An ultraviolet–optical flare from the tidal disruption

Nature 485, 217-220 DOI: 10.1038/nature10990

Citation Report

#	Article	IF	CITATIONS
1	Black-hole spin dependence in the light curves of tidal disruption events. Physical Review D, 2012, 86, .	1.6	46
2	Low-mass black holes as the remnants of primordial black hole formation. Nature Communications, 2012, 3, 1304.	5.8	125
3	UNUSUAL LONG AND LUMINOUS OPTICAL TRANSIENT IN THE SUBARU DEEP FIELD. Astrophysical Journal Letters, 2012, 760, L11.	3.0	2
4	Challenges in the modeling of tidal disruption events lightcurves. EPJ Web of Conferences, 2012, 39, 01001.	0.1	18
5	THE TIDAL DISRUPTION OF GIANT STARS AND THEIR CONTRIBUTION TO THE FLARING SUPERMASSIVE BLACK HOLE POPULATION. Astrophysical Journal, 2012, 757, 134.	1.6	125
6	Ultraviolet and optical observations of tidal disruption events. EPJ Web of Conferences, 2012, 39, 03001.	0.1	15
7	Emission lines from tidally disrupted white dwarfs and other evolved stars. EPJ Web of Conferences, 2012, 39, 01005.	0.1	2
8	Tidal disruption flares from stars on eccentric orbits. EPJ Web of Conferences, 2012, 39, 01004.	0.1	3
9	Tidal disruption events from the first XMM-Newton slew survey. EPJ Web of Conferences, 2012, 39, 02004.	0.1	2
10	Bright PanSTARRS Nuclear Transients – what are they?. EPJ Web of Conferences, 2012, 39, 03002.	0.1	4
11	Tidal disruption of stars by supermassive black holes: The X-ray view. EPJ Web of Conferences, 2012, 39, 02001.	0.1	21
12	Radio follow-up observations of stellar tidal disruption flares: Constraints on off-axis jets. EPJ Web of Conferences, 2012, 39, 04004.	0.1	0
13	Star ripped to shreds. Nature, 2012, 485, 183-183.	13.7	1
14	Tidal Disruption Events. Brazilian Journal of Physics, 2013, 43, 351-355.	0.7	4
15	LATE-TIME RADIO EMISSION FROM X-RAY-SELECTED TIDAL DISRUPTION EVENTS. Astrophysical Journal, 2013, 763, 84.	1.6	61
16	SUPER-LUMINOUS TYPE IC SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL. Astrophysical Journal, 2013, 770, 128.	1.6	332
17	Multi-periodic pulsations of a stripped red-giant star in an eclipsing binary system. Nature, 2013, 498, 463-465.	13.7	79
18	Finite, intense accretion bursts from tidal disruption of stars on bound orbits. Monthly Notices of the Royal Astronomical Society, 2013, 434, 909-924.	1.6	140

#	Article	IF	CITATIONS
19	A tidal flare candidate in Abell 1795â~…â€â€¡. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1904-1927.	1.6	53
20	Consequences of strong compression in tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1809-1824.	1.6	169
21	Roche accretion of stars close to massive black holes. Monthly Notices of the Royal Astronomical Society, 2013, 434, 2948-2960.	1.6	27
22	A model for the multiwavelength radiation from tidal disruption event SwiftÂJ1644+57. Monthly Notices of the Royal Astronomical Society, 2013, 434, 3078-3088.	1.6	21
23	LONG-TERM SPECTRAL EVOLUTION OF TIDAL DISRUPTION CANDIDATES SELECTED BY STRONG CORONAL LINES. Astrophysical Journal, 2013, 774, 46.	1.6	45
24	X-RAY TRANSIENTS IN THE ADVANCED LIGO/VIRGO HORIZON. Astrophysical Journal, 2013, 774, 63.	1.6	13
25	PS1-10jh – a tidal disruption event with an extremely low disc temperature. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 430, L45-L48.	1.2	6
26	A-STAR: The All-Sky Transient Astrophysics Reporter. EAS Publications Series, 2013, 61, 625-631.	0.3	3
27	Stripped red giant cores in eclipsing binary star systems. EAS Publications Series, 2013, 64, 353-359.	0.3	0
28	HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE. Astrophysical Journal, 2013, 767, 25.	1.6	386
29	Simulating extreme-mass-ratio systems in full general relativity. Physical Review D, 2013, 87, .	1.6	11
30	Relativistic effects in the tidal interaction between a white dwarf and a massive black hole in Fermi normal coordinates. Physical Review D, 2013, 87, .	1.6	33
31	VAST: An ASKAP Survey for Variables and Slow Transients. Publications of the Astronomical Society of Australia, 2013, 30, .	1.3	88
32	THE <i>GALEX</i> TIME DOMAIN SURVEY. I. SELECTION AND CLASSIFICATION OF OVER A THOUSAND ULTRAVIOLET VARIABLE SOURCES. Astrophysical Journal, 2013, 766, 60.	1.6	48
33	PRECURSOR FLARES IN OJ 287. Astrophysical Journal, 2013, 764, 5.	1.6	39
34	Constraints on off-axis jets from stellar tidal disruption flares. Astronomy and Astrophysics, 2013, 552, A5.	2.1	62
35	THE <i>M</i> _{BH} - <i>L</i> _{SPHEROID} RELATION AT HIGH AND LOW MASSES, THE QUADRATIC GROWTH OF BLACK HOLES, AND INTERMEDIATE-MASS BLACK HOLE CANDIDATES. Astrophysical Journal, 2013, 764, 151.	1.6	219
36	An X-ray and UV flare from the galaxy XMMSL1 J061927.1-655311. Astronomy and Astrophysics, 2014, 572, A1.	2.1	23

