Branching out: Agroforestry as a climate change mitigat agriculture

Journal of Soils and Water Conservation 67, 128A-136A

DOI: 10.2489/jswc.67.5.128a

Citation Report

#	Article	IF	CITATIONS
1	Highlights of the January 22 issue. Neurology, 2008, 70, 247-247.	1.1	0
2	Soil biochemical properties and microbial resilience in agroforestry systems: Effects on wheat growth under controlled drought and flooding conditions. Science of the Total Environment, 2013, 463-464, 51-60.	8.0	75
3	Conservation Practices for Climate Change Adaptation. Advances in Agronomy, 2013, 121, 47-115.	5.2	54
4	Maximizing the Environmental Benefits of Carbon Farming through Ecosystem Service Delivery. BioScience, 2013, 63, 793-803.	4.9	36
5	Sustainable Development and Equity. , 2015, , 283-350.		6
6	Identifying opportunities for conservation embedded in cropland anthromes. Landscape Ecology, 2014, 29, 1811-1819.	4.2	34
7	Intercropping trees' effect on soil oribatid diversity in agro-ecosystems. Agroforestry Systems, 2014, 88, 671-678.	2.0	9
8	Soil organic carbon sequestration in agroforestry systems. A review. Agronomy for Sustainable Development, 2014, 34, 443-454.	5.3	282
9	Permaculture for agroecology: design, movement, practice, and worldview. A review. Agronomy for Sustainable Development, 2014, 34, 251-274.	5. 3	155
10	Root distribution of different mature tree species growing on contrasting textured soils in temperate windbreaks. Plant and Soil, 2014, 380, 429-439.	3.7	25
11	Using hedgerow biodiversity to enhance the carbon storage of farmland in the Fraser River delta of British Columbia. Journal of Soils and Water Conservation, 2015, 70, 247-256.	1.6	26
12	Developing in situ Non-Destructive Estimates of Crop Biomass to Address Issues of Scale in Remote Sensing. Remote Sensing, 2015, 7, 808-835.	4.0	72
13	Digging Deeper: A Case Study of Farmer Conceptualization of Ecosystem Services in the American South. Environmental Management, 2015, 56, 802-813.	2.7	15
14	Determining tree water acquisition zones with stable isotopes in a temperate tree-based intercropping system. Agroforestry Systems, 2015, 89, 611-620.	2.0	25
15	Biogeochemical Research Priorities for Sustainable Biofuel and Bioenergy Feedstock Production in the Americas. Environmental Management, 2015, 56, 1330-1355.	2.7	15
16	Maize yield patterns on the leeward side of tree windbreaks are site-specific and depend on rainfall conditions in eastern Canada. Agroforestry Systems, 2015, 89, 237-246.	2.0	20
17	The Value of Land Restoration as a Response to Climate Change. , 2016, , 235-245.		4
18	Carbon Sequestration and Carbon Markets for Tree-Based Intercropping Systems in Southern Quebec, Canada. Atmosphere, 2016, 7, 17.	2.3	13

#	Article	IF	CITATIONS
19	The response of the soil microbial food web to extreme rainfall under different plant systems. Scientific Reports, 2016, 6, 37662.	3.3	21
20	Tree Plantations in Saline Environments: Ecosystem Services, Carbon Sequestration and Climate Change Mitigation. Advances in Agroforestry, 2016, , 181-195.	0.8	1
21	Estimating carbon storage in windbreak trees on U.S. agricultural lands. Agroforestry Systems, 2016, 90, 889-904.	2.0	17
23	Land Use Competition. , 2016, , .		17
24	Agroforestry for Ecological Restoration of Salt-Affected Lands. , 2016, , 161-182.		11
25	Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils. Science of the Total Environment, 2016, 571, 1115-1127.	8.0	49
26	Computational Agroecology. , 2016, , .		18
27	Field-scale habitat complexity enhances avian conservation and avian-mediated pest-control services in an intensive agricultural crop. Agriculture, Ecosystems and Environment, 2016, 225, 140-149.	5.3	48
28	Climate change and US agriculture: Opportunities for conservation to reduce and mitigate emissions and to support adaptation to rapid change. Journal of Soils and Water Conservation, 2016, 71, 69-81.	1.6	1
29	Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects. Environmental Management, 2016, 57, 271-282.	2.7	45
30	Agroforestry: a sustainable environmental practice for carbon sequestration under the climate change scenarios—a review. Environmental Science and Pollution Research, 2017, 24, 11177-11191.	5.3	104
31	Soil greenhouse gas emissions from agroforestry and other land uses under different moisture regimes in lower Missouri River Floodplain soils: a laboratory approach. Agroforestry Systems, 2018, 92, 335.	2.0	11
32	Traditional agriculture: a climate-smart approach for sustainable food production. Energy, Ecology and Environment, 2017, 2, 296-316.	3.9	169
33	Participatory land-use approach for integrating climate change adaptation and mitigation into basin-scale local planning. Sustainable Cities and Society, 2017, 35, 47-56.	10.4	19
34	Improving water resilience with more perennially based agriculture. Agroecology and Sustainable Food Systems, 2017, 41, 799-824.	1.9	18
35	Soil CO2, CH4 and N2O emissions from production fields with planted and remnant hedgerows in the Fraser River Delta of British Columbia. Agroforestry Systems, 2017, 91, 1139-1156.	2.0	8
36	Potential of Windbreak Trees to Reduce Carbon Emissions by Agricultural Operations in the US. Forests, 2017, 8, 138.	2.1	7
37	Reduced nitrogen losses after conversion of row crop agriculture to alley cropping with mixed fruit and nut trees. Agriculture, Ecosystems and Environment, 2018, 258, 172-181.	5.3	27

