Insulin Receptor Substrate 1 Gene Variation Modifies In Weight-Loss Diets in a 2-Year Randomized Trial

Circulation

124, 563-571

DOI: 10.1161/circulationaha.111.025767

Citation Report

#	Article	IF	CITATIONS
1	Circulation Editors' Picks. Circulation, 2012, 125, .	1.6	1
3	<i>FTO</i> Genotype and 2-Year Change in Body Composition and Fat Distribution in Response to Weight-Loss Diets. Diabetes, 2012, 61, 3005-3011.	0.3	139
6	Weight-loss diets modify glucose-dependent insulinotropic polypeptide receptor rs2287019 genotype effects on changes in body weight, fasting glucose, and insulin resistance: the Preventing Overweight Using Novel Dietary Strategies trial. American Journal of Clinical Nutrition, 2012, 95, 506-513.	2.2	77
7	TCF7L2 genetic variants modulate the effect of dietary fat intake on changes in body composition during a weight-loss intervention. American Journal of Clinical Nutrition, 2012, 96, 1129-1136.	2.2	72
8	APOA5 genotype modulates 2-y changes in lipid profile in response to weight-loss diet intervention: the Pounds Lost Trial. American Journal of Clinical Nutrition, 2012, 96, 917-922.	2.2	51
10	Neuropeptide Y Promoter Polymorphism Modifies Effects of a Weight-Loss Diet on 2-Year Changes of Blood Pressure. Hypertension, 2012, 60, 1169-1175.	1.3	40
11	Insulin Receptor Substrate 1 Gene Variation Modifies Insulin Resistance Response to Weight-Loss Diets in a 2-Year Randomized Trial: The Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) Trial. Yearbook of Endocrinology, 2012, 2012, 16-17.	0.0	0
12	Gene–Lifestyle Interactions in Obesity. Current Nutrition Reports, 2012, 1, 184-196.	2.1	46
13	Gene-Diet Interactions in Complex Disease: Current Findings and Relevance for Public Health. Current Nutrition Reports, 2012, 1, 222-227.	2.1	33
14	Tailoring dietary approaches for weight loss. International Journal of Obesity Supplements, 2012, 2, S11-S15.	12.5	17
15	Nutrition, Genetics, and Cardiovascular Disease. Current Nutrition Reports, 2012, 1, 93-99.	2.1	1
16	Genetics of Obesity. Current Obesity Reports, 2013, 2, 23-31.	3.5	9
18	Dietary Interventions for Weight Loss and Maintenance: Preference or Genetic Personalization?. Current Nutrition Reports, 2013, 2, 189-198.	2.1	6
19	Common Sources of Bias in Gene–Lifestyle Interaction Studies of Cardiometabolic Disease. Current Nutrition Reports, 2013, 2, 251-257.	2.1	1
20	Targeting a tailored therapeutic diet by means of nutrigenomics: future or reality?. Mediterranean Journal of Nutrition and Metabolism, 2013, 6, 1-2.	0.2	0
21	Modulation by Dietary Fat and Carbohydrate of <i>IRS1</i> Association With Type 2 Diabetes Traits in Two Populations of Different Ancestries. Diabetes Care, 2013, 36, 2621-2627.	4.3	25
22	Gene \tilde{A} — Environment Interactions in Obesity: The State of the Evidence. Human Heredity, 2013, 75, 106-115.	0.4	29
23	ThelRS1rs2943641 Variant and Risk of Future Cancer Among Morbidly Obese Individuals. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E785-E789.	1.8	7