#	Article	IF	Citations
37	ECCENTRICITY GROWTH AND ORBIT FLIP IN NEAR-COPLANAR HIERARCHICAL THREE-BODY SYSTEMS. Astrophysical Journal, 2014, 785, 116.	1.6	152
38	The puzzling source IGR J17361–4441 in NGC 6388: a possible planetary tidal disruption event. Monthly Notices of the Royal Astronomical Society, 2014, 444, 93-101.	1.6	19
39	The superluminous supernova PS1-11ap: bridging the gap between low and high redshift. Monthly Notices of the Royal Astronomical Society, 2014, 437, 656-674.	1.6	64
40	The Pan-STARRS Project in 2014. , 2014, , .		3
41	The production of strong, broad He II emission after the tidal disruption of a main-sequence star by a supermassive black hole. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 438, L36-L40.	1.2	31
42	ASASSN-14ae: a tidal disruption event at 200 Mpc. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3263-3277.	1.6	205
43	Tidal disruption of a star in the Schwarzschild spacetime: Relativistic effects in the return rate of debris. Physical Review D, 2014, 90, .	1.6	40
44	SCIENCE WITH A WIDE-FIELD UV TRANSIENT EXPLORER. Astronomical Journal, 2014, 147, 79.	1.9	100
45	THE ULTRAVIOLET-BRIGHT, SLOWLY DECLINING TRANSIENT PS1-11af AS A PARTIAL TIDAL DISRUPTION EVENT. Astrophysical Journal, 2014, 780, 44.	1.6	166
46	GRAVITATIONAL WAVES FROM THE COLLISION OF TIDALLY DISRUPTED STARS WITH MASSIVE BLACK HOLES. Astrophysical Journal, 2014, 795, 135.	1.6	20
47	Prospect for UV observations from the Moon. Astrophysics and Space Science, 2014, 353, 329-346.	0.5	5
48	RBS 1032: A TIDAL DISRUPTION EVENT IN ANOTHER DWARF GALAXY?. Astrophysical Journal Letters, 2014, 792, L29.	3.0	34
49	PS1-10jh: THE DISRUPTION OF A MAIN-SEQUENCE STAR OF NEAR-SOLAR COMPOSITION. Astrophysical Journal, 2014, 783, 23.	1.6	239
50	EVOLUTION OF ACCRETION DISKS IN TIDAL DISRUPTION EVENTS. Astrophysical Journal, 2014, 784, 87.	1.6	86
51	Tidal disruption and magnetic flux capture: powering a jet from a quiescent black hole. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3919-3938.	1.6	43
52	DISRUPTION OF A RED GIANT STAR BY A SUPERMASSIVE BLACK HOLE AND THE CASE OF PS1-10jh. Astrophysical Journal, 2014, 788, 99.	1.6	37
53	A CONTINUUM OF H- TO He-RICH TIDAL DISRUPTION CANDIDATES WITH A PREFERENCE FOR E+A GALAXIES. Astrophysical Journal, 2014, 793, 38.	1.6	332
54	A MILLIPARSEC SUPERMASSIVE BLACK HOLE BINARY CANDIDATE IN THE GALAXY SDSS J120136.02+300305.5. Astrophysical Journal, 2014, 786, 103.	1.6	86

_		_
CITATI	ON	REPORT

#	Article	IF	CITATIONS
55	COSMOLOGICAL CONSTRAINTS FROM MEASUREMENTS OF TYPE Ia SUPERNOVAE DISCOVERED DURING THE FIRST 1.5 yr OF THE Pan-STARRS1 SURVEY. Astrophysical Journal, 2014, 795, 44.	1.6	262
56	Black holes in binary stellar systems and galactic nuclei. Physics-Uspekhi, 2014, 57, 359-376.	0.8	21
57	MEASUREMENT OF THE RATE OF STELLAR TIDAL DISRUPTION FLARES. Astrophysical Journal, 2014, 792, 53.	1.6	105
58	The tidal disruption of stars by supermassive black holes. Physics Today, 2014, 67, 37-42.	0.3	6
59	Compact object mergers: observations of supermassive binary black holes and stellar tidal disruption events. Proceedings of the International Astronomical Union, 2014, 10, 13-25.	0.0	17
60	Evidences of an innermost stable bound orbit predicted by general relativity from the amplitude of the twin-peak quasiperiodic oscillations. Physical Review D, 2015, 91, .	1.6	2
61	STELLAR AND GAS DYNAMICAL MODEL FOR TIDAL DISRUPTION EVENTS IN A QUIESCENT GALAXY. Astrophysical Journal, 2015, 814, 141.	1.6	15
62	SOFT X-RAY TEMPERATURE TIDAL DISRUPTION EVENTS FROM STARS ON DEEP PLUNGING ORBITS. Astrophysical Journal Letters, 2015, 812, L39.	3.0	116
63	ULTRA-CLOSE ENCOUNTERS OF STARS WITH MASSIVE BLACK HOLES: TIDAL DISRUPTION EVENTS WITH PROMPT HYPERACCRETION. Astrophysical Journal Letters, 2015, 805, L19.	3.0	25
64	PS1-10jh CONTINUES TO FOLLOW THE FALLBACK ACCRETION RATE OF A TIDALLY DISRUPTED STAR. Astrophysical Journal Letters, 2015, 815, L5.	3.0	40
65	PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. Astronomy and Astrophysics, 2015, 579, A40.	2.1	239
66	Tidal disruption of stars by supermassive black holes: Status of observations. Journal of High Energy Astrophysics, 2015, 7, 148-157.	2.4	257
67	A tidal disruption flare in a massive galaxy? Implications for the fuelling mechanisms of nuclear black holes. Monthly Notices of the Royal Astronomical Society, 2015, 452, 69-87.	1.6	111
68	Was the soft X-ray flare in NGC 3599 due to an AGN disc instability or a delayed tidal disruption event?. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2798-2803.	1.6	29
69	Thirty Meter Telescope Detailed Science Case: 2015. Research in Astronomy and Astrophysics, 2015, 15, 1945-2140.	0.7	118
70	Multiple tidal disruption flares in the active galaxy IC 3599. Astronomy and Astrophysics, 2015, 581, A17.	2.1	46
71	Machine learning for transient discovery in Pan-STARRS1 difference imaging. Monthly Notices of the Royal Astronomical Society, 2015, 449, 451-466.	1.6	51
72	Implications of the eccentric Kozai–Lidov mechanism for stars surrounding supermassive black hole binaries. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1341-1349.	1.6	56

