Urban environment of New York City promotes growth

Tree Physiology 32, 389-400

DOI: 10.1093/treephys/tps027

Citation Report

#	Article	IF	Citations
2	Thermal tolerance, net CO2 exchange and growth of a tropical tree species, Ficus insipida, cultivated at elevated daytime and nighttime temperatures. Journal of Plant Physiology, 2013, 170, 822-827.	3.5	46
3	Effects of Urbanization on Tree Species Functional Diversity in Eastern North America. Ecosystems, 2013, 16, 1487-1497.	3.4	51
4	Elevated nightâ€time temperatures increase growth in seedlings of two tropical pioneer tree species. New Phytologist, 2013, 197, 1185-1192.	7.3	65
5	Spatiotemporal trends of terrestrial vegetation activity along the urban development intensity gradient in China's 32 major cities. Science of the Total Environment, 2014, 488-489, 136-145.	8.0	95
6	Effects of the large-scale atmospheric circulation on the onset and strength of urban heat islands: a case study. Theoretical and Applied Climatology, 2014, 117, 73-87.	2.8	13
7	Thermal physiology and urbanization: perspectives on exit, entry and transformation rules. Functional Ecology, 2015, 29, 902-912.	3.6	45
8	Tree Productivity Enhanced with Conversion from Forest to Urban Land Covers. PLoS ONE, 2015, 10, e0136237.	2.5	50
9	Urban plant physiology: adaptation-mitigation strategies under permanent stress. Trends in Plant Science, 2015, 20, 72-75.	8.8	128
10	Do cities simulate climate change? A comparison of herbivore response to urban and global warming. Global Change Biology, 2015, 21, 97-105.	9.5	120
11	Plant Physiological, Morphological and Yield-Related Responses to Night Temperature Changes across Different Species and Plant Functional Types. Frontiers in Plant Science, 2016, 7, 1774.	3.6	39
12	Impacts of Climate Change on the Distributions of Allergenic Species., 0,, 29-49.		2
13	Prevalent vegetation growth enhancement in urban environment. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6313-6318.	7.1	229
14	Constructing hybrid infrastructure: Exploring the potential ecological, social, and economic benefits of integrating municipal infrastructure into constructed environments. Cities, 2016, 55, 165-179.	5.6	18
15	Potential climate change impacts on green infrastructure vegetation. Urban Forestry and Urban Greening, 2016, 20, 128-139.	5. 3	22
16	Natural selection on plant physiological traits in an urban environment. Acta Oecologica, 2016, 77, 67-74.	1.1	32
17	Macro- and Micronutrients. Structure and Function of Mountain Ecosystems in Japan, 2016, , 89-117.	0.5	O
18	CO2, Temperature, and Trees. Structure and Function of Mountain Ecosystems in Japan, 2016, , .	0.5	4
19	Spatiotemporal trends of urban heat island effect along the urban development intensity gradient in China. Science of the Total Environment, 2016, 544, 617-626.	8.0	147

#	ARTICLE	IF	CITATIONS
20	Characterization of the $\hat{\Gamma}$ 13 C signatures of anthropogenic CO 2 emissions in the Greater Toronto Area, Canada. Applied Geochemistry, 2017, 83, 171-180.	3.0	13
21	Red hot maples: Acer rubrum first-year phenology and growth responses to soil warming. Canadian Journal of Forest Research, 2017, 47, 159-165.	1.7	6
22	Rapid evolution of ant thermal tolerance across an urban-rural temperature cline. Biological Journal of the Linnean Society, 2017, 121, 248-257.	1.6	146
23	Photosynthetic CO2 uptake and carbon sequestration potential of deciduous and evergreen tree species in an urban environment. Urban Ecosystems, 2017, 20, 663-674.	2.4	24
24	Climate change accelerates growth of urban trees in metropolises worldwide. Scientific Reports, 2017, 7, 15403.	3.3	126
25	Urban development in the southern Great Plains: effects of atmospheric NOx on the long-lived post oak tree (Quercus stellata). Urban Ecosystems, 2017, 20, 651-661.	2.4	2
26	Urban Ecosystems and Biodiversity. , 0, , 257-318.		9
27	Measuring urban tree loss dynamics across residential landscapes. Science of the Total Environment, 2018, 612, 940-949.	8.0	48
28	Urban climate modifies tree growth in Berlin. International Journal of Biometeorology, 2018, 62, 795-808.	3.0	23
29	Effects of the urban heat island and climate change on the growth of Khaya senegalensis in Hanoi, Vietnam. Forest Ecosystems, 2018, 5, .	3.1	16
30	Variation in photosynthesis and stomatal conductance among red maple (Acer rubrum) urban planted cultivars and wildtype trees in the southeastern United States. PLoS ONE, 2018, 13, e0197866.	2.5	19
31	Testing the accuracy of resistance drilling to assess tree growth rate and the relationship to past climatic conditions. Urban Forestry and Urban Greening, 2018, 36, 1-12.	5.3	6
32	Vegetation growth enhancement in urban environments of the Conterminous United States. Global Change Biology, 2018, 24, 4084-4094.	9.5	63
33	Getting ahead of the curve: cities as surrogates for global change. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180643.	2.6	60
34	Impacts of urbanization on insect herbivory and plant defences in oak trees. Oikos, 2019, 128, 113-123.	2.7	49
35	White oak and red maple tree ring analysis reveals enhanced productivity in urban forest patches. Forest Ecology and Management, 2019, 453, 117626.	3.2	17
36	Effects of Migration on Allergic Diseases. International Archives of Allergy and Immunology, 2019, 178, 128-140.	2.1	29
37	The grey-green divide: multi-temporal analysis of greenness across 10,000 urban centres derived from the Global Human Settlement Layer (GHSL). International Journal of Digital Earth, 2020, 13, 101-118.	3.9	46