#	Article	IF	CITATIONS
38	Soybean supplementation increases the resilience of microbial and nematode communities in soil to extreme rainfall in an agroforestry system. Science of the Total Environment, 2018, 626, 776-784.	8.0	20
39	Scanning agroforestry-based solutions for climate change mitigation and adaptation in Europe. Environmental Science and Policy, 2018, 80, 44-52.	4.9	68
40	Frontiers in alley cropping: Transformative solutions for temperate agriculture. Global Change Biology, 2018, 24, 883-894.	9.5	52
41	Total Biomass Carbon Sequestration Ability Under the Changing Climatic Condition by Paulownia tomentosa Steud. International Journal of Applied Sciences and Biotechnology, 2018, 6, 220-226.	0.8	9
42	Linking Climate Change Adaptation and Mitigation: A Review with Evidence from the Land-Use Sectors. Land, 2018, 7, 158.	2.9	19
43	Permacultureâ€"Scientific Evidence of Principles for the Agroecological Design of Farming Systems. Sustainability, 2018, 10, 3218.	3.2	45
44	Winter cereal production in a Mediterranean silvoarable walnut system in the face of climate change. Agriculture, Ecosystems and Environment, 2018, 264, 111-118.	5.3	41
45	Enrichment Planting and Soil Amendments Enhance Carbon Sequestration and Reduce Greenhouse Gas Emissions in Agroforestry Systems: A Review. Forests, 2018, 9, 369.	2.1	23
46	Effects of Biochar on the Net Greenhouse Gas Emissions under Continuous Flooding and Water-Saving Irrigation Conditions in Paddy Soils. Sustainability, 2018, 10, 1403.	3.2	20
47	Trade-Off between Energy Wood and Grain Production in Temperate Alley-Cropping Systems: An Empirical and Simulation-Based Derivation of Land Equivalent Ratio. Agriculture (Switzerland), 2019, 9, 147.	3.1	14
48	Wheat and barley can increase grain yield in shade through acclimation of physiological and morphological traits in Mediterranean conditions. Scientific Reports, 2019, 9, 9547.	3.3	40
49	Tree-based Systems for Enhancing Environmental Services of Saline Environments., 2019,, 461-502.		7
50	Nutrient acquisition strategies in agroforestry systems. Plant and Soil, 2019, 444, 1-19.	3.7	96
51	Hi-sAFe: A 3D Agroforestry Model for Integrating Dynamic Tree–Crop Interactions. Sustainability, 2019, 11, 2293.	3.2	44
52	Germplasm Development of Underutilized Temperate U.S. Tree Crops. Sustainability, 2019, 11, 1546.	3.2	4
53	Specific legumes allay drought effects on soil microbial food web activities of the focal species in agroecosystem. Plant and Soil, 2019, 437, 455-471.	3.7	18
54	Carbon sequestration and nitrogen uptake in a temperate silvopasture system. Nutrient Cycling in Agroecosystems, 2019, 114, 85-98.	2.2	25
55	With or without trees: Resistance and resilience of soil microbial communities to drought and heat stress in a Mediterranean agroforestry system. Soil Biology and Biochemistry, 2019, 129, 122-135.	8.8	52

