The Technology Path to Deep Greenhouse Gas Emission Electricity

Science 335, 53-59 DOI: 10.1126/science.1208365

Citation Report

#	ARTICLE	IF	CITATIONS
2	Stepwise unfolding of titin under force-clamp atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 468-472.	3.3	336
3	Energy supplies and future engines for land, sea, and air. Journal of the Air and Waste Management Association, 2012, 62, 1233-1248.	0.9	7
4	Using economic Model Predictive Control to design sustainable policies for mitigating climate change. , 2012, , .		12
5	Weighing the risks of climate change mitigation strategies. Bulletin of the Atomic Scientists, 2012, 68, 67-78.	0.2	23
6	State of charge. IEEE Spectrum, 2012, 49, 56-59.	0.5	77
7	Options for Change in the Australian Energy Profile. Ambio, 2012, 41, 841-850.	2.8	5
8	First implementation of alkaline polymer electrolyte water electrolysis working only with pure water. Energy and Environmental Science, 2012, 5, 7869.	15.6	234
9	Historical Carbon Footprinting and Implications for Sustainability Planning: A Case Study of the Pittsburgh Region. Environmental Science & Technology, 2012, 46, 4283-4290.	4.6	7
10	Do alternative energy sources displace fossilÂfuels?. Nature Climate Change, 2012, 2, 441-443.	8.1	338
11	Longâ€ŧerm trends in nitrogen oxide emissions from motor vehicles at national, state, and air basin scales. Journal of Geophysical Research, 2012, 117, .	3.3	130
12	Where renewable electricity is concerned, how costly is "too costly�. Energy Policy, 2012, 49, 346-354.	4.2	8
13	Social Influence, Consumer Behavior, and Low-Carbon Energy Transitions. Annual Review of Environment and Resources, 2012, 37, 311-340.	5.6	106
14	Switch: A Planning Tool for Power Systems with Large Shares of Intermittent Renewable Energy. Environmental Science & Technology, 2012, 46, 6371-6378.	4.6	110
15	Context-Specific Energy Strategies: Coupling Energy System Visions with Feasible Implementation Scenarios. Environmental Science & amp; Technology, 2012, 46, 9240-9248.	4.6	59
16	Creating a sustainable U.S. electricity sector: the question of scale. Policy Sciences, 2012, 45, 97-121.	1.5	14
17	Determinants of success for promoting solar energy in Rajasthan, India. Renewable and Sustainable Energy Reviews, 2012, 16, 3593-3598.	8.2	62
18	1D absorption kinetics modeling of CO2–DEAB–H2O system. International Journal of Greenhouse Gas Control, 2013, 12, 390-398.	2.3	21
19	Electrochemically fabricated NiCu alloy catalysts for hydrogen production in alkaline water electrolysis. International Journal of Hydrogen Energy, 2013, 38, 13493-13501.	3.8	78

TATION PEDO

ARTICLE IF CITATIONS # EXPANSE methodology for evaluating the economic potential of renewable energy from an energy mix 20 5.1 47 perspective. Applied Energy, 2013, 111, 593-601. Carbon Emissions of Infrastructure Development. Environmental Science & amp; Technology, 2013, 47, 4.6 314 11739-11746. Hybrid systems to address seasonal mismatches between electricity production and demand in nuclear 22 4.2 34 renewable electrical grids. Energy Policy, 2013, 62, 333-341. Hybrid, plug-in hybrid, or electricâ€"What do car buyers want?. Energy Policy, 2013, 61, 532-543. 195 Activity Descriptor Identification for Oxygen Reduction on Nonprecious Electrocatalysts: Linking Surface Science to Coordination Chemistry. Journal of the American Chemical Society, 2013, 135, 24 719 6.6 15443-15449. Effect of morphology of electrodeposited Ni catalysts on the behavior of bubbles generated during the oxygen evolution reaction in alkaline water electrolysis. Chemical Communications, 2013, 49, 9323. 2.2 Decarbonization at crossroads: the cessation of the positive historical trend or a temporary detour?. 26 15.6 14 Energy and Environmental Science, 2013, 6, 1060. Carbon reduction scenarios for 2050: An explorative analysis of public preferences. Energy Policy, 4.2 2013, 63, 796-808. 28 Ambivalence, irony, and democracy in the Anthropocene. Futures, 2013, 46, 1-9. 1.4 31 Planning of carbon capture and storage with pinch analysis techniques. Chemical Engineering Research and Design, 2013, 91, 2721-2731. Achieving Deep Cuts in the Carbon Intensity of U.S. Automobile Transportation by 2050: Complementary 30 4.6 18 Roles for Electricity and Biofuels. Environmental Science & amp; Technology, 2013, 47, 9044-9052. Deep greenhouse gas emission reductions in Europe: Exploring different options. Energy Policy, 2013, 55, 152-164. 4.2 24 Do You Mind if I Plug-in My Car? How etiquette shapes PEV drivers' vehicle charging behavior. 32 2.0 21 Transportation Research, Part A: Policy and Practice, 2013, 54, 155-163. Analysis and control design of sustainable policies for greenhouse gas emissions. Applied Thermal Engineering, 2013, 53, 420-431. Urban form and residential electricity consumption: Evidence from Illinois, USA. Landscape and Urban 34 3.4 47 Planning, 2013, 115, 62-71. Algae based biofuels. Mitigation and Adaptation Strategies for Global Change, 2013, 18, 1-4. Electrobiocommodities: powering microbial production of fuels and commodity chemicals from 36 299 3.3 carbon dioxide with electricity. Current Opinion in Biotechnology, 2013, 24, 385-390. Energy and environment policy case for a global project on artificial photosynthesis. Energy and 264 Environmental Science, 2013, 6, 695.

#	Article	IF	CITATIONS
38	Phase transition singled out. Nature Chemistry, 2013, 5, 363-364.	6.6	6
39	Divide and conquer. Nature Chemistry, 2013, 5, 362-363.	6.6	335
40	Bioplastics science from a policy vantage point. New Biotechnology, 2013, 30, 635-646.	2.4	106
41	Yield comparison of four lignocellulosic perennial energy crop species. Biomass and Bioenergy, 2013, 51, 145-153.	2.9	75
42	Governance Mechanism for Global Greenhouse Gas Emissions: A Stochastic Differential Game Approach. Mathematical Problems in Engineering, 2013, 2013, 1-13.	0.6	7
43	Rethinking wedges. Environmental Research Letters, 2013, 8, 011001.	2.2	47
44	Exploring the consequences of climate change for indoor air quality. Environmental Research Letters, 2013, 8, 015022.	2.2	84
45	Subsurface energy footprints. Environmental Research Letters, 2013, 8, 014037.	2.2	8
46	Deep carbon reductions in California require electrification and integration across economic sectors. Environmental Research Letters, 2013, 8, 014038.	2.2	77
47	The EBies: "Oscars―for Existing Building Heroes. Strategic Planning for Energy and the Environment, 2013, 32, 7-13.	0.9	0
48	Advantages of Bioplastics and Global Sustainability. Applied Mechanics and Materials, 0, 420, 209-214.	0.2	2
49	Business Models for Solar Powered Charging Stations to Develop Infrastructure for Electric Vehicles. Sustainability, 2014, 6, 7358-7387.	1.6	55
50	Timelines for Mitigating Methane Emissions from Energy Technologies. SSRN Electronic Journal, 2014, ,	0.4	0
51	Highâ€resolution mapping of motor vehicle carbon dioxide emissions. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5283-5298.	1.2	91
52	Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18490-18495.	3.3	200
53	Decoupled: Successful Planning Policies in Countries that Have Reduced per Capita Greenhouse Gas Emissions with Continued Economic Growth. Environment and Planning C: Urban Analytics and City Science, 2014, 32, 1083-1099.	1.5	14
54	How big is the bioenergy piece of the energy pie? Who cares—it's pie!. Biotechnology and Bioengineering, 2014, 111, 1717-1718.	1.7	6
55	Solar energy innovation and Silicon Valley. Bulletin of the Atomic Scientists, 2014, 70, 45-53.	0.2	0

#	Article	IF	CITATIONS
56	A review of electricity product differentiation. Applied Energy, 2014, 114, 262-272.	5.1	95
5 7	Transport electrification: A key element for energy system transformation and climate stabilization. Climatic Change, 2014, 123, 651-664.	1.7	90
58	An innovation-focused roadmap for a sustainable global photovoltaic industry. Energy Policy, 2014, 67, 159-169.	4.2	111
59	Envisioning a renewable electricity future for the United States. Energy, 2014, 65, 374-386.	4.5	89
60	Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems. Physical Chemistry Chemical Physics, 2014, 16, 1632-1638.	1.3	63
61	Partial Ion-Exchange of Nickel-Sulfide-Derived Electrodes for High Performance Supercapacitors. Chemistry of Materials, 2014, 26, 3418-3426.	3.2	311
62	Feedstock loss from drought is a major economic risk for biofuel producers. Biomass and Bioenergy, 2014, 69, 135-143.	2.9	22
63	A roadmap for repowering California for all purposes with wind, water, and sunlight. Energy, 2014, 73, 875-889.	4.5	65
64	Linking a storyline with multiple models: A cross-scale study of the UK power system transition. Technological Forecasting and Social Change, 2014, 89, 26-42.	6.2	91
65	Capital investment requirements for greenhouse gas emissions mitigation in power generation on near term to century time scales and global to regional spatial scales. Energy Economics, 2014, 46, 267-278.	5.6	18
66	lon Transport by Nanochannels in Ion-Containing Aromatic Copolymers. Macromolecules, 2014, 47, 2175-2198.	2.2	388
67	Targeting and design of chilled water network. Applied Energy, 2014, 134, 589-599.	5.1	18
68	Bio-electricity and land use in the Future Agricultural Resources Model (FARM). Climatic Change, 2014, 123, 719-730.	1.7	21
69	Smart grids in China. Renewable and Sustainable Energy Reviews, 2014, 37, 896-906.	8.2	78
70	Liberating Energy from Carbon: Introduction to Decarbonization. Lecture Notes in Energy, 2014, , .	0.2	11
71	Scalability and Realist Climate Insights. Weather, Climate, and Society, 2014, 6, 289-292.	0.5	5
72	International low carbon technology transfer: Do intellectual property regimes matter?. Global Environmental Change, 2014, 24, 60-74.	3.6	37
73	Should policy-makers allocate funding to vehicle electrification or end-use energy efficiency as a strategy for climate change mitigation and energy reductions? Rethinking electric utilities efficiency programs. Energy Policy, 2014, 67, 28-36.	4.2	8