#	Article	IF	CITATIONS
73	THE (BLACK HOLE)-BULGE MASS SCALING RELATION AT LOW MASSES. Astrophysical Journal, 2015, 798, 54.	1.6	95
74	A LUMINOUS, FAST RISING UV-TRANSIENT DISCOVERED BY ROTSE: A TIDAL DISRUPTION EVENT?. Astrophysical Journal, 2015, 798, 12.	1.6	78
75	DISK FORMATION VERSUS DISK ACCRETION—WHAT POWERS TIDAL DISRUPTION EVENTS?. Astrophysical Journal, 2015, 806, 164.	1.6	217
76	Recent developments in the theory of tidal disruption events. Journal of High Energy Astrophysics, 2015, 7, 158-162.	2.4	17
77	A MULTIWAVELENGTH STUDY OF THE RELATIVISTIC TIDAL DISRUPTION CANDIDATE SWIFT J2058.4+0516 AT LATE TIMES. Astrophysical Journal, 2015, 805, 68.	1.6	61
78	Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 Medium Deep Survey. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1206-1231.	1.6	69
79	PREDICTIONS FOR THE REVERBERATING SPECTRAL LINE FROM A NEWLY FORMED BLACK HOLE ACCRETION DISK: CASE OF TIDAL DISRUPTION FLARES. Astrophysical Journal, 2015, 807, 89.	1.6	9
80	DOUBLE TIDAL DISRUPTIONS IN GALACTIC NUCLEI. Astrophysical Journal Letters, 2015, 805, L4.	3.0	33
81	RADIO–X-RAY SYNERGY TO DISCOVER AND STUDY JETTED TIDAL DISRUPTION EVENTS. Astrophysical Journal, 2015, 803, 36.	1.6	9
82	Flows of X-ray gas reveal the disruption of a star by a massive black hole. Nature, 2015, 526, 542-545.	13.7	144
83	Swift J1112.2â^'8238: a candidate relativistic tidal disruption flare. Monthly Notices of the Royal Astronomical Society, 2015, 452, 4297-4306.	1.6	102
84	Insights into tidal disruption of stars from PS1-10jh. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2321-2343.	1.6	32
85	A DARK YEAR FOR TIDAL DISRUPTION EVENTS. Astrophysical Journal, 2015, 809, 166.	1.6	157
86	SELECTION OF BURST-LIKE TRANSIENTS AND STOCHASTIC VARIABLES USING MULTI-BAND IMAGE DIFFERENCING IN THE PAN-STARRS1 MEDIUM-DEEP SURVEY. Astrophysical Journal, 2015, 802, 27.	1.6	9
87	DISK WINDS AS AN EXPLANATION FOR SLOWLY EVOLVING TEMPERATURES IN TIDAL DISRUPTION EVENTS. Astrophysical Journal, 2015, 805, 83.	1.6	60
88	Powerful radiative jets in supercritical accretion discs around non-spinning black holes. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3214-3222.	1.6	105
89	REVEALING THE NATURE OF EXTREME CORONAL-LINE EMITTER SDSS J095209.56+214313.3. Astrophysical Journal, 2016, 819, 151.	1.6	18
90	ASASSN-15LH: A SUPERLUMINOUS ULTRAVIOLET REBRIGHTENING OBSERVED BY SWIFT AND HUBBLE*. Astrophysical Journal, 2016, 828, 3.	1.6	27

#	Article	IF	CITATIONS
91	PROMPT RADIATION AND MASS OUTFLOWS FROM THE STREAM–STREAM COLLISIONS OF TIDAL DISRUPTION EVENTS. Astrophysical Journal, 2016, 830, 125.	1.6	96
92	TOWARD AN UNDERSTANDING OF CHANGING-LOOK QUASARS: AN ARCHIVAL SPECTROSCOPIC SEARCH IN SDSS. Astrophysical Journal, 2016, 826, 188.	1.6	106
93	ASASSN-15oi: a rapidly evolving, luminous tidal disruption event at 216 Mpc. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3813-3828.	1.6	131
94	Scientific Goals of the Kunlun Infrared Sky Survey (KISS). Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	10
95	UNBOUND DEBRIS STREAMS AND REMNANTS RESULTING FROM THE TIDAL DISRUPTIONS OF STARS BY SUPERMASSIVE BLACK HOLES. Astrophysical Journal, 2016, 822, 48.	1.6	33
96	Bad prospects for the detection of giant stars' tidal disruption: effect of the ambient medium on bound debris. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3324-3330.	1.6	27
97	Rates of stellar tidal disruption as probes of the supermassive black hole mass function. Monthly Notices of the Royal Astronomical Society, 2016, 455, 859-883.	1.6	254
98	Six months of multiwavelength follow-up of the tidal disruption candidate ASASSN-14li and implied TDE rates from ASAS-SN. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2918-2935.	1.6	252
99	The dynamics of radiation-driven, optically thick winds. Monthly Notices of the Royal Astronomical Society, 2016, 459, 171-177.	1.6	14
100	Slow-blue nuclear hypervariables in PanSTARRS-1. Monthly Notices of the Royal Astronomical Society, 2016, 463, 296-331.	1.6	44
101	THE X-RAY THROUGH OPTICAL FLUXES AND LINE STRENGTHS OF TIDAL DISRUPTION EVENTS. Astrophysical Journal, 2016, 827, 3.	1.6	135
102	Hard X-ray luminosity function of tidal disruption events: First results from the MAXI extragalactic survey. Publication of the Astronomical Society of Japan, 2016, 68, .	1.0	14
103	Hello darkness my old friend: the fading of the nearby TDE ASASSN-14ae. Monthly Notices of the Royal Astronomical Society, 2016, 462, 3993-4000.	1.6	32
104	EVIDENCE FOR PERIODICITY IN 43 YEAR-LONG MONITORING OF NGC 5548. Astrophysical Journal, Supplement Series, 2016, 225, 29.	3.0	57
105	ASASSN-14li: A MODEL TIDAL DISRUPTION EVENT. Astrophysical Journal, 2016, 827, 127.	1.6	82
106	DISCOVERY OF TRANSIENT INFRARED EMISSION FROM DUST HEATED BY STELLAR TIDAL DISRUPTION FLARES. Astrophysical Journal, 2016, 829, 19.	1.6	74
107	Tidal disruption jets of supermassive black holes as hidden sources of cosmic rays: Explaining the IceCube TeV-PeV neutrinos. Physical Review D, 2016, 93, .	1.6	54
108	Circularization of tidally disrupted stars around spinning supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3760-3780.	1.6	138

#	Article	IF	Citations
109	A bright year for tidal disruptions. Monthly Notices of the Royal Astronomical Society, 2016, 461, 948-966.	1.6	184
110	Swift J1644+5734: the EVN view. Proceedings of the International Astronomical Union, 2016, 12, 119-122.	0.0	0
111	Detection of quasars in the time domain. Proceedings of the International Astronomical Union, 2016, 12, 231-241.	0.0	0
112	Observational Progress in Identifying and Characterizing Tidal Disruption Flares. Proceedings of the International Astronomical Union, 2016, 12, 93-98.	0.0	0
113	Accretion and wind dynamics in tidal disruption events. Proceedings of the International Astronomical Union, 2016, 12, 134-135.	0.0	0
114	LONG FADING MID-INFRARED EMISSION IN TRANSIENT CORONAL LINE EMITTERS: DUST ECHO OF A TIDAL DISRUPTION FLARE. Astrophysical Journal, 2016, 832, 188.	1.6	31
115	LATE TIME MULTI-WAVELENGTH OBSERVATIONS OF SWIFT J1644+5734: A LUMINOUS OPTICAL/IR BUMP AND QUIESCENT X-RAY EMISSION. Astrophysical Journal, 2016, 819, 51.	1.6	30
116	Post-periapsis pancakes: sustenance for self-gravity in tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3612-3627.	1.6	49
117	A systematic search for changing-look quasars in SDSS. Monthly Notices of the Royal Astronomical Society, 2016, 457, 389-404.	1.6	215
118	Swift J1644+57: an ideal test bed of radiation mechanisms in a relativistic super-Eddington jet. Monthly Notices of the Royal Astronomical Society, 2016, 460, 396-416.	1.6	8
119	<i>Gaia</i> transient detection efficiency: hunting for nuclear transients. Monthly Notices of the Royal Astronomical Society, 2016, 455, 603-617.	1.6	7
120	Infrared emission from tidal disruption events – probing the pc-scale dust content around galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2016, 458, 575-581.	1.6	41
121	The Dark Energy Survey: more than dark energy – an overview. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1270-1299.	1.6	618
122	AN ENHANCED RATE OF TIDAL DISRUPTIONS IN THE CENTRALLY OVERDENSE E+A GALAXY NGC 3156. Astrophysical Journal Letters, 2016, 825, L14.	3.0	53
123	ASASSN-15lh: A highly super-luminous supernova. Science, 2016, 351, 257-260.	6.0	172
124	The γ-ray afterglows of tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3314-3323.	1.6	12
125	External inverse-Compton emission from jetted tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1071-1082.	1.6	4
126	FINDING, CHARACTERIZING, AND CLASSIFYING VARIABLE SOURCES IN MULTI-EPOCH SKY SURVEYS: QSOs AND RR LYRAE IN PS1 3Ï€ DATA. Astrophysical Journal, 2016, 817, 73.	1.6	53