#	Article	IF	CITATIONS
38	Current and future biomass carbon uptake in Boston's urban forest. Science of the Total Environment, 2020, 709, 136196.	8.0	27
39	Foliar C/N stoichiometry in urban forest trees on a global scale. Journal of Forestry Research, 2021, 32, 1429-1443.	3.6	4
40	Chlorophyll fluorescence parameters, leaf traits and foliar chemistry of white oak and red maple trees in urban forest patches. Tree Physiology, 2021, 41, 269-279.	3.1	11
41	Photosynthesis, fluorescence, and biomass responses of white oak seedlings to urban soil and air temperature effects. Physiologia Plantarum, 2021, 172, 1535-1549.	5.2	4
42	Cities as hot stepping stones for tree migration. Npj Urban Sustainability, 2021, $1,$	8.0	5
43	Quantifying the indirect effects of urbanization on urban vegetation carbon uptake in the megacity of Shanghai, China. Environmental Research Letters, 2021, 16, 064088.	5.2	13
44	Leaf Morphological and Nutrient Traits of Common Woody Plants Change Along the Urban–Rural Gradient in Beijing, China. Frontiers in Plant Science, 2021, 12, 682274.	3.6	8
45	Urban growth drives trait composition of urban spontaneous plant communities in a mountainous city in China. Journal of Environmental Management, 2021, 293, 112869.	7.8	8
46	Investigating the relationship between various measuring methods for determination of establishment success of urban trees. Urban Forestry and Urban Greening, 2017, 28, 21-27.	5. 3	7
47	Lichens and Plants in Urban Environment. , 2013, , 167-193.		3
48	Urban net primary production: Concepts, field methods, and <scp>Baltimore, Maryland, USA</scp> case study. Ecological Applications, 2022, 32, e2562.	3.8	3
49	Leaf Functional Traits Vary in Urban Environments: Influences of Leaf Age, Land-Use Type, and Urban–Rural Gradient. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	8
50	Soil organic carbon changes in city areas of China over the past three decades: Implications for achieving carbon neutrality. Engineering, 2022, , .	6.7	0
51	Water Availability Determines Tree Growth and Physiological Response to Biotic and Abiotic Stress in a Temperate North American Urban Forest. Forests, 2022, 13, 1012.	2.1	1
52	Double Effect of Urbanization on Vegetation Growth in China's 35 Cities during 2000–2020. Remote Sensing, 2022, 14, 3312.	4.0	3
53	Urbanization driving changes in plant species and communities – A global view. Global Ecology and Conservation, 2022, 38, e02243.	2.1	20
54	Continued Increases of Gross Primary Production in Urban Areas during 2000–2016. Journal of Remote Sensing, 2022, 2022, .	6.7	17
56	Effects of Urban Heat Islands on Temperate Forest Trees and Arthropods. Current Forestry Reports, 2023, 9, 48-57.	7.4	5

#	Article	IF	CITATIONS
57	Hormetic effects of abiotic environmental stressors in woody plants in the context of climate change. Journal of Forestry Research, 2023, 34, 7-19.	3.6	4
58	Ecosourcing for resilience in a changing environment. New Zealand Journal of Botany, 0, , 1-26.	1.1	2
60	Gradual or abrupt? An algorithm to monitor urban vegetation dynamics in support of greening policies. Urban Forestry and Urban Greening, 2023, 86, 128030.	5 . 3	1
61	Global enhanced vegetation photosynthesis in urban environment and its drivers revealed by satellite solar-induced chlorophyll fluorescence data. Agricultural and Forest Meteorology, 2023, 340, 109622.	4.8	1
62	Impacts of the urban environment on well-watered tree architectural development and tree climate services. Acta Horticulturae, 2023, , 189-196.	0.2	0
63	Climate change and urban forests. , 2024, , 243-264.		0