#	Article	IF	CITATIONS
74	Recent advances in zinc–air batteries. Chemical Society Reviews, 2014, 43, 5257-5275.	18.7	1,882
75	The imperative of making just energy decisions. , 0, , 353-377.		0
76	Energy Systems. , 2015, , 511-598.		11
77	Assessing Transformation Pathways. , 2015, , 413-510.		28
78	Meeting the Needs of a Nuclear-Renewables Electrical Grid with a Fluoride-Salt–Cooled High-Temperature Reactor Coupled to a Nuclear Air-Brayton Combined-Cycle Power System. Nuclear Technology, 2014, 185, 281-295.	0.7	7
79	Previsualizing a post-combustion world. Indoor Air, 2015, 25, 569-571.	2.0	Ο
80	Evaluation of a Regional Approach to Standards for Plugâ€in Battery Electric Vehicles in Future Lightâ€Duty Vehicle Greenhouse Gas Regulations. Journal of Industrial Ecology, 2015, 19, 154-166.	2.8	4
81	Developing technology introduction strategies based on visualized scenario analysis: Application in energy systems design. Environmental Progress and Sustainable Energy, 2015, 34, 832-840.	1.3	4
82	Methane mitigation timelines to inform energy technology evaluation. Environmental Research Letters, 2015, 10, 114024.	2.2	6
83	Social, economic, technological, and environmental impacts of the development and implementation of solarâ€powered charge stations. Environmental Progress and Sustainable Energy, 2015, 34, 1808-1813.	1.3	8
84	Noise emissions on switched reluctance motors: evaluation of different structural models. World Electric Vehicle Journal, 2015, 7, 179-186.	1.6	7
85	Quantifying the Flexibility for Electric Vehicles to Offer Demand Response to Reduce Grid Impacts without Compromising Individual Driver Mobility Needs. , 2015, , .		10
86	Review of Life-Cycle Approaches Coupled with Data Envelopment Analysis: Launching the CFP + DEA Method for Energy Policy Making. Scientific World Journal, The, 2015, 2015, 1-10.	0.8	47
87	Renewables, nuclear, or fossil fuels? Scenarios for Great Britain's power system considering costs, emissions and energy security. Applied Energy, 2015, 152, 83-93.	5.1	173
88	Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants. Environmental Science & Technology, 2015, 49, 12576-12584.	4.6	56
89	Performance of a Thermoelectric Device with Integrated Heat Exchangers. Journal of Electronic Materials, 2015, 44, 1394-1401.	1.0	10
90	Biomass enables the transition to a carbon-negative power system across western NorthÂAmerica. Nature Climate Change, 2015, 5, 230-234.	8.1	140
91	Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models. Journal of Power Sources, 2015, 282, 265-276.	4.0	250

#	Article	IF	CITATIONS
92	Incorporating Land-Use Requirements and Environmental Constraints in Low-Carbon Electricity Planning for California. Environmental Science & Technology, 2015, 49, 2013-2021.	4.6	22
93	Modeling California policy impacts on greenhouse gas emissions. Energy Policy, 2015, 78, 158-172.	4.2	29
94	A Systems Engineering Approach to Site Selection and an Optimization Model for Sustainable Harvesting of Electricity from Shallow Water Tidal Currents. , 2015, , .		0
95	Charging ahead on the transition to electric vehicles with standard 120 V wall outlets. Applied Energy, 2015, 157, 720-728.	5.1	41
96	Empirical distributions of vehicle use and fuel efficiency across space: Implications of asymmetry for measuring policy incidence. Transportation Research, Part A: Policy and Practice, 2015, 78, 187-199.	2.0	2
97	Estimating the benefits of electric vehicle smart charging at non-residential locations: A data-driven approach. Applied Energy, 2015, 155, 515-525.	5.1	103
98	Operational flexibility and economics of power plants in future low-carbon power systems. Applied Energy, 2015, 156, 107-128.	5.1	232
99	Renewable build-up pathways for the US: Generation costs are not system costs. Energy, 2015, 81, 437-445.	4.5	51
100	Engaging Utilities and Regulators on Transportation Electrification. Electricity Journal, 2015, 28, 78-91.	1.3	1
101	Preference and lifestyle heterogeneity among potential plug-in electric vehicle buyers. Energy Economics, 2015, 50, 190-201.	5.6	157
102	The importance of grid integration for achievable greenhouse gas emissions reductions from alternative vehicle technologies. Energy, 2015, 87, 504-519.	4.5	52
103	Highly rate and cycling stable electrode materials constructed from polyaniline/cellulose nanoporous microspheres. Journal of Materials Chemistry A, 2015, 3, 16424-16429.	5.2	47
104	Cost-optimal design of a simplified, highly renewable pan-European electricity system. Energy, 2015, 83, 658-668.	4.5	65
105	Energy as a driver of change in the Great Lakes–St. Lawrence River Basin. Journal of Great Lakes Research, 2015, 41, 59-68.	0.8	10
106	ls climate change-centrism an optimal policy making strategy to set national electricity mixes?. Applied Energy, 2015, 159, 108-116.	5.1	36
107	Estimating customer electricity and fuel savings from projects installed by the US ESCO industry. Energy Efficiency, 2015, 8, 1251-1261.	1.3	4
108	Solar energy innovation and Silicon Valley. , 2015, , .		1
109	Life cycle assessment of transport of electricity via different voltage levels: A case study for Nord-TrÃ,ndelag county in Norway. Applied Energy, 2015, 157, 144-151.	5.1	33

		CITATION R	EPORT	
#	Article		IF	CITATIONS
110	Comparison of low-carbon pathways for California. Climatic Change, 2015, 131, 545-5	57.	1.7	26
111	Template-directed fabrication of porous gas diffusion layer for magnesium air batteries Power Sources, 2015, 297, 202-207.	. Journal of	4.0	22
112	Synergies and trade-offs between governance and costs in electricity system transitior 2015, 85, 170-181.	ı. Energy Policy,	4.2	22
113	Modeling and optimization of building mix and energy supply technology for urban dis Energy, 2015, 159, 161-177.	tricts. Applied	5.1	66
114	Freight on a Low-Carbon Diet: Accessibility, Freightsheds, and Commodities. Environme & Technology, 2015, 49, 11321-11328.	ental Science	4.6	8
115	Batch Partial Emptying and Filling To Improve the Production Rate of Algae. Industrial & Engineering Chemistry Research, 2015, 54, 12492-12502.	kamp;	1.8	0
116	Big-data for building energy performance: Lessons from assembling a very large nation building energy use. Applied Energy, 2015, 140, 85-93.	al database of	5.1	160
117	Critical Review: Uncharted Waters? The Future of the Electricity-Water Nexus. Environ & Technology, 2015, 49, 51-66.	nental Science	4.6	108
118	Achieving California's 80% greenhouse gas reduction target in 2050: Technology, polic analysis using CA-TIMES energy economic systems model. Energy Policy, 2015, 77, 118	ry and scenario 3-130.	4.2	120
119	Fuzzy <scp>GIS</scp> â€based multiâ€criteria evaluation for US <i>Agave</i> product feedstock. GCB Bioenergy, 2015, 7, 84-99.	ion as a bioenergy	2.5	25
120	Integrated life-cycle assessment of electricity-supply scenarios confirms global environ of low-carbon technologies. Proceedings of the National Academy of Sciences of the U America, 2015, 112, 6277-6282.	mental benefit nited States of	3.3	508
121	A Study on Price-Based Charging Strategy for Electric Vehicles on Expressways. Energie	es, 2016, 9, 385.	1.6	16
122	Study of a New Quick-Charging Strategy for Electric Vehicles in Highway Charging Stat 2016, 9, 744.	ions. Energies,	1.6	12
123	Quantifying interdependencies: the energyâ \in "transport and waterâ \in "energy nexus. , C), , 227-240.		0
124	Environmental impacts of high penetration renewable energy scenarios for Europe. Env Research Letters, 2016, 11, 014012.	vironmental	2.2	81
125	Vehicles Emerging Technologies from Maintenance Perspective. IFAC-PapersOnLine, 20	016, 49, 67-72.	0.5	8
126	Minimizing carbon footprint using pinch analysis: The case of regional renewable electr in China. Applied Energy, 2016, 184, 1051-1062.	icity planning	5.1	38
127	Recent progress in rechargeable alkali metal–air batteries. Green Energy and Environ	ment, 2016, 1, 4-17.	4.7	227

#	Article	IF	CITATIONS
128	Least cost, utility scale abatement from Australia's NEM (National Electricity Market). Part 1: Problem formulation and modelling. Energy, 2016, 101, 606-620.	4.5	24
129	Governing the electric vehicle transition $\hat{a} \in$ Near term interventions to support a green energy economy. Applied Energy, 2016, 179, 1360-1371.	5.1	102
130	Assessing the stationary energy storage equivalency of vehicle-to-grid charging battery electric vehicles. Energy, 2016, 106, 673-690.	4.5	82
131	SWITCH-China: A Systems Approach to Decarbonizing China's Power System. Environmental Science & Technology, 2016, 50, 5467-5473.	4.6	115
132	Spatially and Temporally Resolved Analysis of Environmental Trade-Offs in Electricity Generation. Environmental Science & Technology, 2016, 50, 4537-4545.	4.6	22
133	Après Paris: Breakthrough innovation as the primary moral obligation of rich countries. Environmental Science and Policy, 2016, 63, 170-176.	2.4	9
134	Assessment of the climate commitments and additional mitigation policies of the UnitedÂStates. Nature Climate Change, 2016, 6, 1090-1093.	8.1	20
135	How can fuel cell vehicles bring a bright future for this dragon? Answer by multi-criteria decision making analysis. International Journal of Hydrogen Energy, 2016, 41, 17183-17192.	3.8	22
136	Personal Vehicles Evaluated against Climate Change Mitigation Targets. Environmental Science & Technology, 2016, 50, 10795-10804.	4.6	85
137	Quantifying electric vehicle battery degradation from driving vs. vehicle-to-grid services. Journal of Power Sources, 2016, 332, 193-203.	4.0	198
138	LP-CEM: A modeling tool for power systems planning incorporating climate change effects and macroeconomic trends for New Jersey, United States. Energy Strategy Reviews, 2016, 11-12, 1-18.	3.3	1
140	How might potential future plug-in electric vehicle buyers differ from current "Pioneer―owners?. Transportation Research, Part D: Transport and Environment, 2016, 47, 357-370.	3.2	162
141	Electric vehicle charging algorithms for coordination of the grid and distribution transformer levels. Energy, 2016, 113, 930-942.	4.5	71
142	A regression-based approach to estimating retrofit savings using the Building Performance Database. Applied Energy, 2016, 179, 996-1005.	5.1	80
143	Can environmental awareness explain declining preference for car-based mobility amongst generation Y? A qualitative examination of learn to drive behaviours. Transportation Research, Part A: Policy and Practice, 2016, 94, 149-163.	2.0	31
144	Worldwide Greenhouse Gas Reduction Potentials in Transportation by 2050. Journal of Industrial Ecology, 2016, 20, 329-340.	2.8	32
145	Pathways to zero emissions. Nature Geoscience, 2016, 9, 799-801.	5.4	33
146	FEDERAL AND STATE INCENTIVES HEIGHTEN CONSUMER INTEREST IN ELECTRIC VEHICLES. , 2016, , 355-380.		2