#	Article	IF	CITATIONS
127	AN ULTRAVIOLET SPECTRUM OF THE TIDAL DISRUPTION FLARE ASASSN-14li. Astrophysical Journal Letters, 2016, 818, L32.	3.0	55
128	TIDAL DISRUPTION EVENTS PREFER UNUSUAL HOST GALAXIES. Astrophysical Journal Letters, 2016, 818, L21.	3.0	147
129	Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes. Monthly Notices of the Royal Astronomical Society, 2016, 457, 2516-2529.	1.6	6
130	OPTICAL THERMONUCLEAR TRANSIENTS FROM TIDAL COMPRESSION OF WHITE DWARFS AS TRACERS OF THE LOW END OF THE MASSIVE BLACK HOLE MASS FUNCTION. Astrophysical Journal, 2016, 819, 3.	1.6	69
131	Abundance anomalies in tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2016, 458, 127-134.	1.6	49
132	Statistical ortho-to-para ratio of water desorbed from ice at 10 kelvin. Science, 2016, 351, 65-67.	6.0	61
133	Lense–Thirring precession around supermassive black holes during tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1946-1956.	1.6	41
134	A radio jet from the optical and x-ray bright stellar tidal disruption flare ASASSN-14li. Science, 2016, 351, 62-65.	6.0	146
136	iPTF Discovery of the Rapid "Turn-on―of a Luminous Quasar. Astrophysical Journal, 2017, 835, 144.	1.6	97
137	The Post-starburst Evolution of Tidal Disruption Event Host Galaxies. Astrophysical Journal, 2017, 835, 176.	1.6	48
138	A likely decade-long sustained tidal disruption event. Nature Astronomy, 2017, 1, .	4.2	63
139	X-Rays from the Location of the Double-humped Transient ASASSN-15lh. Astrophysical Journal, 2017, 836, 25.	1.6	51
140	Discovery of a Mid-infrared Echo from the TDE Candidate in the Nucleus of ULIRG F01004â^'2237. Astrophysical Journal Letters, 2017, 841, L8.	3.0	33
141	Revisiting Optical Tidal Disruption Events with iPTF16axa. Astrophysical Journal, 2017, 842, 29.	1.6	124
142	Unified treatment of tidal disruption by Schwarzschild black holes. Physical Review D, 2017, 95, .	1.6	15
143	New Physical Insights about Tidal Disruption Events from a Comprehensive Observational Inventory at X-Ray Wavelengths. Astrophysical Journal, 2017, 838, 149.	1.6	179
144	A tidal disruption event in the nearby ultra-luminous infrared galaxy F01004-2237. Nature Astronomy, 2017, 1, .	4.2	56
145	How to Swallow a Sun. Scientific American, 2017, 316, 38-45.	1.0	0

#	Article	IF	CITATIONS
146	Long-term stream evolution in tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2816-2830.	1.6	61
147	Modified evolution of stellar binaries from supermassive black hole binaries. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3376-3386.	1.6	9
148	The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole. Nature Astronomy, 2017, 1, .	4.2	154
149	The Unprecedented Properties of the First Electromagnetic Counterpart to a Gravitational-wave Source. Astrophysical Journal Letters, 2017, 848, L26.	3.0	31
150	The Carbon and Nitrogen Abundance Ratio in the Broad Line Region of Tidal Disruption Events. Astrophysical Journal, 2017, 846, 150.	1.6	23
151	Radiative interaction between the relativistic jet and optically thick envelope in tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1141-1152.	1.6	8
152	Dormant Black Holes. International Journal of Modern Physics Conference Series, 2017, 45, 1760022.	0.7	1
153	Understanding extreme quasar optical variability with CRTS – I. Major AGN flares. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4112-4132.	1.6	79
154	Jetted tidal disruptions of stars as a flag of intermediate mass black holes at high redshifts. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4286-4299.	1.6	9
155	iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy. Astrophysical Journal, 2017, 844, 46.	1.6	111
156	Periodic Accretion-powered Flares from Colliding EMRIs as TDE Imposters. Astrophysical Journal, 2017, 844, 75.	1.6	29
157	Tidal disruptions by rotating black holes: relativistic hydrodynamics with Newtonian codes. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4483-4503.	1.6	36
158	A population of highly energetic transient events in the centres of active galaxies. Nature Astronomy, 2017, 1, 865-871.	4.2	53
159	Observational evidence for intermediate-mass black holes. International Journal of Modern Physics D, 2017, 26, 1730021.	0.9	175
160	PS16dtm: A Tidal Disruption Event in a Narrow-line Seyfert 1 Galaxy. Astrophysical Journal, 2017, 843, 106.	1.6	125
161	The influence of circumnuclear environment on the radio emission from TDE jets. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2481-2498.	1.6	42
162	OGLE16aaa - a Signature of a Hungry Super Massive Black Hole. Monthly Notices of the Royal Astronomical Society: Letters, 0, , .	1.2	40
163	Stellar disruption events support the existence of the black hole event horizon. Monthly Notices of the Royal Astronomical Society, 2017, 468, 910-919.	1.6	25