#	Article	IF	CITATIONS
24	The Challenging Chase for Nutrigenetic Predictors of Metabolic Responses to Dietary Interventions. Diabetes Care, 2013, 36, 3379-3381.	4.3	1
25	<i>IRS1</i> Genotype Modulates Metabolic Syndrome Reversion in Response to 2-Year Weight-Loss Diet Intervention. Diabetes Care, 2013, 36, 3442-3447.	4.3	27
26	Sex-specific interactions between the IRS1 polymorphism and intakes of carbohydrates and fat on incident type 2 diabetes. American Journal of Clinical Nutrition, 2013, 97, 208-216.	2.2	30
28	Genetic Determinant for Amino Acid Metabolites and Changes in Body Weight and Insulin Resistance in Response to Weight-Loss Diets. Circulation, 2013, 127, 1283-1289.	1.6	67
29	The New Perspectives on Genetic Studies of Type 2 Diabetes and Thyroid Diseases. Current Genomics, 2013, 14, 33-48.	0.7	4
30	Targeting a tailored therapeutic diet by means of nutrigenomics: future or reality?. Mediterranean Journal of Nutrition and Metabolism, 2013, 6, 1-2.	0.2	1
31	Gene-Physical Activity Interactions and Their Impact on Diabetes. Medicine and Sport Science, 2014, 60, 94-103.	1.4	13
32	Gene–diet interaction and weight loss. Current Opinion in Lipidology, 2014, 25, 27-34.	1.2	41
33	Circulating 25-Hydroxyvitamin D, IRS1 Variant rs2943641, and Insulin Resistance: Replication of a Geneâ€"Nutrient Interaction in 4 Populations of Different Ancestries. Clinical Chemistry, 2014, 60, 186-196.	1.5	19
34	Personalized nutrition and obesity. Annals of Medicine, 2014, 46, 247-252.	1.5	34
35	FTO genotype, dietary protein, and change in appetite: the Preventing Overweight Using Novel Dietary Strategies trial. American Journal of Clinical Nutrition, 2014, 99, 1126-1130.	2.2	63
36	Gene-Diet Interactions in Type 2 Diabetes. Current Nutrition Reports, 2014, 3, 302-323.	2.1	4
37	Variants in glucose- and circadian rhythm–related genes affect the response of energy expenditure to weight-loss diets: the POUNDS LOST Trial. American Journal of Clinical Nutrition, 2014, 99, 392-399.	2,2	47
38	Reduction in saturated fat intake for cardiovascular disease. The Cochrane Library, 2015, , CD011737.	1.5	329
39	Making Behavior Change Interventions Available to Young African American Women. Journal of Cardiovascular Nursing, 2015, 30, 497-505.	0.6	6
40	CETP genotype and changes in lipid levels in response to weight-loss diet intervention in the POUNDS LOST and DIRECT randomized trials. Journal of Lipid Research, 2015, 56, 713-721.	2.0	39
41	Future Perspectives of Personalized Weight Loss Interventions Based on Nutrigenetic, Epigenetic, and Metagenomic Data. Journal of Nutrition, 2016, 146, 905S-912S.	1.3	57
42	Migraine and obesity: metabolic parameters and response to a weight loss programme. Pediatric Obesity, 2015, 10, 220-225.	1.4	32

