellite for DRB Typing in Aotus vociferans and Aotus nancymaae (Platyrrhini). PLoS ONE, 2014, 9, e96973.	1.1	15
78	A Common Minimal Motif for the Ligands of HLA-B*27 Class I Molecules. PLoS ONE, 2014, 9, e106772.	1.1	1
79	Finding Semirigid Domains in Biomolecules by Clustering Pair-Distance Variations. BioMed Research International, 2014, 2014, 1-13.	0.9	6
80	Resolution of AmbiguousHLAGenotyping in Korean by Multi-Group-Specific Sequence-Based Typing. Yonsei Medical Journal, 2014, 55, 1005.	0.9	5
81	Hematopoietic Stem Cell Transplantation for Primary Immunodeficiency. , 2014, , 1007-1041.		0
82	DNA Storage under High Temperature Conditions Does Not Affect Performance in Human Leukocyte Antigen Genotyping via Next-Generation Sequencing (DNA Integrity Maintained in Extreme Conditions). Biopreservation and Biobanking, 2014, 12, 402-408.	0.5	5
83	The HLA-DRβ1 amino acid positions 11–13–26 explain the majority of SLE–MHC associations. Nature Communications, 2014, 5, 5902.	5.8	80
84	Donor NK cell licensing in control of malignancy in hematopoietic stem cell transplant recipients. American Journal of Hematology, 2014, 89, E176-83.	2.0	25
85	A quantitative review of <scp>MHC</scp> â€based mating preference: the role of diversity and dissimilarity. Molecular Ecology, 2014, 23, 5151-5163.	2.0	133
86	HIBAG—HLA genotype imputation with attribute bagging. Pharmacogenomics Journal, 2014, 14, 192-200.	0.9	339
87	Increased Diversity of the HLA-B40 Ligandome by the Presentation of Peptides Phosphorylated at Their Main Anchor Residue. Molecular and Cellular Proteomics, 2014, 13, 462-474.	2.5	30
88	Clozapine-induced agranulocytosis is associated with rare HLA-DQB1 and HLA-B alleles. Nature Communications, 2014, 5, 4757.	5.8	153
89	Grouping of large populations into few CTL immune â€~response-types' from influenza H1N1 genome analysis. Clinical and Translational Immunology, 2014, 3, e24.	1.7	4
90	OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics, 2014, 30, 3310-3316.	1.8	566

#	Article	IF	CITATIONS
91	In a 12-allele analysis HLA-DPB1 matching is associated with improved OS in leukaemic and myelodysplastic patients receiving myeloablative T-cell-depleted PBSCT from unrelated donors. Bone Marrow Transplantation, 2014, 49, 657-663.	1.3	9
92	The <i>HLAâ€A*02:481</i> allele was identified in unrelated Brazilians sharing <i>HLAâ€B*15:17</i> , <i>C*07:01P</i> , <i>DRB1*13:02</i> and <i>DQB1*06:04</i> . Tissue Antigens, 2014, 84, 577-578.	1.0	3
93	RefSeq: an update on mammalian reference sequences. Nucleic Acids Research, 2014, 42, D756-D763.	6.5	892
94	KIR3DL1 genetic diversity and phenotypic variation in the Chinese Han population. Genes and Immunity, 2014, 15, 8-15.	2.2	20
95	Immunogenetic Factors Affecting Susceptibility of Humans and Rodents to Hantaviruses and the Clinical Course of Hantaviral Disease in Humans. Viruses, 2014, 6, 2214-2241.	1.5	43
96	Examining Variable Domain Orientations in Antigen Receptors Gives Insight into TCR-Like Antibody Design. PLoS Computational Biology, 2014, 10, e1003852.	1.5	29
97	Evidence of HLA-DQB1 Contribution to Susceptibility of Dengue Serotype 3 in Dengue Patients in Southern Brazil. Journal of Tropical Medicine, 2014, 2014, 1-6.	0.6	6
98	Human Leukocyte Antigen Typing Using a Knowledge Base Coupled with a High-Throughput Oligonucleotide Probe Array Analysis. Frontiers in Immunology, 2014, 5, 597.	2.2	3
99	Big Data Analytics in Immunology: A Knowledge-Based Approach. BioMed Research International, 2014, 2014, 1-9.	0.9	16
100	The <i><scp>HLA</scp>â€A*68:23</i> allele in the Chilean population. Tissue Antigens, 2014, 84, 565-567.	1.0	2
101	<i><scp>HLA</scp>â€B*27:05:25</i> –Âa further <i><scp>HLA</scp>â€B*27:05</i> allele with a synonymous nucleotide substitution. Tissue Antigens, 2014, 83, 131-132.	1.0	3
102	A new <i><scp>HLA</scp>â€A*24</i> allele, <i><scp>HLA</scp>â€A*24:02:87</i> , identified by sequencingâ€based typing in a Chinese volunteer bone marrow donor. Tissue Antigens, 2014, 84, 413-414.	1.0	3
103	Nomenclature for factors of the <scp>HLA</scp> system, update June 2014. International Journal of Immunogenetics, 2014, 41, 452-455.	0.8	0
104	Two novel alleles <scp>HLA</scp> â€A*02:433 and <scp>HLA</scp> â€A*02:434 identified in Saudi bone marrow donors using sequenceâ€based typing. International Journal of Immunogenetics, 2014, 41, 338-339.	0.8	6
105	Nomenclature for factors of the <scp>HLA</scp> system, update May 2014. Tissue Antigens, 2014, 84, 335-341.	1.0	0
106	T-Cell Epitope Prediction Methods: An Overview. Methods in Molecular Biology, 2014, 1184, 333-364.	0.4	71
107	Nomenclature for factors of the <scp>HLA</scp> system, update January 2014. Tissue Antigens, 2014, 83, 435-438.	1.0	0
108	Two novel alleles HLA-DRB1*11:150 and HLA-DRB1*14:145 identified in Saudi individuals. International Journal of Immunogenetics, 2014, 41, 340-341.	0.8	7

#	Article	IF	CITATIONS
109	A novel <scp>HLA</scp> allele, <i>C*08:01:10</i> was identified in a Chinese leukemia patient. Tissue Antigens, 2014, 84, 419-420.	1.0	4
110	<scp>HLA</scp> and disease: guilt by association. International Journal of Immunogenetics, 2014, 41, 1-12.	0.8	54
111	A new nonâ€expressed allele <i><scp>HLA</scp>â€A*03:<scp>168N</scp></i> , identified by serological and sequenceâ€based typing in a voluntary Norwegian hematopoietic stem cell donor. Tissue Antigens, 2014, 83, 195-196.	1.0	3
112	Nomenclature for factors of the <scp>HLA</scp> system, update May 2014. International Journal of Immunogenetics, 2014, 41, 445-451.	0.8	0
113	A new human leukocyte antigen class I allele: <i> <scp>HLA</scp>â€A*11:125</i> . Tissue Antigens, 2014, 84, 408-409.	1.0	3
114	Nomenclature for factors of the <scp>HLA</scp> system, update June 2014. Tissue Antigens, 2014, 84, 342-345.	1.0	0
115	A variant upstream of <scp><i>HLAâ€DRB1</i></scp> and multiple variants in <i><scp>MICA</scp></i> influence susceptibility to cervical cancer in a Swedish population. Cancer Medicine, 2014, 3, 190-198.	1.3	22
116	Identification of two novel alleles <i><scp>HLA</scp>â€A*11:133</i> and <i>A*11:02:05</i> by polymerase chain reaction sequenceâ€based typing. Tissue Antigens, 2014, 84, 409-412.	1.0	7
117	<scp>HLAâ€DQ2</scp> / <scp>DQ8</scp> and <i><scp>HLAâ€DQB1</scp>*02</i> homozygosity typing by realâ€time polymerase chain reaction for the assessment of celiac disease genetic risk: evaluation of a Spanish celiac population. Tissue Antigens, 2014, 84, 545-553.	1.0	13
118	HLA-C locus allelic dropout in Sanger sequence-based typing due to intronic single nucleotide polymorphism. Human Immunology, 2014, 75, 1239-1243.	1.2	7
119	Nomenclature for factors of the HLA system, update August 2014. Human Immunology, 2014, 75, 1280-1283.	1.2	0
120	Nomenclature for factors of the HLA system, update September 2014. Human Immunology, 2014, 75, 1284-1287.	1.2	0
121	HLA Antigenic and Haplotype Frequencies Estimated in Hematopoietic Progenitor Cell Donors From Argentina. Transplantation Proceedings, 2014, 46, 3064-3067.	0.3	6
122	Identification of a novel <i><scp>HLA</scp>â€B*15</i> variant allele, <i><scp>HLA</scp>â€B*15:276</i> , in an umbilical cord blood donor. Tissue Antigens, 2014, 83, 428-429.	1.0	3
123	Identification of a novel <scp>HLAâ€DPB1</scp> allele, <i><scp>HLAâ€DPB1</scp>*167:01</i> , in a Chinese individual. Tissue Antigens, 2014, 83, 299-300.	1.0	4
124	Three novelHLA-A*24alleles identified in Chinese Han individuals. Tissue Antigens, 2014, 83, 427-428.	1.0	4
125	Description and molecular modeling of four novel <scp>HLA</scp> â€B alleles identified in Brazilian individuals. Tissue Antigens, 2014, 83, 55-57.	1.0	5
126	The novel allele, <i>HLAâ€ÐPB1*04:01:15</i> , is shared by a cord blood unit and corresponding maternal sample. Tissue Antigens, 2014, 83, 201-203.	1.0	4

