The Pre-Depression Investigation of Cloud-Systems in t Scientific Basis, New Analysis Tools, and Some First Res

Bulletin of the American Meteorological Society 93, 153-172

DOI: 10.1175/bams-d-11-00046.1

Citation Report

#	Article	IF	CITATIONS
1	Application of the Marsupial Paradigm to Tropical Cyclone Formation from Northwestward-Propagating Disturbances. Monthly Weather Review, 2012, 140, 66-76.	1.4	25
2	A First Look at the Structure of the Wave Pouch during the 2009 PREDICT–GRIP Dry Runs over the Atlantic. Monthly Weather Review, 2012, 140, 1144-1163.	1.4	42
3	Validation of Satellite-Derived Atmospheric Motion Vectors and Analyses around Tropical Disturbances. Journal of Applied Meteorology and Climatology, 2012, 51, 1823-1834.	1.5	25
4	Thermodynamic Aspects of Tropical Cyclone Formation. Journals of the Atmospheric Sciences, 2012, 69, 2433-2451.	1.7	103
5	Mesoscale Structural Evolution of Three Tropical Weather Systems Observed during PREDICT. Journals of the Atmospheric Sciences, 2012, 69, 1284-1305.	1.7	97
6	The Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) Field Campaign: Perspectives of Early Career Scientists. Bulletin of the American Meteorological Society, 2012, 93, 173-187.	3.3	10
7	A Lagrangian analysis of a developing and non-developing disturbance observed during the PREDICT experiment. Atmospheric Chemistry and Physics, 2012, 12, 11355-11381.	4.9	11
8	The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS08) field experiment – Part 2: Observations of the convective environment. Atmospheric Chemistry and Physics, 2012, 12, 4001-4009.	4.9	25
9	Observations of the convective environment in developing and nonâ€developing tropical disturbances. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 1721-1739.	2.7	69
10	Genesis of Hurricane Julia (2010) within an African Easterly Wave: Low-Level Vortices and Upper-Level Warming. Journals of the Atmospheric Sciences, 2013, 70, 3799-3817.	1.7	17
11	A numerical study of rotating convection during tropical cyclogenesis. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 1255-1269.	2.7	49
12	An Evaluation of Tropical Cyclone Genesis Forecasts from Global Numerical Models. Weather and Forecasting, 2013, 28, 1423-1445.	1.4	67
13	A Polygon-Based Line-Integral Method for Calculating Vorticity, Divergence, and Deformation from Nonuniform Observations. Journal of Applied Meteorology and Climatology, 2013, 52, 1511-1521.	1.5	5
14	NOAA'S Hurricane Intensity Forecasting Experiment: A Progress Report. Bulletin of the American Meteorological Society, 2013, 94, 859-882.	3.3	107
15	An Investigation of Composite Dropsonde Profiles for Developing and Nondeveloping Tropical Waves during the 2010 PREDICT Field Campaign. Journals of the Atmospheric Sciences, 2013, 70, 542-558.	1.7	55
16	NASA's Genesis and Rapid Intensification Processes (GRIP) Field Experiment. Bulletin of the American Meteorological Society, 2013, 94, 345-363.	3.3	96
17	A Numerical Study of the Impacts of Dry Air on Tropical Cyclone Formation: A Development Case and a Nondevelopment Case. Journals of the Atmospheric Sciences, 2013, 70, 91-111.	1.7	45
18	Thermodynamic Environments of Deep Convection in Atlantic Tropical Disturbances. Journals of the Atmospheric Sciences, 2013, 70, 1912-1928.	1.7	28