#		IE	CITATIONS
#	ARTICLE Potential for widespread electrification of personal vehicle travel in the United States. Nature	IF	CITATIONS
147	Energy, 2016, 1, .	19.8	208
148	Moving beyond alternative fuel hype to decarbonize transportation. Nature Energy, 2016, 1, .	19.8	113
149	Charging a renewable future: The impact of electric vehicle charging intelligence on energy storage requirements to meet renewable portfolio standards. Journal of Power Sources, 2016, 336, 63-74.	4.0	72
150	The sower's way: quantifying the narrowing net-energy pathways to a global energy transition. Environmental Research Letters, 2016, 11, 094009.	2.2	89
151	Quantifying climate change impacts on hydropower generation and implications on electric grid greenhouse gas emissions and operation. Energy, 2016, 111, 295-305.	4.5	99
152	The impact of climate change mitigation on water demand for energy and food: An integrated analysis based on the Shared Socioeconomic Pathways. Environmental Science and Policy, 2016, 64, 48-58.	2.4	58
153	Improving deep decarbonization modelling capacity for developed and developing country contexts. Climate Policy, 2016, 16, S27-S46.	2.6	36
154	Exploring national decarbonization pathways and global energy trade flows: a multi-scale analysis. Climate Policy, 2016, 16, S92-S109.	2.6	15
155	Intelligent analysis of energy consumption in school buildings. Applied Energy, 2016, 165, 416-429.	5.1	46
156	Energy security in ASEAN: A quantitative approach for sustainable energy policy. Energy Policy, 2016, 90, 60-72.	4.2	114
157	Modelling long-term HFC emissions from India's residential air-conditioning sector: exploring implications of alternative refrigerants, best practices, and a sustainable lifestyle within an integrated assessment modelling framework. Climate Policy, 2016, 16, 877-893.	2.6	11
158	Influencing climate change regulations: examining responses from large-scale firms. Journal of Environmental Planning and Management, 2016, 59, 44-61.	2.4	3
159	Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria. Applied Energy, 2016, 168, 130-145.	5.1	106
160	Introduction to Nano- and Biotech-Based Materials for Energy Building Efficiency. , 2016, , 1-16.		3
161	Flexibility mechanisms and pathways to a highly renewable US electricity future. Energy, 2016, 101, 65-78.	4.5	153
162	Integrated substance and energy flow analysis towards CO 2 emission evaluation of gasoline & amp; diesel production in Chinese fuel-refinery. Journal of Cleaner Production, 2016, 112, 4107-4113.	4.6	10
163	Methodology for evaluating existing infrastructure and facilitating the diffusion of PEVs. Energy Policy, 2016, 89, 1-10.	4.2	3
164	Power system balancing for deep decarbonization of the electricity sector. Applied Energy, 2016, 162, 1001-1009.	5.1	117

#	Article	IF	CITATIONS
165	Least-cost options for integrating intermittent renewables in low-carbon power systems. Applied Energy, 2016, 161, 48-74.	5.1	217
166	Economyâ€wide Material Flow Indicators on a Sectoral Level and Strategies for Decreasing Material Inputs of Sectors. Journal of Industrial Ecology, 2017, 21, 26-37.	2.8	7
167	How policy can build the plug-in electric vehicle market: Insights from the REspondent-based Preference And Constraints (REPAC) model. Technological Forecasting and Social Change, 2017, 117, 238-250.	6.2	69
168	Investment appraisal of cost-optimal and near-optimal pathways for the UK electricity sector transition to 2050. Applied Energy, 2017, 189, 89-109.	5.1	58
169	Tailor-made risk governance for induced seismicity of geothermal energy projects: An application to Switzerland. Geothermics, 2017, 65, 295-312.	1.5	35
170	Pt/Fe-NF electrode with high double-layer capacitance for efficient hydrogen evolution reaction in alkaline media. International Journal of Hydrogen Energy, 2017, 42, 9458-9466.	3.8	43
171	Solar to fuels conversion technologies: a perspective. Materials for Renewable and Sustainable Energy, 2017, 6, 3.	1.5	99
172	Non-precious metal electrocatalysts for hydrogen production in proton exchange membrane water electrolyzer. Applied Catalysis B: Environmental, 2017, 206, 608-616.	10.8	54
173	Environmentally-friendly demand response for residential plug-in electric vehicles. , 2017, , .		4
174	Actors behaving badly: Exploring the modelling of non-optimal behaviour in energy transitions. Energy Strategy Reviews, 2017, 15, 57-71.	3.3	53
176	Assessment of wind and solar power in global low-carbon energy scenarios: An introduction. Energy Economics, 2017, 64, 542-551.	5.6	98
177	Water splitting dye-sensitized solar cells. Nano Today, 2017, 14, 42-58.	6.2	174
178	A novel paradigm-oriented approach towards NG-RE hybrid power generation. Energy Conversion and Management, 2017, 145, 220-232.	4.4	8
179	Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6722-6727.	3.3	250
180	Modeling of plug-in electric vehicle travel patterns and charging load based on trip chain generation. Journal of Power Sources, 2017, 359, 468-479.	4.0	65
181	Financial stability at risk due to investing rapidly in renewable energy. Energy Policy, 2017, 108, 12-20.	4.2	52
182	Membraneless laminar flow cell for electrocatalytic CO ₂ reduction with liquid product separation. Journal Physics D: Applied Physics, 2017, 50, 154006.	1.3	22
183	Confusion of innovations: Mainstream consumer perceptions and misperceptions of electric-drive vehicles and charging programs in Canada. Energy Research and Social Science, 2017, 27, 163-173.	3.0	64

#	Article	IF	CITATIONS
184	Ensuring diversity of national energy scenarios: Bottom-up energy system model with Modeling to Generate Alternatives. Energy, 2017, 126, 886-898.	4.5	47
185	Fuel carbon intensity standards may not mitigate climate change. Energy Policy, 2017, 105, 93-97.	4.2	12
186	Promoting effects of Ce _{0.75} Zr _{0.25} O ₂ on the La _{0.7} Sr _{0.3} MnO ₃ electrocatalyst for the oxygen reduction reaction in metal–air batteries. Journal of Materials Chemistry A, 2017, 5, 6411-6415.	5.2	35
187	Limits to growth in the renewable energy sector. Renewable and Sustainable Energy Reviews, 2017, 70, 769-774.	8.2	47
188	(La1â^'xSrx)0.98MnO3 perovskite with A-site deficiencies toward oxygen reduction reaction in aluminum-air batteries. Journal of Power Sources, 2017, 342, 192-201.	4.0	87
189	Influencing mechanism of energy-related carbon emissions in Xinjiang based on the input-output and structural decomposition analysis. Journal of Chinese Geography, 2017, 27, 365-384.	1.5	32
190	Achieving 80% greenhouse gas reduction target in Saudi Arabia under low and medium oil prices. Energy Policy, 2017, 101, 502-511.	4.2	17
191	Sourcing of Steam and Electricity for Carbon Capture Retrofits. Environmental Science & Technology, 2017, 51, 12908-12917.	4.6	6
192	The underestimated potential of solar energy to mitigate climate change. Nature Energy, 2017, 2, .	19.8	563
193	Climate policies and nationally determined contributions: reconciling the needed ambition with the political economy. Wiley Interdisciplinary Reviews: Energy and Environment, 2017, 6, e256.	1.9	42
194	The Future Promise of Vehicle-to-Grid (V2G) Integration: A Sociotechnical Review and Research Agenda. Annual Review of Environment and Resources, 2017, 42, 377-406.	5.6	123
195	No free ride to zero-emissions: Simulating a region's need to implement its own zero-emissions vehicle (ZEV) mandate to achieve 2050 GHG targets. Energy Policy, 2017, 110, 447-460.	4.2	60
196	TripEnergy: Estimating Personal Vehicle Energy Consumption Given Limited Travel Survey Data. Transportation Research Record, 2017, 2628, 58-66.	1.0	15
197	Highly Nanoporous Nickel Cobaltite Hexagonal Nanostructureâ€Graphene Composites for the Next Generation Energy Storage/Conversion Devices. Advanced Materials Interfaces, 2017, 4, 1700219.	1.9	10
198	Reducing greenhouse gas emissions and improving air quality: Two global challenges. Environmental Progress and Sustainable Energy, 2017, 36, 982-988.	1.3	52
199	Potential for Plug-In Electric Vehicles to provide grid support services. , 2017, , .		7
200	Residential willingness to pay for deep decarbonization of electricity supply: Contingent valuation evidence from Hong Kong. Energy Policy, 2017, 109, 218-227.	4.2	18
201	CO ₂ Emissions Embodied in Interprovincial Electricity Transmissions in China. Environmental Science & Technology, 2017, 51, 10893-10902.	4.6	96

#	Article	IF	CITATIONS
202	Consumption effects of electricity decarbonization: Evidence from California and the Pacific Northwest. Electricity Journal, 2017, 30, 44-49.	1.3	17
203	Policy sequencing toward decarbonization. Nature Energy, 2017, 2, 918-922.	19.8	214
204	Ecosystem management and land conservation can substantially contribute to California's climate mitigation goals. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12833-12838.	3.3	46
206	Does this range suit me? Range satisfaction of battery electric vehicle users. Applied Ergonomics, 2017, 65, 191-199.	1.7	61
207	Griddle: Video Gaming for Power System Education. IEEE Transactions on Power Systems, 2017, 32, 3069-3077.	4.6	11
208	Charging infrastructure placement for electric vehicles: An optimization prospective. , 2017, , .		6
209	Energy, Transportation, Air Quality, Climate Change, Health Nexus: Sustainable Energy is Good for Our Health. AIMS Public Health, 2017, 4, 47-61.	1.1	34
210	Introduction to Cost-Effective Energy-Efficient Building Retrofitting. , 2017, , 1-20.		11
211	Use of time-varying carbon intensity estimation to evaluate GHG emission reduction opportunities in electricity sector. , 2017, , .		2
212	Boycott products from states with dirty energy. Nature, 2017, 551, 294-295.	13.7	10
213	Measuring Energy Efficiency in China's Transport Sector. Energies, 2017, 10, 660.	1.6	10
214	Analyzing Energy Technologies and Policies Using DOSCOE. SSRN Electronic Journal, 0, , .	0.4	2
215	The development of an integrated model for the assessment of water and GHG footprints for the power generation sector. Applied Energy, 2018, 216, 558-575.	5.1	44
216	Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather. Nature Energy, 2018, 3, 395-403.	19.8	160
217	Building simulation: Ten challenges. Building Simulation, 2018, 11, 871-898.	3.0	112
218	The Pivotal Role of Electricity in the Deep Decarbonization of Energy Systems: Cost-Effective Options for Portugal. Lecture Notes in Energy, 2018, , 207-223.	0.2	1
219	Modeling the Impacts of Deep Decarbonization in California and the Western US: Focus on the Transportation and Electricity Sectors. Lecture Notes in Energy, 2018, , 245-259.	0.2	1
220	A High Performance Air Cathode with the Hydrophobic Pores Distributed Continuously and in Gradient for Zincâ€Air Fuel Cells. Energy Technology, 2018, 6, 1860-1864.	1.8	4