#	Article	IF	CITATIONS
127	Nomenclature for factors of the <scp>HLA</scp> system, update October 2013. Tissue Antigens, 2014, 83, 208-218.	1.0	1
128	Nomenclature for factors of the <scp>HLA</scp> system, update <scp>A</scp> pril 2014. International Journal of Immunogenetics, 2014, 41, 437-444.	0.8	0
129	Nomenclature for factors of the HLA system, update July 2014. Human Immunology, 2014, 75, 1276-1279.	1.2	0
130	Identification of a new allele <i>HLAâ€A*02:463</i> by sequencing of exons 2, 3 and 4. Tissue Antigens, 2014, 83, 358-359.	1.0	3
131	A novel allele, <scp><i>HLA</i></scp> â€ <i>B*54:29</i> , identified by sequenceâ€based typing in a Chinese bone marrow donor. Tissue Antigens, 2014, 83, 430-432.	1.0	4
132	Identification of a novel <i><scp>HLA</scp>â€A*02</i> allele, <i><scp>HLA</scp>â€A*02:06:13</i> , in a Chinese individual. Tissue Antigens, 2014, 83, 52-53.	1.0	3
133	Somatic mutation in acute myelogenous leukemia cells imitate novel germline <scp>HLA</scp> â€A allele: a case report. Tissue Antigens, 2014, 83, 414-417.	1.0	12
134	Nomenclature for factors of the <scp>HLA</scp> system, update <scp>O</scp> ctober 2013. International Journal of Immunogenetics, 2014, 41, 159-168.	0.8	0
135	Nomenclature for factors of the <scp>HLA</scp> system, update March 2014. Tissue Antigens, 2014, 83, 444-453.	1.0	2
136	Nomenclature for factors of the <scp>HLA</scp> system, update December 2013. Tissue Antigens, 2014, 83, 229-235.	1.0	6
137	Genomic sequence of the rare <i><scp>HLA</scp>â€A*02:95</i> allele identified by sequenceâ€based typing and cloning. Tissue Antigens, 2014, 84, 324-326.	1.0	3
138	Four novel <scp>HLA</scp> alleles, <scp>DRB</scp> 1*04:11:03, <scp>DRB</scp> 1*10:05, <scp>DRB</scp> 1*15:94 and <scp>DRB</scp> 1*16:22, identified in <scp>B</scp> razilian individuals. International Journal of Immunogenetics, 2014, 41, 151-153.	0.8	4
139	Nextâ€generation sequencing can reveal <i>in vitro</i> â€generated <scp>PCR</scp> crossover products: some artifactual sequences correspond to <scp>HLA</scp> alleles in the <scp>IMGT</scp> / <scp>HLA</scp> database. Tissue Antigens, 2014, 83, 32-40.	1.0	53
140	Nomenclature for factors of the <scp>HLA</scp> system, update January 2014. International Journal of Immunogenetics, 2014, 41, 342-345.	0.8	0
141	A novel HLA-DRB1 allele, HLA-DRB1*13:116, identified by sequencing-based typing in a member of the Czech national marrow donor registry. International Journal of Immunogenetics, 2014, 41, 149-150.	0.8	3
142	A novel HLA-A allele,HLA-A*02:441, identified by sequence-based typing in Chinese individuals. Tissue Antigens, 2014, 83, 290-291.	1.0	3
143	Identification of 2127 new <scp>HLA</scp> class I alleles in potential stem cell donors from Germany, the United States and Poland. Tissue Antigens, 2014, 83, 184-189.	1.0	35
144	Identification and characterization of a novel <scp>HLA</scp> â€A allele, <scp>HLA</scp> â€A*68:105, by genomic sequencing. International Journal of Immunogenetics, 2014, 41, 484-485.	0.8	5

#	Article	IF	CITATIONS
145	From the era of genome analysis to the era of genomic drug discovery: a pioneering example of rheumatoid arthritis. Clinical Genetics, 2014, 86, 432-440.	1.0	16
146	Identification of a new <scp>HLA</scp> allele, <i><scp>HLA</scp>â€B*13:70</i> , in a Chinese individual. Tissue Antigens, 2014, 83, 293-294.	1.0	3
147	Identification of a novel allele, <i><scp>HLAâ€DPB1</scp>*168:01</i> , in a Chinese individual. Tissue Antigens, 2014, 83, 369-371.	1.0	4
148	Nomenclature for factors of the <scp>HLA</scp> system, update November 2013. Tissue Antigens, 2014, 83, 219-228.	1.0	1
149	A new <i><scp>HLA</scp>â€A*01</i> allele–Â <i><scp>A</scp>*01:139</i> . Tissue Antigens, 2014, 83, 129-3	1300	3
150	Description of five novel <scp>HLA</scp> â€ <scp>B</scp> alleles, <i><scp>B</scp>*07:184, <scp>B</scp>*41:27, <scp>B</scp>*42:19, <scp>B</scp>*50:32 and <scp>B</scp>*57:63,</i> identified in <scp>B</scp> razilian individuals. International Journal of Immunogenetics, 2014, 41, 264-266.	0.8	4
151	The novel alleles <i><scp>HLA</scp>â€B*44:101</i> and <i><scp>HLA</scp>â€B*57:48</i> of <scp>C</scp> aucasian origin are characterized by amino acid substitutions in the alpha 2 domain. Tissue Antigens, 2014, 83, 295-296.	1.0	3
152	A novel HLA-B*18:80 allele identified by SBT typing in an Italian bone marrow volunteer donor. International Journal of Immunogenetics, 2014, 41, 262-263.	0.8	3
153	Class II human leucocyte antigen DRB1*11 in hairy cell leukaemia patients with and without haemolytic uraemic syndrome. British Journal of Haematology, 2014, 166, 729-738.	1.2	13
154	Genomic fullâ€length sequence of a novel <i><scp>HLA</scp>â€B*39:01:01:03</i> allele was identified in a Chinese individual. Tissue Antigens, 2014, 83, 132-134.	1.0	4
155	Validation of statistical imputation of alleleâ€level multilocus phased genotypes from ambiguous <scp>HLA</scp> assignments. Tissue Antigens, 2014, 84, 285-292.	1.0	48
156	Nomenclature for factors of the <scp>HLA</scp> system, update March 2014. International Journal of Immunogenetics, 2014, 41, 351-360.	0.8	2
157	A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines. Oncolmmunology, 2014, 3, e954893.	2.1	92
158	Diversification of the Major Histocompatibility Complex (MHC) -G and -B Loci in New World Primates. Advances in Intelligent Systems and Computing, 2014, , 307-313.	0.5	1
159	HLA-G as a Tolerogenic Molecule in Transplantation and Pregnancy. Journal of Immunology Research, 2014, 2014, 1-16.	0.9	95
160	The Relevance ofHLASequencing in Population Genetics Studies. Journal of Immunology Research, 2014, 2014, 1-12.	0.9	43
161	Geometric Analysis of Alloreactive HLA <i>α</i> -Helices. BioMed Research International, 2014, 2014, 1-8.	0.9	2
162	Nomenclature for factors of the <scp>HLA</scp> system, update July 2014. International Journal of Immunogenetics, 2014, 41, 530-534.	0.8	Ο

	CITATION	Report	
#	Article	IF	CITATIONS
163	A novel HLA allele,HLA-B*37:06:02, identified in a Chinese family. Tissue Antigens, 2014, 84, 516-517.	1.0	3
164	Nomenclature for factors of the <scp>HLA</scp> system, update August 2014. International Journal of Immunogenetics, 2014, 41, 535-540.	0.8	0
165	Nomenclature for factors of the <scp>HLA</scp> system, update September 2014. International Journal of Immunogenetics, 2014, 41, 541-545.	0.8	0
166	Identification of the novelHLA-A*11:192allele by HLA typing of a Caucasian individual. Tissue Antigens, 2014, 84, 509-510.	1.0	3
167	<i><scp>HLA</scp>â€A*11:188</i> : a new allele identified by sequenceâ€based typing in a Chinese blood donor. Tissue Antigens, 2014, 84, 512-513.	1.0	3
168	Three hundred and seventyâ€ŧwo novel <scp>HLA</scp> class <scp>II</scp> alleles identified in potential hematopoietic stem cell donors from Germany, the United States, and Poland. Tissue Antigens, 2014, 84, 497-502.	1.0	8
169	Nomenclature for factors of the HLA system, update October 2013. Human Immunology, 2014, 75, 389-396.	1.2	1
170	Study of MHC class II region polymorphism in the Filipino cynomolgus macaque population. Immunogenetics, 2014, 66, 219-230.	1.2	15
171	Cost-efficient high-throughput HLA typing by MiSeq amplicon sequencing. BMC Genomics, 2014, 15, 63.	1.2	238
172	Nomenclature for factors of the HLA system, update March 2014. Human Immunology, 2014, 75, 694-701.	1.2	0
173	Nomenclature for factors of the <scp>HLA</scp> system, update <scp>D</scp> ecember 2013. International Journal of Immunogenetics, 2014, 41, 179-184.	0.8	1
174	The <i><scp>HLA</scp>â€net G<scp>ENE[RATE</scp>]</i> pipeline for effective <scp>HLA</scp> data analysis and its application to 145 population samples from Europe and neighbouring areas. Tissue Antigens, 2014, 83, 307-323.	1.0	79
175	Detection of <i>HLA-B*57:01</i> by real-time PCR: implementation into routine clinical practice and additional validation data. Pharmacogenomics, 2014, 15, 319-327.	0.6	17
176	HLA Micropolymorphisms Strongly Affect Peptide–MHC Multimer–Based Monitoring of Antigen-Specific CD8+ T Cell Responses. Journal of Immunology, 2014, 192, 641-648.	0.4	16
177	<scp>HLA</scp> typing by nextâ€generation sequencing–Âgetting closer to reality. Tissue Antigens, 2014 83, 65-75.	, 1.0	80
178	Nomenclature for factors of the <scp>HLA</scp> system, update September 2014. Tissue Antigens, 2014, 84, 609-613.	1.0	4
179	Minor histocompatibility antigens: past, present, and future. Tissue Antigens, 2014, 84, 374-360.	1.0	80
180	Diversity and characterization of polymorphic 5′ promoter haplotypes of <scp>MICA</scp> and <scp>MICB</scp> genes. Tissue Antigens, 2014, 84, 293-303.	1.0	21