#	Article	IF	CITATIONS
19	Tropical Cloud Cluster Climatology, Variability, and Genesis Productivity. Journal of Climate, 2013, 26, 3046-3066.	3.2	29
20	Interannual Variability of the Atlantic Hadley Circulation in Boreal Summer and Its Impacts on Tropical Cyclone Activity. Journal of Climate, 2013, 26, 8529-8544.	3.2	49
21	Tropical Cyclone Formation Guidance Using Pregenesis Dvorak Climatology. Part I: Operational Forecasting and Predictive Potential. Weather and Forecasting, 2013, 28, 100-118.	1.4	14
22	The Role of Vortex and Environment Errors in Genesis Forecasts of Hurricanes Danielle and Karl (2010). Monthly Weather Review, 2013, 141, 232-251.	1.4	31
23	Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation. Science, 2013, 340, 1320-1324.	12.6	442
24	Asymmetric and axisymmetric dynamics of tropical cyclones. Atmospheric Chemistry and Physics, 2013, 13, 12299-12341.	4.9	110
25	The importance of low-deformation vorticity in tropical cyclone formation. Atmospheric Chemistry and Physics, 2013, 13, 2115-2132.	4.9	55
26	An examination of two pathways to tropical cyclogenesis occurring in idealized simulations with a cloud-resolving numerical model. Atmospheric Chemistry and Physics, 2013, 13, 5999-6022.	4.9	29
27	Using Citation Analysis to Explore the Collection Needs of Atmospheric Scientists/Researchers Affiliated with the Atlantic Oceanographic Meteorological Laboratory. Library Collections Acquisitions and Technical Services, 2014, 38, 82-91.	0.1	1
28	Characteristics of Tropical Easterly Wave Pouches during Tropical Cyclone Formation. Monthly Weather Review, 2014, 142, 626-633.	1.4	14
29	Predictability and Genesis of Hurricane Karl (2010) Examined through the EnKF Assimilation of Field Observations Collected during PREDICT. Journals of the Atmospheric Sciences, 2014, 71, 1260-1275.	1.7	13
30	Intercomparison and Coupling of Ensemble and Four-Dimensional Variational Data Assimilation Methods for the Analysis and Forecasting of Hurricane Karl (2010). Monthly Weather Review, 2014, 142, 3347-3364.	1.4	23
31	Analysis of the Thermodynamic Properties of Developing and Nondeveloping Tropical Disturbances Using a Comprehensive Dropsonde Dataset. Monthly Weather Review, 2014, 142, 1250-1264.	1.4	30
32	Ensemble-Based Error and Predictability Metrics Associated with Tropical Cyclogenesis. Part I: Basinwide Perspective. Monthly Weather Review, 2014, 142, 2879-2898.	1.4	18
33	Computing Deep-Tropospheric Vertical Wind Shear Analyses for Tropical Cyclone Applications: Does the Methodology Matter?. Weather and Forecasting, 2014, 29, 1169-1180.	1.4	29
34	Observations of Temperature in the Upper Troposphere and Lower Stratosphere of Tropical Weather Disturbances. Journals of the Atmospheric Sciences, 2014, 71, 1593-1608.	1.7	16
35	Genesis of Hurricane Julia (2010) within an African Easterly Wave: Developing and Nondeveloping Members from WRF–LETKF Ensemble Forecasts. Journals of the Atmospheric Sciences, 2014, 71, 2763-2781.	1.7	10
36	Diurnal Radiation Cycle Impact on the Pregenesis Environment of Hurricane Karl (2010). Journals of the Atmospheric Sciences, 2014, 71, 1241-1259.	1.7	63