#	Article	IF	Citations
43	Improving longâ€ŧerm weight loss maintenance: Can we do it?. Obesity, 2015, 23, 2-3.	1.5	30
44	<i>PCSK7</i> Genotype Modifies Effect of a Weight-Loss Diet on 2-Year Changes of Insulin Resistance: The POUNDS LOST Trial. Diabetes Care, 2015, 38, 439-444.	4.3	35
45	Dietary Fat Intake Modifies the Effect of a Common Variant in the LIPC Gene on Changes in Serum Lipid Concentrations during a Long-Term Weight-Loss Intervention Trial. Journal of Nutrition, 2015, 145, 1289-1294.	1.3	33
46	Obesity and increased risk of esophageal adenocarcinoma. Expert Review of Endocrinology and Metabolism, 2015, 10, 511-523.	1.2	3
47	Neuropeptide Y genotype, central obesity, and abdominal fat distribution: the POUNDS LOST trial. American Journal of Clinical Nutrition, 2015, 102, 514-519.	2.2	36
48	The Genetics of Obesity., 2016,, 161-177.		8
49	Precision Obesity Treatments Including Pharmacogenetic and Nutrigenetic Approaches. Trends in Pharmacological Sciences, 2016, 37, 575-593.	4.0	36
50	Fat mass- and obesity-associated genotype, dietary intakes and anthropometric measures in European adults: the Food4Me study. British Journal of Nutrition, 2016, 115, 440-448.	1.2	22
51	Nutrigenetics of Type 2 Diabetes. , 2016, , 539-560.		0
53	Genetic variation of fasting glucose and changes in glycemia in response to 2-year weight-loss diet intervention: the POUNDS LOST trial. International Journal of Obesity, 2016, 40, 1164-1169.	1.6	23
54	Plasma Taurine, Diabetes Genetic Predisposition, and Changes of Insulin Sensitivity in Response to Weight-Loss Diets. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 3820-3826.	1.8	26
55	Genetic susceptibility to diabetes and long-term improvement of insulin resistance and \hat{l}^2 cell function during weight loss: the Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial. American Journal of Clinical Nutrition, 2016, 104, 198-204.	2.2	30
56	FTO genotype and weight loss in diet and lifestyle interventions: a systematic review and meta-analysis. American Journal of Clinical Nutrition, 2016, 103, 1162-1170.	2.2	84
57	Dietary Protein Modifies the Effect of the MC4R Genotype on 2-Year Changes in Appetite and Food Craving: The POUNDS Lost Trial. Journal of Nutrition, 2017, 147, jn242958.	1.3	17
58	Association between dietary fat intake and insulin resistance in Chinese child twins. British Journal of Nutrition, 2017, 117, 230-236.	1.2	15
59	Guide for Current Nutrigenetic, Nutrigenomic, and Nutriepigenetic Approaches for Precision Nutrition Involving the Prevention and Management of Chronic Diseases Associated with Obesity. Journal of Nutrigenetics and Nutrigenomics, 2017, 10, 43-62.	1.8	118
60	Starch Digestion–Related Amylase Genetic Variant Affects 2-Year Changes in Adiposity in Response to Weight-Loss Diets: The POUNDS Lost Trial. Diabetes, 2017, 66, 2416-2423.	0.3	29
61	TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Molecular mechanisms related to bovine intramuscular fat deposition in the longissimus muscle12. Journal of Animal Science, 2017, 95, 2284-2303.	0.2	24