#	Article	IF	CITATIONS
181	Nomenclature for factors of the <scp>HLA</scp> system, update <scp>F</scp> ebruary 2014. International Journal of Immunogenetics, 2014, 41, 346-350.	0.8	1
182	Nomenclature for factors of the <scp>HLA</scp> system, update February 2014. Tissue Antigens, 2014, 83, 439-443.	1.0	0
183	Bioinformatics for cancer immunotherapy target discovery. Cancer Immunology, Immunotherapy, 2014, 63, 1235-1249.	2.0	25
184	Survey of major histocompatibility complex class II diversity in pig-tailed macaques. Immunogenetics, 2014, 66, 613-623.	1.2	29
185	A fault-tolerant method for HLA typing with PacBio data. BMC Bioinformatics, 2014, 15, 296.	1.2	18
186	Nomenclature for factors of the <scp>HLA</scp> system, April update 2014. Tissue Antigens, 2014, 84, 327-334.	1.0	Ο
187	Allele and haplotype frequencies of <scp>HLAâ€DPA1</scp> and â€ <scp>DPB1</scp> in the population of Guadeloupe. Tissue Antigens, 2014, 83, 147-153.	1.0	6
188	Three new <scp>HLA</scp> â€B alleles determined by sequenceâ€based typing: <i>B*15:222</i> , <i>B*15:247</i> , <i>B*27:92</i> . Tissue Antigens, 2014, 83, 361-363.	1.0	3
189	Nomenclature for factors of the <scp>HLA</scp> system, update November 2013. International Journal of Immunogenetics, 2014, 41, 169-178.	0.8	0
190	Identification of a novel <i><scp>HLAâ€C</scp>*08</i> allele, <i><scp>HLAâ€C</scp>*08:78</i> , by sequenceâ€based typing in a Korean individual. Tissue Antigens, 2014, 83, 63-64.	1.0	3
191	MICA polymorphism: biology and importance in cancer. Carcinogenesis, 2014, 35, 2633-2642.	1.3	79
192	The heterogeneous <scp>HLA</scp> genetic composition of the Brazilian population and its relevance to the optimization of hematopoietic stem cell donor recruitment. Tissue Antigens, 2014, 84, 187-197.	1.0	19
193	Identification of a novel <i><scp>HLA</scp>â€C*04:144</i> allele by polymerase chain reaction sequenceâ€based typing. Tissue Antigens, 2014, 84, 245-246.	1.0	4
194	Identification of two novelHLA-A*24alleles,HLA-A*24:02:69andHLA-A*24:247by cloning and sequencing. Tissue Antigens, 2014, 84, 239-240.	1.0	0
195	Nomenclature for factors of the HLA system, update June 2014. Human Immunology, 2014, 75, 1014-1017.	1.2	0
196	Frequencies of immune hypersensitivity reactionâ€associated HLA class I alleles in healthy South African Indian and mixed ancestry populations determined by a novel realâ€time <scp>PCR</scp> assay. Tissue Antigens, 2014, 84, 389-397.	1.0	1
197	Nomenclature for factors of the HLA system, May update 2014. Human Immunology, 2014, 75, 1008-1013.	1.2	0
198	The polymorphisms of human leukocyte antigen loci may contribute to the susceptibility and severity of severe aplastic anemia in Chinese patients. Human Immunology, 2014, 75, 867-872.	1.2	13

#	Article	IF	CITATIONS
199	Identification by sequenceâ€based highâ€resolution typing of a novel HLAâ€C allele, <i>C*14:52</i> , in a bone marrow donor. Tissue Antigens, 2014, 83, 366-367.	1.0	5
200	Fine Mapping Major Histocompatibility Complex Associations in Psoriasis and Its Clinical Subtypes. American Journal of Human Genetics, 2014, 95, 162-172.	2.6	182
201	Short Communication: HIV-1 Nef Protein Carries Multiple Epitopes Suitable for Induction of Cellular Immunity for an HIV Vaccine in Africa. AIDS Research and Human Retroviruses, 2014, 30, 1065-1071.	0.5	0
202	An improved and validated <scp>RNA HLA</scp> class I <scp>SBT</scp> approach for obtaining full length coding sequences. Tissue Antigens, 2014, 84, 450-458.	1.0	6
203	The Maastricht Transplant Center: Clinical setting and epitope searches in HLA class II molecules: Does the structural localization of a polymorphic site contribute to its immunogenicity?. Transplant Immunology, 2014, 31, 213-218.	0.6	3
204	Nomenclature for factors of the HLA system, April update 2014. Human Immunology, 2014, 75, 1001-1007.	1.2	Ο
205	The frequency of HLA-Bâ^—57:01 and the risk of abacavir hypersensitivity reactions in the majority population of Costa Rica. Human Immunology, 2014, 75, 1092-1096.	1.2	10
206	Specificities of Human CD4 ⁺ T Cell Responses to an Inactivated Flavivirus Vaccine and Infection: Correlation with Structure and Epitope Prediction. Journal of Virology, 2014, 88, 7828-7842.	1.5	67
207	Use of "one-pot, mix-and-read―peptide-MHC class I tetramers and predictive algorithms to improve detection of cytotoxic T lymphocyte responses in cattle. Veterinary Research, 2014, 45, 50.	1.1	30
208	Integrating pharmacogenetic information and clinical decision support into the electronic health record. Journal of the American Medical Informatics Association: JAMIA, 2014, 21, 522-528.	2.2	61
209	Identification of a novel <i><scp>HLA</scp>â€B*35:227</i> allele by polymerase chain reaction sequenceâ€based typing in a Chinese bone marrow donor. Tissue Antigens, 2014, 84, 240-242.	1.0	4
210	A novel <i><scp>HLAâ€DQB1</scp>*05:15</i> allele was identified in a Chinese individual. Tissue Antigens, 2014, 84, 246-248.	1.0	6
211	Nomenclature for factors of the HLA system, update February 2014. Human Immunology, 2014, 75, 690-693.	1.2	0
212	Group-specific amplification of HLA-DQA1 revealed a number of genomic full-length sequences including the novel HLA allelesDQA1*01:10andDQA1*01:11. Tissue Antigens, 2014, 83, 49-51.	1.0	8
213	Nomenclature for factors of the HLA system, update November 2013. Human Immunology, 2014, 75, 397-404.	1.2	0
214	Allelic and haplotypic diversity of 5′promoter region of the MICA gene. Human Immunology, 2014, 75, 383-388.	1.2	8
215	Nomenclature for factors of the HLA system, update January 2014. Human Immunology, 2014, 75, 686-689.	1.2	0
216	Nomenclature for factors of the HLA system, update December 2013. Human Immunology, 2014, 75, 405-409.	1.2	Ο

\sim		 D	
	ТАТІ	זטקא	דער
\sim		REPO	ואכ

#	Article	IF	CITATIONS
217	Genome-wide Association Studies: Findings at the Major Histocompatibility Complex Locus in Psychosis. Biological Psychiatry, 2014, 75, 276-283.	0.7	115
218	Allorecognition of HLA-DP by CD4+ T cells is affected by polymorphism in its alpha chain. Molecular Immunology, 2014, 59, 19-29.	1.0	12
219	HLA-C expression levels define permissible mismatches in hematopoietic cell transplantation. Blood, 2014, 124, 3996-4003.	0.6	146
220	A novel HLA-A allele,A*74:23, identified in an individual from Costa Rica. Tissue Antigens, 2014, 84, 583-584.	1.0	4
221	Nomenclature for factors of the <scp>HLA</scp> system, update July 2014. Tissue Antigens, 2014, 84, 598-603.	1.0	2
222	Nomenclature for factors of the <scp>HLA</scp> system, update August 2014. Tissue Antigens, 2014, 84, 604-608.	1.0	0
223	Identification of a novel <i><scp>HLA</scp>â€A*26</i> allele, <i><scp>HLA</scp>â€A*26:01:36</i> , in a Turkish family by sequenceâ€based typing. Tissue Antigens, 2014, 84, 580-581.	1.0	3
224	A new <scp>HLA</scp> allele, <i><scp>HLA</scp>â€B*08:122</i> , described in an unrelated donor of Caucasian origin. Tissue Antigens, 2014, 84, 585-586.	1.0	3
225	Nonfrequent but wellâ€documented, rare and very rare <scp>HLA</scp> alleles observed in the Croatian population. Tissue Antigens, 2014, 84, 560-564.	1.0	5
226	A new <i><scp>HLAâ€A</scp>*30</i> allele, <i><scp>A</scp>*30:81</i> , identified by sequenceâ€based typing. Tissue Antigens, 2014, 84, 582-583.	1.0	3
227	Characterization of a new <scp>HLA</scp> â€B allele, <i>B*15:179:02</i> . Tissue Antigens, 2014, 84, 586-587.	1.0	3
228	Identification of a novel <i><scp>HLA</scp>â€A*02</i> allele, <i><scp>A</scp>*02:428</i> , by sequenceâ€based typing. Tissue Antigens, 2014, 84, 574-575.	1.0	4
229	Machine Learning Methods for Predicting HLA-Peptide Binding Activity. Bioinformatics and Biology Insights, 2015, 9s3, BBI.S29466.	1.0	68
230	Understanding and predicting binding between human leukocyte antigens (HLAs) and peptides by network analysis. BMC Bioinformatics, 2015, 16, S9.	1.2	19
231	Nomenclature for factors of the HLA system, update October 2014. Tissue Antigens, 2015, 85, 218-220.	1.0	0
232	Identification of a novel alleleHLA-C*12:138in Russian patient by haplotype-specific sequence-based typing. Tissue Antigens, 2015, 85, 513-514.	1.0	4
233	Nomenclature for factors of the <scp>HLA</scp> system, update February 2015. Tissue Antigens, 2015, 86, 43-47.	1.0	2
234	A novel allele, <i>HLAâ€DRB1*10:07</i> was identified in a Chinese individual. Tissue Antigens, 2015, 86, 68-69.	1.0	5