#	Article	IF	CITATIONS
56	Diversification and labor productivity on US permaculture farms. Renewable Agriculture and Food Systems, 2019, 34, 326-337.	1.8	11
57	Climate change adaptation: a study of multiple climate-smart practices in the Nile Basin of Ethiopia. Climate and Development, 2019, 11, 180-192.	3.9	71
58	Role of trees and herbaceous vegetation beneath trees in maintaining arbuscular mycorrhizal communities in temperate alley cropping systems. Plant and Soil, 2020, 453, 153-171.	3.7	34
59	Soil microbial community and activity in a tropical integrated crop-livestock system. Applied Soil Ecology, 2020, 145, 103350.	4.3	41
60	Demonstration and Testing of the Improved Shelterbelt Component in the Holos Model. Frontiers in Environmental Science, 2020, 8, .	3.3	3
61	Keep and promote biodiversity at polluted sites under phytomanagement. Environmental Science and Pollution Research, 2020, 27, 44820-44834.	5.3	25
62	Aerodynamic properties of windbreaks of various designs formed by thinning in central Ukraine. Agroforestry Systems, 2021, 95, 855.	2.0	6
63	Crop Protection Under Changing Climate. , 2020, , .		4
64	Agroforestry boosts soil health in the humid and sub-humid tropics: A meta-analysis. Agriculture, Ecosystems and Environment, 2020, 295, 106899.	5. 3	114
65	Carbon accumulation in agroforestry systems is affected by tree species diversity, age and regional climate: A global metaâ€analysis. Global Ecology and Biogeography, 2020, 29, 1817-1828.	5.8	52
66	Alley cropping affects perennial bioenergy crop root distribution, carbon, and nutrient stocks. Agronomy Journal, 2020, 112, 3718-3732.	1.8	5
67	Influence of forest-to-silvopasture conversion and drought on components of evapotranspiration. Agriculture, Ecosystems and Environment, 2020, 295, 106916.	5.3	16
68	Temporal, environmental and spatial changes in the effect of windbreaks on pasture microclimate. Agricultural and Forest Meteorology, 2021, 297, 108265.	4.8	15
69	Wheat and barley cultivars show plant traits acclimation and increase grain yield under simulated shade in Mediterranean conditions. Journal of Agronomy and Crop Science, 2021, 207, 100-119.	3.5	9
70	Future climate risk to UK agriculture from compound events. Climate Risk Management, 2021, 32, 100282.	3.2	12
71	Developing a set of indicators to identify, monitor, and track impacts and change in forests of the United States. Climatic Change, 2021, 165, 1.	3.6	2
72	A geoâ€spatial approach to assess Trees outside Forest (ToF) in Haryana State, India. Land Degradation and Development, 2021, 32, 3588-3597.	3.9	3
73	Mapping Transformation of Degraded Lands to Potential Agro-Forestry in West Haryana, India: A Geo-Spatial Approach. Journal of the Indian Society of Remote Sensing, 2021, 49, 2057-2068.	2.4	0