#	Article	IF	CITATIONS
221	California end-use electrification impacts on carbon neutrality and clean air. Applied Energy, 2018, 213, 435-449.	5.1	43
222	The neglected social dimensions to a vehicle-to-grid (V2G) transition: a critical and systematic review. Environmental Research Letters, 2018, 13, 013001.	2.2	145
223	Exploring the role of natural gas power plants with carbon capture and storage as a bridge to a low-carbon future. Clean Technologies and Environmental Policy, 2018, 20, 379-391.	2.1	21
224	Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures. Frontiers of Chemical Science and Engineering, 2018, 12, 83-93.	2.3	30
225	Drivers of stagnating global carbon intensity of electricity and the way forward. Energy Policy, 2018, 113, 149-156.	4.2	76
226	Consumption effects of an electricity decarbonization policy: Hong Kong. Energy, 2018, 144, 887-902.	4.5	15
227	When starting with the most expensive option makes sense: Optimal timing, cost and sectoral allocation of abatement investment. Journal of Environmental Economics and Management, 2018, 88, 210-233.	2.1	75
228	The increasing impact of weather on electricity supply and demand. Energy, 2018, 145, 65-78.	4.5	202
229	Targeted emission reductions from global super-polluting power plant units. Nature Sustainability, 2018, 1, 59-68.	11.5	215
230	Low-carbon energy generates public health savings in California. Atmospheric Chemistry and Physics, 2018, 18, 4817-4830.	1.9	20
231	Porous multi-junction thin-film silicon solar cells for scalable solar water splitting. Solar Energy Materials and Solar Cells, 2018, 182, 196-203.	3.0	18
232	Limiting Global Warming to Well Below 2 °C: Energy System Modelling and Policy Development. Lecture Notes in Energy, 2018, , .	0.2	6
233	Analysis of greenhouse gas emissions in electricity systems using time-varying carbon intensity. Journal of Cleaner Production, 2018, 184, 1091-1101.	4.6	78
234	A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement. Journal of Cleaner Production, 2018, 187, 960-973.	4.6	333
235	Environmental policies for GHG emissions reduction and energy transition in the medieval historic centre of Siena (Italy): the role of solar energy. Journal of Cleaner Production, 2018, 185, 829-840.	4.6	50
236	The developmental state in global regulation: Economic change and climate policy. European Journal of International Relations, 2018, 24, 58-81.	1.3	29
237	Modification of porous nickel electrodes with silver nanoparticles for hydrogen production. Journal of Electroanalytical Chemistry, 2018, 808, 420-426.	1.9	9
238	Planning Future Pathways: Implications and Outcomes of Scenario Studies. , 2018, , 115-141.		1

#	Article	IF	CITATIONS
239	Deriving life cycle assessment coefficients for application in integrated assessment modelling. Environmental Modelling and Software, 2018, 99, 111-125.	1.9	59
240	Economic growth and development with low arbon energy. Wiley Interdisciplinary Reviews: Climate Change, 2018, 9, e495.	3.6	66
241	Water demand for electricity in deep decarbonisation scenarios: a multi-model assessment. Climatic Change, 2018, 147, 91-106.	1.7	16
242	A review of optimization and decision-making models for the planning of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml95" display="inline" overflow="scroll" altimg="si95.gif"><mml:msub><mml:mrow><mml:mi mathvariant="normal">CO</mml:mi </mml:mrow><mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow><td>5.7 1b> < /mml:</td><td>222 math>captu</td></mml:mrow></mml:msub></mml:math 	5.7 1b> < /mml:	222 math>captu
243	The role of natural gas and its infrastructure in mitigating greenhouse gas emissions, improving regional air quality, and renewable resource integration. Progress in Energy and Combustion Science, 2018, 64, 62-92.	15.8	184
244	Dynamic pricing at electric vehicle charging stations for waiting time reduction. , 2018, , .		5
245	Intercomparison between Switch 2.0 and GE MAPS models for simulation of high-renewable power systems in Hawaii. Energy, Sustainability and Society, 2018, 8, .	1.7	3
246	Historical and projected improvements in net energy performance of power generation technologies. Energy and Environmental Science, 2018, 11, 3524-3530.	15.6	13
247	Characterization of flame front propagation during early and late combustion for methane-hydrogen fueling of an optically accessible SI engine. International Journal of Hydrogen Energy, 2018, 43, 23538-23557.	3.8	23
248	Local government climate change mitigation and adaptation ranking assessment. International Journal of Clobal Warming, 2018, 16, 461.	0.2	3
249	Optimal Planning of Workplace Electric Vehicle Charging Infrastructure with Smart Charging Opportunities. , 2018, , .		21
250	Modeling high-penetration of clean energy in the electrical grid: A case for Mexico. , 2018, , .		0
251	Research Advances of Amorphous Metal Oxides in Electrochemical Energy Storage and Conversion. Small, 2019, 15, e1804371.	5.2	202
252	A comprehensive review on expansion planning: Models and tools for energy policy analysis. Renewable and Sustainable Energy Reviews, 2018, 98, 346-360.	8.2	108
253	Uncovering the Spatiotemporal Dynamics of Urban Infrastructure Development: A High Spatial Resolution Material Stock and Flow Analysis. Environmental Science & Technology, 2018, 52, 12122-12132.	4.6	58
254	Carbon innumeracy. PLoS ONE, 2018, 13, e0196282.	1.1	16
255	Metals for Fuels? The Raw Material Shift by Energy-Efficient Transport Systems in Europe. Resources, 2018, 7, 49.	1.6	11
256	A dynamic analysis of financing conditions for renewable energy technologies. Nature Energy, 2018, 3, 1084-1092.	19.8	209

#	Article	IF	CITATIONS
257	Ceramic–metal composites for heat exchangers in concentrated solar power plants. Nature, 2018, 562, 406-409.	13.7	123
258	An Integrated Methodology for 0D Map-Based Powertrain Modelling Applied to a 48 V Mild-Hybrid Diesel Passenger Car. , 0, , .		7
259	Transport electrification: the effect of recent battery cost reduction on future emission scenarios. Climatic Change, 2018, 151, 95-108.	1.7	27
260	Perspectives of Informed Citizen Panel on Low-Carbon Electricity Portfolios in Switzerland and Longer-Term Evaluation of Informational Materials. Environmental Science & Technology, 2018, 52, 11478-11489.	4.6	9
261	Temporal carbon intensity analysis: renewable versus fossil fuel dominated electricity systems. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-15.	1.2	15
262	Climate Change Mitigation, Air Pollution, and Environmental Justice in California. Environmental Science & Technology, 2018, 52, 10829-10838.	4.6	49
263	Pathways toward zero-carbon electricity required for climate stabilization. Applied Energy, 2018, 225, 884-901.	5.1	47
264	After the Paris Agreement: Measuring the Global Decarbonization Wedges From National Energy Scenarios. Ecological Economics, 2018, 150, 273-289.	2.9	34
265	Simulation of osmotic energy conversion in nanoporous materials: a concise single-pore model. Inorganic Chemistry Frontiers, 2018, 5, 1677-1682.	3.0	21
266	Clean vehicles as an enabler for a clean electricity grid. Environmental Research Letters, 2018, 13, 054031.	2.2	49
267	Review of climate action plans in 29 major U.S. cities: Comparing current policies to research recommendations. Sustainable Cities and Society, 2018, 41, 711-727.	5.1	45
268	Demand-Aware Charger Planning for Electric Vehicle Sharing. , 2018, , .		35
269	A linear programming input–output model for mapping low-carbon scenarios for Vietnam in 2030. Sustainable Production and Consumption, 2018, 16, 134-140.	5.7	12
270	Residual fossil CO2 emissions in 1.5–2 °C pathways. Nature Climate Change, 2018, 8, 626-633.	8.1	380
271	Transport biofuels technological paradigm based conversion approaches towards a bio-electric energy framework. Energy Conversion and Management, 2018, 172, 554-566.	4.4	28
272	California's Low Carbon Fuel Standard: Modeling financial least-cost pathways to compliance in Northwest California. Transportation Research, Part D: Transport and Environment, 2018, 63, 320-332.	3.2	7
273	Long-term low greenhouse gas emission development strategiesÂfor achieving the 1.5 °C target – insights from a comparison of German bottom-up energy scenarios. Carbon Management, 2018, 9, 549-562.	1.2	8
274	Can regional transportation and land-use planning achieve deep reductions in GHG emissions from vehicles?. Transportation Research, Part D: Transport and Environment, 2018, 63, 222-235.	3.2	26

#	Article	IF	CITATIONS
275	Gasoline as a motor fuel at the pump: Conventional wisdom and new paradigms. Petroleum Science and Technology, 2018, 36, 1201-1207.	0.7	0
276	Importance of GHG emissions assessment in the electricity grid expansion towards a low-carbon future: A time-varying carbon intensity approach. Journal of Cleaner Production, 2018, 196, 1587-1599.	4.6	66
277	On the Path to Decarbonization: Electrification and Renewables in California and the Northeast United States. IEEE Power and Energy Magazine, 2018, 16, 58-68.	1.6	23
278	Is India pulling its weight? India's nationally determined contribution and future energy plans in global climate policy. Climate Policy, 2019, 19, 275-282.	2.6	17
279	How the regime hampered a transition to renewable electricity in Hungary. Environmental Innovation and Societal Transitions, 2019, 33, 162-182.	2.5	23
280	Solar PV Power Potential is Greatest Over Croplands. Scientific Reports, 2019, 9, 11442.	1.6	168
281	Economic and Climate Benefits of Electric Vehicles in China, the United States, and Germany. Environmental Science & Technology, 2019, 53, 11013-11022.	4.6	38
282	Assessing the Potential to Reduce U.S. Building CO2 Emissions 80% by 2050. Joule, 2019, 3, 2403-2424.	11.7	97
283	Comparing Values of Second Life Batteries to Different Classes of Prosumers in California. , 2019, , .		3
284	A nice electricity market design. Electricity Journal, 2019, 32, 106638.	1.3	12
284 285	A nice electricity market design. Electricity Journal, 2019, 32, 106638. Decarbonizing Space and Water Heating in Temperate Climates: The Case for Electrification. Atmosphere, 2019, 10, 435.	1.3 1.0	12 18
	Decarbonizing Space and Water Heating in Temperate Climates: The Case for Electrification.		
285	Decarbonizing Space and Water Heating in Temperate Climates: The Case for Electrification. Atmosphere, 2019, 10, 435. Enhanced Bifunctional Catalytic Activity of Manganese Oxide/Perovskite Hierarchical Core–Shell Materials by Adjusting the Interface for Metal–Air Batteries. ACS Applied Materials & Amp; Interfaces,	1.0	18
285 286	Decarbonizing Space and Water Heating in Temperate Climates: The Case for Electrification. Atmosphere, 2019, 10, 435. Enhanced Bifunctional Catalytic Activity of Manganese Oxide/Perovskite Hierarchical Core–Shell Materials by Adjusting the Interface for Metal— Air Batteries. ACS Applied Materials & amp; Interfaces, 2019, 11, 25870-25881. Impacts of an Increased Substitution of Fossil Energy Carriers with Electricity-Based Technologies on	1.0	18 59
285 286 287	 Decarbonizing Space and Water Heating in Temperate Climates: The Case for Electrification. Atmosphere, 2019, 10, 435. Enhanced Bifunctional Catalytic Activity of Manganese Oxide/Perovskite Hierarchical Core–Shell Materials by Adjusting the Interface for Metal–Air Batteries. ACS Applied Materials & amp; Interfaces, 2019, 11, 25870-25881. Impacts of an Increased Substitution of Fossil Energy Carriers with Electricity-Based Technologies on the Swiss Electricity System. Energies, 2019, 12, 2399. Switch 2.0: A modern platform for planning high-renewable power systems. SoftwareX, 2019, 10, 	1.0 4.0 1.6	18 59 21
285 286 287 288	Decarbonizing Space and Water Heating in Temperate Climates: The Case for Electrification. Atmosphere, 2019, 10, 435. Enhanced Bifunctional Catalytic Activity of Manganese Oxide/Perovskite Hierarchical Core–Shell Materials by Adjusting the Interface for Metal–Air Batteries. ACS Applied Materials & amp; Interfaces, 2019, 11, 25870-25881. Impacts of an Increased Substitution of Fossil Energy Carriers with Electricity-Based Technologies on the Swiss Electricity System. Energies, 2019, 12, 2399. Switch 2.0: A modern platform for planning high-renewable power systems. SoftwareX, 2019, 10, 100251. Genuine four-electron oxygen reduction over precious-metal-free catalyst in alkaline media.	1.0 4.0 1.6 1.2	18 59 21 57
285 286 287 288 289	Decarbonizing Space and Water Heating in Temperate Climates: The Case for Electrification. Atmosphere, 2019, 10, 435. Enhanced Bifunctional Catalytic Activity of Manganese Oxide/Perovskite Hierarchical Coreâ€"Shell Materials by Adjusting the Interface for Metalâ€"Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 25870-25881. Impacts of an Increased Substitution of Fossil Energy Carriers with Electricity-Based Technologies on the Swiss Electricity System. Energies, 2019, 12, 2399. Switch 2.0: A modern platform for planning high-renewable power systems. SoftwareX, 2019, 10, 100251. Genuine four-electron oxygen reduction over precious-metal-free catalyst in alkaline media. Electrochimica Acta, 2019, 319, 382-389. Assessing the impact of residential load profile changes on electricity distribution utility revenues	1.0 4.0 1.6 1.2 2.6	18 59 21 57 18