#	Article	IF	Citations
235	Identification of <i>HLAâ€B*14:41N</i> in a NMDP Hispanic donor, selected for a patient of The Unrelated Mexican Donor Registryâ€ÐONORMO program in Mexico. Tissue Antigens, 2015, 86, 208-209.	1.0	3
236	Sequence-based typing identification of a novelHLA-A*33:95variant in a Chinese family. Tissue Antigens, 2015, 86, 384-384.	1.0	3
237	HLA-VBSeq: accurate HLA typing at full resolution from whole-genome sequencing data. BMC Genomics, 2015, 16, S7.	1.2	76
238	Nomenclature for factors of the <scp>HLA</scp> system, update March 2015. International Journal of Immunogenetics, 2015, 42, 307-311.	0.8	0
239	Identification of a new <scp>HLA</scp> â€A allele: <i>A*02:512</i> . Tissue Antigens, 2015, 86, 296-297.	1.0	3
240	A new <i>HLAâ€B*39</i> allele, <i>HLAâ€B*39:01:15</i> , discovered in a Taiwanese rheumatoid arthritis patient. Tissue Antigens, 2015, 86, 300-301.	1.0	3
241	A novel <scp>HLAâ€ÐRB1</scp> allele, <i><scp>DRB1</scp>*16:36</i> identified in a Chinese individual from the Xinjiang region. Tissue Antigens, 2015, 86, 389-390.	1.0	4
242	Identification a novel <i>HLAâ€B*27:105</i> allele in a Chinese bone marrow donor by polymerase chain reaction sequenceâ€based typing. Tissue Antigens, 2015, 85, 212-213.	1.0	5
243	Nomenclature for factors of the HLA system, update November 2014. Tissue Antigens, 2015, 85, 221-225.	1.0	1
244	Nomenclature for factors of the <scp>HLA</scp> system, update March 2015. Tissue Antigens, 2015, 86, 48-52.	1.0	2
245	Mapping Bias Overestimates Reference Allele Frequencies at the <i>HLA</i> Genes in the 1000 Genomes Project Phase I Data. G3: Genes, Genomes, Genetics, 2015, 5, 931-941.	0.8	164
246	Characterization of a new <scp>HLA</scp> allele: <i><scp>HLA</scp>â€A*29:49</i> . Tissue Antigens, 2015, 85, 135-136.	1.0	0
247	Two novel <scp>HLA</scp> alleles, <i><scp>HLA</scp>â€A*30:02:01:03</i> and <i><scp>HLA</scp>â€C*08:113</i> , identified in a South African bone marrow donor. Tissue Antigens, 2015, 85, 291-293.	1.0	6
248	Two novel <i><scp>HLAâ€DQB1</scp>*03:03</i> alleles, <i><scp>HLAâ€DQB1</scp>*03:03:08</i> and <i><scp>DQB1</scp>*03:03:13</i> , were identified in Chinese individuals. Tissue Antigens, 2015, 86, 66-68.	1.0	8
249	Four amino acid exchanges located in the alphaâ€⊋ domain specify the novel <i><scp>HLA</scp>â€B*50:20</i> allele. Tissue Antigens, 2015, 86, 453-455.	1.0	3
250	Nomenclature for factors of the <scp>HLA</scp> system, update January 2015. International Journal of Immunogenetics, 2015, 42, 297-301.	0.8	0
251	Three new <scp>HLA</scp> alleles (<scp>HLA</scp> *14:02:13, <scp>HLA</scp> *15:72 and) Tj ETQc Immunogenetics, 2015, 42, 359-360.	0 0 0 rgB 0.8	[/Overlock 1 6
252	Identification of the novel allele, <i><scp>HLA</scp>â€B*27:131</i> . Tissue Antigens, 2015, 85, 142-144.	1.0	1

#	Article	IF	CITATIONS
253	Features of a new full length <scp>HLA</scp> allele: <i>A*02:455</i> . Tissue Antigens, 2015, 86, 53-55.	1.0	3
254	HLA-G*01:04â^¼UTR3 Recipient Correlates With Lower Survival and Higher Frequency of Chronic Rejection After Lung Transplantation. American Journal of Transplantation, 2015, 15, 2413-2420.	2.6	46
255	Umbilical cord blood plasma contains soluble NKG2D ligands that mediate loss of natural killer cell function and cytotoxicity. European Journal of Immunology, 2015, 45, 2324-2334.	1.6	21
256	The new alleleHLA-DPB1*363:01identified by sequence-based typing in a donor from the Chinese Marrow Donor Program. Tissue Antigens, 2015, 85, 213-215.	1.0	3
257	Nomenclature for factors of the HLA system, update December 2014. Tissue Antigens, 2015, 85, 226-229.	1.0	4
258	Nomenclature for factors of the <scp>HLA</scp> system, update January 2015. Tissue Antigens, 2015, 86, 38-42.	1.0	0
259	Two novel alleles, <i>HLAâ€B*46:01:11</i> and <i>HLAâ€B*51:01:39</i> were identified in Chinese bone marrow donors. Tissue Antigens, 2015, 86, 144-145.	1.0	11
260	A novel <scp>HLA</scp> allele, <i><scp>HLAâ€DRB1</scp>*13:204</i> , detected in a Brazilian unrelated hematopoietic stem cell donor. Tissue Antigens, 2015, 86, 308-309.	1.0	4
261	Nomenclature for factors of the <scp>HLA</scp> system, update February 2015. International Journal of Immunogenetics, 2015, 42, 302-306.	0.8	0
262	A novel null HLA allele, <i>HLAâ€DRB1*15:115N</i> , identified in a Chinese family. Tissue Antigens, 2015, 86, 69-70.	1.0	3
263	Identification of a novel <i><scp>HLA</scp>â€A*29</i> allele, <i><scp>HLA</scp>â€A*29:01:09</i> , by sequenceâ€based typing in a Korean individual. Tissue Antigens, 2015, 86, 382-383.	1.0	3
264	A novel <scp>HLA</scp> allele, <i><scp>HLA</scp>â€A*29:01:08</i> , identified in a Brazilian individual. Tissue Antigens, 2015, 86, 381-382.	1.0	4
265	Granuloma genes in sarcoidosis. Current Opinion in Pulmonary Medicine, 2015, 21, 510-516.	1.2	34
266	HLA-B*38:55Q: a new alternatively expressed allele identified in a three-generation Italian family. International Journal of Immunogenetics, 2015, 42, 294-296.	0.8	5
267	Genetic markers as a predictive tool based on statistics in medical practice: ethical considerations through the analysis of the use of HLA-B*27 in rheumatology in France. Frontiers in Genetics, 2015, 6, 299.	1.1	1
268	IMPIPS: The Immune Protection-Inducing Protein Structure Concept in the Search for Steric-Electron and Topochemical Principles for Complete Fully-Protective Chemically Synthesised Vaccine Development. PLoS ONE, 2015, 10, e0123249.	1.1	25
269	HLA Typing for the Next Generation. PLoS ONE, 2015, 10, e0127153.	1.1	125
270	Race, Ethnicity and Ancestry in Unrelated Transplant Matching for the National Marrow Donor Program: A Comparison of Multiple Forms of Self-Identification with Genetics. PLoS ONE, 2015, 10, e0135960.	1.1	42

#	Article	IF	CITATIONS
271	Comprehensive Analysis of the Naturally Processed Peptide Repertoire: Differences between HLA-A and B in the Immunopeptidome. PLoS ONE, 2015, 10, e0136417.	1.1	55
272	Human Leukocyte Antigen Diversity: A Southern African Perspective. Journal of Immunology Research, 2015, 2015, 1-11.	0.9	30
273	Development of a high-resolution NGS-based HLA-typing and analysis pipeline. Nucleic Acids Research, 2015, 43, e70-e70.	6.5	77
274	Screening and structure-based modeling of T-cell epitopes of Nipah virus proteome: an immunoinformatic approach for designing peptide-based vaccine. 3 Biotech, 2015, 5, 877-882.	1.1	23
275	Human gamma delta T cells: Evolution and ligand recognition. Cellular Immunology, 2015, 296, 31-40.	1.4	172
276	Prevalence estimation of celiac disease in the general adult population of Latvia using serology and HLA genotyping. United European Gastroenterology Journal, 2015, 3, 190-199.	1.6	11
277	Maternal human leukocyte antigen-G (HLA-G) genetic variants associate with in utero mother-to-child transmission of HIV-1 in Black South Africans. Infection, Genetics and Evolution, 2015, 30, 147-158.	1.0	14
278	Seven novel HLA alleles reflect different mechanisms involved in the evolution of HLA diversity: Description of the new alleles and review of the literature. Human Immunology, 2015, 76, 30-35.	1.2	17
279	454 screening of individual MHC variation in an endemic island passerine. Immunogenetics, 2015, 67, 149-162.	1.2	18
280	Identification of the novel <i><scp>HLAâ€DQB1</scp>*03:03:02:04</i> allele in a Spanish individual. Tissue Antigens, 2015, 85, 215-216.	1.0	3
281	Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Research, 2015, 43, D784-D788.	6.5	693
282	A novel HLA-A allele,HLA-A*02:488, identified by sequence-based typing. Tissue Antigens, 2015, 85, 288-289.	1.0	3
283	HLA-DMA Polymorphisms Differentially Affect MHC Class II Peptide Loading. Journal of Immunology, 2015, 194, 803-816.	0.4	26
284	Development and validation of a sample sparing strategy for HLA typing utilizing next generation sequencing. Human Immunology, 2015, 76, 917-922.	1.2	11
285	A groupâ€specific sequenceâ€based typing approach for <scp>HLA</scp> â€ <scp>DQA</scp> 1. International Journal of Immunogenetics, 2015, 42, 15-18.	0.8	0
286	Association of KIR3DL1/S1 and HLA-Bw4 with CD4 T cell counts in HIV-infected Mexican mestizos. Immunogenetics, 2015, 67, 413-424.	1.2	7
287	Nomenclature for factors of the HLA system, update February 2015. Human Immunology, 2015, 76, 457-461.	1.2	0
288	Nomenclature for factors of the HLA system, update March 2015. Human Immunology, 2015, 76, 462-466.	1.2	Ο

#	Article	IF	CITATIONS
289	Frequency of Mycobacterium tuberculosis-specific CD8+ T-cells in the course of anti-tuberculosis treatment. International Journal of Infectious Diseases, 2015, 32, 23-29.	1.5	20
290	A Single SNP Surrogate for Genotyping HLA-C*06:02 in Diverse Populations. Journal of Investigative Dermatology, 2015, 135, 1177-1180.	0.3	8
291	Nomenclature for factors of the <scp>HLA</scp> system, update November 2014. International Journal of Immunogenetics, 2015, 42, 124-127.	0.8	0
292	Nomenclature for factors of the HLA system, update January 2015. Human Immunology, 2015, 76, 453-456.	1.2	3
293	Nomenclature for factors of the <scp>HLA</scp> system, update October 2014. International Journal of Immunogenetics, 2015, 42, 121-123.	0.8	0
294	Nomenclature for factors of the <scp>HLA</scp> system, update December 2014. International Journal of Immunogenetics, 2015, 42, 128-131.	0.8	1
295	RNA and protein expression of HLA-Aâ^—23:19Q. Human Immunology, 2015, 76, 286-291.	1.2	9
296	Nomenclature for factors of the HLA system, update December 2014. Human Immunology, 2015, 76, 199-202.	1.2	0
297	Nomenclature for factors of the HLA system, update October 2014. Human Immunology, 2015, 76, 192-194.	1.2	0
298	High-resolution HLA-A, HLA-B, and HLA-DRB1 haplotype frequencies from the French Bone Marrow Donor Registry. Human Immunology, 2015, 76, 381-384.	1.2	12
299	Does cellular sex matter? Dimorphic transcriptional differences between female and male endothelial cells. Atherosclerosis, 2015, 240, 61-72.	0.4	64
300	Nomenclature for factors of the HLA system, update November 2014. Human Immunology, 2015, 76, 195-198.	1.2	0
301	High-accuracy imputation for HLA class I and II genes based on high-resolution SNP data of population-specific references. Pharmacogenomics Journal, 2015, 15, 530-537.	0.9	47
302	Spatially variable coevolution between a haemosporidian parasite and the MHC of a widely distributed passerine. Ecology and Evolution, 2015, 5, 1045-1060.	0.8	10
303	Evolution and Diversity of the Human Leukocyte Antigen(HLA). Evolution, Medicine and Public Health, 2015, 2015, 1-1.	1.1	15
304	The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Research, 2015, 43, D423-D431.	6.5	1,712
305	Peptideâ€induced HLAâ€E expression in human PBMCs is dependent on peptide sequence and the HLAâ€E genotype. Tissue Antigens, 2015, 85, 242-251.	1.0	33
306	Role of Donor Activating KIR–HLA Ligand–Mediated NK Cell Education Status in Control of Malignancy inÂHematopoietic Cell Transplant Recipients. Biology of Blood and Marrow Transplantation, 2015, 21, 829-839.	2.0	30