#	Article	IF	CITATIONS
37	A Multisatellite Investigation of the Convective Properties of Developing and Nondeveloping Tropical Disturbances. Monthly Weather Review, 2014, 142, 4624-4645.	1.4	24
38	Advances in research and forecasting of tropical cyclones from 1963–2013. Asia-Pacific Journal of Atmospheric Sciences, 2014, 50, 3-16.	2.3	44
39	On steadyâ€state tropical cyclones. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 2638-2649.	2.7	33
40	Monitoring and Prediction of Tropical Cyclones in the Indian Ocean and Climate Change. , 2014, , .		14
41	The Impact of Targeted Dropwindsonde Observations on Tropical Cyclone Intensity Forecasts of Four Weak Systems during PREDICT. Monthly Weather Review, 2014, 142, 2860-2878.	1.4	24
42	ACCESS-TC: Vortex Specification, 4DVAR Initialization, Verification, and Structure Diagnostics. Monthly Weather Review, 2014, 142, 1265-1289.	1.4	27
43	Genesis of Hurricane Julia (2010) within an African Easterly Wave: Sensitivity Analyses of WRF-LETKF Ensemble Forecasts. Journals of the Atmospheric Sciences, 2014, 71, 3180-3201.	1.7	1
44	First results from an airborne GPS radio occultation system for atmospheric profiling. Geophysical Research Letters, 2014, 41, 1759-1765.	4.0	22
45	The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS-08) field experiment – Part 3: Dynamics of low-level spin-up during the genesis. Atmospheric Chemistry and Physics, 2014, 14, 8795-8812.	4.9	17
46	Interaction between dynamics and thermodynamics during tropical cyclogenesis. Atmospheric Chemistry and Physics, 2014, 14, 3065-3082.	4.9	49
47	Balanced dynamics and convection in the tropical troposphere. Journal of Advances in Modeling Earth Systems, 2015, 7, 1093-1116.	3.8	68
48	Characterization of thermal structure and conditions for overshooting of tropical and extratropical cyclones with GPS radio occultation. Atmospheric Chemistry and Physics, 2015, 15, 5181-5193.	4.9	34
49	The Evolution of Dropsonde-Derived Kinematic and Thermodynamic Structures in Developing and Nondeveloping Atlantic Tropical Convective Systems. Monthly Weather Review, 2015, 143, 3109-3135.	1.4	11
50	Observations of a Nondeveloping Tropical Disturbance in the Western North Pacific during TCS-08 (2008). Monthly Weather Review, 2015, 143, 2459-2484.	1.4	8
51	The Mesoscale Predictability Experiment (MPEX). Bulletin of the American Meteorological Society, 2015, 96, 2127-2149.	3.3	55
52	Enthalpy and Momentum Fluxes during Hurricane Earl Relative to Underlying Ocean Features. Monthly Weather Review, 2015, 143, 111-131.	1.4	97
53	Atlantic Hurricane Season of 2010*. Monthly Weather Review, 2015, 143, 3329-3353.	1.4	4
54	Examining the Roles of the Easterly Wave Critical Layer and Vorticity Accretion during the Tropical Cyclogenesis of Hurricane Sandy*. Monthly Weather Review, 2015, 143, 1703-1722.	1.4	18