#	Article	IF	CITATIONS
164	Theoretical Models of Optical Transients. I. A Broad Exploration of the Duration–Luminosity Phase Space. Astrophysical Journal, 2017, 849, 70.	1.6	51
165	Tidal Disruption Event Host Galaxies in the Context of the Local Galaxy Population. Astrophysical Journal, 2017, 850, 22.	1.6	73
166	Disc origin of broad optical emission lines of the TDE candidate PTF09djl. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 472, L99-L103.	1.2	39
167	X-Ray Brightening and UV Fading of Tidal Disruption Event ASASSN-15oi. Astrophysical Journal Letters, 2017, 851, L47.	3.0	93
168	Stellar binaries in galactic nuclei: tidally stimulated mergers followed by tidal disruptions. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2042-2048.	1.6	25
169	Black hole masses of tidal disruption event host galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1694-1708.	1.6	108
170	XMMSL1 J074008.2-853927: a tidal disruption event with thermal and non-thermal components. Astronomy and Astrophysics, 2017, 598, A29.	2.1	61
171	A New Population of Highly Energetic Nuclear Transients. Proceedings of the International Astronomical Union, 2017, 14, 131-134.	0.0	0
172	The Long Term Evolution of ASASSN-14li. Monthly Notices of the Royal Astronomical Society, 0, , stx033.	1.6	26
173	Elliptical Accretion and Low Luminosity from High Accretion Rate Stellar Tidal Disruption Events. Monthly Notices of the Royal Astronomical Society, 0, , stx117.	1.6	34
174	Tidal disruption of stars in a supermassive black hole binary system: the influence of orbital properties on fallback and accretion rates. Monthly Notices of the Royal Astronomical Society, 2018, 476, 5312-5322.	1.6	12
175	What Sets the Line Profiles in Tidal Disruption Events?. Astrophysical Journal, 2018, 855, 54.	1.6	59
176	Wide-field ultraviolet imager for astronomical transient studies. Experimental Astronomy, 2018, 45, 201-218.	1.6	10
177	The fate of close encounters between binary stars and binary supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4595-4608.	1.6	14
178	On the Mass and Luminosity Functions of Tidal Disruption Flares: Rate Suppression due to Black Hole Event Horizons. Astrophysical Journal, 2018, 852, 72.	1.6	94
179	The broad-band SEDs of four â€`hypervariable' AGN. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3565-3575.	1.6	2
180	Tidal disruption by extreme mass ratio binaries and application to ASASSN-15lh. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3857-3865.	1.6	22
181	SN2012ab: a peculiar Type IIn supernova with aspherical circumstellar material. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1104-1120.	1.6	20

#	Article	IF	CITATIONS
182	Classification of Tidal Disruption Events Based on Stellar Orbital Properties. Astrophysical Journal, 2018, 855, 129.	1.6	22
183	The ultraviolet spectroscopic evolution of the low-luminosity tidal disruption event iPTF16fnl. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1130-1144.	1.6	54
184	Sifting for Sapphires: Systematic Selection of Tidal Disruption Events in iPTF. Astrophysical Journal, Supplement Series, 2018, 238, 15.	3.0	30
185	The supermassive black hole coincident with the luminous transient ASASSN-15lh. Astronomy and Astrophysics, 2018, 610, A14.	2.1	24
186	A large accretion disc of extreme eccentricity in the TDE ASASSN-14li. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2929-2938.	1.6	45
187	Super-Eddington accretion in tidal disruption events: the impactof realistic fallback rates on accretion rates. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3016-3024.	1.6	34
188	iPTF 16hgs: A Double-peaked Ca-rich Gap Transient in a Metal-poor, Star-forming Dwarf Galaxy. Astrophysical Journal, 2018, 866, 72.	1.6	31
189	A Dependence of the Tidal Disruption Event Rate on Global Stellar Surface Mass Density and Stellar Velocity Dispersion. Astrophysical Journal, 2018, 853, 39.	1.6	62
190	On the Missing Energy Puzzle of Tidal Disruption Events. Astrophysical Journal, 2018, 865, 128.	1.6	31
191	The unusual late-time evolution of the tidal disruption event ASASSN-15oi. Monthly Notices of the Royal Astronomical Society, 2018, 480, 5689-5703.	1.6	52
192	A Luminous Transient Event in a Sample of WISE-selected Variable AGNs. Astrophysical Journal, 2018, 866, 26.	1.6	21
193	Long-term decline of the mid-infrared emission of normal galaxies: dust echo of tidal disruption flare?. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2943-2965.	1.6	29
194	Tidal Disruptions of Main-sequence Stars of Varying Mass and Age: Inferences from the Composition of the Fallback Material. Astrophysical Journal, 2018, 857, 109.	1.6	25
195	Thermodynamic Black Holes. Entropy, 2018, 20, 460.	1.1	18
196	Multiwavelength follow-up observations of the tidal disruption event candidate 2XMMi J184725.1â^'631724. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3000-3008.	1.6	8
197	A Unified Model for Tidal Disruption Events. Astrophysical Journal Letters, 2018, 859, L20.	3.0	200
198	Spectral features of tidal disruption candidates and alternative origins for such transient flares. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3307-3323.	1.6	15
199	The THESEUS space mission concept: science case, design and expected performances. Advances in Space Research, 2018, 62, 191-244.	1.2	133

#	Article	IF	CITATIONS
200	An overabundance of black hole X-ray binaries in the Galactic Centre from tidal captures. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4030-4051.	1.6	76
201	Identification of SDSS J141324.27+530527.0 as a New "Changing-look―Quasar with a "Turn-on― Transition. Astrophysical Journal, 2018, 858, 49.	1.6	34
202	ALMA Observations of Molecular Gas in the Host Galaxy of AT2018cow. Astrophysical Journal Letters, 2019, 879, L13.	3.0	12
203	Swift spectra of AT2018cow: a white dwarf tidal disruption event?. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2505-2521.	1.6	63
204	Late-time UV Observations of Tidal Disruption Flares Reveal Unobscured, Compact Accretion Disks ^{â^—} . Astrophysical Journal, 2019, 878, 82.	1.6	82
205	The tidal disruption event AT2017eqx: spectroscopic evolution from hydrogen rich to poor suggests an atmosphere and outflow. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1878-1893.	1.6	49
206	Discovery of Highly Blueshifted Broad Balmer and Metastable Helium Absorption Lines in a Tidal Disruption Event. Astrophysical Journal, 2019, 879, 119.	1.6	38
207	Discovery and Early Evolution of ASASSN-19bt, the First TDE Detected by TESS. Astrophysical Journal, 2019, 883, 111.	1.6	71
208	On the Diversity of Fallback Rates from Tidal Disruption Events with Accurate Stellar Structure. Astrophysical Journal Letters, 2019, 882, L26.	3.0	43
209	Optical follow-up of the tidal disruption event iPTF16fnl: new insights from X-shooter observations. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1463-1480.	1.6	23
210	SDSS J0159 as an outlier in the <i>M</i> BH–̃ space: further clues to support a central tidal disruption event?. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 490, L81-L85.	1.2	16
211	A New Class of Changing-look LINERs. Astrophysical Journal, 2019, 883, 31.	1.6	66
212	A Forward Modeling Approach to AGN VariabilityMethod Description and Early Applications. Astrophysical Journal, 2019, 883, 139.	1.6	15
213	PS18kh: A New Tidal Disruption Event with a Non-axisymmetric Accretion Disk. Astrophysical Journal, 2019, 880, 120.	1.6	68
214	eROSITA detection rates for tidal disruptions of white dwarfs by intermediate mass black holes. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5413-5423.	1.6	6
215	Hydrodynamical moving-mesh simulations of the tidal disruption of stars by supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2019, 487, 981-992.	1.6	31
216	PS1-13cbe: the rapid transition of a Seyfert 2 to a Seyfert 1. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4057-4070.	1.6	7
217	Constraining the stellar mass function from the deficiency of tidal disruption flares in the nuclei of massive galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4413-4422.	1.6	8