ARTICLE IF CITATIONS HLA Typing. Transplantation, 2015, 99, 6-7. 307 0.5 4 Somaâ€toâ€germline feedback is implied by the extreme polymorphism at IGHV relative to MHC. BioEssays, 308 1.2 2015, 37, 557-569. Immunoglobulin Classification Using the Colored Antibody Graph. Lecture Notes in Computer Science, 309 1.0 5 2015, , 44-59. Deciphering complex patterns of class″ HLA–peptide crossâ€reactivity via hierarchical grouping. Immunology and Cell Biology, 2015, 93, 522-532. Genetic Diversity and Societally Important Disparities. Genetics, 2015, 201, 1-12. 311 1.2 28 Exploring peptide/MHC detachment processes using hierarchical natural move Monte Carlo. Bioinformatics, 2016, 32, 181-186. 1.8 $Identification of a novel <i> <scp>HLA</scp> \\ a \in B^*40 </i> allele, <i> <scp>HLA</scp> \\ a \in B^*40 </i> , in a Chinese <i> <scp>HLA</scp> \\ a \in B^*40 </i> , in a Chinese <i> <scp>HLA</scp> \\ a \in B^*40 </i> , in a Chinese <i> <scp>HLA</scp> \\ a \in B^*40 </i> , in a Chinese <i> <scp>HLA</scp> \\ a \in B^*40 </i> , in a Chinese <i> <scp>HLA</scp> \\ a \in B^*40 </i> , in a Chinese <i> <scp>HLA</scp> \\ a \in B^*40 </i> , in a Chinese <i> <scp>HLA</scp> \\ a \in B^*40 </i> , in a Chinese <i> <scp>HLA</scp> \\ a \in B^*40 </i> , in a Chinese <i> <scp>HLA</scp> \\ a \in B^*40 </i> , in a Chinese <i> <scp>HLA</scp> \\ a \in B^*40 </i> , in a Chinese <i> <scp>HLA</scp> \\ a \in B^*40 </i> , in a Chinese <i> <scp>HLA</scp> \\ a \in B^*40 </i> , in a Chinese <i> <scp>HLA</scp> \\ a \in B^*40 </scp> \\ a \in B^*40 </scp>$ 313 1.0 3 individual. Tissue Antigens, 2015, 85, 71-72. The full length genomic sequence of a novel <i><scp>HLAâ€C</scp>*03</i> allele: 314 1.0 <i><scp>HĽAâ€̃C</scp>*03:219</i>. Tissue Antigens, 2015, 85, 75-76. Identification of six novel human leukocyte antigen alleles, $\langle i \rangle \langle scp \rangle HLA \langle scp \rangle \hat{a} \in A^{*}24:248 \langle li \rangle$, 315 <i>B*46:01:17</i>, <i>B*46:58</i>, <i>C*01:02:22</i>, <i>C*01:02:25</i> and <i>C*01:91</i>, in Chinese 1.0 1 individuals. Tissue Antigens, 2015, 85, 132-135. Different patterns of <i>A*80:01:01:01</i> allele generation based on exon or intron sequences. Tissue 1.0 Antigens, 2015, 85, 58-67. The novel <i><scp>HLA</scp>â€B*39:93</i> allele was identified by sequenceâ€based typing in a French 317 1.0 0 family. Tissue Antigens, 2015, 85, 144-145. Identification of a new nonâ€synonymous mutation in <scp>HLA</scp>â€B gene, <i><scp>HLA</scp>â€B*15:320</i>, in a Chinese individual by sequenceâ€based typing. Tissue Antigens, 2015, 1.0 85, 139-140. Identification of a novel <i><scp>HLA</scp>â€A*02:06:14</i> allele by polymerase chain reaction 319 1.0 4 sequenceâ€based typing in a Chinese bone marrow donor. Tissue Antígens, 2015, 85, 287-288. $\label{eq:linear} Identification of a novel <scp>HLA</scp> allele, <i><scp>HLA</scp> allele, <iscp>HLA</scp> allelee, <iscp>HLA</scp> allelee, <iscp>HLA</scp> allelee, <iscp>HLA</s$ 1.0 Two novel alleles, <scp><i>HLA</i></scp>â€<i>A*02:07:06</i> and <scp><i>HLA</i></scp>â€<i>A*02:426</i>, 321 1.0 6 were identified in Chinese individuals. Tissue Antigens, 2015, 85, 499-501. <scp><i>HLA</i></scp>â€<i>C*06:103</i>, a novel allele was identified in a Chinese patient awaiting hematopoietic stem cell transplantation. Tissue Antigens, 2015, 85, 510-511. Identification of a novel <i><scp>HLA</scp>â€A*24</i> variant allele, <i>A*24:02:60</i> Tissue Antigens, 323 1.0 3 2015, 85, 504-505. A novel <i><scp>HLA</scp>â€A*32</i> allele, <i><scp>A</scp>*32:67</i> was identified by polymerase chain 324 reaction sequenceâ€based typing in a Chinese individual. Tissue Antigens, 2015, 85, 507-508.

#	Article	IF	CITATIONS
325	Identification of a novel <scp>HLAâ€DQB1</scp> allele, <i><scp>HLAâ€DQB1*06:148</scp></i> , by sequenceâ€based typing in a Chinese individual. Tissue Antigens, 2015, 85, 514-515.	1.0	4
326	A new <i>HLAâ€A*26</i> family allele–Â <i>HLAâ€A*26:103</i> . Tissue Antigens, 2015, 85, 506-507.	1.0	4
327	Structural basis for ineffective Tâ€cell responses to MHC anchor residueâ€improved "heteroclitic― peptides. European Journal of Immunology, 2015, 45, 584-591.	1.6	63
328	Report on the effects of fragment size, indexing, and read length on HLA sequencing on the Illumina MiSeq. Human Immunology, 2015, 76, 897-902.	1.2	15
329	Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals. Nature Communications, 2015, 6, 8018.	5.8	352
330	Histoimmunogenetics Markup Language 1.0: Reporting next generation sequencing-based HLA and KIR genotyping. Human Immunology, 2015, 76, 963-974.	1.2	30
331	Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nature Biotechnology, 2015, 33, 1152-1158.	9.4	573
332	Concordance of next generation sequence-based and sequence specific oligonucleotide probe-based HLA-DRB1 genotyping. Human Immunology, 2015, 76, 939-944.	1.2	4
333	Behaviour of transplanted tumours and role of matching in rejection. Transplant Immunology, 2015, 32, 121-125.	0.6	1
334	Structural and energetic insights into the intermolecular interaction among human leukocyte antigens, clinical hypersensitive drugs and antigenic peptides. Molecular Simulation, 2015, 41, 741-751.	0.9	79
335	Gorgan (Turkmen in Iran) HLA genetics: transplantation, pharmacogenomics and anthropology. Immunological Investigations, 2015, 44, 88-100.	1.0	7
336	Repertoire of Nonclassical MHC I (HLA-E, HLA-F, HLA-G, and Orthologues). , 2016, , 215-219.		1
337	Generation of Full-Length Class I Human Leukocyte Antigen Gene Consensus Sequences for Novel Allele Characterization. Clinical Chemistry, 2016, 62, 1630-1638.	1.5	6
338	A novel <i><scp>HLA</scp>â€B*40</i> allele <i>, B*40:01:40</i> , identified in a Chinese individual. International Journal of Immunogenetics, 2016, 43, 249-250.	0.8	3
339	Description of the novel <i><scp>HLAâ€DQB1</scp>*02:02:01:02</i> allele in a Spanish individual. Hla, 2016, 87, 113-114.	0.4	4
340	<scp>HLA</scp> â€E polymorphism and soluble <scp>HLA</scp> â€E plasma levels in chronic hepatitis B patients. Hla, 2016, 87, 153-159.	0.4	19
341	Computational genomics tools for dissecting tumour–immune cell interactions. Nature Reviews Genetics, 2016, 17, 441-458.	7.7	233
342	sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides. Scientific Reports, 2016, 6, 32115.	1.6	34

