Design Strategy of Binder Systems for Ti Injection Mou

Key Engineering Materials 520, 161-166 DOI: 10.4028/www.scientific.net/kem.520.161

Citation Report

#	Article	IF	CITATIONS
1	Water debinding behaviour of water soluble Ti-MIM feedstock. Powder Metallurgy, 2015, 58, 220-227.	1.7	7
2	Metal injection moulding of titanium and titanium alloys: Challenges and recent development. Powder Technology, 2017, 319, 289-301.	4.2	115
3	Metal Injection Moulding of High Nb-Containing TiAl Alloy and Its Oxidation Behaviour at 900 °C. Metals, 2018, 8, 163.	2.3	4
4	Metal injection moulding of surgical tools, biomaterials and medical devices: A review. Powder Technology, 2020, 364, 189-204.	4.2	55
5	Impact of binder constituents on the moldability of titanium-based feedstocks used in low-pressure powder injection molding. Powder Technology, 2021, 381, 255-268.	4.2	6
6	Possibilities and problems of using MIM technology in manufacturing parts of aircraft elements made of titanium and titanium alloys. AlP Conference Proceedings, 2021, , .	0.4	2
7	Improving an easy-to-debind PEG/PPC/PMMA-based binder. Polymer, 2022, 262, 125465.	3.8	1
8	Cutting force modelling in green machining of polymer-based metallic feedstock. Journal of Materials Processing Technology, 2023, 312, 117825.	6.3	2

CITATION REDORT