#	Article	IF	CITATIONS
293	Driving forces and clustering analysis of provincial-level CO2 emissions from the power sector in China from 2005 to 2015. Journal of Cleaner Production, 2019, 240, 118026.	4.6	58
294	Concurrent optimization of thermal and electric storage in commercial buildings to reduce operating cost and demand peaks under time-of-use tariffs. Applied Energy, 2019, 254, 113630.	5.1	37
295	Estimating the Value of Second Life Batteries for Residential Prosumers. , 2019, , .		3
296	Risk of a feedback loop between climatic warming and human mobility. Journal of the Royal Society Interface, 2019, 16, 20190058.	1.5	9
297	Examining the case for long-range battery electric vehicles with a generalized description of driving patterns. Transportation Research Part C: Emerging Technologies, 2019, 108, 1-11.	3.9	8
298	Closures of coalâ€fired power stations in Australia: local unemployment effects. Australian Journal of Agricultural and Resource Economics, 2019, 63, 142-165.	1.3	47
299	Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal. Applied Energy, 2019, 237, 292-303.	5.1	43
300	Optimal energy resource mix for the US and China to meet emissions pledges. Applied Energy, 2019, 238, 92-100.	5.1	11
301	An analysis of the wind power development factors by Generalized Bass Model: A case study of China's eight bases. Journal of Cleaner Production, 2019, 231, 1503-1514.	4.6	20
302	Renewable energy's vanishing premium in Texas's retail electricity pricing plans. Energy Policy, 2019, 132, 764-770.	4.2	14
303	Impact of climate variability on hydropower generation in an un-gauged catchment: Erathna run-of-the-river hydropower plant, Sri Lanka. Applied Water Science, 2019, 9, 1.	2.8	13
304	Using comparative socio-ecological modeling to support Climate Action Planning (CAP). Journal of Cleaner Production, 2019, 232, 30-42.	4.6	43
305	A behavior-centered framework for real-time control and load-shedding using aggregated residential energy resources in distribution microgrids. Energy and Buildings, 2019, 198, 275-290.	3.1	24
306	Experimental investigations of air-CO2 biomass gasification in reversed downdraft gasifier. Fuel, 2019, 253, 1473-1481.	3.4	35
307	Air Quality and Health Cobenefits of Different Deep Decarbonization Pathways in California. Environmental Science & Technology, 2019, 53, 7163-7171.	4.6	26
308	From Flying Cars to Tesla: Examining the Personal Automobile Preferences of Primary Schoolchildren in Denmark and the Netherlands. Energy Research and Social Science, 2019, 56, 101204.	3.0	6
309	Accelerating Bus Electrification: A Mixed Methods Analysis of Barriers and Drivers to Scaling Transit Fleet Electrification. Transportation Research Record, 2019, 2673, 577-587.	1.0	16
310	Optimal Routing an Ungrounded Electrical Distribution System Based on Heuristic Method with Micro Grids Integration. Sustainability, 2019, 11, 1607.	1.6	15

#	Article	IF	CITATIONS
311	A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study. Applied Energy, 2019, 249, 37-45.	5.1	106
312	Joint Optimization Scheme for the Planning and Operations of Shared Autonomous Electric Vehicle Fleets Serving Mobility on Demand. Transportation Research Record, 2019, 2673, 579-597.	1.0	17
313	A BIM-Based construction and demolition waste information management system for greenhouse gas quantification and reduction. Journal of Cleaner Production, 2019, 229, 308-324.	4.6	77
314	Controlling strategies to maximize reliability of integrated photo-electrochemical devices exposed to realistic disturbances. Sustainable Energy and Fuels, 2019, 3, 1297-1306.	2.5	9
315	Modelling complex investment decisions in Germany for renewables with different machine learning algorithms. Environmental Modelling and Software, 2019, 118, 61-75.	1.9	18
316	The roles of users in electric, shared and automated mobility transitions. Transportation Research, Part D: Transport and Environment, 2019, 71, 1-21.	3.2	116
317	A pathway design framework for national low greenhouse gas emission development strategies. Nature Climate Change, 2019, 9, 261-268.	8.1	93
318	Policy goals, partisanship and paradigmatic change in energy policy – analyzing parliamentary discourse in Germany over 30 years. Climate Policy, 2019, 19, 771-786.	2.6	47
319	Efficient pathways to reduce carbon emissions in the electric sector. Electricity Journal, 2019, 32, 15-24.	1.3	2
320	Process network modularity, commonality, and greenhouse gas emissions. Journal of Operations Management, 2019, 65, 93-113.	3.3	22
321	Modeling the GHG emissions intensity of plug-in electric vehicles using short-term and long-term perspectives. Transportation Research, Part D: Transport and Environment, 2019, 69, 209-223.	3.2	58
322	An Economic-Environmental Analysis of Lithium Ion Batteries Based on Process Design and a Manufacturing Equipment Database. Journal of Chemical Engineering of Japan, 2019, 52, 111-120.	0.3	1
323	Comprehensively assessing the drivers of future air quality in California. Environment International, 2019, 125, 386-398.	4.8	24
324	Impact of land requirements on electricity system decarbonisation pathways. Energy Policy, 2019, 129, 193-205.	4.2	40
325	Research on the Electricity Energy Pool Trading and Its Price Mechanism. , 2019, , .		0
326	Committed emissions and the risk of stranded assets from power plants in Latin America and the Caribbean. Environmental Research Letters, 2019, 14, 124096.	2.2	11
327	Exploratory Analysis of Energy Use Across Building Types and Geographic Regions in the United States. Frontiers in Built Environment, 2019, 5, .	1.2	6
328	Games academics play and their consequences: how authorship, <i>h</i> -index and journal impact factors are shaping the future of academia. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192047.	1.2	75

#	Article	IF	CITATIONS
329	Tracking emissions in the US electricity system. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25497-25502.	3.3	63
330	Electrification of Buildings: Potential, Challenges, and Outlook. Current Sustainable/Renewable Energy Reports, 2019, 6, 131-139.	1.2	18
331	Air quality and health benefits from fleet electrification in China. Nature Sustainability, 2019, 2, 962-971.	11.5	174
332	How far can low-carbon energy scenarios reach based on proven technologies?. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 687-705.	1.0	3
333	System effects of high demandâ€side electrification rates: A scenario analysis for Germany in 2030. Wiley Interdisciplinary Reviews: Energy and Environment, 2019, 8, e327.	1.9	8
334	Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs. Environmental and Resource Economics, 2019, 73, 557-590.	1.5	23
335	Greenhouse gas emission accounting approaches in electricity generation systems: A review. Atmospheric Environment, 2019, 200, 131-141.	1.9	36
336	Charging infrastructure for electric vehicles in Multi-Unit Residential Buildings: Mapping feedbacks and policy recommendations. Energy Policy, 2019, 126, 444-451.	4.2	58
337	Exploring Future Food Provision Scenarios for China. Environmental Science & Technology, 2019, 53, 1385-1393.	4.6	62
338	Is the environmental opportunity of retrofitting the residential sector worth the life cycle cost? A consequential assessment of a typical house in Quebec. Renewable and Sustainable Energy Reviews, 2019, 101, 428-439.	8.2	16
339	Assessing the progress toward lower priced long range battery electric vehicles. Energy Policy, 2019, 124, 144-155.	4.2	150
340	What is the role of distributed energy resources under scenarios of greenhouse gas reductions? A specific focus on combined heat and power systems in the industrial and commercial sectors. Applied Energy, 2019, 235, 83-94.	5.1	25
341	Sustainable Real Estate in the Middle East: Challenges and Future Trends. Palgrave Studies in Sustainable Business in Association With Future Earth, 2019, , 403-426.	0.5	8
342	Single-nucleotide variants in human RNA: RNA editing and beyond. Briefings in Functional Genomics, 2019, 18, 30-39.	1.3	17
343	Public awareness and perception of environmental, health and safety risks to electricity generation: an explorative interview study in Switzerland. Journal of Risk Research, 2019, 22, 432-447.	1.4	17
344	Data-Driven Uncertainty Quantification and Characterization for Household Energy Demand Across Multiple Time-Scales. IEEE Transactions on Smart Grid, 2019, 10, 3092-3102.	6.2	8
345	Critiquing social impact assessments: Ornamentation or reality in the Bangladeshi electricity infrastructure sector?. Energy Research and Social Science, 2020, 60, 101339.	3.0	17
346	Reduced grid operating costs and renewable energy curtailment with electric vehicle charge management. Energy Policy, 2020, 136, 111051.	4.2	111