#	Article	IF	CITATIONS
343	Prediction of NK Cell Licensing Level in Selection of Hematopoietic Stem Cell Donor, Initial Results. Archivum Immunologiae Et Therapiae Experimentalis, 2016, 64, 63-71.	1.0	9
344	HLaffy: estimating peptide affinities for Class-1 HLA molecules by learning position-specific pair potentials. Bioinformatics, 2016, 32, 2297-2305.	1.8	26
345	The IPD-IMGT/HLA Database – New developments in reporting HLA variation. Human Immunology, 2016, 77, 233-237.	1.2	121
346	HLA-DMB in Amerindians: Specific linkage of DMB*01:03:01/DRB1 alleles. Human Immunology, 2016, 77, 389-394.	1.2	2
347	An analytical workflow for accurate variant discovery in highly divergent regions. BMC Genomics, 2016, 17, 703.	1.2	22
348	Validation of a novel real-time PCR assay for detection of HLA-B*15:02 allele for prevention of carbamazepine – Induced Stevens-Johnson syndrome/Toxic Epidermal Necrolysis in individuals of Asian ancestry. Human Immunology, 2016, 77, 1140-1146.	1.2	11
349	A new <i><scp>HLA </scp>*07</i> allele, <i><scp>C</scp>*07:02:70</i> , identified in a Chinese individual. Hla, 2016, 88, 54-55.	0.4	3
350	Rapid identification of bovine MHCI haplotypes in genetically divergent cattle populations using next-generation sequencing. Immunogenetics, 2016, 68, 765-781.	1.2	14
351	Description of a novel HLAâ€ÐQB1 allele, <i>HLAâ€ÐQB1*06:126</i> , in the Saudi stem cell donor registry. Hla, 2016, 87, 58-59.	0.4	3
352	Cytomegalovirus-Infected Primary Endothelial Cells Trigger NKG2C ⁺ Natural Killer Cells. Journal of Innate Immunity, 2016, 8, 374-385.	1.8	24
353	Identification of a novelHLA-C*06variant allele,HLA-C*06:166, by sequence-based typing in a Chinese individual. Hla, 2016, 88, 315-316.	0.4	0
354	Acute cellular rejection and <scp>HLA</scp> mismatch in heart transplantation: insights from a developing country. Clinical Transplantation, 2016, 30, 1178-1181.	0.8	0
355	Alice in microbes' land: adaptations and counter-adaptations of vector-borne parasitic protozoa and their hosts. FEMS Microbiology Reviews, 2016, 40, 664-685.	3.9	24
356	Immunochip analysis identifies novel susceptibility loci in the human leukocyte antigen region for acquired thrombotic thrombocytopenic purpura. Journal of Thrombosis and Haemostasis, 2016, 14, 2356-2367.	1.9	10
357	A new HLA-B allele,B*52:44, sequenced in a Chinese individual. Hla, 2016, 87, 464-465.	0.4	3
358	Epitope-Based Peptides Prediction from Proteome of Nipah Virus. International Journal of Peptide Research and Therapeutics, 2016, 22, 465-470.	0.9	9
359	Associations between Milk and Egg Allergens and the HLA-DRB1/DQ Polymorphism: A Bioinformatics Approach. International Archives of Allergy and Immunology, 2016, 169, 33-39.	0.9	18
360	The GL service: Web service to exchange GL string encoded HLA & KIR genotypes with complete and accurate allele and genotype ambiguity. Human Immunology, 2016, 77, 249-256.	1.2	8

#	Article	IF	CITATIONS
361	A polymorphism within the psoriasis susceptibility 1 candidate 1 (PSORS1C1) gene is not linked to HLA-B*58:01 in an Australian cohort. Drug Metabolism and Pharmacokinetics, 2016, 31, 252-255.	1.1	7
362	pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens. Genome Medicine, 2016, 8, 11.	3.6	350
363	Heterogeneity of \$\${varvec{m d}}{varvec{N}}/{varvec{m d}}{varvec{S}}\$\$ d N / d S Ratios at the Classical HLA Class I Genes over Divergence Time and Across the Allelic Phylogeny. Journal of Molecular Evolution, 2016, 82, 38-50.	0.8	12
364	Immunoglobulin Classification Using the Colored Antibody Graph. Journal of Computational Biology, 2016, 23, 483-494.	0.8	7
365	Molecular mechanism of the susceptibility difference between HLA-B*27:02/04/05 and HLA-B*27:06/09 to ankylosing spondylitis: substitution analysis, MD simulation, QSAR modelling, and <i>in vitro</i> assay. SAR and QSAR in Environmental Research, 2016, 27, 409-425.	1.0	7
366	<pre><scp>HLA</scp>â€A, <scp>HLA</scp>â€B, <scp>HLA</scp>â€<scp>DRB</scp>1 allele and haplotype frequencies of 14Â529 Chinese Han bone marrow donors living in Dalian, China. International Journal of Immunogenetics, 2016, 43, 79-85.</pre>	; 0.8	6
367	Umbilical Cord Blood Transplantation Is a Feasible Rescue Therapeutic Option for Patients Suffering from Graft Failure after Previous Hematopoietic Stem Cell Transplantation. Oncology, 2016, 90, 160-166.	0.9	3
368	Contrasting evolutionary histories of MHC class I and class II loci in grouse—effects of selection and gene conversion. Heredity, 2016, 116, 466-476.	1.2	26
369	The fully synthetic MAG-Tn3 therapeutic vaccine containing the tetanus toxoid-derived TT830-844 universal epitope provides anti-tumor immunity. Cancer Immunology, Immunotherapy, 2016, 65, 315-325.	2.0	26
370	Effect of major histocompatibility complex haplotype matching by C4 and MICA genotyping on acute graft versus host disease in unrelated hematopoietic stem cell transplantation. Human Immunology, 2016, 77, 176-183.	1.2	7
371	Prediction of spurious HLA class II typing results using probabilistic classification. Human Immunology, 2016, 77, 264-272.	1.2	5
372	Nonclassical human leukocyte antigen (HLA-G, HLA-E, and HLA-F) in coronary artery disease. Human Immunology, 2016, 77, 325-329.	1.2	15
373	Protective effect of HLA-DQB1 alleles against alloimmunization in patients with sickle cell disease. Human Immunology, 2016, 77, 35-40.	1.2	35
374	A new <i>HLAâ€B*55</i> allele, <i>B*55:83N</i> with a stop codon in exon 4 generated by a point mutation <i>,</i> identified in a Chinese individual. Hla, 2017, 89, 119-120.	0.4	3
375	Resurrecting KIR2DP1: A Key Intermediate in the Evolution of Human Inhibitory NK Cell Receptors That Recognize HLA-C. Journal of Immunology, 2017, 198, 1961-1973.	0.4	8
376	<scp>RNA</scp> processing and protein expression of <i><scp>HLA</scp>â€B*07:<scp>44N</scp></i> . Hla, 2017, 89, 230-234.	0.4	5
377	Fullâ€length sequences of <i><scp>HLA</scp>â€B*39:05:01</i> and <i>B*39:<scp>38Q</scp></i> , confirmed by cloning and sequencing. Hla, 2017, 89, 159-162.	0.4	3
378	Applications of Immunogenomics to Cancer. Cell, 2017, 168, 600-612.	13.5	198

#	Article	IF	CITATIONS
379	Major histocompatibility complex haplotyping and long-amplicon allele discovery in cynomolgus macaques from Chinese breeding facilities. Immunogenetics, 2017, 69, 211-229.	1.2	40
380	Nomenclature for factors of the HLA system, update March 2017. Human Immunology, 2017, 78, 461-465.	1.2	0
381	Nomenclature for factors of the HLA system, update February 2017. Human Immunology, 2017, 78, 455-460.	1.2	0
382	Nomenclature for factors of the HLA system, update February 2017. Hla, 2017, 90, 62-69.	0.4	0
383	Nomenclature for factors of the <scp>HLA</scp> system, update May 2017. Hla, 2017, 90, 193-196.	0.4	2
384	Nomenclature for factors of the <scp>HLA</scp> system, update June 2017. International Journal of Immunogenetics, 2017, 44, 243-250.	0.8	0
385	Nomenclature for factors of the <scp>HLA</scp> system, update June 2017. Hla, 2017, 90, 197-203.	0.4	2
386	A novel multiplex polymerase chain reaction assay for detection of both <i>HLAâ€A*31:01</i> / <i>HLAâ€B*15:02</i> alleles, which confer susceptibility to carbamazepineâ€induced severe cutaneous adverse reactions. Hla, 2017, 90, 335-342.	0.4	15
387	Identification of the <i>HLAâ€ÐQB1*06:123</i> allele in an unrelated stem cell donor from the Saudi Registry. Hla, 2017, 90, 262-263.	0.4	3
388	Transancestral mapping and genetic load in systemic lupus erythematosus. Nature Communications, 2017, 8, 16021.	5.8	314
389	Nomenclature for factors of the HLA system, update May 2017. Human Immunology, 2017, 78, 586-588.	1.2	0
390	Nomenclature for factors of the HLA system, update January 2017. Human Immunology, 2017, 78, 451-454.	1.2	0
391	Nomenclature for factors of the HLA system, update April 2017. Human Immunology, 2017, 78, 582-585.	1.2	0
392	Nomenclature for factors of the HLA system, update June 2017. Human Immunology, 2017, 78, 589-593.	1.2	0
393	Nomenclature for factors of the <scp>HLA</scp> system, updated on January 2017. International Journal of Immunogenetics, 2017, 44, 171-176.	0.8	0
394	A novel allele <i><scp>HLA</scp>â€B*27:149</i> identified by sequenceâ€based typing in a Chinese individual. Hla, 2017, 90, 309-310.	0.4	1
395	Nomenclature for factors of the <scp>HLA</scp> system, update March 2017. International Journal of Immunogenetics, 2017, 44, 187-193.	0.8	0
396	Nomenclature for factors of the HLA system, update March 2017. Hla, 2017, 90, 70-76.	0.4	0

#	Article	IF	CITATIONS
397	Structural analysis of owl monkey MHC-DR shows that fully-protective malaria vaccine components can be readily used in humans. Biochemical and Biophysical Research Communications, 2017, 491, 1062-1069.	1.0	20
398	Nomenclature for factors of the <scp>HLA</scp> system, update April 2017. Hla, 2017, 90, 188-192.	0.4	4
399	Fast and accurate HLA typing from short-read next-generation sequence data with xHLA. Proceedings of the United States of America, 2017, 114, 8059-8064.	3.3	118
400	Nomenclature for factors of the HLA system, update January 2017. Hla, 2017, 90, 56-61.	0.4	1
401	PyHLA: tests for the association between HLA alleles and diseases. BMC Bioinformatics, 2017, 18, 90.	1.2	34
402	De novo transcriptome assembly facilitates characterisation of fast-evolving gene families, MHC class I in the bank vole (Myodes glareolus). Heredity, 2017, 118, 348-357.	1.2	11
403	Docking simulations between drugs and HLA molecules associated with idiosyncratic drug toxicity. Drug Metabolism and Pharmacokinetics, 2017, 32, 31-39.	1.1	14
404	Nomenclature for factors of the <scp>HLA</scp> system, update May 2017. International Journal of Immunogenetics, 2017, 44, 239-242.	0.8	0
405	Nomenclature for factors of the <scp>HLA</scp> system, update April 2017. International Journal of Immunogenetics, 2017, 44, 234-238.	0.8	0
406	Sequence identification, serological reactivity and family genetics of a novel <scp>HLA</scp> allele, <i><scp>HLAâ€A</scp>*26:82</i> . Hla, 2017, 90, 308-309.	0.4	1
407	An Expanded Role for HLA Genes: HLA-B Encodes a microRNA that Regulates IgA and Other Immune Response Transcripts. Frontiers in Immunology, 2017, 8, 583.	2.2	57
408	Accuracy of Programs for the Determination of Human Leukocyte Antigen Alleles from Next-Generation Sequencing Data. Frontiers in Immunology, 2017, 8, 1815.	2.2	21
409	Characterization of the novel <i>HLA *16:116</i> allele by sequencingâ€based typing. Hla, 2018, 91, 309-311	. 0.4	3
410	Identification of the novel HLA-B*51:230 allele in a Saudi individual. Hla, 2018, 92, 49-50.	0.4	3
411	Identification of the novel <i>HLAâ€B*08:01:01:02</i> allele in a Saudi individual. Hla, 2018, 92, 173-173.	0.4	3
412	Human leukocyte antigen (HLA-F) polymorphism is associated with chronic HBV infection. 3 Biotech, 2018, 8, 49.	1.1	11
413	Characterization of the novel HLAâ€B*07:305 allele by sequencingâ€based typing. Hla, 2018, 91, 296-297.	0.4	3
414	Characterization of the novel HLAâ€A*24:391 allele by sequencingâ€based typing. Hla, 2018, 91, 292-293.	0.4	3