#	Article	IF	CITATIONS
55	Measurements of Saharan Dust in Convective Clouds over the Tropical Eastern Atlantic Ocean*. Journals of the Atmospheric Sciences, 2015, 72, 75-81.	1.7	30
56	Genesis of Tropical Storm Debby (2006) within an African Easterly Wave: Roles of the Bottom-Up and Midlevel Pouch Processes. Journals of the Atmospheric Sciences, 2015, 72, 2267-2285.	1.7	6
57	Multiscale Structure and Evolution of Hurricane Earl (2010) during Rapid Intensification. Monthly Weather Review, 2015, 143, 536-562.	1.4	145
58	Development of North Atlantic Tropical Disturbances near Upper-Level Potential Vorticity Streamers. Journals of the Atmospheric Sciences, 2015, 72, 572-597.	1.7	39
59	Ensemble-Based Error and Predictability Metrics Associated with Tropical Cyclogenesis. Part II: Wave-Relative Framework. Monthly Weather Review, 2015, 143, 1665-1686.	1.4	10
60	Airborne GPS radio occultation refractivity profiles observed in tropical storm environments. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1690-1709.	3.3	14
61	Elevated middle and upper troposphere ozone observed downstream of Atlantic tropical cyclones. Atmospheric Environment, 2015, 118, 70-86.	4.1	7
62	Application of the full spectrum inversion algorithm to simulated airborne GPS radio occultation signals. Atmospheric Measurement Techniques, 2016, 9, 5077-5087.	3.1	7
63	Numerical study of the spinâ€up of a tropical low over land during the Australian monsoon. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 2021-2032.	2.7	12
64	Predicting convective rainfall over tropical oceans from environmental conditions. Journal of Advances in Modeling Earth Systems, 2016, 8, 703-718.	3.8	19
65	Appraisal of recent theories to understand cyclogenesis pathways of tropical cyclone Madi (2013). Journal of Geophysical Research D: Atmospheres, 2016, 121, 8949-8982.	3.3	21
66	Advancing the Understanding and Prediction of Tropical Cyclones Using Aircraft Observations. , 2016, , 3-34.		1
67	Recent Advances in Tropical Cyclogenesis. , 2016, , 561-587.		3
68	Comparison of Hybrid Four-Dimensional Data Assimilation Methods with and without the Tangent Linear and Adjoint Models for Predicting the Life Cycle of Hurricane Karl (2010). Monthly Weather Review, 2016, 144, 1449-1468.	1.4	13
69	A numerical study of deep convection in tropical cyclones. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 3138-3151.	2.7	16
70	Representing Multiple Scales in the Hurricane Weather Research and Forecasting Modeling System: Design of Multiple Sets of Movable Multilevel Nesting and the Basin-Scale HWRF Forecast Application. Weather and Forecasting, 2016, 31, 2019-2034.	1.4	23
71	An assessment of the radiative effects of ice supersaturation based on in situ observations. Geophysical Research Letters, 2016, 43, 11,039.	4.0	8
72	Why did the storm ex-Gaston (2010) fail to redevelop during the PREDICT experiment?. Atmospheric Chemistry and Physics, 2016, 16, 8511-8519.	4.9	12

ARTICLE IF CITATIONS # A caseâ€study of a monsoon low that formed over the sea and intensified over land as seen in ECMWF 73 2.7 22 analyses. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 2244-2255. Michio Yanai and Tropical Waves. Meteorological Monographs, 2016, 56, 3.1-3.21. 74 5.0 On the Dynamics of the Formation of the Kelvin Cat's-Eye in Tropical Cyclogenesis. Part I: 75 1.7 11 Climatological Investigation. Journals of the Atmospheric Sciences, 2016, 73, 2317-2338. Development and Application of a Simplified Coplane Wind Retrieval Algorithm Using Dual-Beam Airborne Doppler Radar Observations for Tropical Cyclone Prediction. Monthly Weather Review, 2016, 144, 2645-2666. Genesis of Hurricane Julia (2010) within an African Easterly Wave: Sensitivity to Ice Microphysics. 77 1.5 9 Journal of Applied Meteorology and Climatology, 2016, 55, 79-92. Assessing the Influence of Upper-Tropospheric Troughs on Tropical Cyclone Intensification Rates after Genesis. Monthly Weather Review, 2017, 145, 1295-1313. 1.4 37 Land-Based Convection Effects on Formation of Tropical Cyclone Mekkhala (2008). Monthly Weather 79 1.4 4 Review, 2017, 145, 1315-1337. A Climatology of Central American Gyres. Monthly Weather Review, 2017, 145, 1983-2000. 1.4 Coupled Dynamic–Thermodynamic Forcings during Tropical Cyclogenesis. Part II: Axisymmetric Experiments. Journals of the Atmospheric Sciences, 2017, 74, 2279-2291. 81 1.7 7 A unified view of tropical cyclogenesis and intensification. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 450-462. The effects of initial vortex size on tropical cyclogenesis and intensification. Quarterly Journal of 83 2.7 22 the Royal Meteorological Society, 2017, 143, 2832-2845. A Study on the Influences of Low-Frequency Vorticity on Tropical Cyclone Formation in the Western North Pacific. Monthly Weather Review, 2017, 145, 4151-4169. 1.4 The role of boundaryâ€layer friction on tropical cyclogenesis and subsequent intensification. 85 2.7 24 Quarterly Journal of the Royal Meteorological Society, 2017, 143, 2524-2536. Tropical low formation and intensification over land as seen in ECMWF analyses. Quarterly Journal 2.7 of the Royal Meteorological Society, 2017, 143, 772-784. Orographic Modification of Precipitation Processes in Hurricane Karl (2010). Monthly Weather 87 1.4 19 Review, 2017, 145, 4171-4186. Improvements to GPS Airborne Radio Occultation in the Lower Troposphere Through Implementation of the Phase Matching Method. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10,266. The genesis of Hurricane Nate and its interaction with a nearby environment of very dry air. 89 4.9 4 Atmospheric Chemistry and Physics, 2017, 17, 10349-10366. Hurricane Fred (2015): Cape Verde's First Hurricane in Modern Times: Observations, Impacts, and 3.3 Lessons Learned. Bulletin of the American Meteorological Society, 2017, 98, 2603-2618.