#	Article	IF	CITATIONS
218	Streams collision as possible precursor of double tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1301-1316.	1.6	7
219	Weighing Black Holes Using Tidal Disruption Events. Astrophysical Journal, 2019, 872, 151.	1.6	139
220	Discovery and follow-up of the unusual nuclear transient OGLE17aaj. Astronomy and Astrophysics, 2019, 622, L2.	2.1	22
221	Rapid "Turn-on―of Type-1 AGN in a Quiescent Early-type Galaxy SDSS1115+0544. Astrophysical Journal, 2019, 874, 44.	1.6	33
222	LSST: From Science Drivers to Reference Design and Anticipated Data Products. Astrophysical Journal, 2019, 873, 111.	1.6	1,744
223	The Broad Absorption Line Tidal Disruption Event iPTF15af: Optical and Ultraviolet Evolution. Astrophysical Journal, 2019, 873, 92.	1.6	69
224	The First Tidal Disruption Flare in ZTF: From Photometric Selection to Multi-wavelength Characterization. Astrophysical Journal, 2019, 872, 198.	1.6	74
225	Stellar tidal disruption events in general relativity. General Relativity and Gravitation, 2019, 51, 1.	0.7	54
226	Partial Stellar Disruption by a Supermassive Black Hole: Is the Light Curve Really Proportional to t ^{â^'9/4} ?. Astrophysical Journal Letters, 2019, 883, L17.	3.0	58
227	Supernova Photometric Classification Pipelines Trained on Spectroscopically Classified Supernovae from the Pan-STARRS1 Medium-deep Survey. Astrophysical Journal, 2019, 884, 83.	1.6	33
228	An Unusual Mid-infrared Flare in a Type 2 AGN: An Obscured Turning-on AGN or Tidal Disruption Event?. Astrophysical Journal, 2019, 885, 110.	1.6	14
229	XMMSL2 J144605.0+685735: a slow tidal disruption event. Astronomy and Astrophysics, 2019, 630, A98.	2.1	27
230	A Bright Electromagnetic Counterpart to Extreme Mass Ratio Inspirals. Astrophysical Journal Letters, 2019, 886, L22.	3.0	12
231	1ES 1927+654: An AGN Caught Changing Look on a Timescale of Months. Astrophysical Journal, 2019, 883, 94.	1.6	95
232	Observatory science with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	50
233	Supermassive black holes coalescence mediated by massive perturbers: implications for gravitational waves emission and nuclear cluster formation. Monthly Notices of the Royal Astronomical Society, 2019, 484, 520-542.	1.6	22
234	Tidal disruption events can power the observed AGN in dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1957-1969.	1.6	14
235	A new class of flares from accreting supermassive black holes. Nature Astronomy, 2019, 3, 242-250.	4.2	57

#	Article	IF	CITATIONS
236	Results of a systematic search for outburst events in 1.4 million galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 482, 98-117.	1.6	8
237	Photometric and spectroscopic evolution of the peculiar Type IIn SN 2012ab. Monthly Notices of the Royal Astronomical Society, 2020, 499, 129-148.	1.6	9
238	An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz. Monthly Notices of the Royal Astronomical Society, 2020, 499, 482-504.	1.6	58
239	The Tidal Disruption Event AT 2018hyz II: Light-curve modelling of a partially disrupted star. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1925-1934.	1.6	25
240	Intermediate-Mass Black Holes. Annual Review of Astronomy and Astrophysics, 2020, 58, 257-312.	8.1	294
241	Jets from Tidal Disruption Events. New Astronomy Reviews, 2020, 89, 101538.	5.2	18
242	Optical-Ultraviolet Tidal Disruption Events. Space Science Reviews, 2020, 216, 1.	3.7	99
243	Enhancement of the tidal disruption event rate in galaxies with a nuclear star cluster: from dwarfs to ellipticals. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2276-2285.	1.6	24
244	ATÂ2017gbl: a dust obscured TDE candidate in a luminous infrared galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2167-2195.	1.6	29
245	Simulating disc formation in tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1374-1391.	1.6	64
246	Discovery and follow-up of ASASSN-19dj: an X-ray and UV luminous TDE in an extreme post-starburst galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1673-1696.	1.6	64
247	Accretion disc winds in tidal disruption events: ultraviolet spectral lines as orientation indicators. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4914-4929.	1.6	9
248	The tidal disruption event AT 2018hyz – I. Double-peaked emission lines and a flat Balmer decrement. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4119-4133.	1.6	35
249	SN 2014ab: an aspherical Type IIn supernova with low polarization. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3835-3851.	1.6	3
250	Examining a Peak-luminosity/Decline-rate Relationship for Tidal Disruption Events. Astrophysical Journal Letters, 2020, 894, L10.	3.0	22
251	Compact Radio Emission from Nearby Galaxies with Mid-infrared Nuclear Outbursts. Astrophysical Journal Letters, 2020, 896, L27.	3.0	6
252	Multiwavelength Study of an X-Ray Tidal Disruption Event Candidate in NGC 5092. Astrophysical Journal, 2020, 891, 121.	1.6	14
253	Rates of Stellar Tidal Disruption. Space Science Reviews, 2020, 216, 1.	3.7	60