ARTICLE IF CITATIONS # Significant variation between SNP-based HLA imputations in diverse populations: the last mile is the 0.9 32 415 hardest. Pharmacogenomics Journal, 2018, 18, 367-376. HLA-A, -B, -C and -DRB1 allele and haplotype frequencies in the Macedonian population based on a family 1.2 study. Human Immunology, 2018, 79, 145-153. Novel full-length major histocompatibility complex class I allele discovery and haplotype definition in 417 1.2 9 pig-tailed macaques. Immunogenetics, 2018, 70, 381-399. Characterization of the novel <i>HLAâ€DPB1*763:01</i> allele by sequencingâ€based typing. Hla, 2018, 92, 418 0.4 429-431. Identification of the novel <i>HLAâ€DPA1*01:03:01:12</i> allele in a Saudi individual. Hla, 2018, 92, 424-425. 419 0.4 4 Diversity and characterisation of polymorphic 3' untranslated region haplotypes of <i>MICA</i> and <i>MICB</i> genes. Hla, 2018, 92, 392-402. 0.4 Precise tracking of vaccine-responding T cell clones reveals convergent and personalized response in 421 identical twins. Proceedings of the National Academy of Sciences of the United States of America, 3.3 108 2018, 115, 12704-12709. Characterization of the novel <i>HLA $\hat{a}\in B^*15:476$ /i> allele by sequencing $\hat{a}\in$ based typing. Hla, 2018, 92, 0.4 412-413. Multiple sclerosis: disease modifying therapy and the human leukocyte antigen. Arquivos De 423 0.3 9 Neuro-Psiquiatria, 2018, 76, 697-704. 424 Identification of the novel <i>HLAâ€A*32:01:01:08</i> allele in a Saudi individual. Hla, 2018, 92, 240-241. 0.4 Characterization of the novel <i>HLAâ€C*07:639</i> allele by sequencingâ€based typing. Hla, 2018, 92, 425 4 0.4 422-423. Identification of the novel <i>HLAâ€A*23:91N</i> allele in a Saudi individual. Hla, 2018, 92, 408-409. 426 0.4 AmpliSAS and AmpliHLA: Web Server Tools for MHC Typing of Non-Model Species and Human Using NGS 427 0.4 4 Data. Methods in Molecular Biology, 2018, 1802, 249-273. An Increased Frequency in HLA Class I Alleles and Haplotypes Suggests Genetic Susceptibility to Influenza A (H1N1) 2009 Pandemic: A Case-Control Study. Journal of Immunology Research, 2018, 2018, 428 1-12. Probability of success in the search for a related bone marrow donor in Cologne, Germany using 429 0.4 1 HLAâ€A, ấ€B and â€DRB1 haplotype frequencies. Hla, 2018, 92, 154-159. Major Histocompatibility Complex and Hematopoietic Stem Cell Transplantation: Beyond the Classical 1.8 HLĂ Polymorphism. International Journal of Molecular Sciences, 2018, 19, 621. Non-classical human leucocyte antigens in ankylosing spondylitis: Åpossible association with HLA-E and 431 1.8 14 HLA-F. RMD Open, 2018, 4, e000677. A novel allele, HLA-C*06:02:47 , identified by sequence-based typing in a Chinese individual. Hla, 2018, 92, 0.4 312-313.

#	Article	IF	CITATIONS
433	Profiling of the TCRÎ ² repertoire in non-model species using high-throughput sequencing. Scientific Reports, 2018, 8, 11613.	1.6	13
434	Improvement in HLAâ€ŧyping by new sequenceâ€specific oligonucleotides kits for HLAâ€A, â€B, and â€DRB1 loci. Hla, 2018, 92, 279-287.	0.4	78
435	Allele Frequency Net Database. Methods in Molecular Biology, 2018, 1802, 49-62.	0.4	38
436	Applications of Immunopharmacogenomics: Predicting, Preventing, and Understanding Immune-Mediated Adverse Drug Reactions. Annual Review of Pharmacology and Toxicology, 2019, 59, 463-486.	4.2	42
437	Identification of the new <i>HLAâ€A*30:159</i> allele in a Brazilian candidate donor for bone marrow donation. Hla, 2019, 94, 441-442.	0.4	2
438	Identification of the new <i>HLAâ€A*24:02:131</i> allele in a Brazilian candidate donor for bone marrow donation. Hla, 2019, 94, 440-441.	0.4	2
439	Clonally expanded alpha-chain T-cell receptor (TCR) transcripts are present in aneurysmal lesions of patients with Abdominal Aortic Aneurysm (AAA). PLoS ONE, 2019, 14, e0218990.	1.1	6
440	Characterization of the first <i>HLAâ€ÐQA1*01:05:01</i> variant, <i>DQA1*01:05:01:02</i> , found in a Brazilian individual. Hla, 2019, 94, 465-466.	0.4	2
441	Characterization of an <i>HLAâ€B*55:01:01</i> variant, <i>HLAâ€B*55:01:01:14</i> , identified in a Brazilian individual. Hla, 2019, 94, 449-450.	0.4	2
442	Characterization of four novel HLAâ€ÐPA1*01:03:01 variants, identified in Brazilian individuals. Hla, 2019, 94, 546-547.	0.4	2
443	IPD-IMGT/HLA Database. Nucleic Acids Research, 2020, 48, D948-D955.	6.5	977
444	Human Leukocyte Antigen Typing Using High-Throughput DNA and RNA Sequencing and Application for Cell Line Identification. Advances in Molecular Pathology, 2019, 2, 187-199.	0.2	1
445	Immunogenomics of Colorectal Tumors: Facts and Hypotheses on an Evolving Saga. Trends in Cancer, 2019, 5, 779-788.	3.8	22
446	Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Research, 2020, 48, D783-D788.	6.5	352
447	Heterogeneity of antigen specificity between HLA-A*02:01 and other frequent Chinese HLA-A2 subtypes detected by a modified autologous lymphocyte-monocyte coculture. Molecular Immunology, 2019, 114, 389-394.	1.0	1
448	Identification of the novel <i>HLAâ€C*05:01:49</i> allele in a Brazilian candidate donor for bone marrow donation. Hla, 2019, 94, 454-455.	0.4	3
449	Characterization of three novel HLAâ€ĐQA1*03:03:01 variants, identified in Brazilian individuals. Hla, 2019, 94, 542-543.	0.4	2
450	Characterization of an <i>HLAâ€B*15:10:01</i> variant, <i>HLAâ€B*15:10:01:05</i> , identified in a Brazilian individual. Hla, 2019, 94, 528-529.	0.4	2

#	Article	IF	CITATIONS
451	Integrate CRISPR/Cas9 for protein expression of HLA-B*38:68Q via precise gene editing. Scientific Reports, 2019, 9, 8067.	1.6	10
452	A novel <i>HLAâ€B*13</i> allele, <i>B*13:103N</i> , was identified by sequencingâ€based typing. Hla, 2019, 94, 318-319.	0.4	2
453	A new HLA allele, HLA *15:144 , identified in a Chinese family. Hla, 2019, 94, 82-83.	0.4	4
454	A specific amino acid motif of <i>HLA-DRB1</i> mediates risk and interacts with smoking history in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7419-7424.	3.3	58
455	Identification of the novel HLAâ€B*18:01:01:17 allele in a Saudi individual. Hla, 2019, 93, 110-110.	0.4	2
456	Characterization of the novel <i>HLAâ€DPB1*896:01</i> allele by sequencingâ€based typing. Hla, 2019, 93, 246-247.	0.4	2
457	Molecular docking predictions of fragrance binding to human leukocyte antigen molecules. Contact Dermatitis, 2019, 81, 174-183.	0.8	5
458	A novel HLAâ€A allele, A*31:74 , was identified by sequenceâ€based typing in a Chinese potential donor. Hla, 2019, 94, 61-63.	0.4	4
459	"Worldwide Network for Blood & Marrow Transplantation (WBMT) special article, challenges facing emerging alternate donor registries― Bone Marrow Transplantation, 2019, 54, 1179-1188.	1.3	51
460	Identification of the novel HLAâ€A*29:02:01:06 allele in a Saudi individual. Hla, 2019, 93, 102-103.	0.4	2
461	Characterization of the first <i>HLAâ€B*15:31</i> variant, <i>B*15:31:01:02</i> , found in a Brazilian individual. Hla, 2019, 94, 529-530.	0.4	3
462	Identification of the novel HLA *04:01:01:31 allele in a Saudi individual. Hla, 2019, 93, 127-128.	0.4	2
463	Immunoinformatics Approach to Design T-cell Epitope-Based Vaccine Against Hendra Virus. International Journal of Peptide Research and Therapeutics, 2019, 25, 1627-1637.	0.9	16
464	Human leukocyte antigen polymorphisms and Kaposi's sarcomaâ€associated herpesvirus infection outcomes: A call for deeper exploration. Journal of Medical Virology, 2019, 91, 541-548.	2.5	7
465	Identification of the novel HLAâ€ĐQB1*05:01:01:05 allele in a Saudi individual. Hla, 2019, 93, 137-138.	0.4	3
466	Identification of the novel HLAâ€B*49:01:01:04 allele in a Saudi individual. Hla, 2019, 93, 119-120.	0.4	2
467	Characterization of an <i>HLA *03:04:01</i> variant, <i>HLA *03:04:01:39</i> , identified in a Brazilian individual. Hla, 2020, 95, 55-56.	0.4	2
468	Characterization of two novel HLAâ€DQA1*05:05:01 variants, identified in Brazilian individuals. Hla, 2020, 95, 75-76.	0.4	1