#	Article	IF	Citations
62	Gene-Diet Interaction and Precision Nutrition in Obesity. International Journal of Molecular Sciences, 2017, 18, 787.	1.8	140
63	Effect of Low-Fat vs Low-Carbohydrate Diet on 12-Month Weight Loss in Overweight Adults and the Association With Genotype Pattern or Insulin Secretion. JAMA - Journal of the American Medical Association, 2018, 319, 667.	3.8	511
64	<i>HNF1A</i> variant, energyâ€reduced diets and insulin resistance improvement during weight loss: The POUNDS Lost trial and DIRECT. Diabetes, Obesity and Metabolism, 2018, 20, 1445-1452.	2.2	17
65	Epidemiology and Risk Factors of Type 2 Diabetes. Endocrinology, 2018, , 1-26.	0.1	2
66	Lifestyle Interventions for Weight Control Modified by Genetic Variation: A Review of the Evidence. Public Health Genomics, 2018, 21, 169-185.	0.6	12
67	Interplay between diet and genetic susceptibility in obesity and related traits. Frontiers of Medicine, 2018, 12, 601-607.	1.5	13
68	Genetically determined vitamin D levels and change in bone density during a weight-loss diet intervention: the Preventing Overweight Using Novel Dietary Strategies (POUNDS Lost) Trial. American Journal of Clinical Nutrition, 2018, 108, 1129-1134.	2.2	9
69	Diet in patients with metabolic syndrome: What is the ideal macronutrient composition?. Revista Portuguesa De Cardiologia (English Edition), 2018, 37, 1001-1006.	0.2	5
70	Dieta em doentes com sÃndrome metabólica: qual a composição ideal de macronutrientes?. Revista Portuguesa De Cardiologia, 2018, 37, 1001-1006.	0.2	7
71	Applying Precision Medicine to Healthy Living for the Prevention and Treatment of Cardiovascular Disease. Current Problems in Cardiology, 2018, 43, 448-483.	1.1	27
72	Lifestyle intervention modifies the effect of the MC4R genotype on changes in insulin resistance among women with prior gestational diabetes: Tianjin Gestational Diabetes Mellitus Prevention Program. American Journal of Clinical Nutrition, 2019, 110, 750-758.	2.2	9
73	The HealtheStepsâ,, lifestyle prescription program to improve physical activity and modifiable risk factors for chronic disease: a pragmatic randomized controlled trial. BMC Public Health, 2019, 19, 841.	1.2	23
74	Genetics of Central Obesity and Body Fat. , 2019, , 153-174.		2
75	Lessons Learned from the POUNDS Lost Study: Genetic, Metabolic, and Behavioral Factors Affecting Changes in Body Weight, Body Composition, and Cardiometabolic Risk. Current Obesity Reports, 2019, 8, 262-283.	3.5	26
76	A Scientific Perspective of Personalised Gene-Based Dietary Recommendations for Weight Management. Nutrients, 2019, 11, 617.	1.7	29
77	Precision nutrition: hype or hope for public health interventions to reduce obesity?. International Journal of Epidemiology, 2019, 48, 332-342.	0.9	22
78	<i>Anxa2</i> gene silencing attenuates obesity-induced insulin resistance by suppressing the NF-κB signaling pathway. American Journal of Physiology - Cell Physiology, 2019, 316, C223-C234.	2.1	25
79	Dietary Fatty Acids and the Metabolic Syndrome: A Personalized Nutrition Approach. Advances in Food and Nutrition Research, 2019, 87, 43-146.	1.5	4

#	ARTICLE	IF	CITATIONS
80	Lifestyle genomics and the metabolic syndrome: A review of genetic variants that influence response to diet and exercise interventions. Critical Reviews in Food Science and Nutrition, 2019, 59, 2028-2039.	5.4	33
81	Genetic susceptibility, lifestyle intervention and glycemic changes among women with prior gestational diabetes. Clinical Nutrition, 2020, 39, 2144-2150.	2.3	8
82	Nutrigenetic approaches in obesity and weight loss. , 2020, , 409-415.		1
83	Genetic variation in lean body mass, changes of appetite and weight loss in response to diet interventions: The <scp>POUNDS</scp> Lost trial. Diabetes, Obesity and Metabolism, 2020, 22, 2305-2315.	2.2	11
84	Associations between Genotype–Diet Interactions and Weight Loss—A Systematic Review. Nutrients, 2020, 12, 2891.	1.7	19
85	The Role of Nutrition in the Prevention and Intervention of Type 2 Diabetes. Frontiers in Bioengineering and Biotechnology, 2020, 8, 575442.	2.0	24
86	Reduction in saturated fat intake for cardiovascular disease. The Cochrane Library, 2020, 2020, CD011737.	1.5	65
87	Reduction in saturated fat intake for cardiovascular disease. The Cochrane Library, 2020, 5, CD011737.	1.5	81
88	The Combined Effect of Polygenic Risk from <i>FTO</i> and <i>ADRB2</i> Gene Variants, Odds of Obesity, and Post-Hipcref Diet Differences. Lifestyle Genomics, 2020, 13, 84-98.	0.6	8
89	Distinct genetic subtypes of adiposity and glycemic changes in response to weight-loss diet intervention: the POUNDS Lost trial. European Journal of Nutrition, 2021, 60, 249-258.	1.8	6
90	Personalized Nutrition and -Omics. , 2021, , 495-507.		19
91	Association analysis of FTO gene polymorphisms rs9939609 and obesity risk among the adults: A systematic review and meta-analysis. Meta Gene, 2021, 27, 100832.	0.3	3
92	Interaction of diabetes genetic risk and successful lifestyle modification in the Diabetes Prevention Programme. Diabetes, Obesity and Metabolism, 2021, 23, 1030-1040.	2.2	12
93	Genetically Guided Mediterranean Diet for the Personalized Nutritional Management of Type 2 Diabetes Mellitus. Nutrients, 2021, 13, 355.	1.7	8
94	Visceral Obesity, Metabolic Syndrome, and Esophageal Adenocarcinoma. Frontiers in Oncology, 2021, 11, 627270.	1.3	25
95	ĐžĐ¡ĐžĐ'Đ›Đ~Đ'ĐžĐ¡Đ¢Đ† Đ'Đ£Đ"ЛЕĐ'ĐžĐ"ĐОГО ĐžĐ'ĐœĐ†ĐĐ£ Đ' ĐŸĐЦІЄĐĐ¢Đ†Đ' Đ— КО	ĐœĐž ĐĐ ĐІĐ 	"ĐĐ~Đœ ĐŸ
96	Nutrigenomics in Regulating the Expression of Genes Related to Type 2 Diabetes Mellitus. Frontiers in Physiology, 2021, 12, 699220.	1.3	16
97	Nutrigenetic variants and response to diet/lifestyle intervention in obese subjects: a pilot study. Acta Diabetologica, 2021, , 1.	1.2	8