#	Article	IF	Citations
347	Will energy transitions impact financial systems?. Energy, 2020, 194, 116910.	4.5	7
348	Single Nanometer-Sized NiFe-Layered Double Hydroxides as Anode Catalyst in Anion Exchange Membrane Water Electrolysis Cell with Energy Conversion Efficiency of 74.7% at 1.0 A cm ^{–2} . ACS Catalysis, 2020, 10, 1886-1893.	5.5	91
349	Physical and policy pathways to netâ€∉ero emissions industry. Wiley Interdisciplinary Reviews: Climate Change, 2020, 11, e633.	3.6	75
350	Electricity Load Implications of Space Heating Decarbonization Pathways. Joule, 2020, 4, 376-394.	11.7	77
351	Structure and CO2 physisorption capacity of hydrotalcite-derived oxide. Journal of CO2 Utilization, 2020, 36, 64-75.	3.3	7
352	Management of water, energy, and food resources: Go for green policies. Journal of Cleaner Production, 2020, 251, 119662.	4.6	46
353	Life cycle assessment of winter road maintenance. International Journal of Life Cycle Assessment, 2020, 25, 646-661.	2.2	7
354	Texas's operating reserve demand curve's generation investment incentive. Energy Policy, 2020, 137, 111143.	4.2	23
355	Battery warm-up methodologies at subzero temperatures for automotive applications: Recent advances and perspectives. Progress in Energy and Combustion Science, 2020, 77, 100806.	15.8	218
356	Is more use of electricity leading to less carbon emission growth? An analysis with a panel threshold model. Energy Policy, 2020, 137, 111121.	4.2	32
357	Shape-controlled growth of three-dimensional flower-like ZnO@Ag composite and its outstanding electrochemical performance for Ni-Zn secondary batteries. Journal of Colloid and Interface Science, 2020, 562, 518-528.	5.0	33
358	Cost-effectiveness of a modest expansion of renewable generation capacity in Texas. Electricity Journal, 2020, 33, 106696.	1.3	0
359	Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt. Energy, 2020, 211, 118532.	4.5	73
360	Can renewable generation, energy storage and energy efficient technologies enable carbon neutral energy transition?. Applied Energy, 2020, 279, 115889.	5.1	147
361	The Energy Storage Density of Redox Flow Battery Chemistries: A Thermodynamic Analysis. Journal of the Electrochemical Society, 2020, 167, 110536.	1.3	11
362	The energy-climate-health nexus in energy planning: A case study in Brazil. Renewable and Sustainable Energy Reviews, 2020, 132, 110016.	8.2	15
363	Extended policy mix in the power sector: How a coal phase-out redistributes costs and profits among power plants. Energy Policy, 2020, 147, 111690.	4.2	10
364	Longitudinal Vehicle Speed Estimation for Four-Wheel-Independently-Actuated Electric Vehicles Based on Multi-Sensor Fusion. IEEE Transactions on Vehicular Technology, 2020, 69, 12797-12806.	3.9	118

#	Article	IF	CITATIONS
365	Modeling the Effect of Channel Tapering on the Pressure Drop and Flow Distribution Characteristics of Interdigitated Flow Fields in Redox Flow Batteries. Processes, 2020, 8, 775.	1.3	16
366	Determinants of the wholesale prices of energy and ancillary services in the U.S. Midcontinent electricity market. Energy, 2020, 195, 117051.	4.5	26
367	Ultra-Short-Term Building Cooling Load Prediction Model Based on Feature Set Construction and Ensemble Machine Learning. IEEE Access, 2020, 8, 178733-178745.	2.6	11
368	Factors Influencing the Adoption of Electric Vehicles in Bengaluru. Transportation in Developing Economies, 2020, 6, 1.	0.9	32
369	A Mixed Integer Linear Programming Based Load Shedding Technique for Improving the Sustainability of Islanded Distribution Systems. Sustainability, 2020, 12, 6234.	1.6	14
370	Health co-benefits of achieving sustainable net-zero greenhouse gas emissions in California. Nature Sustainability, 2020, 3, 597-605.	11.5	61
371	Electrochemical generation of hexacyanoferrate and hexacyanoruthanate electroactive films at nickel electrode surfaces: A promising synthetic approach for new electrode materials in metal ion batteries and supercapacitors. Journal of Electroanalytical Chemistry, 2020, 871, 114284.	1.9	12
373	Early retirement of power plants in climate mitigation scenarios. Environmental Research Letters, 2020, 15, 094064.	2.2	38
374	Fabrication and characterization of the blend of Polyurethane (PU) and Phase Change Materials (PCM) for energy storage and release. IOP SciNotes, 2020, 1, 024803.	0.4	4
375	User behavior in a real-world peer-to-peer electricity market. Applied Energy, 2020, 270, 115061.	5.1	65
376	How do non-carbon priorities affect zero-carbon electricity systems? A case study of freshwater consumption and cost for Senate Bill 100 compliance in California. Applied Energy, 2020, 265, 114824.	5.1	16
377	Precipitations of W/Cu metallic phases in ZrC in the reactive melt infiltrated ZrC/W composite. Journal of Alloys and Compounds, 2020, 843, 155919.	2.8	8
378	Supercapacitor Performance of Nickel-Cobalt Sulfide Nanotubes Decorated Using Ni Co-Layered Double Hydroxide Nanosheets Grown in Situ on Ni Foam. Nanomaterials, 2020, 10, 584.	1.9	20
379	Comparison of reactions with different calcium sources for CaCO ₃ production using carbonic anhydrase. , 2020, 10, 898-906.		6
380	On the potential of "Photovoltaics + Electric vehicles―for deep decarbonization of Kyoto's power systems: Techno-economic-social considerations. Applied Energy, 2020, 275, 115419.	5.1	68
381	Assessing the feasibility of carbon dioxide mitigation options in terms of energy usage. Nature Energy, 2020, 5, 720-728.	19.8	54
382	Value of technology in the U.S. electric power sector: Impacts of full portfolios and technological change on the costs of meeting decarbonization goals. Energy Economics, 2020, 86, 104694.	5.6	28
383	The impact of intelligent cyber-physical systems on the decarbonization of energy. Energy and Environmental Science, 2020, 13, 744-771.	15.6	104

#	Article	IF	CITATIONS
384	Analysis of greenhouse gas emissions from electric vehicle considering electric energy structure, climate and power economy of ev: A China case. Atmospheric Pollution Research, 2020, 11, 1-11.	1.8	18
385	Assessing California's progress toward its 2020 greenhouse gas emissions limit. Energy Policy, 2020, 138, 111219.	4.2	7
386	The impact of heterogeneous market players with bounded-rationality on the electricity sector low-carbon transition. Energy Policy, 2020, 138, 111274.	4.2	22
387	Designing effective auctions for renewable energy support. Energy Policy, 2020, 142, 111462.	4.2	29
388	Spatial projections of solar PV installations at subnational level: Accuracy testing of regression models. Applied Energy, 2020, 265, 114747.	5.1	39
389	The impacts of the trade liberalization of environmental goods on power system and CO2 emissions. Energy Policy, 2020, 140, 111173.	4.2	12
390	Drivers toward a Low-Carbon Electricity System in China's Provinces. Environmental Science & Technology, 2020, 54, 5774-5782.	4.6	33
391	Evaluating consumer investments in distributed energy technologies. Energy Policy, 2021, 149, 112008.	4.2	10
392	The effects of power system flexibility on the efficient transition to renewable generation. Applied Energy, 2021, 283, 116278.	5.1	17
393	Biomass CO2 gasification with CaO looping for syngas production in a fixed-bed reactor. Renewable Energy, 2021, 167, 652-661.	4.3	47
394	Comprehensive analysis method of determining global long-term GHG mitigation potential of passenger battery electric vehicles. Journal of Cleaner Production, 2021, 289, 125137.	4.6	36
395	Optimal liquified natural gas (LNG) cold energy utilization in an Allam cycle power plant with carbon capture and storage. Energy Conversion and Management, 2021, 228, 113725.	4.4	41
396	Public electric vehicle charger access disparities across race and income in California. Transport Policy, 2021, 100, 59-67.	3.4	77
397	Price Responsiveness of Commercial Demand for Natural Gas in the US. SSRN Electronic Journal, 0, , .	0.4	0
398	Gold-based nanoalloys: synthetic methods and catalytic applications. Journal of Materials Chemistry A, 2021, 9, 19025-19053.	5.2	16
399	The Economic and Climate Value of Flexibility in Green Energy Markets. SSRN Electronic Journal, 0, , .	0.4	1
400	How price responsive is commercial electricity demand in the US?. SSRN Electronic Journal, 0, , .	0.4	0
401	The key role of historic path-dependency and competitor imitation on the electricity sector low-carbon transition. Energy Strategy Reviews, 2021, 33, 100588.	3.3	9

#	Article	IF	CITATIONS
402	Food waste valorization to green energy vehicles: sustainability assessment. Energy and Environmental Science, 2021, 14, 3651-3663.	15.6	43
403	Monoâ€Doped Carbon Nanofiber Aerogel as a Highâ€Performance Electrode Material for Rechargeable Zincâ€Air Batteries. ChemElectroChem, 2021, 8, 829-838.	1.7	7
404	EMF 35 JMIP study for Japan's long-term climate and energy policy: scenario designs and key findings. Sustainability Science, 2021, 16, 355-374.	2.5	32
405	There Are Several Pathways to Netâ€Zero CO 2 Emissions and It's Past Time to Get Moving. AGU Advances, 2021, 2, e2020AV000364.	2.3	0
406	Inducing flexibility of household electricity demand: The overlooked costs of reacting to dynamic incentives. Applied Energy, 2021, 284, 116283.	5.1	6
407	Spurring low-carbon electrosynthesis through energy and innovation policy. IScience, 2021, 24, 102045.	1.9	8
408	SolarEV City concept: building the next urban power and mobility systems. Environmental Research Letters, 2021, 16, 024042.	2.2	17
409	Eco-mobility Approach for a Sustainable Neighbourhood Road Infrastructure within a Mixed-use Community: The Searchlight on Festac Town, Amuwo Odofin, Lagos. IOP Conference Series: Earth and Environmental Science, 2021, 665, 012035.	0.2	1
410	Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: A review. Biomass and Bioenergy, 2021, 146, 105968.	2.9	86
411	Demand-side decarbonization and electrification: EMF 35 JMIP study. Sustainability Science, 2021, 16, 395-410.	2.5	14
412	Variability in Deeply Decarbonized Electricity Systems. Environmental Science & Technology, 2021, 55, 5629-5635.	4.6	10
413	Quantification of the environmental and economic benefits of the electrification of lawn mowers on the US residential market. International Journal of Life Cycle Assessment, 2021, 26, 1267-1284.	2.2	5
414	A multi-stage predicting methodology based on data decomposition and error correction for ultra-short-term wind energy prediction. Journal of Cleaner Production, 2021, 292, 125981.	4.6	56
415	Wind and Solar Resource Droughts in California Highlight the Benefits of Long-Term Storage and Integration with the Western Interconnect. Environmental Science & Technology, 2021, 55, 6214-6226.	4.6	39
416	Transitioning to a carbon-constrained world: Reductions in coal-fired power plant emissions through unit-specific, least-cost mitigation frontiers. Applied Energy, 2021, 288, 116599.	5.1	16
417	The Role of Pyrolysis and Gasification in a Carbon Negative Economy. Processes, 2021, 9, 882.	1.3	32
418	Emissions of electric vehicle charging in future scenarios: The effects of time of charging. Journal of Industrial Ecology, 2021, 25, 1250-1263.	2.8	15
419	Deep decarbonization in Northeastern North America: The value of electricity market integration and hydropower. Energy Policy, 2021, 152, 112210.	4.2	26