#	Article	IF	CITATIONS
469	Characterization of the first <i>HLAâ€ÐPA1*04:02</i> variant, <i>DPA1*04:02:01:02</i> , found in a Brazilian individual. Hla, 2020, 95, 90-91.	0.4	2
470	SweHLA: the high confidence HLA typing bio-resource drawn from 1000 Swedish genomes. European Journal of Human Genetics, 2020, 28, 627-635.	1.4	11
471	Immunogenomics: steps toward personalized medicines. , 2020, , 73-90.		0
472	Characterization of an <i>HLA *04:01:01</i> variant, <i>HLA *04:01:01:76</i> , identified in a Brazilian individual. Hla, 2020, 95, 141-142.	0.4	2
473	Characterization and confirmation of the <i>HLAâ€ÐQA1*04:01:01:09</i> allele, identified in a Brazilian individual. Hla, 2020, 95, 153-154.	0.4	2
474	Identification of the novel <i>HLAâ€A*30:162</i> allele in a Brazilian candidate donor for bone marrow donation. Hla, 2020, 95, 208-209.	0.4	2
475	Identification of the novel <i>HLAâ€ĐQA1*02:11</i> allele in a Brazilian candidate donor for bone marrow donation. Hla, 2020, 95, 228-229.	0.4	2
476	Characterization of two novel <i>HLAâ€ĐQA1*05:05:01</i> variants, identified in Brazilian individuals. Hla, 2020, 95, 230-231.	0.4	2
477	Progress in Neoantigen Targeted Cancer Immunotherapies. Frontiers in Cell and Developmental Biology, 2020, 8, 728.	1.8	28
478	Major Histocompatibility Complex Class I Chain–Related A and B (MICA and MICB) Gene, Allele, and Haplotype Associations With Dengue Infections in Ethnic Thais. Journal of Infectious Diseases, 2020, 222, 840-846.	1.9	5
479	Marriage does not relate to major histocompatibility complex: a genetic analysis based on 3691 couples. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201800.	1.2	5
480	HLA-DRB1 alleles and cervical cancer: A meta-analysis of 36 case-control studies. Cancer Epidemiology, 2020, 67, 101748.	0.8	17
481	Characterization of the novel <scp><i>HLAâ€B*44:192:04</i></scp> allele by sequencingâ€based typing. Hla, 2020, 95, 573-574.	0.4	2
482	Characterization of the novel <i>HLAâ€B*27:13:02</i> allele by sequencingâ€based typing. Hla, 2020, 96, 92-93.	0.4	2
483	Characterization of three novel HLAâ€DPA1*02:01:01 variants, identified in Brazilian individuals. Hla, 2020, 95, 84-85.	0.4	3
484	Characterization of two novel HLAâ€ÐQB1*05:01:01 variants, identified in Brazilian individuals. Hla, 2020, 95, 586-587.	0.4	2
485	Characterization of two novel HLAâ€DQA1*03:03:01 variants, identified in Brazilian individuals. Hla, 2020, 95, 583-584.	0.4	2
486	HLA-H: Transcriptional Activity and HLA-E Mobilization. Frontiers in Immunology, 2020, 10, 2986.	2.2	11

#	Article	IF	CITATIONS
487	Comparison of HLA ligand elution data and binding predictions reveals varying prediction performance for the multiple motifs recognized by HLAâ€DQ2.5. Immunology, 2021, 162, 235-247.	2.0	6
488	Distributions of HLAâ€A , â€B, and ―DRB1 alleles typed by ampliconâ€based next generation sequencing in Korean volunteer donors for unrelated hematopoietic stem cell transplantation. Hla, 2021, 97, 112-126.	0.4	7
489	Liquid biopsies: donor-derived cell-free DNA for the detection of kidney allograft injury. Nature Reviews Nephrology, 2021, 17, 591-603.	4.1	72
490	Immune system regulation and role of the human leukocyte antigen in posttraumatic stress disorder. Neurobiology of Stress, 2021, 15, 100366.	1.9	10
491	Sequence-Based Typing of HLA: An Improved Group-Specific Full-Length Gene Sequencing Approach. Methods in Molecular Biology, 2014, 1109, 101-114.	0.4	33
492	Natural Killer Cells and Killer-Cell Immunoglobulin-Like Receptor Polymorphisms: Their Role in Hematopoietic Stem Cell Transplantation. Methods in Molecular Biology, 2014, 1109, 139-158.	0.4	5
493	IMGT/HLA and the Immuno Polymorphism Database. Methods in Molecular Biology, 2014, 1184, 109-121.	0.4	18
494	Mutational Immune Escape in HIV-1 Infection. , 2015, , 667-706.		1
495	In Silico HLA Typing Using Standard RNA-Seq Sequence Reads. Methods in Molecular Biology, 2015, 1310, 247-258.	0.4	13
496	Immunogenetics of Cancer. , 2015, , 295-341.		2
497	Integrated computational prediction and experimental validation identifies promiscuous T cell epitopes in the proteome of Mycobacterium bovis. Microbial Genomics, 2016, 2, e000071.	1.0	22
498	Erosion of Conserved Binding Sites in Personal Genomes Points to Medical Histories. PLoS Computational Biology, 2016, 12, e1004711.	1.5	7
499	HLA Typing from 1000 Genomes Whole Genome and Whole Exome Illumina Data. PLoS ONE, 2013, 8, e78410.	1.1	62
500	HLA-G UTR Haplotype Conservation in the Malian Population: Association with Soluble HLA-G. PLoS ONE, 2013, 8, e82517.	1.1	39
501	An Analysis of HLA-A, -B, and -DRB1 Allele and Haplotype Frequencies of 21,918 Residents Living in Liaoning, China. PLoS ONE, 2014, 9, e93082.	1.1	22
502	The Adaptive Change of HLA-DRB1 Allele Frequencies Caused by Natural Selection in a Mongolian Population That Migrated to the South of China. PLoS ONE, 2015, 10, e0134334.	1.1	10
503	MICB Allele Genotyping on Microarrays by Improving the Specificity of Extension Primers. PLoS ONE, 2015, 10, e0142467.	1.1	2
504	Imputing Variants in HLA-DR Beta Genes Reveals That HLA-DRB1 Is Solely Associated with Rheumatoid Arthritis and Systemic Lupus Erythematosus. PLoS ONE, 2016, 11, e0150283.	1.1	20

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
505	Association of HLA-A and Non-Classical HLA Class I Alleles. PLoS ONE, 2016, 11, e0163570.	1.1	40
506	Antimicrobial Peptides and Vaccine Development to Control Multi-drug Resistant Bacteria. Protein and Peptide Letters, 2019, 26, 324-331.	0.4	12
507	Molecular Docking to Identify Associations Between Drugs and Class I Human Leukocyte Antigens for Predicting Idiosyncratic Drug Reactions. Combinatorial Chemistry and High Throughput Screening, 2015, 18, 296-304.	0.6	69
508	Transfusion medicine and molecular genetic methods. International Journal of Preventive Medicine, 2018, 9, 45.	0.2	7
509	A Microsatellite in the Coding Sequence of HLA-A/B Is a Mutation Hotspot in Colon Cancer With Microsatellite Instability. Gastroenterology, 2022, 162, 960-963.e3.	0.6	0
510	Immunoinformatics and Systems Biology in Personalized Medicine. Methods in Molecular Biology, 2014, 1184, 457-475.	0.4	1
511	Genomics Meets Cancer Immunotherapy. , 2014, , 229-236.		0
512	HLA and Autoimmunity. , 2016, , 297-303.		3
515	Nomenclature for factors of the HLA system, update February 2017*. International Journal of Immunogenetics, 2017, 44, 177-186.	0.8	0
523	Reactive arthritis and undifferentiated peripheral spondyloarthritis share human leucocyte antigen B27 subtypes and serum and synovial fluid cytokine profiles. Rheumatology, 2021, 60, 3004-3011.	0.9	5
524	Immunogenetics of Cancer. , 2020, , 417-478.		0
526	Computational cancer neoantigen prediction: current status and recent advances. Immuno-Oncology Technology, 2021, 12, 100052.	0.2	14
527	Identification of Cytotoxic T lymphocyte (CTL) Epitope and design of an immunogenic multi-epitope of Bovine Ephemeral Fever Virus (BEFV) Glycoprotein G for Vaccine Development. Research in Veterinary Science, 2022, 144, 18-26.	0.9	4
528	High Resolution HLA â^1⁄4A, â^1⁄4B, â^1⁄4C, â^1⁄4DRB1, â^1⁄4DQA1, and â^1⁄4DQB1 Diversity in South African Populat Genetics, 2022, 13, 711944.	ions. Fron	tiers in
539	Next-generation sequencing: unraveling genetic mechanisms that shape cancer immunotherapy efficacy. Journal of Clinical Investigation, 2022, 132, .	3.9	9
540	Distributing human leukocyte antigen (HLA) database in histocompatibility: a shift in HLA data governance. Exploration of Immunology, 2022, 2, 749-759.	1.7	0
541	The IPD-IMGT/HLA Database. Nucleic Acids Research, 2023, 51, D1053-D1060.	6.5	405
542	Prevalence of HLA-B*57:01 allele in HIV-positive and HIV-negative population of eastern India: An epidemiological study. Clinical Epidemiology and Global Health, 2022, 18, 101181.	0.9	Ο

#	Article	IF	CITATIONS
543	Distributions of 11â€loci <scp>HLA</scp> alleles typed by ampliconâ€based nextâ€generation sequencing in South Koreans. Hla, 0, , .	0.4	0
544	Integrative analysis of TP53 mutations in lung adenocarcinoma for immunotherapies and prognosis. BMC Bioinformatics, 2023, 24, .	1.2	1
546	TO MARKET, TO MARKET–2022: MACROMOLECULAR THERAPEUTICS. Medicinal Chemistry Reviews, 0, , 713-798.	0.1	0