#	Article	IF	CITATIONS
91	Influence of Storm–Storm and Storm–Environment Interactions on Tropical Cyclone Formation and Evolution. Monthly Weather Review, 2017, 145, 4855-4875.	1.4	9
92	Predictive Skill and Predictability of North Atlantic Tropical Cyclogenesis in Different Synoptic Flow Regimes. Journals of the Atmospheric Sciences, 2018, 75, 361-378.	1.7	22
93	What is the Key Feature of Convection Leading up to Tropical Cyclone Formation?. Journals of the Atmospheric Sciences, 2018, 75, 1609-1629.	1.7	26
94	The Impact of Airborne Radio Occultation Observations on the Simulation of Hurricane Karl (2010). Monthly Weather Review, 2018, 146, 329-350.	1.4	12
95	A numerical modelling investigation of the role of diabatic heating and cooling in the development of a mid-level vortex prior to tropical cyclogenesis – Part 1: The response to stratiform components of diabatic forcing. Atmospheric Chemistry and Physics, 2018, 18, 14393-14416.	4.9	6
96	100 Years of Progress in Tropical Cyclone Research. Meteorological Monographs, 2018, 59, 15.1-15.68.	5.0	126
97	Sensitivity of airborne radio occultation to tropospheric properties over ocean and land. Atmospheric Measurement Techniques, 2018, 11, 763-780.	3.1	5
98	Mesoscale Processes during the Genesis of Hurricane Karl (2010). Journals of the Atmospheric Sciences, 2019, 76, 2235-2255.	1.7	16
99	Balanced Dynamics and Moisture Quasi-Equilibrium in DYNAMO Convection. Journals of the Atmospheric Sciences, 2019, 76, 2781-2799.	1.7	2
100	Numerical Simulation of Rapid Weakening of Hurricane Joaquin with Assimilation of High-Definition Sounding System Dropsondes during the Tropical Cyclone Intensity Experiment: Comparison of Three- and Four-Dimensional Ensemble–Variational Data Assimilation. Weather and Forecasting, 2019, 34, 521-538.	1.4	11
101	Control of Convection in Highâ€Resolution Simulations of Tropical Cyclogenesis. Journal of Advances in Modeling Earth Systems, 2019, 11, 1582-1599.	3.8	6
102	A realization of the turbulent vortex dynamo in the atmosphere: based on the 21 st century knowledge. Journal of Physics: Conference Series, 2019, 1336, 012007.	0.4	2
103	An idealized numerical study of tropical cyclogenesis and evolution at the Equator. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 685-699.	2.7	8
104	Birth of a hurricane: early detection of large-scale vortex instability. Journal of Physics: Conference Series, 2020, 1640, 012023.	0.4	3
105	OTREC2019: Convection Over the East Pacific and Southwest Caribbean. Geophysical Research Letters, 2020, 47, e2020GL087564.	4.0	27
106	Aerosol Indirect Effects on Cirrus Clouds Based on Global Aircraft Observations. Geophysical Research Letters, 2020, 47, e2019GL086550.	4.0	9
107	Sensitivity of Tropical Cyclone Formation to Resolutionâ€Dependent and Independent Tracking Schemes in Highâ€Resolution Climate Model Simulations. Earth and Space Science, 2020, 7, e2019EA000906.	2.6	13
108	Effects of thermodynamics, dynamics and aerosols on cirrus clouds based on in situ observations and NCAR CAM6. Atmospheric Chemistry and Physics, 2021, 21, 1835-1859.	4.9	12