#	Article	IF	CITATIONS
98	Dietary interventions for obesity: clinical and mechanistic findings. Journal of Clinical Investigation, 2021, 131, .	3.9	78
99	Epidemiology and Risk Factors of Type 2 Diabetes. Endocrinology, 2018, , 55-80.	0.1	3
101	Genetic test for the prescription of diets in support of physical activity. Acta Biomedica, 2020, 91, e2020011.	0.2	2
102	Nutrition, Genetics, and Cardiovascular Disease., 2020,,.		0
103	Insulin receptor substrate 1 gene variations and lipid profile characteristics in the type 2 diabetic patients with comorbid obesity and chronic pancreatitis. Endocrine Regulations, 2022, 56, 1-9.	0.5	1
104	Single-nucleotide polymorphisms in medical nutritional weight loss: Challenges and future directions. Journal of Translational Internal Medicine, 2022, 10, 1-4.	1.0	2
106	Insulin Receptor Substrate 1 Gene and Glucose Metabolism Characteristics in Type 2 Diabetes Mellitus with Comorbidities Ethiopian Journal of Health Sciences, 2021, 31, 1001-1010.	0.2	0
107	Genetic effects of phytonutrients in metabolic disorders. , 2022, , 105-126.		0
108	Personalized Strategy of Obesity Prevention and Management Based on the Analysis of Pathogenetic, Genetic, and Microbiotic Factors., 0,,.		2
109	Nutrition for precision health: The time is now. Obesity, 2022, 30, 1335-1344.	1.5	6
110	α-Lactalbumin peptide Asp-Gln-Trp alleviates hepatic insulin resistance and modulates gut microbiota dysbiosis in high-fat diet-induced NAFLD mice. Food and Function, 2022, 13, 9878-9892.	2.1	14
111	Differences in weight loss outcomes for males and females on a low-carbohydrate diet: A systematic review. Obesity Research and Clinical Practice, 2022, 16, 447-456.	0.8	2
112	Genetically determined gut microbial abundance and 2-year changes in central adiposity and body composition: The POUNDS lost trial. Clinical Nutrition, 2022, 41, 2817-2824.	2.3	1
117	Genetic Polymorphisms Associated with the Efficiency of Weight Loss: A Systematic Review. Russian Journal of Genetics, 2023, 59, 754-769.	0.2	1