#	Article	IF	CITATIONS
254	The Prospects of Observing Tidal Disruption Events with the Large Synoptic Survey Telescope. Astrophysical Journal, 2020, 890, 73.	1.6	43
255	Continuum-fitting the X-Ray Spectra of Tidal Disruption Events. Astrophysical Journal, 2020, 897, 80.	1.6	38
256	X-Ray Properties of TDEs. Space Science Reviews, 2020, 216, 1.	3.7	55
257	Self-intersection of the fallback stream in tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2020, 492, 686-707.	1.6	100
258	Implications from Late-time X-Ray Detections of Optically Selected Tidal Disruption Events: State Changes, Unification, and Detection Rates. Astrophysical Journal, 2020, 889, 166.	1.6	55
259	Initial Results from a Systematic Search for Changing-look Active Galactic Nuclei Selected via Mid-infrared Variability. Astrophysical Journal, 2020, 889, 46.	1.6	35
260	Polarimetry of relativistic tidal disruption event SwiftÂJ2058+0516. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1771-1776.	1.6	12
261	Dynamics of accretion and winds in tidal disruption events. New Astronomy, 2021, 83, 101491.	0.8	5
262	The SiTian Project. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20200628.	0.3	23
263	Limits on mass outflow from optical tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3385-3393.	1.6	13
264	The Physics of Accretion Discs, Winds and Jets in Tidal Disruption Events. Space Science Reviews, 2021, 217, 1.	3.7	12
265	First tidal disruption events discovered by <i>SRG</i> /eROSITA: X-ray/optical properties and X-ray luminosity function at <i>z</i> < 0.6. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3820-3847.	1.6	64
266	First light from tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4885-4905.	1.6	25
267	Seventeen Tidal Disruption Events from the First Half of ZTF Survey Observations: Entering a New Era of Population Studies. Astrophysical Journal, 2021, 908, 4.	1.6	174
268	AT 2019avd: a novel addition to the diverse population of nuclear transients. Astronomy and Astrophysics, 2021, 647, A9.	2.1	21
269	Measuring Black Hole Masses from Tidal Disruption Events and Testing the M _{BH} –Ïf _* Relation. Astrophysical Journal, 2021, 907, 77.	1.6	16
271	Elliptical Accretion Disk as a Model for Tidal Disruption Events. Astrophysical Journal, 2021, 908, 179.	1.6	11
272	A Morphological Classification Model to Identify Unresolved PanSTARRS1 Sources. II. Update to the PS1 Point Source Catalog. Publications of the Astronomical Society of the Pacific, 2021, 133, 054502.	1.0	2

		CITATION REPORT		
#	Article		IF	CITATIONS
273	ASASSN-14ko is a Periodic Nuclear Transient in ESO 253-G003. Astrophysical Journal, 20	21, 910, 125.	1.6	45
274	Machine-learning Application to Fermi-LAT Data: Sharpening All-sky Map and Emphasizin Sources. Astrophysical Journal, 2021, 913, 83.	g Variable	1.6	Ο
275	Distinguishing Tidal Disruption Events from Impostors. Space Science Reviews, 2021, 21	7, 1.	3.7	25
276	Light Curves of Partial Tidal Disruption Events. Astrophysical Journal, 2021, 914, 69.		1.6	10
277	A systematic search for changing-look quasars in SDSS-II using difference spectra. Astror Astrophysics, 2021, 650, A33.	iomy and	2.1	3
278	Discovery of a Fast Iron Low-ionization Outflow in the Early Evolution of the Nearby Tida Event AT 2019qiz. Astrophysical Journal, 2021, 917, 9.	Disruption	1.6	17
279	Global simulations of tidal disruption event disc formation via stream injection in GRRMH Notices of the Royal Astronomical Society, 2021, 507, 3207-3227.	ID. Monthly	1.6	12
280	Tidal Disruption Events. Annual Review of Astronomy and Astrophysics, 2021, 59, 21-58.		8.1	140
281	Host galaxy line diagnostics for the candidate tidal disruption events XMMSL1ÂJ111527 PTF09axc. Monthly Notices of the Royal Astronomical Society, 2021, 507, 6196-6204.	.3+180638 and	1.6	1
282	Tidal Disruption Events and High-energy Neutrinos. , 2021, , .			2
283	Contribution of flares from tidal disruptions of stars to high-redshift AGN. Astronomy and Astrophysics, 2021, 656, A47.	t	2.1	3
284	An Energy Inventory of Tidal Disruption Events. Astrophysical Journal, 2021, 906, 101.		1.6	13
285	A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star clu Astronomy, 2018, 2, 656-661.	ster. Nature	4.2	96
286	A TIDAL DISRUPTION EVENT IN A NEARBY GALAXY HOSTING AN INTERMEDIATE MASS BL Astrophysical Journal, 2014, 781, 59.	ACK HOLE.	1.6	41
287	PS15cey and PS17cke: prospective candidates from the Pan-STARRS Search for kilonova Notices of the Royal Astronomical Society, 2020, 500, 4213-4228.	e. Monthly	1.6	13
288	Further evidence to support a tidal disruption event in the changing-look AGN SDSS J015 Notices of the Royal Astronomical Society: Letters, 2020, 500, L57-L61.	9. Monthly	1.2	17
290	Low-mass White Dwarfs with Hydrogen Envelopes as a Missing Link in the Tidal Disruptic Astrophysical Journal, 2017, 841, 132.	on Menu.	1.6	36
291	Neutrino Emissions from Tidal Disruption Remnants. Astrophysical Journal, 2019, 886, 1	14.	1.6	17

#	Article	IF	CITATIONS
292	The Spectral Evolution of AT 2018dyb and the Presence of Metal Lines in Tidal Disruption Events. Astrophysical Journal, 2019, 887, 218.	1.6	72
293	Mass Segregation in Eccentric Nuclear Disks: Enhanced Tidal Disruption Event Rates for High-mass Stars. Astrophysical Journal, 2020, 890, 175.	1.6	10
294	Wind-reprocessed Transients. Astrophysical Journal, 2020, 894, 2.	1.6	36
295	Orphan GRB Afterglow Searches with the Pan-STARRS1 COSMOS Survey. Astrophysical Journal, 2020, 897, 69.	1.6	14
296	Tidal Disruption Flares from Stars on Marginally Bound and Unbound Orbits. Astrophysical Journal, 2020, 900, 3.	1.6	8
297	The Rise and Fall of ASASSN-18pg: Following a TDE from Early to Late Times. Astrophysical Journal, 2020, 898, 161.	1.6	41
298	Double-peaked Balmer Emission Indicating Prompt Accretion Disk Formation in an X-Ray Faint Tidal Disruption Event. Astrophysical Journal, 2020, 903, 31.	1.6	37
299	High-energy Neutrinos and Gamma Rays from Nonrelativistic Shock-powered Transients. Astrophysical Journal, 2020, 904, 4.	1.6	29
300	Measuring Stellar and Black Hole Masses of Tidal Disruption Events. Astrophysical Journal, 2020, 904, 73.	1.6	43
301	Photometric Classification of 2315 Pan-STARRS1 Supernovae with Superphot. Astrophysical Journal, 2020, 905, 93.	1.6	15
302	Stellar Tidal Disruption Events with Abundances and Realistic Structures (STARS): Library of Fallback Rates. Astrophysical Journal, 2020, 905, 141.	1.6	36
303	SuperRAENN: A Semisupervised Supernova Photometric Classification Pipeline Trained on Pan-STARRS1 Medium-Deep Survey Supernovae. Astrophysical Journal, 2020, 905, 94.	1.6	43
304	Application of The Wind-driven Model to a Sample of Tidal Disruption Events. Astrophysical Journal Letters, 2020, 905, L5.	3.0	8
305	Tidal stripping of stars near supermassive black holes. EPJ Web of Conferences, 2012, 39, 07003.	0.1	0
307	The Persistence of Pancakes and the Revival of Self-gravity in Tidal Disruption Events. Astrophysical Journal Letters, 2020, 900, L39.	3.0	5
308	A study on tidal disruption event dynamics around an Sgr A*-like massive black hole. Astronomy and Astrophysics, 2020, 642, A111.	2.1	6
309	Tidal disruption discs formed and fed by stream–stream and stream–disc interactions in global GRHD simulations. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1627-1648.	1.6	28
310	Partial, Zombie, and Full Tidal Disruption of Stars by Supermassive Black Holes. Astrophysical Journal, 2021, 922, 168.	1.6	22

