Sequence Analysis of the p1 Adhesin Gene of Mycoplash Collected in Beijing in 2008 to 2009

Journal of Clinical Microbiology 49, 3000-3003

DOI: 10.1128/jcm.00105-11

Citation Report

#	Article	IF	CITATIONS
1	Sequence Variation within the P1 Gene of Mycoplasma pneumoniae. Journal of Clinical Microbiology, 2011, 49, 3723-3724.	1.8	4
2	Complete Genome Sequence of Mycoplasma pneumoniae Type 2a Strain 309, Isolated in Japan. Journal of Bacteriology, 2012, 194, 1253-1254.	1.0	24
3	Antibiotic Sensitivity of 40 Mycoplasma pneumoniae Isolates and Molecular Analysis of Macrolide-Resistant Isolates from Beijing, China. Antimicrobial Agents and Chemotherapy, 2012, 56, 1108-1109.	1.4	55
4	Surveillance of Macrolide-Resistant Mycoplasma pneumoniae in Beijing, China, from 2008 to 2012. Antimicrobial Agents and Chemotherapy, 2013, 57, 1521-1523.	1.4	116
5	Multiple-Locus Variable-Number Tandem-Repeat Analysis of 201 Mycoplasma pneumoniae Isolates from Beijing, China, from 2008 to 2011. Journal of Clinical Microbiology, 2013, 51, 636-639.	1.8	35
6	Detection of <i>Mycoplasma pneumoniae </i> by colorimetric loop-mediated isothermal amplification. Acta Microbiologica Et Immunologica Hungarica, 2013, 60, 1-9.	0.4	6
7	Multiple-Locus Variable-Number Tandem-Repeat Analysis of Mycoplasma pneumoniae Clinical Specimens and Proposal for Amendment of MLVA Nomenclature. PLoS ONE, 2013, 8, e64607.	1.1	51
8	Molecular Characterizations of PCR-Positive Mycoplasma pneumoniae Specimens Collected from Australia and China. Journal of Clinical Microbiology, 2014, 52, 1478-1482.	1.8	36
9	Novel Strategy for Typing Mycoplasma pneumoniae Isolates by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Coupled with ClinProTools. Journal of Clinical Microbiology, 2014, 52, 3038-3043.	1.8	28
10	Extensive Variation and Rapid Shift of the MG192 Sequence in Mycoplasma genitalium Strains from Patients with Chronic Infection. Infection and Immunity, 2014, 82, 1326-1334.	1.0	21
11	Detection of Mycoplasma pneumoniae P1 subtype variations by denaturing gradient gel electrophoresis. Diagnostic Microbiology and Infectious Disease, 2014, 78, 24-28.	0.8	21
13	Molecular Typing of Mycoplasma pneumoniae Isolated from Pediatric Patients in Tokyo, Japan. Japanese Journal of Infectious Diseases, 2015, 68, 76-78.	0.5	8
14	Specificity and Strain-Typing Capabilities of Nanorod Array-Surface Enhanced Raman Spectroscopy for Mycoplasma pneumoniae Detection. PLoS ONE, 2015, 10, e0131831.	1.1	19
15	Comparative genome analysis of Mycoplasma pneumoniae. BMC Genomics, 2015, 16, 610.	1.2	59
16	<i>Mycoplasma pneumoniae</i> and <i>Chlamydia</i> spp. Infection in Community-Acquired Pneumonia, Germany, 2011â€"2012. Emerging Infectious Diseases, 2015, 21, 426-434.	2.0	99
17	<i>Mycoplasma pneumoniae</i> Monoclonal P1 Type 2c Outbreak, Russia, 2013. Emerging Infectious Diseases, 2016, 22, 348-350.	2.0	14
18	The Evolution of Advanced Molecular Diagnostics for the Detection and Characterization of Mycoplasma pneumoniae. Frontiers in Microbiology, 2016, 7, 232.	1.5	40
19	Epidemiology of Mycoplasma pneumoniae Infections in Japan and Therapeutic Strategies for Macrolide-Resistant M. pneumoniae. Frontiers in Microbiology, 2016, 7, 693.	1.5	90