#	Article	IF	CITATIONS
109	Emergent Properties of Convection in OTREC and PREDICT. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033585.	3.3	14
110	Multiscale Shear Impacts during the Genesis of Hagupit (2008). Monthly Weather Review, 2021, 149, 551-569.	1.4	3
111	Effect of a Low-Frequency Vortex on the Size of Typhoon Lan (2017). Monthly Weather Review, 2021, 149, 521-536.	1.4	2
112	Evolution of convective characteristics during tropical cyclogenesis. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 2103-2123.	2.7	4
113	How Does the Relationship between Ambient Deep-Tropospheric Vertical Wind Shear and Tropical Cyclone Tornadoes Change between Coastal and Inland Environments?. Weather and Forecasting, 2021, 36, 539-566.	1.4	3
114	Identifying the development of a tropical depression into a tropical storm over the South China Sea. Weather and Forecasting, 2021, , .	1.4	2
115	Recent Advances in Our Understanding of Tropical Cyclone Intensity Change Processes from Airborne Observations. Atmosphere, 2021, 12, 650.	2.3	11
116	Decadal Modulation of Trans-basin Variability on Extended Boreal Summer Tropical Cyclone Activity in the Tropical North Pacific and Atlantic Basins. Journal of Climate, 2021, , 1-49.	3.2	0
117	On the Path from the Turbulent Vortex Dynamo Theory to Diagnosis of Tropical Cyclogenesis. Open Journal of Fluid Dynamics, 2018, 08, 86-114.	0.5	13
124	Advancing Tropical Cyclone Forecasts Using Aircraft Observations. , 2014, , 169-191.		0
126	Application of Relative Humidity-Based Weighting Approach in Regional Heavy Precipitation Process of Southwest Vortex. Climate Change Research Letters, 2017, 06, 340-351.	0.1	0
127	Tropical Cyclones and Hurricanes: Observations. , 2019, , .		4
128	Southwest Pacific tropical cyclone development classification utilizing machine learning and synoptic composites. International Journal of Climatology, 2022, 42, 4187-4213.	3.5	2
129	Understanding Severe Weather Events at Airport Spatial Scale. , 2020, , .		0
130	Effective buoyancy and CAPE: Some implications for tropical cyclones. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 2118-2131.	2.7	7
131	Eyewall asymmetries and their contributions to the intensification of an idealized tropical cyclone translating in uniform flow. Journals of the Atmospheric Sciences, 2022, , .	1.7	0
132	Examination of aerosol indirect effects during cirrus cloud evolution. Atmospheric Chemistry and Physics, 2023, 23, 1103-1129.	4.9	3
133	Application of the Turbulent Vortex Dynamo Theory for Early Diagnostics of the Tropical Cyclone Genesis. Fundamentalnaya I Prikladnaya Gidrofizika, 2022, 15, 47-59.	0.4	1

#	Article	IF	CITATIONS
134	Observations of tropical cyclones. , 2023, , 1-34.		0
135	Tropical cyclone formation and intensification. , 2023, , 213-237.		0
137	Tropical cyclone life cycle. , 2023, , 313-330.		0
139	Helical cyclogenesis as an extreme threshold phenomenon in a rotating stratified moist atmosphere. Frontiers in Earth Science, 0, 11, .	1.8	0