	CITATION REF	CITATION REPORT	
#	Article	IF	Citations
311	Two regimes of tidal-stream circularization by supermassive black holes. Physical Review D, 2021, 104, .	1.6	5
312	A detailed spectroscopic study of tidal disruption events. Astronomy and Astrophysics, 2022, 659, A34.	2.1	21
313	The nozzle shock in tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2147-2169.	1.6	9
314	The Eccentric Nature of Eccentric Tidal Disruption Events. Astrophysical Journal, 2022, 924, 34.	1.6	10
315	The UV/Optical Peak and X-Ray Brightening in TDE Candidate AT 2019azh: A Case of Stream–Stream Collision and Delayed Accretion. Astrophysical Journal, 2022, 925, 67.	1.6	17
316	An analytical, fully relativistic framework for tidal disruption event streams in Schwarzschild geometry. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3408-3419.	1.6	1
317	Stars Crushed by Black Holes. II. A Physical Model of Adiabatic Compression and Shock Formation in Tidal Disruption Events. Astrophysical Journal, 2022, 926, 47.	1.6	8
318	A Possible Tidal Disruption Event Candidate in the Black Hole Binary System of OJ 287. Astrophysical Journal, 2021, 920, 12.	1.6	9
319	A Systematic Analysis of Stellar Populations in the Host Galaxies of Changing-look AGNs. Astrophysical Journal, 2022, 926, 184.	1.6	8
320	The prospects of finding tidal disruption events with 2.5-m Wide-Field Survey Telescope based on mock observations. Monthly Notices of the Royal Astronomical Society, 2022, 513, 2422-2436.	1.6	13
321	Central Black Hole Mass in the Distant Tidal Disruption Event Candidate of Swift J2058.4+0516. Astrophysical Journal, 2022, 928, 182.	1.6	5
322	SkyMapper colours of Seyfert galaxies and changing-look AGN – II. Newly discovered changing-look AGN. Monthly Notices of the Royal Astronomical Society, 2022, 511, 54-70.	1.6	15
323	The Curious Case of ASASSN-20hx: A Slowly Evolving, UV- and X-Ray-Luminous, Ambiguous Nuclear Transient. Astrophysical Journal, 2022, 930, 12.	1.6	23
324	Spectropolarimetry of the tidal disruption event AT 2019qiz: a quasi-spherical reprocessing layer. Monthly Notices of the Royal Astronomical Society, 2022, 515, 138-145.	1.6	6
325	The bulge masses of TDE host galaxies and their scaling with black hole mass. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1146-1157.	1.6	12
326	MUSSES2020J: The Earliest Discovery of a Fast Blue Ultraluminous Transient at Redshift 1.063. Astrophysical Journal Letters, 2022, 933, L36.	3.0	7
327	The Host Galaxy and Rapidly Evolving Broad-line Region in the Changing-look Active Galactic Nucleus 1ES 1927+654. Astrophysical Journal, 2022, 933, 70.	1.6	11
328	A new candidate for central tidal disruption event in SDSS J014124Â+Â010306 with broad Mg <scp>ii</scp> line at <i>z</i> = 1.06. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 516, L66-L71.	1.2	4

#	ARTICLE	IF	CITATIONS
329	Systematic light-curve modelling of TDEs: statistical differences between the spectroscopic classes. Monthly Notices of the Royal Astronomical Society, 2022, 515, 5604-5616.	1.6	26
330	Radiative hydrodynamical simulations of super-Eddington accretion flow in tidal disruption event: the origin of optical/UV emission. Monthly Notices of the Royal Astronomical Society, 2022, 516, 2833-2839.	1.6	5
331	The nuclear transient AT 2017gge: a tidal disruption event in a dusty and gas-rich environment and the awakening of a dormant SMBH. Monthly Notices of the Royal Astronomical Society, 2022, 517, 76-98.	1.6	8
332	Modelling the flare in NGC 1097 from 1991 to 2004 as a tidal disruption event. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 517, L71-L75.	1.2	2
333	Advective accretion disc-corona model with fallback for tidal disruption events. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	0
334	Probing the tidal disruption event iPTF16axa with <scp>cloudy</scp> and disc-wind models. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5693-5704.	1.6	1
335	Repeating tidal disruptions in GSN 069: Long-term evolution and constraints on quasi-periodic eruptions' models. Astronomy and Astrophysics, 2023, 670, A93.	2.1	21
336	The radio detection and accretion properties of the peculiar nuclear transient ATÂ2019avd. Monthly Notices of the Royal Astronomical Society, 2023, 520, 2417-2435.	1.6	2
337	Modeling continuum polarization levels of tidal disruption events based on the collision-induced outflow model. Astronomy and Astrophysics, 2023, 670, A150.	2.1	1
338	The Final Season Reimagined: 30 Tidal Disruption Events from the ZTF-I Survey. Astrophysical Journal, 2023, 942, 9.	1.6	43
339	Types of Transients in the Centers of Post-starburst and Quiescent Balmer-strong Galaxies. Astrophysical Journal, 2022, 924, 121.	1.6	3
340	Linear and Circular Polarimetry of the Optically Bright Relativistic Tidal Disruption Event AT 2022cmc. Astrophysical Journal Letters, 2023, 943, L18.	3.0	2
341	General relativistic stream crossing in tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2023, 520, 5192-5208.	1.6	2
342	A Census of Archival X-Ray Spectra for Modeling Tidal Disruption Events. Publications of the Astronomical Society of the Pacific, 2023, 135, 034101.	1.0	1
343	TESS shines light on the origin of the ambiguous nuclear transient ASASSN-18el. Monthly Notices of the Royal Astronomical Society, 2023, 521, 3517-3526.	1.6	6
344	AT 2020wey and the class of faint and fast tidal disruption events. Astronomy and Astrophysics, 2023, 673, A95.	2.1	8
345	Optical/UV emission in the Tidal Disruption Event ASASSN-14li: implications of disc modelling. Monthly Notices of the Royal Astronomical Society, 2023, 522, 1155-1168.	1.6	2