#	Article	IF	Citations
74	Soil carbon of hedgerows and â€~ghost' hedgerows. Agroforestry Systems, 2021, 95, 1087-1103.	2.0	12
75	Climate change adaptation in and through agroforestry: four decades of research initiated by Peter Huxley. Mitigation and Adaptation Strategies for Global Change, 2021, 26, 1.	2.1	26
77	Potential distribution of sugar palm in Jepara Regency for soil conservation and climate change mitigation. IOP Conference Series: Earth and Environmental Science, 2021, 824, 012011.	0.3	0
78	Scaling up of jujube-based agroforestry practice and management innovations for improving efficiency and profitability of land uses in Bangladesh. Agroforestry Systems, 2022, 96, 249-263.	2.0	9
79	Competition, stress and benefits: Trees and crops in the transition zone of a temperate short rotation alley cropping agroforestry system. Journal of Agronomy and Crop Science, 2022, 208, 209-224.	3.5	22
81	Assessment and mitigation of tangible flood damages driven by climate change in a tropical city: Hat Yai Municipality, southern Thailand. Science of the Total Environment, 2021, 789, 147983.	8.0	10
82	Soil quality assessment of an agroforestry system following longâ€term management in the Ozark Highlands. , 2021, 4, e20194.		7
83	The Economic Benefits of the New Climate Economy in Rural America. , 0, , .		4
84	Climate-Friendly Adaptation Strategies for the Displaced Atoll Population in Yap. Climate Change Management, 2017, , 101-117.	0.8	3
85	Agroforestry Interventions for Rehabilitating Salt-Affected and Waterlogged Marginal Landscapes. , 2020, , 111-162.		4
86	The policyscape of agroforestry within Mediterranean protected landscapes in France. Sustainability Science, 2020, 15, 1435-1448.	4.9	3
87	Multiple livelihood strategies and high floristic diversity increase the adaptive capacity and resilience of Sri Lankan farming enterprises. Science of the Total Environment, 2020, 739, 139120.	8.0	11
88	Agroforestry solutions for buffering climate variability and adapting to change, 2014,, 216-232.		16
89	Land Evaluation in terms of Agroforestry Suitability, an Approach to Improve Livelihood and Reduce Poverty: A FAO based Methodology by Geospatial Solution: A case study of Palamu district, Jharkhand, India. Ecological Questions, 0, 25, 67.	0.3	14
91	Geospatial Approach for Agroforestry Suitability Mapping: To Enhance Livelihood and Reduce Poverty, FAO based Documented Procedure (Case Study of Dumka District, Jharkhand, India). Biosciences, Biotechnology Research Asia, 2017, 14, 651-665.	0.5	9
93	Soil Carbon Sequestration. , 2017, , 188-212.		1
94	Effect of Soil Properties on Tree Distribution across an Agricultural Landscape on a Tropical Mountain, Tanzania. Open Journal of Ecology, 2016, 06, 264-276.	1.0	5
95	Flood Control and Air Cleaning Regulatory Ecosystem Services of Agroforestry. , 2021, , 305-330.		1

#	ARTICLE	IF	CITATIONS
96	Linking climate change adaptation practices with farm technical efficiency and fertilizer use: a study of wheat–maize mix cropping zone of Punjab province, Pakistan. Environmental Science and Pollution Research, 2022, 29, 16925-16938.	5.3	19
97	Modelling Agroforestry's Contributions to People—A Review of Available Models. Agronomy, 2021, 11, 2106.	3.0	16
98	Biomass increment and carbon sequestration in hedgerow-grown trees. Dendrochronologia, 2021, 70, 125894.	2.2	10
99	Assessment of Trees Outside Forests (TOF) with Emphasis on Agroforestry Systems. , 2020, , 87-107.		1
100	Agroforestry for Rehabilitation of Degraded Landscapes: Achieving Livelihood and Environmental Security., 2020,, 23-68.		8
101	Impact of Climate Change on Crop Production: Effects and Management. , 2020, , 171-187.		0
102	Soil Carbon Sequestration. Advances in Environmental Engineering and Green Technologies Book Series, 0, , 30-54.	0.4	1
103	Carbon stocks differ among land-uses in agroforestry systems in western Canada. Agricultural and Forest Meteorology, 2022, 313, 108756.	4.8	12
104	Soil and water ecosystem services of agroforestry. Journal of Soils and Water Conservation, 2022, 77, 5A-11A.	1.6	6
105	Soil carbon sequestration potential of planting hedgerows in agricultural landscapes. Journal of Environmental Management, 2022, 307, 114484.	7.8	14
106	Shelterbelt species composition and age determine structure: Consequences for ecosystem services. Agriculture, Ecosystems and Environment, 2022, 329, 107884.	5.3	13
107	Tackling Food and Nutrition Insecurity among Rural Inhabitants: Role of Household-Level Strategies with a Focus on Value Addition, Diversification and Female Participation. Land, 2022, 11, 254.	2.9	6
108	Impact of Olive Trees on the Microclimatic and Edaphic Environment of the Understorey Durum Wheat in an Alley Orchard of the Mediterranean Area. Agronomy, 2022, 12, 527.	3.0	6
109	Climate Change Adaptation Measures by Farm Households in Gedeo Zone, Ethiopia: An Application of Multivariate Analysis Approach. Environment, Development and Sustainability, 2023, 25, 3183-3209.	5.0	6
114	Soil Nematodes as the Silent Sufferers of Climate-Induced Toxicity: Analysing the Outcomes of Their Interactions with Climatic Stress Factors on Land Cover and Agricultural Production. Applied Biochemistry and Biotechnology, 2023, 195, 2519-2586.	2.9	4
115	Intersecting Knowledge With Landscape: Indigenous Agriculture, Sustainable Food Production and Response to Climate Change – A Case Study of Chuktia Bhunjia Tribe of Odisha, India. Journal of Asian and African Studies, 2024, 59, 123-141.	1.5	2
116	Impact of climate finance on gender equity for sustainable global development: Can aid for climate action also aid gender equity?., 2022, 1, 82-94.		2
117	Willows rapidly affect microclimatic conditions and forage yield in two temperate short-rotation agroforestry systems. Agroforestry Systems, 2022, 96, 1009-1021.	2.0	3