#	Article	IF	CITATIONS
20	Mycoplasma pneumoniae: Current Knowledge on Macrolide Resistance and Treatment. Frontiers in Microbiology, 2016, 7, 974.	1.5	180
21	Mycoplasma pneumoniae from the Respiratory Tract and Beyond. Clinical Microbiology Reviews, 2017, 30, 747-809.	5.7	411
22	Pediatric clinical features of Mycoplasma pneumoniae infection are associated with bacterial P1 genotype. Experimental and Therapeutic Medicine, 2017, 14, 1892-1898.	0.8	14
23	Complete Genome Sequences of the $\langle i \rangle p1 \langle j \rangle$ Gene Type 2b and 2c Strains Mycoplasma pneumoniae KCH-402 and KCH-405. Genome Announcements, 2017, 5, .	0.8	1
24	Inter- and intra-strain variability of tandem repeats in Mycoplasma pneumoniae based on next-generation sequencing data. Future Microbiology, 2017, 12, 119-129.	1.0	7
25	Comprehensive bioinformatics analysis of Mycoplasma pneumoniae genomes to investigate underlying population structure and type-specific determinants. PLoS ONE, 2017, 12, e0174701.	1.1	27
26	Multiple-Locus Variable-Number Tandem-Repeat Analysis of <i>Mycoplasma pneumoniae</i> Isolates between 2004 and 2014 in Yamagata, Japan: Change in Molecular Characteristics during an 11-year Period. Japanese Journal of Infectious Diseases, 2017, 70, 642-646.	0.5	18
27	Genotyping and macrolide resistance of Mycoplasma pneumoniae identified in children with community-acquired pneumonia in MedellÂn, Colombia. International Journal of Infectious Diseases, 2018, 66, 113-120.	1.5	11
28	Clonal Expansion of Macrolide-Resistant Sequence Type 3 <i>Mycoplasma pneumoniae</i> , South Korea. Emerging Infectious Diseases, 2018, 24, 1465-1471.	2.0	26
29	Antimicrobial susceptibility and molecular characteristics of Mycoplasma pneumoniae isolates across different regions of China. Antimicrobial Resistance and Infection Control, 2019, 8, 143.	1.5	36
30	Molecular Typing of <i>Mycoplasma pneumoniae</i> Strains in Sweden from 1996 to 2017 and the Emergence of a New P1 Cytadhesin Gene, Variant 2e. Journal of Clinical Microbiology, 2019, 57, .	1.8	25
31	Comparative genomics of Mycoplasma pneumoniae isolated from children with pneumonia: South Korea, 2010–2016. BMC Genomics, 2019, 20, 910.	1.2	7
32	Periodic Genotype Shifts in Clinically Prevalent Mycoplasma pneumoniae Strains in Japan. Frontiers in Cellular and Infection Microbiology, 2020, 10, 385.	1.8	20
33	Molecular Characterization of Mycoplasma pneumoniae Isolates in the United States from 2012 to 2018. Journal of Clinical Microbiology, 2020, 58, .	1.8	32
34	Mycoplasma pneumoniae Infections: Pathogenesis and Vaccine Development. Pathogens, 2021, 10, 119.	1.2	42
35	Polyclonal spread of multiple genotypes of Mycoplasma pneumoniae in semi-closed settings in Yamagata, Japan. Journal of Medical Microbiology, 2019, 68, 785-790.	0.7	8
36	Identification of Mycoplasma pneumoniae type 2b variant strains in Japan. Journal of Medical Microbiology, 2012, 61, 1633-1635.	0.7	10
37	Culture-Independent Detection and Genotyping of Mycoplasma pneumoniae in Clinical Specimens from Beijing, China. PLoS ONE, 2015, 10, e0141702.	1.1	36

#	Article	IF	CITATION
38	Prevalence, genotyping and macrolide resistance of Mycoplasma pneumoniae among isolates of patients with respiratory tract infections, Central Slovenia, 2006 to 2014. Eurosurveillance, 2015, 20, .	3.9	39
39	Global Genome Diversity and Recombination in <i>Mycoplasma pneumoniae</i> Diseases, 2022, 28, 111-117.	2.0	4
43	Molecular Tools for Typing Mycoplasma pneumoniae and Mycoplasma genitalium. Frontiers in Microbiology, 2022, 13 , .	1.5	7
45	Mycoplasma pneumoniae multilocus variable-number tandem-repeat analysis genotypes are associated with inflammatory biomarker levels in children with lower respiratory tract infections. European Journal of Clinical Microbiology and Infectious Diseases, 0, , .	1.3	3
46	The Association between Mycoplasma pneumoniae Genotype and Cutaneous Disease. Microorganisms, 2023, 11, 205.	1.6	1