Building Environment Analysis Based on Temperature a Systems

Sensors 12, 13458-13470 DOI: 10.3390/s121013458

Citation Report

#	Article	IF	CITATIONS
1	Data-driven modeling and optimization of thermal comfort and energy consumption using type-2 fuzzy method. Soft Computing, 2013, 17, 2075-2088.	3.6	14
2	Modeling of thermal comfort words using interval type-2 fuzzy sets. , 2013, , .		2
3	The Role of Advanced Sensing in Smart Cities. Sensors, 2013, 13, 393-425.	3.8	447
4	Integrated analysis of CFD data with K-means clustering algorithm and extreme learning machine for localized HVAC control. Applied Thermal Engineering, 2015, 76, 98-104.	6.0	33
5	Sensor Data Driven Modeling and Control of Personalized Thermal Comfort Using Interval Type-2 Fuzzy Sets. Lecture Notes in Computer Science, 2015, , 167-178.	1.3	0
6	New method for accurate prediction of CO2 in the Smart Home. , 2016, , .		11
7	Evaluation of thermal comfort of the internal environment in smart home using objective and subjective factors. , 2016, , .		4
8	Building environment analysis based on clustering methods from sensor data on top of the Hadoop platform. , 2017, , .		2
9	A method to identify dynamic zones for efficient control of HVAC systems. , 2017, , .		4
10	Energy Efficiency in Public Buildings through Context-Aware Social Computing. Sensors, 2017, 17, 826.	3.8	49
11	Design and Implementation of an Intelligent Windowsill System Using Smart Handheld Device and Fuzzy Microcontroller. Sensors, 2017, 17, 830.	3.8	18
12	Study on the Correlation between Humidity and Material Strains in Separable Micro Humidity Sensor Design. Sensors, 2017, 17, 1066.	3.8	6
13	IEEE1888 Bluetooth - Wi-Fi Gateway for BLE Sensor Network. , 2018, , .		1
14	loT Operating System Based Fuzzy Inference System for Home Energy Management System in Smart Buildings. Sensors, 2018, 18, 2802.	3.8	61
15	A Case Study of Efficient HVAC Systems with Smart Thermostats: What Smart Thermostats Can Do in Residential Buildings?. , 2018, , .		0
16	Multi-Objectives Optimization of Ventilation Controllers for Passive Cooling in Residential Buildings. Sensors, 2018, 18, 1144.	3.8	21
17	Real-time optimized HVAC control system on top of an IoT framework. , 2018, , .		19
18	A review of smart building sensing system for better indoor environment control. Energy and Buildings, 2019, 199, 29-46.	6.7	188

#	Article	IF	Citations
19	Precision public health to inhibit the contagion of disease and move toward a future in which microbes spread health. BMC Infectious Diseases, 2019, 19, 120.	2.9	11
20	A Survey on Temperature Monitoring and Control Mechanism of Public Building Using Machine Learning. , 2019, , .		0
21	An Optimal ZigBee Wireless Sensor Network Design for Energy Storage System. , 2020, , .		1
22	loT Gateway for Personalized User Comfort Management in Smart Home Applications. , 2020, , .		3
23	Analysis of modern approaches for maintaining a comfortable microclimate in the buildings. IOP Conference Series: Materials Science and Engineering, 2020, 734, 012117.	0.6	0
24	Affective Internet of Things. , 2020, , 203-233.		0
25	Temporal Clustering Based Thermal Condition Monitoring in Building. Sustainable Computing: Informatics and Systems, 2021, 29, 100441.	2.2	4
26	A thermal comfort estimation method by wearable sensors. , 2021, , .		4
27	Development of a Visualisation Software, Implemented with Comfort Smart Home Wireless Control System. Lecture Notes in Electrical Engineering, 2015, , 581-589.	0.4	4
28	Prediction Model for Personal Thermal Comfort for Naturally Ventilated Smart Buildings. Lecture Notes in Electrical Engineering, 2020, , 117-127.	0.4	2
29	A Real-Time Approach to Evaluate Occupantsâ \in $^{ m M}$ Thermal Comfort in the Indoor Environment. , 0, , .		0
30	Indoor Temperature Characterization and its Implication on Power Consumption in a Campus Building. , 2020, , .		0
31	Real-time monitoring of occupancy activities and window opening within buildings using an integrated deep learning-based approach for reducing energy demand. Applied Energy, 2022, 308, 118336.	10.1	18
32	Machine learning in building energy management: A critical review and future directions. Frontiers of Engineering Management, 2022, 9, 239-256.	6.1	5
33	loT-EMS: An Internet of Things Based Environment Monitoring System in Volunteer Computing Environment. Intelligent Automation and Soft Computing, 2022, 32, 1493-1507.	2.1	13
34	Temperature clusters in commercial buildings using k-means and time series clustering. Energy Informatics, 2022, 5, 1.	2.3	12
35	Enhancing the detection performance of a vision-based occupancy detector for buildings. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 0, , 1-10.	0.7	2
36	Wireless Temperature, Relative Humidity and Occupancy Monitoring System for Investigating Overheating in Buildings. Sensors, 2022, 22, 8638.	3.8	2

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Identifying Energy Inefficiencies Using Self-Organizing Maps: Case of A Highly Efficient Certified Office Building. Applied Sciences (Switzerland), 2023, 13, 1666.	2.5	2
38	A cluster analysis approach to sampling domestic properties for sensor deployment. Building and Environment, 2023, 231, 110032.	6.9	1
39	Home Comfort Dataset: Acquired from SGH. Data, 2023, 8, 58.	2.3	1
40	Humidity characteristics of a weak fiber Bragg grating array coated with polyimide. Optical Fiber Technology, 2023, 77, 103259.	2.7	2
41	About a Practical Approach for Smart Building by Using Internet of Things. Lecture Notes in Networks and Systems, 2023, , 77-87.	0.7	0
42	IoT-based data collection system for central air conditioning. , 2023, , .		0
43	Life cycle energy and greenhouse gas emissions of a traditional and a smart HVAC control system for Australian office buildings. Journal of Building Engineering, 2024, 82, 108295.	3.4	1