#	Article	IF	CITATIONS
118	Simulated heat wave events increase CO2 and N2O emissions from cropland and forest soils in an incubation experiment. Biology and Fertility of Soils, 2022, 58, 789-802.	4.3	1
119	Phenological, morphological and physiological drivers of cereal grain yield in Mediterranean agroforestry systems. Agriculture, Ecosystems and Environment, 2022, 340, 108158.	5.3	6
120	Reducing Wind Erosion through Agroforestry: A Case Study Using Large Eddy Simulations. Sustainability, 2022, 14, 13372.	3.2	4
121	Meeting tree planting targets on the UK's path to net-zero: A review of lessons learnt from 100 years of land use policies. Land Use Policy, 2023, 125, 106502.	5.6	7
123	Agroforestry as a Key Intervention to Achieve Nationally Determined Contribution (NDC) Targets., 2023,, 641-664.		3
124	Introduction: Agroforestry for Sustaining the Global Agriculture in a Changing Environment. , 2023, , 3-20.		0
125	Agroforestry for Climate Change Resilience in Degraded Landscapes. , 2023, , 121-174.		0
126	Effects of a tree row on greenhouse gas fluxes, growing conditions and soil microbial communities on an oat field in Southern Finland. Agriculture, Ecosystems and Environment, 2023, 352, 108525.	5.3	1
127	Trend for Soil CO2 Efflux in Grassland and Forest Land in Relation with Meteorological Conditions and Root Parameters. Sustainability, 2023, 15, 7193.	3.2	1
128	Climate change and livestock herders wellbeing in Pakistan: Does nexus of risk perception, adaptation and their drivers matter?. Heliyon, 2023, 9, e16983.	3.2	3
129	Agroforestry potential for adaptation to climate change: A soilâ€based perspective. Soil Use and Management, 2023, 39, 1006-1032.	4.9	4
130	Increasing tree cover on Irish dairy and drystock farms: The main attitudes, influential bodies and barriers that affect agroforestry uptake. Environmental Science and Policy, 2023, 146, 76-89.	4.9	1
131	Sustainability of Agroforestry Practices and their Resilience to Climate Change Adaptation and Mitigation in Sub-Saharan Africa: A Review. Ekologia, 2023, 42, 179-192.	0.8	0
132	Promoting agroforestry on sand dunes for desertification control in arid regions. Journal of Environmental Planning and Management, 0, , 1-26.	4.5	0
133	Climate change impacts on tuber crops: vulnerabilities and adaptation strategies. Journal of Horticultural Sciences, 2023, 18, 1-18.	0.1	0
134	Evidence that a common arbuscular mycorrhizal network alleviates phosphate shortage in interconnected walnut sapling and maize plants. Frontiers in Plant Science, 0, 14, .	3.6	0
135	Behavior and Distribution of Free Aluminum Oxides in some Soil Orders in North of Iraq. IOP Conference Series: Earth and Environmental Science, 2023, 1262, 082014.	0.3	0
136	Using farmers' ex ante preferences to design agriâ€environmental contracts: A systematic review. Journal of Agricultural Economics, 2024, 75, 44-83.	3.5	2

#	Article	IF	CITATIONS
137	Carbon sink, mitigation, and sequestration under climate change., 2024, , 111-122.		0
138	Restoration of Degraded Soils for Food Production Through Agroforestry. Sustainable Development and Biodiversity, 2024, , 275-291.	1.7	0
139	Integrated agricultural systems: The 21st century nature-based solution for resolving the global FEEES challenges. Advances in Agronomy, 2024, , $1-73$.	5.2	0
140	Cultivating debate: the dichotomy of trees in agroecosystems. Frontiers in Forests and Global Change, 0, 7, .	2.3	0
141	Indigenous knowledge in agroforestry promotion: a case from Bandegaun, Indrawati Rural Municipality, Sindhupalchok District, Nepal. MOJ Ecology & Environmental Sciences, 2023, 8, 171-175.	0.2	0