#	Article	IF	CITATIONS
420	Stabilisation wedges: measuring progress towards transforming the global energy and land use systems. Environmental Research Letters, 2021, 16, 064011.	2.2	6
421	Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nature Climate Change, 2021, 11, 384-393.	8.1	264
422	Methods for Predicting the Future Evolution of GHG Emissions by Domains. Contemporary Studies in Economic and Financial Analysis, 2021, , 281-306.	0.4	0
423	Net Zero Energy Buildings: Variations, Clarifications, and Requirements in Response to the Paris Agreement. Energies, 2021, 14, 3760.	1.6	21
424	(Not so) Clean Peak Energy Standards. Energy, 2021, 225, 120115.	4.5	0
425	How unprecedented was the February 2021 Texas cold snap?. Environmental Research Letters, 2021, 16, 064056.	2.2	76
426	Pathways to eliminate carbon emissions via renewable energy investments at higher education institutions. Electricity Journal, 2021, 34, 106952.	1.3	5
427	Impact of carbon dioxide removal technologies on deep decarbonization of the electric power sector. Nature Communications, 2021, 12, 3732.	5.8	63
428	Carbon Capture, Utilisation and Storage as a Defense Tool Against Climate Change: Current Developments in West Macedonia (Greece). Energies, 2021, 14, 3321.	1.6	13
429	The potential of industrial electricity savings to reduce air pollution from coal-fired power generation in China. Journal of Cleaner Production, 2021, 301, 126978.	4.6	27
430	Deployment of electric vehicles in China to meet the carbon neutral target by 2060: Provincial disparities in energy systems, CO2 emissions, and cost effectiveness. Resources, Conservation and Recycling, 2021, 170, 105622.	5.3	130
431	A comparative analysis of green financial policy output in OECD countries. Environmental Research Letters, 2021, 16, 074031.	2.2	23
432	Model validation and application of the coupled system of pipe-encapsulated PCM wall and nocturnal sky radiator. Applied Thermal Engineering, 2021, 194, 117057.	3.0	24
433	Prices vs. percentages: Use of tradable green certificates as an instrument of greenhouse gas mitigation. Energy Economics, 2021, 99, 105316.	5.6	7
434	What is different about different net-zero carbon electricity systems?. Energy and Climate Change, 2021, 2, 100046.	2.2	28
435	The importance of temporal resolution in modeling deep decarbonization of the electric power sector. Environmental Research Letters, 2021, 16, 084005.	2.2	34
436	Potential Applications of 5G Network Technology for Climate Change Control: A Scoping Review of Singapore. Sustainability, 2021, 13, 9720.	1.6	12
437	Ultra-high photovoltaic penetration: Where to deploy. Solar Energy, 2021, 224, 1079-1098.	2.9	8

#	Article	IF	CITATIONS
438	Deep decarbonization impacts on electric load shapes and peak demand. Environmental Research Letters, 2021, 16, 094054.	2.2	13
439	Sustainability of emerging energy and transportation technologies is impacted by the coexistence of minerals in nature. Communications Earth & Environment, 2021, 2, .	2.6	22
440	Hybrid Control-Based Acceleration Slip Regulation for Four-Wheel-Independent-Actuated Electric Vehicles. IEEE Transactions on Transportation Electrification, 2021, 7, 1976-1989.	5.3	44
441	Sizing domestic batteries for load smoothing and peak shaving based on real-world demand data. Energy and Buildings, 2021, 247, 111109.	3.1	13
442	Determination of kinetic factors of CO2 mineralization reaction for reducing CO2 emissions in cement industry and verification using CFD modeling. Chemical Engineering Journal, 2021, 420, 129420.	6.6	10
443	The Economic and Climate Value of Flexibility in Green Energy Markets. Environmental and Resource Economics, 2022, 83, 289-312.	1.5	3
444	Designing Pareto optimal electricity retail rates when utility customers are prosumers. Energy Policy, 2021, 156, 112339.	4.2	5
445	Seeking a handle on climate change: Examining the comparative effectiveness of energy efficiency improvement and renewable energy production in the United States. Global Environmental Change, 2021, 70, 102351.	3.6	15
446	How price-responsive is residential retail electricity demand in the US?. Energy, 2021, 232, 120921.	4.5	13
447	Enhanced mineral carbonation at room temperature through MgO nanocubes synthesized by self-combustion. Journal of Environmental Chemical Engineering, 2021, 9, 105592.	3.3	4
448	A novel numerical implementation of electrochemical-thermal battery model for electrified powertrains with conserved spherical diffusion and high efficiency. International Journal of Heat and Mass Transfer, 2021, 178, 121614.	2.5	2
449	The role of highly energy-efficient dwellings in enabling 100% renewable electricity. Energy Policy, 2021, 158, 112565.	4.2	4
450	The effect of increased coupling strength between electricity and heating systems in different climate scenarios for Europe. Energy and Climate Change, 2021, 2, 100039.	2.2	2
451	Net-zero emissions energy systems: What we know and do not know. Energy and Climate Change, 2021, 2, 100049.	2.2	38
452	A review of existing deep decarbonization models and their potential in policymaking. Renewable and Sustainable Energy Reviews, 2021, 152, 111655.	8.2	10
453	The role of the power sector in net-zero energy systems. Energy and Climate Change, 2021, 2, 100045.	2.2	30
454	How Price Responsive is Industrial Electricity Demand in the US?. SSRN Electronic Journal, 0, , .	0.4	1
455	Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act. Patterns, 2021, 2, 100169.	3.1	25

		CITATION REPORT	
#		IF	CITATIONS
456	Carbonâ€Neutral Pathways for the United States. AGU Advances, 2021, 2, e2020AV000284.	2.3	215
459	Internet of Things in Sustainable Energy Systems. Internet of Things, 2020, , 183-216.	1.3	22
460	The Future of National Infrastructure. , 2016, , .		43
461	Low-impact land use pathways to deep decarbonization of electricity. Environmental Research Lette 2020, 15, 074044.	ers, 2.2	43
462	Evaluating cross-sectoral impacts of climate change and adaptations on the energy-water nexus: a framework and California case study. Environmental Research Letters, 2020, 15, 124065.	2.2	16
463	Achieving Deep Reduction in California CO2 Emissions via Renewable Resource Integration, Electrification, and Smart Grid Deployment. , 2016, , .		2
464	Optimal Transition from Coal to Gas and Renewable Power under Capacity Constraints and Adjustment Costs. Policy Research Working Papers, 2014, , .	1.4	9
465	In Defence of Magic Silver Bullets. SSRN Electronic Journal, 0, , .	0.4	1
468	Investigation of Narrow Pore Size Distribution on Carbon Dioxide Capture of Nanoporous Carbons. Bulletin of the Korean Chemical Society, 2012, 33, 3749-3754.	1.0	10
469	Economic Growth and Infrastructure Investments in Energy and Transportation: A Causality Interpretation of China's Western Development Strategy. Energy Journal, 2016, 37, 211-222.	0.9	11
470	Achieving the Clean Power Plan 2030 CO ₂ Target with the New Normal in Natural Gas Prices. Energy Journal, 2017, 38, 39-66.	0.9	3
471	The Political Economy of a Carbon Price Floor for Power Generation. Energy Journal, 2019, 40, 1-24.	0.9	36
474	Versatile One-Pot Tandem Conversion of Biomass-Derived Light Oxygenates into High-Yield Jet Fuel Range Aromatics. Industrial & Engineering Chemistry Research, 2021, 60, 15095-15105.	1.8	3
475	Roadmaps to net-zero emissions systems: Emerging insights and modeling challenges. Joule, 2021, 2551-2563.	5, 11.7	54
476	Metrics for assessing the economic impacts of power sector climate and clean electricity policies. Progress in Energy, 2021, 3, 043001.	4.6	6
477	The Global Carbon Cycle and Terrestrial Biosequestration. Social-environmental Sustainability Series 2012, , 55-88.	, 0.0	0
478	Land Management Examples, Practices, and Principles. Social-environmental Sustainability Series, 20 , 125-178.	0.0	0
479	Strategic Drivers of International Low-Carbon Technology Transfer. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
481	Transition to Low- and Zero-Carbon Energy and Fuels. Lecture Notes in Energy, 2014, , 279-323.	0.2	0
483	Reducing Carbon Emissions to Zero. , 2015, , 23-38.		0
484	Chapter 6. Scaling Up Solutions to State, National and Global Levels. Collabra, 2016, 2, .	1.3	0
485	ECONOMIC AND FINANCIAL DEVELOPMENT OF SOLAR PHOTOVOLTAIC TECHNOLOGY. Proceedings of International Structural Engineering and Construction, 2016, 3, .	0.1	Ο
486	Energy system decarbonization and productivity gains reduced the coupling of CO2 emissions and economic growth in 73 countries between 1970 and 2016. One Earth, 2021, 4, 1614-1624.	3.6	23
487	The Present and Future Market for PEVs in Canada: Evidence from a Mixed-Method Research Program. Lecture Notes in Mobility, 2020, , 63-85.	0.2	Ο
488	Klimaschutz 4.0. , 2020, , 939-955.		0
489	ROAD FREIGHT TRANSPORT PLANNING UNDER SUSTAINABLE CITY DEVELOPMENT. Komunalʹne Gospodarstvo Mìst, 2020, 3, 8-16.	0.1	Ο
490	California's approach to decarbonizing the electricity sector and the role of dispatchable, low-carbon technologies. International Journal of Greenhouse Gas Control, 2022, 113, 103527.	2.3	10
491	How price responsive is industrial demand for natural gas in the United States?. Utilities Policy, 2022, 74, 101318.	2.1	7
492	Sun, wind or water? Public support for large-scale renewable energy development in Canada. Journal of Environmental Policy and Planning, 2022, 24, 175-193.	1.5	6
493	Cost reductions in renewables can substantially erode the value of carbon capture and storage in mitigation pathways. One Earth, 2021, 4, 1588-1601.	3.6	26
494	Deep Decarbonization of the Indian Economy: 2050 Prospects for Wind, Solar, and Green Hydrogen. SSRN Electronic Journal, 0, , .	0.4	0
495	Impact of nanoparticles on the environmental sustainability of polymer nanocomposites based on bioplastics or recycled plastics – A review of life-cycle assessment studies. Journal of Cleaner Production, 2022, 335, 130322.	4.6	20
496	Process improvements and multi-objective optimization of compressed air energy storage (CAES) system. Journal of Cleaner Production, 2022, 335, 130081.	4.6	24
497	Way Off: The Effect of Minimum Distance Regulation on the Deployment and Cost of Wind Power. SSRN Electronic Journal, 0, , .	0.4	2
498	A multi-model method to assess the value of power-to-gas using excess renewable. International Journal of Hydrogen Energy, 2022, 47, 9103-9114.	3.8	11
499	How price responsive is commercial electricity demand in the US?. Electricity Journal, 2022, 35, 107066.	1.3	4

#	Article	IF	CITATIONS
500	Impacts and savings of energy efficiency measures: A case for Mexico's electrical grid. Journal of Cleaner Production, 2022, 340, 130826.	4.6	5
501	Decarbonizing power systems: A critical review of the role of energy storage. Renewable and Sustainable Energy Reviews, 2022, 158, 112077.	8.2	92
502	A comparison between lumped parameter method and computational fluid dynamics method for steady and transient optical-thermal characteristics of the molten salt receiver in solar power tower. Energy, 2022, 245, 123253.	4.5	6
503	Wholesale Market Economics of Solar Generation: Israel. SSRN Electronic Journal, 0, , .	0.4	0
504	Environmental outcomes of the US Renewable Fuel Standard. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	86
505	Electrochemical evaluation of porous CaFe2O4 anode material prepared via solution combustion synthesis at increasing fuel-to-oxidizer ratios and calcination temperatures. Scientific Reports, 2022, 12, 3082.	1.6	5
506	Life cycle analysis of greenhouse gas emissions of China's power generation on spatial and temporal scale. Energy Science and Engineering, 2022, 10, 1083-1095.	1.9	13
507	Estimating interlinks of carbon emissions from transportation, industrialization, and solid/liquid fuels with economic progress: evidence from Pakistan. International Journal of Environmental Science and Technology, 2023, 20, 1981-1996.	1.8	17
508	Capital, energy and carbon in the United States economy. Applied Energy, 2022, 314, 118914.	5.1	8
509	Applying small-scale liquefied natural gas supply chain by fluvial transport in the isolated systems: The case study of Amazonas, Brazil. Energy for Sustainable Development, 2022, 68, 192-202.	2.0	1
510	Assessing environmental impacts of nanoscale semi-conductor manufacturing from the life cycle assessment perspective. Resources, Conservation and Recycling, 2022, 182, 106289.	5.3	5
511	CO2 reduction with coin catalyst. Nano Research, 2022, 15, 3859-3865.	5.8	9
512	Transition pathway for China to achieve carbon neutrality by 2060. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2024, 54, 43-64.	0.3	2
513	Can heatâ€pumps provide routes to decarbonization of building thermal control in the US Midwest?. Energy Science and Engineering, 0, , .	1.9	1
517	Forecasting distributed energy resources adoption for power systems. IScience, 2022, 25, 104381.	1.9	4
518	Electrification of transportation means a lot more than a lot more electric vehicles. IScience, 2022, 25, 104376.	1.9	14
519	How price responsive is industrial demand for electricity in the United States?. Electricity Journal, 2022, 35, 107141.	1.3	0
520	Power ultrasound assisted coalbed methane enhancement recovery: Field application and performance evaluation in underground coal mine. Fuel, 2022, 324, 124575.	3.4	25

#	Article	IF	CITATIONS
521	Deep decarbonization of the Indian economy: 2050 prospects for wind, solar, and green hydrogen. IScience, 2022, 25, 104399.	1.9	9
522	Driving Cycle Synthesis, Aiming for Realness, by Extending Real-World Driving Databases. IEEE Access, 2022, 10, 54123-54135.	2.6	3
523	Machine learning derived dynamic operating reserve requirements in high-renewable power systems. Journal of Renewable and Sustainable Energy, 2022, 14, .	0.8	3
524	Examining spatial disparities in electric vehicle charging station placements using machine learning. Sustainable Cities and Society, 2022, 83, 103978.	5.1	21
525	An Experiment of Own-Price Elasticity Estimation Non-Residential Electricity Demands in the U.S. SSRN Electronic Journal, 0, , .	0.4	0
526	Price Responsiveness of Residential Demand for Natural Gas in the United States. Energies, 2022, 15, 4231.	1.6	0
527	Determinants of cost of capital in the electricity sector. Progress in Energy, 2022, 4, 033001.	4.6	14
528	Price responsiveness of commercial demand for natural gas in the US. Energy, 2022, 256, 124610.	4.5	3
529	Factors influencing adoption of electric vehicles $\hat{a} \in \hat{A}$ case in India. Cogent Engineering, 2022, 9, .	1.1	17
530	Cost and capacity requirements of electrification or renewable gas transition options that decarbonize building heating in Metro Vancouver, British Columbia. Energy Strategy Reviews, 2022, 42, 100882.	3.3	3
531	Recent Advances on CO2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H2. Energies, 2022, 15, 4790.	1.6	12
532	Sustainability of energy transition on output growth and carbon emission abatement in sub-Saharan Africa. African Journal of Science, Technology, Innovation and Development, 2023, 15, 250-259.	0.8	1
533	Consumer lifestyles and ecological behavior: A study of car buyers in India. Business Strategy and the Environment, 2023, 32, 1752-1764.	8.5	0
534	How do users adapt to a short-range battery electric vehicle in a two-car household? Results from a trial in Sweden. Transportation Research Interdisciplinary Perspectives, 2022, 15, 100661.	1.6	1
535	The role of natural gas in reaching net-zero emissions in the electric sector. Nature Communications, 2022, 13, .	5.8	25
536	Fossil-Fuel Options for Power Sector Net-Zero Emissions with Sequestration Tax Credits. Environmental Science & Technology, 2022, 56, 11162-11171.	4.6	3
537	Effects of calcination temperature on the electrochemical performance of LFMO cathode for all-solid-state energy storage. Solid State Ionics, 2022, 383, 115988.	1.3	2
538	Decoupling efficiency from electricity intensity: An empirical assessment in the EU. Energy Policy, 2022, 169, 113171.	4.2	3

#	Article	IF	CITATIONS
539	An Octopus Charger-Based Smart Protocol for Battery Electric Vehicle Charging at a Workplace Parking Structure. Energies, 2022, 15, 6459.	1.6	1
540	Decarbonization scenarios of the U.S. Electricity system and their costs. Applied Energy, 2022, 325, 119679.	5.1	6
541	Do electricity flows hamper regional economic–environmental equity?. Applied Energy, 2022, 326, 120001.	5.1	4
542	Determining the Optimal Route of Electric Vehicle Using a Hybrid Algorithm Based on Fuzzy Dynamic Programming. IEEE Transactions on Fuzzy Systems, 2023, 31, 609-618.	6.5	4
543	Seasonal Variation in Electricity Demand of Solar Powered Net-Zero Energy Housing in Temperate Climates. SSRN Electronic Journal, 0, , .	0.4	0
544	The Impact of Large Deployment of Distributed Solar Photovoltaic at the Urban Scale on the Building Performance and the Correlation Between Energy Supply and Demand Over the Grid. Green Energy and Technology, 2022, , 19-45.	0.4	0
545	Exploration of Bioplastics: A Review. Oriental Journal of Chemistry, 2022, 38, 840-854.	0.1	4
546	Decarbonization will lead to more equitable air quality in California. Nature Communications, 2022, 13, .	5.8	20
547	Global and Regional Drivers of Power Plant CO ₂ Emissions Over the Last Three Decades Revealed From Unitâ€Based Database. Earth's Future, 2022, 10, .	2.4	6
548	The Role of Micro Gas Turbines in Energy Transition. Energies, 2022, 15, 8084.	1.6	13
549	Impact of climate change and socioeconomic factors on domestic energy consumption: The case of Hong Kong and Singapore. Energy Reports, 2022, 8, 12886-12904.	2.5	4
550	Solar fuel processing: Comparative mini-review on research, technology development, and scaling. Solar Energy, 2022, 246, 294-300.	2.9	7
551	The role of electrification induced peak loads and gas infrastructure constraints on decarbonization pathways in New York State. Energy Strategy Reviews, 2022, 44, 100985.	3.3	0
552	Wholesale electricity market economics of solar generation in Israel. Utilities Policy, 2022, 79, 101443.	2.1	6
553	Characterization of ultrasonic induced damage on multi-scale pore/fracture in coal using gas sorption and μ-CT 3D reconstruction. Fuel, 2023, 332, 126178.	3.4	23
554	Tafel Slope Analysis from Inherent Rate Constants for Oxygen Reduction Reaction Over N-doped Carbon and Fe–N-doped Carbon Electrocatalysts. Catalysis Surveys From Asia, 2023, 27, 84-94.	1.0	3
555	Li7P2S8Br0.5I0.5 (LPSBI) solid state electrolyte by XPS. Surface Science Spectra, 2022, 29, .	0.3	0
556	Toward Net-Zero: The Barrier Analysis of Electric Vehicle Adoption and Transition Using ANP and DEMATEL. Processes. 2022, 10, 2334.	1.3	3

#	Article	IF	CITATIONS
557	The promise of coupling geologic CO2 storage with sedimentary basin geothermal power generation. IScience, 2023, 26, 105618.	1.9	5
558	Sustainable power generation through decarbonization in the power generation industry. Environmental Monitoring and Assessment, 2023, 195, .	1.3	3
559	Greenhouse gas emissions and stock market volatility: an empirical analysis of OECD countries. International Journal of Climate Change Strategies and Management, 2023, 15, 58-80.	1.5	4
560	Floating wind power in deep-sea area: Life cycle assessment of environmental impacts. Advances in Applied Energy, 2023, 9, 100122.	6.6	3
561	Ultrafast materials synthesis and manufacturing techniques for emerging energy and environmental applications. Chemical Society Reviews, 2023, 52, 1103-1128.	18.7	30
562	Options for change: Restructuring California's residential inclining rates for a better electricity future. Electricity Journal, 2023, 36, 107234.	1.3	1
563	Thermochemical conversion of large-size woody biomass for carbon neutrality: Principles, applications, and issues. Bioresource Technology, 2023, 370, 128562.	4.8	31
564	Building an interactive web mapping tool to support distributed energy resource planning using public participation GIS. Applied Geography, 2023, 152, 102877.	1.7	1
565	An experiment in own-price elasticity estimation for non-residential electricity demand in the U.S Utilities Policy, 2023, 81, 101489.	2.1	0
566	The role of heat pump in heating decarbonization for China carbon neutrality. , 2022, 1, .		12
567	Minimizing habitat conflicts in meeting net-zero energy targets in the western United States. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	8
568	Assessing how non-carbon co-priorities affect zero-carbon electricity system development in California under current policies. Journal of Cleaner Production, 2023, 403, 136833.	4.6	0
569	The Nexus between GHGs Emissions and Clean Growth: Empirical Evidence from Canadian Provinces. Sustainability, 2023, 15, 2218.	1.6	0
570	Energy Transformation: Challenges and Opportunities — The Polish Case. Ochrona Srodowiska I Zasobow Naturalnych, 2022, 33, 21-34.	0.4	2
571	Temperature consistency–oriented rapid heating strategy combining pulsed operation and external thermal management for lithium-ion batteries. Applied Energy, 2023, 335, 120659.	5.1	7
572	Clean Energy Management Based on Internet of Things and Sensor Networks for Climate Change Problems. Studies in Big Data, 2023, , 117-136.	0.8	0
573	Strategies for beneficial electric vehicle charging to reduce peak electricity demand and store solar energy. Cell Reports Physical Science, 2023, 4, 101287.	2.8	9
574	Cost and Life Cycle Emissions of Ethanol Produced with an Oxyfuel Boiler and Carbon Capture and Storage. Environmental Science & Technology, 2023, 57, 5391-5403.	4.6	4

#	Article		IF	Citations
575	Predicting the Impact of Road Conditions on Battery Health Via Transfer Learning. , 202	23,,.		1
576	The Importance of Blockchain for Ecomobility in Smart Cities: A Systematic Literature R Notes in Business Information Processing, 2023, , 165-184.	Review. Lecture	0.8	0
577	Trade of environmental versus non-environmental goods and carbon emissions in high middle–income countries. Environmental Science and Pollution Research, 2023, 30, 0	and 65283-65295.	2.7	2
582	Ein Vergleich der Kundenwahrnehmung neuer Fahrzeugantriebe mit Fokus auf Risikopruund Nutzungsbereitschaft. , 2023, , 9-25.	ofile, Vertrauen		0
594	Direct ocean capture: the emergence of electrochemical processes for oceanic carbon Energy and Environmental Science, 2023, 16, 4944-4967.	removal.	15.6	6
601	Carbon Neutrality in Schools. Impact of Meat Consumption on Health and Environment Sustainability, 2023, , 1-23.	tal	0.4	0
603	Methodology for calculating maximum income in the greenhouse economy. AIP Confer Proceedings, 2023, , .	rence	0.3	0
623	Bioplastics: solution to a green environment and sustainability. , 2024, , 261-269.			0
625	Recent advances in life cycle assessment of nanomaterials for packaging applications. ,	2024, , 629-649.		0